JP2502322B2 - High toughness cermet - Google Patents
High toughness cermetInfo
- Publication number
- JP2502322B2 JP2502322B2 JP62236604A JP23660487A JP2502322B2 JP 2502322 B2 JP2502322 B2 JP 2502322B2 JP 62236604 A JP62236604 A JP 62236604A JP 23660487 A JP23660487 A JP 23660487A JP 2502322 B2 JP2502322 B2 JP 2502322B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- cobalt
- nickel
- weight
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速切削が可能な切削工具の材料として好
適な高靱性サーメツトに関する。TECHNICAL FIELD The present invention relates to a high-toughness cermet suitable as a material for a cutting tool capable of high-speed cutting.
近年、チタン、タンタル、モリブデン、タングステ
ン、クロム、ジルコニウム等の周期律表のIVa、Va、VIa
族から選ばれた少なくとも1種の遷移金属の複炭窒化物
を硬質相とし、これをニツケルやコバルト等の耐熱性金
属の結合相で結合したサーメツトが切削工具材料として
用いられるようになつた。In recent years, IVa, Va, VIa of the periodic table of titanium, tantalum, molybdenum, tungsten, chromium, zirconium, etc.
A double-carbonitride of at least one kind of transition metal selected from the group is used as a hard phase, and this is combined with a binder phase of a heat-resistant metal such as nickel or cobalt to be used as a cutting tool material.
かかるサーメツトは、従来のタングステン、チタン、
タンタル等の複炭化物を硬質相とし、これをニツケルや
コバルト等の金属で結合した焼結硬質合金に比較して、
耐熱疲労靱性が著しく改善されているので、従来の焼結
硬質合金では殆ど不可能でありタングステンカーバイト
を主成分とする所謂超硬合金しか使用されなかつた領域
にまで用途が拡大されつつある。Such cermets are conventional tungsten, titanium,
Compared with a sintered hard alloy in which double carbide such as tantalum is used as a hard phase and this is bonded with a metal such as nickel or cobalt,
Since the thermal fatigue resistance toughness is remarkably improved, it is almost impossible to use the conventional sintered hard alloy, and the application is being expanded to the area where only so-called cemented carbide containing tungsten carbide as the main component is not used.
しかし、切削工具の分野において益々高速切削が要望
されている現在、上記サーメツトには高速切削において
工具のすくい面に生じるクレーター摩耗が極めて進行し
易いという欠点がある。クレーター摩耗はサーメツトの
硬質相が粒子単位で掘り起されて脱落していく現象であ
る。一般に、クレーター摩耗は組織を粗くすることによ
り改善されるが、組織を粗くするほどサーメツトの硬度
は低下するので、この改善方法にはおのずと限界があつ
た。そこで本発明者等は、高速切削時のクレーター摩耗
を低減することのできる高靱性サーメツトとして、チタ
ンを主とする硬質相成分の複炭窒化物を予め形成した
後、この粉末にニッケルやコバルトの粉末を混合して焼
結する方法により製造した高靱性サーメツトを提案した
(特公平5-64695号公報参照)。However, in the field of cutting tools, where higher speed cutting is more and more demanded, the above-mentioned thermite has a drawback that crater wear that occurs on the rake face of the tool during high speed cutting is very likely to progress. Crater wear is a phenomenon in which the hard phase of the thermite is excavated in particle units and falls off. Generally, crater wear is improved by roughening the structure, but the hardness of the thermite decreases as the structure becomes rougher, so this method of improvement was naturally limited. Therefore, the inventors of the present invention, as a high toughness thermite capable of reducing crater wear during high-speed cutting, previously formed a double carbonitride having a hard phase component mainly composed of titanium, and then added nickel or cobalt to this powder. A high toughness thermite manufactured by a method of mixing powders and sintering was proposed (see Japanese Patent Publication No. 5-64695).
しかしながら、この高靱性サーメツトは硬質相中に窒
素を均一に分散させることができるものの、窒素の含有
量が増えてくると、砥石によるサーメツトの被研削性が
著しく低下する欠点があった。However, although this high-toughness thermite can uniformly disperse nitrogen in the hard phase, it has a drawback that when the nitrogen content increases, the grindability of the thermite by the grindstone remarkably decreases.
本発明はかかる従来の事情に鑑み、切削工具として高
速切削時のクレーター摩耗を低減させ、同時に被研削性
を改善した高靱性サーメツトを提供することを目的とす
るものである。In view of such conventional circumstances, it is an object of the present invention to provide a high toughness thermite as a cutting tool, which reduces crater wear during high speed cutting and at the same time improves grindability.
本発明の高靱性サーメツトは、チタンを主成分としタ
ングステンを必須成分とする周期律表のIVa、Va、VIa族
から選ばれた少なくとも2種の遷移金属の複炭窒化物か
らなる硬質相と、ニツケル及びコバルト並びに不可避的
不純物を含む結合相とからなり、結合相中のニツケルと
コバルトの重量比Ni/(Ni+Co)が0.3〜0.8であり、全
体に含有される窒素と炭素の原子比N/(C+N)が0.3
〜0.6であって、コバルトの含有量A重量%及びニッケ
ルの含有量B重量%とサーメツトの飽和磁気量Cガウス
cm3/gとがC≧0.73×(20.2×A+6.8×B)の関係を満
たし、黄色ないし褐色の粒子が存在しないか又は存在し
ても0.01体積%以下であることを特徴とする。The high-toughness thermite of the present invention comprises a hard phase composed of a double carbonitride of at least two transition metals selected from the IVa, Va, and VIa groups of the periodic table containing titanium as a main component and tungsten as an essential component, Nickel and cobalt and a binder phase containing unavoidable impurities, the weight ratio of nickel and cobalt in the binder phase Ni / (Ni + Co) is 0.3 to 0.8, and the atomic ratio of nitrogen and carbon contained in the whole is N / (C + N) is 0.3
.About.0.6, the cobalt content A weight% and the nickel content B weight% and the saturation magnetic amount C gauss of the cermet
cm 3 / g satisfies the relationship of C ≧ 0.73 × (20.2 × A + 6.8 × B), and yellow or brown particles are absent or 0.01 volume% or less even if they are present.
本発明の高靱性サーメツトを製造するためには、必須
成分であるチタンやタングステンの原料粉末としてTi
(CN)粉末やWC粉末をそのまま使用せず、その他の硬質
物質粉末と共に窒素雰囲気中において焼結温度以上の温
度で固溶体化処理することにより複炭窒化物とし、この
複炭窒化物の粉末をニッケル及びコバルトの粉末と混合
して焼結する。その際、得られる高靱性サーメツトの飽
和磁気量を制御するが、その方法としては、原料粉末
に混合する炭素量を調整する方法、焼結雰囲気を炭素
や窒素とする方法、原料粉末中に金属状チタンや、チ
タンの炭化物又は窒化物の粉末を混合する方法などがあ
る。In order to produce the high-toughness thermite of the present invention, Ti or Ti is used as a raw material powder of titanium and tungsten which are essential components.
(CN) powder or WC powder is not used as it is, but it is made into a double carbonitride by subjecting it to solid solution treatment at a temperature higher than the sintering temperature in a nitrogen atmosphere together with other hard substance powders. Mix with powder of nickel and cobalt and sinter. At that time, the saturation magnetic amount of the obtained high toughness thermite is controlled, and as a method thereof, a method of adjusting the amount of carbon mixed with the raw material powder, a method of using carbon or nitrogen as the sintering atmosphere, a metal in the raw material powder, There is a method of mixing powdery titanium or powder of titanium carbide or nitride.
尚、原料粉末にはその製造過程で混入される鉄等の不
可避的不純物が特性に影響しない範囲で含まれて良く、
又通常行なわれている如く焼結性を向上させる為に炭素
粉末を混合することができる。Incidentally, the raw material powder may contain inevitable impurities such as iron mixed in the manufacturing process in a range not affecting the characteristics,
Further, carbon powder can be mixed in order to improve the sinterability as is usually done.
本発明者等は、前記特公平5-64695号公報で提案した
高靱性サーメツトの被研削性の改善について種々検討し
た結果、結合相中に固溶する硬質相成分が少ないほど被
研削性が良好であることを見い出した。そこで、結合金
属であるニッケル及びコバルトの純度を示すパラメータ
として飽和磁気量を採用し、サーメツトの飽和磁気量と
被研削性の関係について検討した。純コバルトの飽和磁
気量は2020G(ガウス)cm3/gであり、純ニッケルの飽和
磁気量は680Gcm3/gであって、これ等を含有するサーメ
ツトの飽和磁気量はコバルト又はニッケルの重量分率が
減るほど、若しくはコバルト又はニッケルの純度が低下
するほど減少する。The present inventors have variously studied the improvement of the grindability of the high toughness thermite proposed in the above Japanese Patent Publication No. 5-64695, and as a result, the grindability is better as the hard phase component dissolved in the binder phase is smaller. I found out that Therefore, the saturation magnetism was adopted as a parameter showing the purity of the binding metals nickel and cobalt, and the relationship between the saturation magnetism of the thermite and the grindability was examined. The saturation magnetic quantity of pure cobalt is 2020 G (gauss) cm 3 / g, the saturation magnetic quantity of pure nickel is 680 Gcm 3 / g, and the saturation magnetic quantity of the cermet containing these is the weight fraction of cobalt or nickel. It decreases as the rate decreases or the purity of cobalt or nickel decreases.
しかるに、コバルトの含有量A重量%及びニッケルの
含有量B重量%と、サーメツトの飽和磁気量Cガウスcm
3/gとの間に、C≧0.73×(20.2×A+6.8×B)の関係
が存在する範囲においては、サーメツトが良好な被研削
性を発揮することを見い出し、本発明に至ったものであ
る。Therefore, the cobalt content A weight% and the nickel content B weight%, and the saturation magnetic amount C gauss cm of the cermet
The present invention was found by finding that the cermet exhibits good grindability in the range where C ≧ 0.73 × (20.2 × A + 6.8 × B) with 3 / g. Is.
ニツケルとコバルトの重量比Ni/(Ni+Co)は高い方
が好ましいが、この値が0.8を超えるとサーメツトの硬
度が低下し、0.3未満では界面強度の増強による耐クレ
ーター摩耗性の改善が得られない。又、サーメツトにお
いては含有窒素量が多いほど焼結性が低下しやすいが、
本発明によれば窒素含有量が多くても焼結性が良好であ
り、窒素と炭素の原子比N/(C+N)を0.3〜0.6の範囲
とすることができる。この値が0.3未満ではサーメツト
の靱性が低下し、0.6を超えるとサーメツトの耐摩耗性
が低下する。A higher nickel / cobalt weight ratio Ni / (Ni + Co) is preferred, but if this value exceeds 0.8, the hardness of the cermet decreases, and if it is less than 0.3, the crater wear resistance cannot be improved by increasing the interfacial strength. . Further, in the cermet, the greater the content of nitrogen, the lower the sinterability, but
According to the present invention, the sinterability is good even if the nitrogen content is large, and the atomic ratio N / (C + N) of nitrogen and carbon can be set in the range of 0.3 to 0.6. If this value is less than 0.3, the toughness of the cermet is reduced, and if it exceeds 0.6, the wear resistance of the cermet is reduced.
但し、サーメツトの靱性及び強度の改善効果を得るた
めには、窒素が硬質相内に均一に分散していることが重
要である。従来からの含窒素焼結硬質合金では、窒素の
偏析のために光学顕微鏡により硬質相組織内に黄色ない
し褐色の粒子が観察できる。この黄色ないし褐色の粒子
はチタンの窒化物か炭窒化物であつて、この粒子が現わ
れる限り窒素の高濃度部分では分解によるポアが発生し
やすく、低濃度部分では窒素含有による効果が充分に発
揮されない等、特性が劣化することが判つた。しかる
に、前記特公平5-64695号公報に記載のごとく、チタン
を主とする硬質相成分の複炭窒化物を予め形成し、この
複炭窒化物粉末にニッケルやコバルトの粉末を混合して
焼結する方法によれば窒素を均一に分散させることがで
き、黄色ないし褐色の粒子が存在しなくなる。尚、黄色
ないし褐色の粒子は存在しても0.01体積%以下ならば強
度や靱性の改善効果に何ら影響を与えない。However, in order to obtain the effect of improving the toughness and strength of the thermite, it is important that nitrogen is uniformly dispersed in the hard phase. In conventional nitrogen-containing sintered hard alloys, yellow or brown particles can be observed in the hard phase structure by an optical microscope due to nitrogen segregation. These yellow or brown particles are titanium nitride or carbonitride, and as long as these particles appear, pores are likely to be generated due to decomposition in the high concentration part of nitrogen, and the effect of nitrogen content is sufficiently exerted in the low concentration part. It was found that the characteristics deteriorate, such as not being performed. However, as described in JP-B-5-64695, a double carbonitride having a hard phase component mainly composed of titanium is formed in advance, and the double carbonitride powder is mixed with a powder of nickel or cobalt and baked. According to the binding method, nitrogen can be uniformly dispersed, and no yellow to brown particles are present. Even if yellow or brown particles are present, if they are 0.01 vol% or less, they have no effect on the effect of improving strength and toughness.
又、本発明の高靱性サーメツトでは、実質的にモリブ
デンを含まない組織とすることにより、サーメツトの被
研削性を劣化させることなく、切削特性を一層向上させ
ることが出来る。Further, in the high-toughness thermite of the present invention, by having a structure containing substantially no molybdenum, the cutting characteristics can be further improved without deteriorating the grindability of the thermite.
実施例1 市販の平均粒径2μmのTi(CN)粉(C/N比5/5)70重
量%と、ほぼ同一粒径のTaC粉10重量%及びWC粉20重量
%とをボールミルにて10時間混合し、窒素分圧400torr
の窒素気流中で1800℃で1時間の固溶体化処理を行なつ
てTiを主成分とする複炭窒化物(TiTaW)CNを形成し
た。この複炭窒化物はX線回折によつてTaC及びWCのピ
ークが消滅していることが確認できた。Example 1 In a ball mill, 70% by weight of a commercially available Ti (CN) powder having an average particle size of 2 μm (C / N ratio 5/5), 10% by weight of TaC powder and 20% by weight of WC powder having almost the same particle size were used. Mix for 10 hours, nitrogen partial pressure 400 torr
Was subjected to a solid solution treatment at 1800 ° C. for 1 hour in a nitrogen gas stream to form a double carbonitride (TiTaW) CN containing Ti as a main component. It was confirmed by X-ray diffraction that the peaks of TaC and WC had disappeared in this double carbonitride.
この複炭窒化物をボールミルで20時間粉砕した後、10
0メツシユ以下のNi粉及びCo粉並びに必要に応じて遊離
C粉を添加して第1表の試料1〜5に示す配合とし、更
に溶剤を加え湿式ボールミルで20時間混合した。得られ
た混合粉末にカンフアーを3重量%加え、2t/cm2で型
押し成形した。この圧粉体を窒素分圧10torrの窒素気流
中で1500℃で1時間焼結した。After grinding this double carbonitride with a ball mill for 20 hours,
0 mesh or less Ni powder and Co powder and, if necessary, free C powder were added to obtain the composition shown in Samples 1 to 5 in Table 1, a solvent was further added, and the mixture was mixed in a wet ball mill for 20 hours. 3% by weight of camphor was added to the obtained mixed powder, and the mixture was pressed and molded at 2 t / cm 2 . The green compact was sintered at 1500 ° C. for 1 hour in a nitrogen gas stream with a nitrogen partial pressure of 10 torr.
又、試料6〜8として、上記と同じTi(CN)粉、TaC
粉及びWC粉を固溶体化処理することなく、そのままNi
粉、Co粉及び必要に応じて遊離C粉と混合し、上記と同
様にして焼結した。Also, as samples 6 to 8, the same Ti (CN) powder, TaC as above
Powder and WC powder without solid solution treatment
The powder, Co powder and, if necessary, free C powder were mixed and sintered in the same manner as above.
得られた各試料について光学顕微鏡で黄色ないし褐色
の粒子が存在するか否か観察したところ、比較例の試料
6〜8に黄色粒子の存在が確認された。When each of the obtained samples was observed with an optical microscope for the presence of yellow to brown particles, the presence of yellow particles was confirmed in Comparative Examples 6 to 8.
各試料1〜7のサーメツトについて、硬度(Hv)及び
破壊靱性(K1c)並びに強度(kg/mm2)を測定すると共
に、第2表の切削条件1でのクレーター摩耗深さ(mm)
及び逃げ面摩耗量(mm)、切削条件2でのチツプ破損率
(%)、飽和磁気量(Gcm3/g)、及び第4表に示す条件
での研削テストによる法線方向の研削抵抗Fn(N/mm)を
測定し、その結果を第3表に示した。本発明のサーメツ
ト(試料2〜4)は比較例のサーメツト(試料1及び5
〜8)に対し、特に耐クレータ摩耗性及び靱性に優れる
ことが判つた。The hardness (Hv), fracture toughness (K 1 c) and strength (kg / mm 2 ) of each of the thermites of Samples 1 to 7 were measured, and the crater wear depth (mm) under cutting condition 1 in Table 2 was measured.
And flank wear amount (mm), chip damage rate (%) under cutting condition 2, saturated magnetic amount (Gcm 3 / g), and grinding resistance Fn in the normal direction by a grinding test under the conditions shown in Table 4. (N / mm) was measured and the results are shown in Table 3. The cermets of the present invention (Samples 2 to 4) are comparative cermets (Samples 1 and 5).
It was found that the crater wear resistance and the toughness are particularly excellent in comparison with the above-mentioned items.
第4表 砥 石 :レジンボンドダイヤ砥石(#200) 研削方法:表面プランジ研削 研削速度:40m/sec 送 り :0.20mm/sec 切り込み:0.02mm 実施例2 市販の平均粒径2μmのTi(CN)粉64重量%と、ほぼ
同一粒径のTaC粉8重量%、WC粉20重量%及びMo2C粉8
重量%とをボールミルで10時間混合し、窒素分圧400tor
rの窒素気流中にて1800℃で1時間の固溶体化処理を行
いTiを主成分とする複炭窒化物を形成した。この複炭窒
化物はX線回折によってTaC、Mo2C及びWCのピークが消
滅していることが確認できた。 Table 4 Grinding wheel: Resin bond diamond grinding wheel (# 200) Grinding method: Surface plunge grinding Grinding speed: 40m / sec Feed: 0.20mm / sec Depth of cut: 0.02mm Example 2 64% by weight of commercially available Ti (CN) powder having an average particle size of 2 μm, 8% by weight of TaC powder, 20% by weight of WC powder and 8% of Mo 2 C powder having almost the same particle size.
% With a ball mill for 10 hours, nitrogen partial pressure 400tor
In a nitrogen stream of r, solid solution treatment was performed at 1800 ° C. for 1 hour to form a double carbonitride containing Ti as a main component. It was confirmed by X-ray diffraction that the peaks of TaC, Mo 2 C and WC disappeared in this double carbonitride.
このMoを含む複炭窒化物をボールミルで20時間粉砕し
た後、100メッシユ以下のNi粉とCo粉及び遊離C粉を添
加して第5表の試料9及び10に示す配合とし、更に溶剤
を加え湿式アトライターで12時間混合した。得られた混
合粉末にカンファーを3重量%加え、2t/cm2で型押し
成形した。この圧粉体を窒素分圧10torrの窒素気流中に
て1450℃で1時間焼結した。This Mo-containing double carbonitride was crushed in a ball mill for 20 hours, and then Ni powder, Co powder and free C powder of 100 mesh or less were added to obtain the composition shown in Samples 9 and 10 of Table 5, and a solvent was further added. In addition, the mixture was mixed for 12 hours with a wet attritor. 3% by weight of camphor was added to the obtained mixed powder, and the mixture was pressed at 2 t / cm 2 . This green compact was sintered at 1450 ° C. for 1 hour in a nitrogen gas stream with a nitrogen partial pressure of 10 torr.
各試料の特性及び切削性能を実施例1と同様に測定
し、その結果を第6表に示した。複炭窒化物がMoを含む
試料10と、複炭窒化物がMoを含まない以外は近似した組
成の前記実施例1の試料3とを比較すると、Moを含まな
い試料3のサーメツトの方が優れた切削性能を有するこ
とが判る。 The characteristics and cutting performance of each sample were measured in the same manner as in Example 1, and the results are shown in Table 6. Comparing the sample 10 in which the double carbonitride contains Mo and the sample 3 in Example 1 having an approximate composition except that the double carbonitride does not contain Mo, the cermet of the sample 3 containing no Mo is more preferable. It can be seen that it has excellent cutting performance.
更に、前記実施例1の試料3、及び本実施例の試料
9、10とそれぞれ同一組成であって、飽和磁気量のみを
変化させた各試料3−a、3−b、9−a、9−b、10
−a及び10−bを作製し、各試料について実施例1と同
一条件の研削テストを実施して、法線方向の研削抵抗Fn
を測定した。その結果を飽和磁気量と共に第7表に示し
た。 Furthermore, the samples 3a, 3-b, 9-a, 9 of the same composition as the sample 3 of the first embodiment and the samples 9, 10 of the present embodiment, respectively, in which only the saturation magnetic amount was changed. -B, 10
-A and 10-b were produced, and a grinding test was performed on each sample under the same conditions as in Example 1 to obtain a grinding resistance Fn in the normal direction.
Was measured. The results are shown in Table 7 together with the saturation magnetic amount.
第7表から、試料中のCo含有量A(重量%)及びNi含
有量B(重量%)と飽和磁気量C(Gcm3/g)との間に、
C≧0.73×(20.2×A+6.8×B)の関係が存在する試
料3、9及び10は、上記関係が成立しない他の試料に比
べて良好な被研削性を発揮することが判る。 From Table 7, between the Co content A (% by weight) and the Ni content B (% by weight) in the sample and the saturation magnetic amount C (Gcm 3 / g),
It can be seen that Samples 3, 9 and 10 in which the relationship of C ≧ 0.73 × (20.2 × A + 6.8 × B) exists exhibit better grindability than other samples in which the above relationship does not hold.
本発明によれば、切削工具として高速切削時の耐クレ
ーター摩耗性に優れると共に、被研削性にも優れてお
り、低加工コストを達成できる高靱性サーメツトを提供
することができる。According to the present invention, it is possible to provide a high-toughness thermite as a cutting tool, which is excellent in crater wear resistance during high-speed cutting and also excellent in grindability, and can achieve a low processing cost.
Claims (1)
分とする周期律表のIVa、Va、VIa族から選ばれた少なく
とも2種の遷移金属の複炭窒化物からなる硬質相と、ニ
ッケル及びコバルト並びに不可避的不純物を含む結合相
とからなり、結合相中のニッケルとコバルトの重量比Ni
/(Ni+Co)が0.3〜0.8であり、全体に含有される窒素
と炭素の原子比N/(C+N)が0.3〜0.6であって、コバ
ルトの含有量A重量%及びニッケルの含有量B重量%と
サーメツトの飽和磁気量Cガウスcm3/gとがC≧0.73×
(20.2×A+6.8×B)の関係を満たし、黄色ないし褐
色の粒子が存在しないか又は存在しても0.01体積%以下
であることを特徴とする高靱性サーメツト。1. A hard phase comprising a double carbonitride of at least two transition metals selected from the IVa, Va, and VIa groups of the periodic table containing titanium as a main component and tungsten as an essential component, and nickel and cobalt. And a binder phase containing unavoidable impurities, and the weight ratio of nickel and cobalt in the binder phase is Ni.
/ (Ni + Co) is 0.3 to 0.8, the atomic ratio N / (C + N) of nitrogen and carbon contained in the whole is 0.3 to 0.6, the cobalt content A weight% and the nickel content B weight% And the saturation magnetic amount C gauss cm 3 / g of Cermet is C ≧ 0.73 ×
A high toughness thermite satisfying the relationship of (20.2 x A + 6.8 x B), wherein yellow or brown particles are absent or 0.01 volume% or less even if they are present.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24089886 | 1986-10-09 | ||
JP61-240898 | 1986-10-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63227739A JPS63227739A (en) | 1988-09-22 |
JP2502322B2 true JP2502322B2 (en) | 1996-05-29 |
Family
ID=17066322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62236604A Expired - Lifetime JP2502322B2 (en) | 1986-10-09 | 1987-09-21 | High toughness cermet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2502322B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2049452A1 (en) * | 2006-08-08 | 2009-04-22 | Seoul National University Industry Foundation | Mixed powder including solid-solution powder and sintered body using the mixed powder, mixed cermet powder including solid-solution powder and cermet using the mixed cermet powder, and fabrication methods thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0711043B2 (en) * | 1988-10-28 | 1995-02-08 | 京セラ株式会社 | Cermet tool manufacturing method |
JP4205946B2 (en) * | 2000-12-19 | 2009-01-07 | 本田技研工業株式会社 | Composite material |
AU2003280758A1 (en) | 2003-07-31 | 2005-02-15 | A.L.M.T.Corp. | Diamond film coated tool and process for producing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201750A (en) * | 1985-03-05 | 1986-09-06 | Sumitomo Electric Ind Ltd | Sintered hard alloy |
-
1987
- 1987-09-21 JP JP62236604A patent/JP2502322B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61201750A (en) * | 1985-03-05 | 1986-09-06 | Sumitomo Electric Ind Ltd | Sintered hard alloy |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2049452A1 (en) * | 2006-08-08 | 2009-04-22 | Seoul National University Industry Foundation | Mixed powder including solid-solution powder and sintered body using the mixed powder, mixed cermet powder including solid-solution powder and cermet using the mixed cermet powder, and fabrication methods thereof |
EP2049452A4 (en) * | 2006-08-08 | 2012-02-15 | Seoul Nat Univ Ind Foundation | Mixed powder including solid-solution powder and sintered body using the mixed powder, mixed cermet powder including solid-solution powder and cermet using the mixed cermet powder, and fabrication methods thereof |
US8303681B2 (en) | 2006-08-08 | 2012-11-06 | Seoul National University Industry Foundation | Mixed powder and sintered body, mixed cermet powder and cermet, and fabrication methods thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS63227739A (en) | 1988-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0534191B1 (en) | Cermets and their production and use | |
JP7272353B2 (en) | Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method | |
WO2010008004A1 (en) | Hard powder, method for producing hard powder and sintered hard alloy | |
EP1462534A1 (en) | Compositionally graded sintered alloy and method of producing the same | |
JP2990655B2 (en) | Composite carbide powder and method for producing the same | |
EP0477685A2 (en) | Cermets and their production and use | |
US3737289A (en) | Carbide alloy | |
JP2502322B2 (en) | High toughness cermet | |
JPH07278719A (en) | Particulate plate crystal cemented carbide containing wc and its production | |
JPH0450373B2 (en) | ||
JP3102167B2 (en) | Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide | |
WO1981001422A1 (en) | Sintered hard metals | |
JPS6059195B2 (en) | Manufacturing method of hard sintered material with excellent wear resistance and toughness | |
JP3232599B2 (en) | High hardness cemented carbide | |
JP4540791B2 (en) | Cermet for cutting tools | |
JPH08143987A (en) | Production of sintered hard alloy containing plate crystal wc | |
JPH06145876A (en) | Cemented carbide and its production | |
JP2502322C (en) | ||
JP3045199B2 (en) | Manufacturing method of high hardness cemented carbide | |
JPS636618B2 (en) | ||
RU2133296C1 (en) | Solid alloy (variants) and method of preparing thereof | |
JP2900545B2 (en) | Cutting tool whose cutting edge is made of cubic boron nitride based sintered body | |
JPH0564695B2 (en) | ||
JPH1136022A (en) | Production of cemented carbide containing plate crystal wc | |
JP2001179508A (en) | Cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080313 Year of fee payment: 12 |