JPH0564695B2 - - Google Patents
Info
- Publication number
- JPH0564695B2 JPH0564695B2 JP8769674A JP6967487A JPH0564695B2 JP H0564695 B2 JPH0564695 B2 JP H0564695B2 JP 8769674 A JP8769674 A JP 8769674A JP 6967487 A JP6967487 A JP 6967487A JP H0564695 B2 JPH0564695 B2 JP H0564695B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- powder
- nickel
- cobalt
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 31
- 239000000843 powder Substances 0.000 claims description 28
- 239000000956 alloy Substances 0.000 claims description 24
- 229910045601 alloy Inorganic materials 0.000 claims description 24
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 239000010936 titanium Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 17
- 229910052719 titanium Inorganic materials 0.000 claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 11
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- 239000010941 cobalt Substances 0.000 claims description 9
- 229910017052 cobalt Inorganic materials 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 claims description 6
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- 150000003624 transition metals Chemical class 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 239000011812 mixed powder Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 239000012071 phase Substances 0.000 description 26
- 238000005520 cutting process Methods 0.000 description 14
- 239000011195 cermet Substances 0.000 description 11
- 229910052750 molybdenum Inorganic materials 0.000 description 11
- 239000011733 molybdenum Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- -1 and therefore Substances 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
〔産業上の利用分野〕
本発明は、機械加工用工具として使用される、
特に高靭性の含窒素焼結硬質合金に関する。
〔従来の技術〕
近年、チタンを主成分とする炭窒化物を硬質相
とし、これをニツケル及び/又はコバルトの結合
相で結合した窒素を含有する焼結硬質合金(サー
メツト)が切削工具として実用化されている。
この含窒素焼結硬質合金は、従来のチタン等の
炭化物を硬質相とした窒素を含有しない焼結硬質
合金に比較して、硬質相が著しく微粒になること
から、耐高温クリープ特性が大幅に改善され、そ
の結果従来の窒素を含有しない焼結硬質合金では
殆ど不可能であつた切削工具等の分野にも超硬合
金と共に使用されつつある。
然るに、従来からの含窒素焼結硬質合金は、
(Ti、Ta、W、Mo)(CN)・Ni〜Co系が主であ
り、特公昭56−51201号公報等に述べられている
如くモリブデンは硬質相と結合相の中間相に存在
して焼結中に硬質相を液相から保護し、溶解析出
による硬質相の粒子成長を抑制する効果があるの
で、不可欠の成分とされていた。
しかしながら、この従来からの含窒素焼結硬質
合金は、その製造過程において真空中で加熱する
と含有される炭窒化物が分解しやすいので、焼結
後にボアの残存が避けられず、従来の超硬合金に
比べて強度が不足しがちであり、この傾向は窒素
含有量が多いほど顕著であつた。そこで、炭窒化
物の分解を防ぐために窒素雰囲気中で焼結する等
の焼結法の改善がなされてきたが、それでも含有
される窒素が偏析しやすい等の理由により特性の
改善はまだ十分とは云えなかつた。
更に、最近では切削工具の分野において益々高
速切削が要望されているが、含窒素焼結硬質合金
は高速切削において切削工具のすくい面に生じる
クレーター摩耗が極めて進行しやすいという欠点
があつた。クレーター摩耗は含窒素焼結硬質合金
の硬質相が粒子単位で掘り起されて脱落していく
現象である。一般に、クレーター摩耗は組織を粗
くすることにより改善されるが、組織を粗くする
ほど硬度は低下するので、この改善方法におのず
と限界があつた。
〔発明が解決しようとする問題点〕
本発明はかかる従来の事情に鑑み、靭性及び強
度を向上させ、切削工具として高速切削時の耐ク
レーターの摩耗性を改善した含窒素焼結硬質合金
を提供することを目的とする。
〔問題点を解決するための手段〕
本発明の含窒素焼結硬質合金は、必須成分であ
るチタンと、周期律表のa、a、a族から
選ばれたチタン以外の少なくとも一種の遷移金属
との複炭窒化物からなる硬質相と、ニツケル及
び/又はコバルト並びに不可避的不純物を含む結
合相とからなり、モリブデンを実質的に含まず、
硬質相全体に含有される窒素と炭素の原子比N/
(C+N)が0.3〜0.6であつて、黄色ないし褐色
の粒子が存在しないか又は存在しても0.01体積%
以下であることを特徴とする。
かかる含窒素焼結硬質合金の製造は、チタンの
窒化物、炭化物又は炭窒化物の粉末と、モリブデ
ンを除く周期律表のa、a、a族から選ば
れたチタン以外の少なくとも一種の遷移金属の窒
化物炭化物又は炭窒化物の粉末とを、窒素と炭素
の原子比N/(C+N)が0.3〜0.6となるように
混合し、この混合粉末を予め窒素雰囲気中で焼結
温度以上に加熱して固溶化処理した後粉砕して複
炭窒化物の粉末とし、この複炭窒化物の粉末にニ
ツケル及び/又はコバルトの粉末を添加混合し
て、窒素雰囲気中で焼結する方法による。
本発明において「モリブデンを実質的に含有し
ない」とは、硬質相の成分として積極的に添加し
ないことであり、従つて製造過程で混入するもの
を含めて含窒素焼結硬質合金全体のモリブデンが
1重量%未満ならば、望ましい特性が得られるの
で許容することができる。
尚、含窒素焼結硬質合金にはその製造過程で混
入される鉄等の不可避的不純物が特性に影響しな
い範囲で含まれてよく、また通常行なわれている
如く原料粉末に焼結性を向上させるため微量の、
一般に0.01〜2.0重量%の炭素粉末を混合するこ
とができる。
〔作用〕
(Ti、Ta、W、Mo)(CN)・Ni〜Co系の従
来からの含窒素焼結硬質合金についてクレーター
摩耗を研究するため、これにビツカース硬度計の
圧子で亀裂を生じさせ、その伝播経路を調べた結
果、硬質相と結合相の中間層に亀裂が伝播してい
ることを確認した。従つて、中間層を取り除けば
耐クレーターの摩耗性が改善できるものと考えら
れるが、この中間相は主にモリブデンの炭窒化物
からなつているので、前記の如くモリブデンをな
くせば粒子の粗大化が進行して硬度低下などによ
り所望の特性が得られないという矛盾がある。
又、従来からの含窒素焼結硬質合金中の窒素の
偏析についても、光学顕微鏡によつて黄色ないし
褐色の粒子が硬質相組織中に観察できること、こ
の黄色ないし褐色の粒子は主にチタンの窒化物か
ら炭窒化物であつて、この粒子が現われる限り窒
素が高濃度の部分では分解によるポアが発生しや
すく、低濃度の部分では窒素含有による効果が十
分に発揮されない等、特性が劣化することも判つ
た。
そこで、種々検討した結果、本発明においては
チタンと周期律表のa、a、a族から選ば
れたチタン以外の少なくとも一種の遷移金属との
複炭窒化物を前もつて固溶化処理により形成さ
せ、この複炭窒化物の粉末を用いて通常の如く他
のニツケル粉末等と混合し焼結することにより、
モリブデンを含有しなくても粒子の粗大化を招く
ことなく硬質相粒子と周囲組織の密着性を向上さ
せることが可能となり、又同時に窒素を均一に分
散させることができ、その結果従来みられた黄色
ないし褐色の粒子がなくなる。又、原料のa族
元素の炭化物又は炭窒化物も黄色ないし褐色を呈
するが、固溶化処理によつてこの黄色ないし褐色
の粒子は消滅する。尚、黄色ないし褐色の粒子は
存在しても0.01体積%以下ならば、強度や靭性の
改善効果が得られる。
硬質相全体の窒素と炭素の原子比N/(C+
N)を0.3〜0.6の範囲に限定する理由は、0.3未満
では靭性が低下し、0.6を超えると焼結性が低下
すると共に窒素が偏析しやすく、0.7以上では黄
色ないし褐色の粒子が必ず発生してくる。
尚、硬質相を構成する複炭窒化物は結合相への
固溶量が少ないので、結合相の固溶強化を目的と
して、焼結前の粉末に金属チタン及び/又はタン
グステン粉末を混合し、結合相中のニツケル及
び/又はコバルトにチタン又はタングステンを固
溶させることにより、更に特性を向上させること
が可能である。
更に、結合相としてニツケルとコバルトを同時
に使用する場合、硬質相である複炭窒化物との親
和性を考慮して、ニツケルとコバルトの重量比
Ni/(Ni+Co)を0.3〜0.8の範囲とすることが
好ましい。この比は高い方が好ましいが、0.8を
超えると硬度が低下し、又0.3未満では界面強度
の増強による耐クレーター摩耗性の改善が得られ
ないからである。
又、本発明の含窒素焼結硬質合金中に少量の
Zr、V、Cr、Al等を含んでも良く、その場合に
も本発明の作用効果は発揮される。
〔実施例〕
実施例 1
市販の平均粒径2μmのTi(CN)粉末と、ほぼ
同一粒径のTaC粉末及びWC粉末とをボールミル
で混合した後、窒素分圧400torrの窒素気流中で
1700℃で1時間の固溶化処理を行なつて、含炭窒
化物(Ti0.88Ta0.05W0.07)(C0.52N0.48)を形成し
た。この複炭窒化物はC/(C+N)=0.48であ
り、X線回折によつてTaC及びWCのピークが消
滅していることが確認できた。
この複炭窒化物をボールミルで粉砕した後、こ
の粉末85重量%にNi粉末7.9重量%及びCo粉末7
重量%(Ni/(Ni+Co)=0.53)、並びに遊離炭
素0.1重量%を添加して混合し、混合粉末にカン
フアーを3重量%加えて型押し成形した。この成
形体を窒素分圧10torrの窒素気流中で1450℃で1
時間焼結してサーメツトAを製造した。
比較のため、上記と同様に形成した複炭窒化物
の粉末80重量%に、Mo2C粉末5重量%及び上記
と同様にNi粉末、Co粉末、遊離炭素粉末を加え、
同様の条件でサーメツトBを製造した。
又、上記と同様のTi(CN)粉末、TaC粉末及
びWC粉末を固溶化処理することなく、そのまゝ
Ni粉末、Co粉末、遊離炭素粉末と混合して、同
様の条件でサーメツトAと同一組成のサーメツト
Cを製造し、更にMo2C粉末を添加してサーメツ
トBと同一組成のサーメツトDを製造した。
各サーメツトの組織を鏡面に研磨して光学顕微
鏡(1500倍)で観察したところ、サーメツトC及
びDには硬質相中に生地の色調と明瞭に異なる独
立した黄色ないし褐色の粒子の存在が確認された
が、サーメツトA及びBには存在しなかつた。
更に、各サーメツトについて、硬度(Hv)、破
壊靭性(K1C)及び強度(Kg/mm2)を測定すると
共に、第1表の切削条件1でのクレーター摩耗深
さ及び逃げ面摩耗量、並びに切削条件2でのチツ
プ破損率を測定し、その結果を第2表に示した。
第2表から、本発明のサーメツトAは靭性及び耐
摩耗性ともに優れ、強度と硬度も高いことが判
る。
[Industrial Application Field] The present invention is used as a machining tool,
In particular, it relates to high toughness nitrogen-containing sintered hard alloys. [Prior art] In recent years, nitrogen-containing sintered hard alloys (cermets), which have a hard phase of carbonitride mainly composed of titanium and bonded with a binder phase of nickel and/or cobalt, have come into practical use as cutting tools. has been made into This nitrogen-containing sintered hard alloy has significantly finer grains in the hard phase compared to conventional sintered hard alloys that do not contain nitrogen and have a hard phase of carbide such as titanium, so it has significantly improved high-temperature creep resistance. As a result, they are being used together with cemented carbide in areas such as cutting tools, where conventional sintered hard alloys that do not contain nitrogen are almost impossible. However, conventional nitrogen-containing sintered hard alloys are
(Ti, Ta, W, Mo) (CN)・Ni~Co systems are the main ones, and as stated in Japanese Patent Publication No. 56-51201, molybdenum is present in the intermediate phase between the hard phase and the binder phase. It was considered an essential component because it protects the hard phase from the liquid phase during sintering and suppresses particle growth of the hard phase due to solution precipitation. However, when this conventional nitrogen-containing sintered hard alloy is heated in a vacuum during its manufacturing process, the carbonitrides contained in it tend to decompose, so it is inevitable that bores remain after sintering, and conventional cemented carbide It tends to have insufficient strength compared to alloys, and this tendency was more pronounced as the nitrogen content increased. Therefore, improvements have been made to sintering methods such as sintering in a nitrogen atmosphere to prevent the decomposition of carbonitrides, but improvements in properties are still insufficient due to reasons such as the tendency for the nitrogen contained to segregate. I couldn't say it. Furthermore, in recent years, there has been an increasing demand for high-speed cutting in the field of cutting tools, but nitrogen-containing sintered hard alloys have had the disadvantage that crater wear, which occurs on the rake face of cutting tools, is extremely easy to progress during high-speed cutting. Crater wear is a phenomenon in which the hard phase of a nitrogen-containing sintered hard alloy is excavated in particle units and falls off. Generally, crater wear can be improved by making the structure rougher, but since the rougher the structure, the lower the hardness, this improvement method naturally has its limits. [Problems to be Solved by the Invention] In view of the conventional circumstances, the present invention provides a nitrogen-containing sintered hard alloy that has improved toughness and strength and has improved crater wear resistance during high-speed cutting as a cutting tool. The purpose is to [Means for Solving the Problems] The nitrogen-containing sintered hard alloy of the present invention contains titanium as an essential component and at least one transition metal other than titanium selected from groups a, a, and a of the periodic table. and a binder phase containing nickel and/or cobalt and unavoidable impurities, substantially free of molybdenum,
Atomic ratio of nitrogen and carbon contained in the entire hard phase N/
(C+N) is 0.3 to 0.6, and yellow or brown particles are absent or 0.01% by volume if present
It is characterized by the following: The production of such a nitrogen-containing sintered hard alloy involves the use of titanium nitride, carbide, or carbonitride powder and at least one transition metal other than titanium selected from groups a, a, and a of the periodic table excluding molybdenum. of nitride carbide or carbonitride powder so that the atomic ratio of nitrogen and carbon is N/(C+N) is 0.3 to 0.6, and this mixed powder is heated in advance to a temperature higher than the sintering temperature in a nitrogen atmosphere. After solution treatment, pulverization is performed to obtain a double carbonitride powder, nickel and/or cobalt powder is added and mixed to the double carbonitride powder, and the mixture is sintered in a nitrogen atmosphere. In the present invention, "not substantially containing molybdenum" means that it is not actively added as a component of the hard phase, and therefore, molybdenum is contained in the entire nitrogen-containing sintered hard alloy, including molybdenum that is mixed in during the manufacturing process. A content of less than 1% by weight is acceptable because desired properties can be obtained. In addition, the nitrogen-containing sintered hard alloy may contain unavoidable impurities such as iron mixed in during the manufacturing process to the extent that the properties are not affected, and the raw material powder may be used to improve sinterability as is usually done. A trace amount of
Generally 0.01-2.0% by weight of carbon powder can be mixed. [Effect] (Ti, Ta, W, Mo) (CN) - In order to study crater wear on conventional nitrogen-containing sintered hard alloys of the Ni-Co system, we created cracks in them with the indenter of a Bitkers hardness tester. As a result of investigating the propagation route, it was confirmed that the crack propagated to the intermediate layer between the hard phase and the binder phase. Therefore, it is thought that the wear resistance of the crater can be improved by removing the intermediate layer, but since this intermediate phase is mainly composed of molybdenum carbonitride, eliminating molybdenum as described above will cause the grains to become coarser. There is a contradiction in that desired characteristics cannot be obtained due to progress of hardness, etc. Regarding the segregation of nitrogen in conventional nitrogen-containing sintered hard alloys, yellow to brown particles can be observed in the hard phase structure using an optical microscope, and these yellow to brown particles are mainly caused by titanium nitride. As long as these particles appear, pores are likely to occur due to decomposition in areas with high nitrogen concentrations, and the effects of nitrogen content may not be fully exerted in areas with low concentrations, resulting in deterioration of properties. I also found out. Therefore, as a result of various studies, in the present invention, a double carbonitride of titanium and at least one transition metal other than titanium selected from groups a, a, and a of the periodic table is formed by solid solution treatment in advance. By using this double carbonitride powder and mixing it with other nickel powder etc. as usual and sintering it,
Even without molybdenum, it is possible to improve the adhesion between the hard phase particles and the surrounding tissue without causing particle coarsening, and at the same time, it is possible to uniformly disperse nitrogen, resulting in improved Yellow or brown particles disappear. Furthermore, carbides or carbonitrides of Group A elements as raw materials also exhibit a yellow or brown color, but these yellow or brown particles disappear by the solid solution treatment. Incidentally, even if yellow or brown particles are present, if the amount is 0.01% by volume or less, an effect of improving strength and toughness can be obtained. The atomic ratio of nitrogen and carbon in the entire hard phase is N/(C+
The reason why N) is limited to the range of 0.3 to 0.6 is that if it is less than 0.3, the toughness will decrease, if it exceeds 0.6, the sinterability will decrease and nitrogen will tend to segregate, and if it is more than 0.7, yellow or brown particles will always occur. I'll come. Furthermore, since the double carbonitride constituting the hard phase has a small amount of solid solution in the binder phase, for the purpose of solid solution strengthening of the binder phase, metallic titanium and/or tungsten powder is mixed with the powder before sintering. It is possible to further improve the properties by solidly dissolving titanium or tungsten in nickel and/or cobalt in the binder phase. Furthermore, when using nickel and cobalt simultaneously as a binder phase, the weight ratio of nickel and cobalt should be adjusted in consideration of affinity with the hard phase, double carbonitride.
It is preferable that Ni/(Ni+Co) is in the range of 0.3 to 0.8. A higher ratio is preferable; however, if it exceeds 0.8, the hardness decreases, and if it is less than 0.3, the crater wear resistance cannot be improved by increasing the interfacial strength. In addition, a small amount of nitrogen-containing sintered hard alloy of the present invention
It may contain Zr, V, Cr, Al, etc., and the effects of the present invention can also be exhibited in that case. [Example] Example 1 After mixing commercially available Ti (CN) powder with an average particle size of 2 μm and TaC powder and WC powder with almost the same particle size in a ball mill, they were mixed in a nitrogen stream with a nitrogen partial pressure of 400 torr.
Solid solution treatment was performed at 1700° C. for 1 hour to form carbonitrides (Ti 0.88 Ta 0.05 W 0.07 ) (C 0.52 N 0.48 ). This double carbonitride had C/(C+N)=0.48, and it was confirmed by X-ray diffraction that the TaC and WC peaks had disappeared. After pulverizing this double carbonitride with a ball mill, 85% by weight of this powder, 7.9% by weight of Ni powder and 7% of Co powder were added.
% by weight (Ni/(Ni+Co)=0.53) and 0.1% by weight of free carbon were added and mixed, and 3% by weight of camphor was added to the mixed powder and pressed. This molded body was heated at 1450°C in a nitrogen stream with a nitrogen partial pressure of 10 torr.
Cermet A was produced by time sintering. For comparison, 5% by weight of Mo 2 C powder and Ni powder, Co powder, and free carbon powder were added to 80% by weight of double carbonitride powder formed in the same manner as above, and
Cermet B was produced under similar conditions. In addition, the same Ti(CN) powder, TaC powder, and WC powder as described above can be used as they are without solution treatment.
Cermet C, which had the same composition as Cermet A, was produced by mixing it with Ni powder, Co powder, and free carbon powder under the same conditions, and Cermet D, which had the same composition as Cermet B, was produced by adding Mo 2 C powder. . When the structure of each cermet was polished to a mirror surface and observed under an optical microscope (1500x magnification), it was confirmed that in cermets C and D, there were independent yellow or brown particles in the hard phase that were clearly different from the color tone of the fabric. However, it did not exist in Cermets A and B. Furthermore, for each cermet, the hardness (Hv), fracture toughness (K 1C ), and strength (Kg/mm 2 ) were measured, as well as the crater wear depth and flank wear amount under cutting condition 1 in Table 1. The chip failure rate was measured under cutting condition 2, and the results are shown in Table 2.
From Table 2, it can be seen that Cermet A of the present invention has excellent toughness and wear resistance, as well as high strength and hardness.
【表】【table】
【表】【table】
【表】【table】
【表】
実施例 2
実施例1のサーメツトA又はサーメツトCと同
様にして第3表の試料1〜10の各サーメツトを製
造した。但し、Ti(CN)粉末の炭素と窒素の比
率を変えることによつて形成する複炭窒化物の
N/(C+N)を変化させた。
各試料について実施例1と同様に、特性、第1
表の切削条件1でのクレーター摩耗深さ及び逃げ
面摩耗量、切削条件2でのチツプ破損率を測定し
その結果を第4表に示した。第4表から本発明の
サーメツトは靭性及び強度に優れ、耐摩耗性及び
耐クレーター性に優れることが判る。
又、各試料について、実施例1と同様に組織を
光学顕微鏡(1500倍)で観察したところ、試料No.
6、7及び8には黄色ないし褐色の粒子が確認で
きた。[Table] Example 2 Cermets of Samples 1 to 10 in Table 3 were manufactured in the same manner as Cermet A or Cermet C of Example 1. However, by changing the ratio of carbon and nitrogen in the Ti(CN) powder, N/(C+N) of the double carbonitride formed was changed. For each sample, the characteristics, first
The crater wear depth and flank wear amount under cutting condition 1 in the table and the chip breakage rate under cutting condition 2 were measured, and the results are shown in Table 4. It can be seen from Table 4 that the cermets of the present invention have excellent toughness and strength, as well as excellent wear resistance and crater resistance. In addition, when the structure of each sample was observed using an optical microscope (1500x magnification) in the same manner as in Example 1, sample No.
Yellow to brown particles were confirmed in samples 6, 7, and 8.
【表】【table】
【表】【table】
本発明によれば、切削工具として高速切削時の
耐クレーター摩耗性に優れ、高靭性で高強度の含
窒素焼結硬質合金を提供することができる。
According to the present invention, it is possible to provide a nitrogen-containing sintered hard alloy that is excellent in crater wear resistance during high-speed cutting and has high toughness and high strength as a cutting tool.
Claims (1)
a、a族から選ばれたチタン以外の少なくと
も1種の遷移金属との複炭窒化物からなる硬質相
と、ニツケル及び/又はコバルト並びに不可避的
不純物を含む結合相とからなり、モリブデンを実
質的に含まず、硬質相全体に含有される窒素と炭
素の原子比N/(C+N)が0.3〜0.6であつて、
黄色ないし褐色の粒子が存在しないか又は存在し
ても0.01体積%以下であることを特徴とする含窒
素焼結硬質合金。 2 上記結合相中のニツケル及び/又はコバルト
に金属チタン及び/又はタングステンが固溶して
いることを特徴とする、特許請求の範囲1項記載
の含窒素焼結硬質合金。 3 上記結合相がニツケル及びコバルトからな
り、両者の重量比Ni/(Ni+Co)が0.3〜0.8で
あることを特徴とする、特許請求の範囲1項又は
2項に記載の含窒素焼結硬質合金。 4 チタンの窒化物、炭化物又は炭窒化物の粉末
と、モリブデンを除く周期律表のa、a、
a族から選ばれたチタン以外の少なくとも一種の
遷移金属の窒化物、炭化物又は炭窒化物の粉末と
を、窒素と炭素の原子比N/(C+N)が0.3〜
0.6となるように混合し、この混合粉末を予め窒
素雰囲気中で加熱して固溶化処理した後粉砕して
複炭窒化物の粉末とし、この複炭窒化物の粉末に
ニツケル及び/又はコバルトの粉末を添加混合し
て、窒素雰囲気中で焼結することを特徴とする含
窒素焼結硬質合金の製造方法。 5 ニツケル及びコバルト粉末を、両者の重量比
Ni/(Ni+Co)が0.3〜0.8となるように添加混
合することを特徴とする、特許請求の範囲4項に
記載の含窒素焼結硬質合金の製造方法。[Claims] 1 Titanium, which is an essential component, and a of the periodic table,
It consists of a hard phase consisting of a double carbonitride with at least one transition metal other than titanium selected from Groups A and A, and a binder phase containing nickel and/or cobalt and unavoidable impurities. The atomic ratio N/(C+N) of nitrogen and carbon contained in the entire hard phase is 0.3 to 0.6, and
A nitrogen-containing sintered hard alloy characterized in that yellow to brown particles are absent, or even if they are present, the amount is 0.01% by volume or less. 2. The nitrogen-containing sintered hard alloy according to claim 1, characterized in that metallic titanium and/or tungsten are dissolved in nickel and/or cobalt in the binder phase. 3. The nitrogen-containing sintered hard alloy according to claim 1 or 2, wherein the binder phase is composed of nickel and cobalt, and the weight ratio of both Ni/(Ni+Co) is 0.3 to 0.8. . 4 Titanium nitride, carbide, or carbonitride powder and a, a, a, a of the periodic table excluding molybdenum
Powder of nitride, carbide, or carbonitride of at least one transition metal other than titanium selected from group a, and the atomic ratio N/(C+N) of nitrogen and carbon is 0.3 to
0.6, this mixed powder is preheated in a nitrogen atmosphere and subjected to solid solution treatment, and then crushed to obtain a double carbonitride powder.Nickel and/or cobalt is added to this double carbonitride powder. A method for producing a nitrogen-containing sintered hard alloy, which comprises adding and mixing powders and sintering the mixture in a nitrogen atmosphere. 5 Nickel and cobalt powder, weight ratio of both
5. The method for producing a nitrogen-containing sintered hard alloy according to claim 4, characterized in that Ni/(Ni+Co) is added and mixed so that it becomes 0.3 to 0.8.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/091,953 US4769070A (en) | 1986-09-05 | 1987-09-01 | High toughness cermet and a process for the production of the same |
DE8787307861T DE3785806T2 (en) | 1986-09-05 | 1987-09-04 | TOOTH CARBIDE AND METHOD FOR THE PRODUCTION THEREOF. |
EP87307861A EP0259192B1 (en) | 1986-09-05 | 1987-09-04 | A high toughness cermet and a process for the production of the same |
KR1019870009771A KR960000060B1 (en) | 1986-09-05 | 1987-09-04 | High toughness cermet and a process for the production of the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-66548 | 1986-03-24 | ||
JP6654886 | 1986-03-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6311645A JPS6311645A (en) | 1988-01-19 |
JPH0564695B2 true JPH0564695B2 (en) | 1993-09-16 |
Family
ID=13319070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62069674A Granted JPS6311645A (en) | 1986-03-24 | 1987-03-24 | Nitrogenous sintered hard alloy and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6311645A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9101386D0 (en) * | 1991-05-07 | 1991-05-07 | Sandvik Ab | SINTRAD CARBONITRID ALLOY WITH FORERBAETTRAD WEAR STRENGTH |
CN102304657B (en) * | 2011-09-26 | 2012-10-24 | 四川大学 | Molybdenum-free Ti (C, N)-based cermet wear resistant and corrosion resistant material and preparation method thereof |
CN102534340B (en) * | 2012-01-13 | 2013-10-23 | 四川大学 | Nitrogen-containing hard alloy based on multi-element composite titanium carbonitride solid solution and preparation method for nitrogen-containing hard alloy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59229431A (en) * | 1983-05-20 | 1984-12-22 | Mitsubishi Metal Corp | Production of cermet having high toughness for cutting tool |
JPS60106938A (en) * | 1983-11-14 | 1985-06-12 | Hitachi Choko Kk | Tough cermet |
-
1987
- 1987-03-24 JP JP62069674A patent/JPS6311645A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59229431A (en) * | 1983-05-20 | 1984-12-22 | Mitsubishi Metal Corp | Production of cermet having high toughness for cutting tool |
JPS60106938A (en) * | 1983-11-14 | 1985-06-12 | Hitachi Choko Kk | Tough cermet |
Also Published As
Publication number | Publication date |
---|---|
JPS6311645A (en) | 1988-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4769070A (en) | High toughness cermet and a process for the production of the same | |
EP0374358B1 (en) | High strength nitrogen-containing cermet and process for preparation thereof | |
EP0534191B1 (en) | Cermets and their production and use | |
KR100231267B1 (en) | Hard alloy and production thereof | |
KR101090490B1 (en) | Sintered alloy having gradient composition and method of producing the same | |
KR102441723B1 (en) | Cermet, cutting tool, and method for manufacturing cermet | |
JP2622131B2 (en) | Alloys for cutting tools | |
US10336654B2 (en) | Cemented carbide with cobalt-molybdenum alloy binder | |
JPH08508066A (en) | Cermet and its manufacturing method | |
EP0578031B1 (en) | Sintered carbonitride alloy and method of its production | |
JPH0564695B2 (en) | ||
JPS63109139A (en) | Titanium carbide sintered alloy for cutting tool parts | |
JP2502322B2 (en) | High toughness cermet | |
WO1981001422A1 (en) | Sintered hard metals | |
JPS6059195B2 (en) | Manufacturing method of hard sintered material with excellent wear resistance and toughness | |
JPH0698540B2 (en) | Method for manufacturing a cutting tool made of thermite with excellent wear resistance | |
JPH1053823A (en) | Manufacture of tungsten carbide-base cemented carbide with high strength | |
KR950009222B1 (en) | Making method of high strength cermet and same product | |
JP3232599B2 (en) | High hardness cemented carbide | |
JP4540791B2 (en) | Cermet for cutting tools | |
JPH0471986B2 (en) | ||
JPH08143987A (en) | Production of sintered hard alloy containing plate crystal wc | |
JPS61201750A (en) | Sintered hard alloy | |
JPH06145876A (en) | Cemented carbide and its production | |
JPS636618B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070916 Year of fee payment: 14 |