Nothing Special   »   [go: up one dir, main page]

JPH0555204A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0555204A
JPH0555204A JP21880691A JP21880691A JPH0555204A JP H0555204 A JPH0555204 A JP H0555204A JP 21880691 A JP21880691 A JP 21880691A JP 21880691 A JP21880691 A JP 21880691A JP H0555204 A JPH0555204 A JP H0555204A
Authority
JP
Japan
Prior art keywords
oxide film
film
field oxide
silicon
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21880691A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tokuyama
宜宏 徳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21880691A priority Critical patent/JPH0555204A/en
Publication of JPH0555204A publication Critical patent/JPH0555204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To implant ions after the formation of a field oxide film without using a mask, and to formed a channel stop impurity layer by forming a polysilicon film between a silicon oxide film and a silicon nitride film and increasing the level difference between the surface of a silicon substrate and the surface of the silicon nitride film. CONSTITUTION:A field oxide film 8 is shaped in 5000-7000Angstrom through oxidation in a wet atmosphere at 1000-1050 deg.C, and the field oxide film 8 of the upper section of a silicon substrate 1 is etched in 2000-4000Angstrom through hydrofluoric acid treatment. Boron ions are implanted under the conditions of 100-150KeV and approximately 0.7-2.0X10<13>/cm<2> by utilizing film thickness difference between an insulating film in 5500-7800Angstrom (the composite film of a first silicon oxide film 2, a polysilicon film 3 and a first silicon nitride film 4) and the field oxide film 8 in 1000-3000Angstrom on an active region by forming the field oxide film 8 in 1000-3000Angstrom . A channel stop impurity layer 9 is formed just under the field oxide film 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細素子分離技術に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine element isolation technique.

【0002】[0002]

【従来の技術】図2に従来の素子分離領域形成の工程図
を示す。1はP型シリコン基板、2は第1シリコン酸化
膜、4は第1シリコン窒化膜、5は第2シリコン酸化
膜、6は第2シリコン窒化膜、7は第3シリコン酸化
膜、8はフィールド酸化膜、9はチャネルストップ不純
物層、10は高濃度N型拡散層を示す。
2. Description of the Related Art FIG. 2 shows a process chart of forming a conventional element isolation region. 1 is a P-type silicon substrate, 2 is a first silicon oxide film, 4 is a first silicon nitride film, 5 is a second silicon oxide film, 6 is a second silicon nitride film, 7 is a third silicon oxide film, and 8 is a field. An oxide film, 9 is a channel stop impurity layer, and 10 is a high concentration N-type diffusion layer.

【0003】次に、従来技術による素子分離領域形成工
程について説明する。まず、P型シリコン基板1上に熱
酸化法を用いて、第1シリコン酸化膜2を500〜80
0Å形成した後、CVD法を用いて、第1シリコン窒化
膜4を1000〜2000Å,第2シリコン酸化膜5を
1000〜2000Å堆積する(図2(a))。前記第
1シリコン窒化膜4の厚さは、あまり厚すぎるとシリコ
ン基板1に結晶欠陥が生じるため、限界がある。次に、
既知のフォトリソ及びエッチング技術を用いて素子分離
領域形成のためのパターニングを行い、チャンネルスト
ップ用にボロンのイオン注入を行う(図2(b))。次
に、CVD法を用いて、第2シリコン窒化膜6を500
〜1000Å,第3シリコン酸化膜7を1000〜20
00Å堆積し(図2(c)),第3シリコン酸化膜7及
び第2シリコン窒化膜6をエッチバックした後、第2シ
リコン酸化膜5及び第3シリコン酸化膜7をフッ酸処理
により除去する(図2(d))。次に、1000〜10
50℃のウェット雰囲気で酸化することにより、フィー
ルド酸化膜8を5000〜7000Å形成し、同時にチ
ャネルストップ不純物層9は拡散,再分布する(図2
(e))。その後、高濃度N型拡散層10を形成する
(図2(f))。
Next, a conventional element isolation region forming process will be described. First, the first silicon oxide film 2 is formed on the P-type silicon substrate 1 by a thermal oxidation method to a thickness of 500-80.
After forming 0 Å, the first silicon nitride film 4 is deposited to 1000 to 2000 Å and the second silicon oxide film 5 is deposited to 1000 to 2000 Å by the CVD method (FIG. 2A). If the thickness of the first silicon nitride film 4 is too thick, crystal defects occur in the silicon substrate 1, so there is a limit. next,
Patterning for forming an element isolation region is performed using known photolithography and etching techniques, and boron ion implantation is performed for channel stop (FIG. 2B). Next, the second silicon nitride film 6 is deposited to 500 by the CVD method.
~ 1000Å, the third silicon oxide film 7 1000 ~ 20
00Å is deposited (FIG. 2C), the third silicon oxide film 7 and the second silicon nitride film 6 are etched back, and then the second silicon oxide film 5 and the third silicon oxide film 7 are removed by hydrofluoric acid treatment. (FIG.2 (d)). Next, 1000-10
By oxidizing in a wet atmosphere at 50 ° C., the field oxide film 8 is formed to 5000 to 7000Å, and at the same time, the channel stop impurity layer 9 is diffused and redistributed (FIG. 2).
(E)). After that, the high concentration N-type diffusion layer 10 is formed (FIG. 2F).

【0004】[0004]

【発明が解決しようとする課題】上記工程により図2
(e)に示す様にチャネルストップ不純物層9は拡がり
を持ち、また図2(f)に示す様にチャネルストップ不
純物層9は高濃度N型拡散層10と接触し、高濃度のP
N接合が形成されている。このため、接合耐圧の低下を
まねき、正常な素子形成が不可能となる。
According to the above steps, FIG.
The channel stop impurity layer 9 has a spread as shown in (e), and the channel stop impurity layer 9 is in contact with the high-concentration N-type diffusion layer 10 as shown in FIG.
N-junction is formed. For this reason, the junction breakdown voltage is lowered, and normal element formation becomes impossible.

【0005】また、接合耐圧を低下させないため、チャ
ネルストップ不純物層9の濃度を低くすると、本来のチ
ャネルストッパーとしての機能が果せず、フィールド反
転電圧の低下、パンチスルー特性の劣化という問題が生
じる。したがって、従来技術では接合耐圧の低下と反転
電圧及びパンチスルー特性の低下とを同時に防ぐことが
できず、微細な素子分離を形成することは困難である。
If the concentration of the channel stop impurity layer 9 is lowered to prevent the junction breakdown voltage from being lowered, the original function as a channel stopper cannot be achieved, and the field inversion voltage is lowered and the punch-through characteristic is deteriorated. .. Therefore, the conventional technique cannot prevent a decrease in junction breakdown voltage and a decrease in inversion voltage and punch-through characteristics at the same time, and it is difficult to form a fine element isolation.

【0006】本発明は、フィールド酸化膜形成後にチャ
ネルストップ不純物層を形成することにより接合耐圧の
低下と反転電圧及びパンチスルー特性の低下とを同時に
防止する手段を提供することを目的とする。
An object of the present invention is to provide a means for simultaneously preventing a decrease in junction breakdown voltage and a decrease in inversion voltage and punch-through characteristics by forming a channel stop impurity layer after forming a field oxide film.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上にシリコン酸化膜を形成した
後、ポリシリコン膜を形成し、該ポリシリコン膜上にシ
リコン窒化膜及びシリコン酸化膜を形成する工程と、該
工程後、素子分離領域形成のパターニングを行う工程
と、該工程後、フィールド酸化膜を形成し該フィールド
酸化膜をエッチバックする工程と、該工程後、前記素子
分離領域にイオン注入を行うことによりチャネルストッ
パーを形成する工程とを有することを特徴とする。
According to the method of manufacturing a semiconductor device of the present invention, a silicon oxide film is formed on a semiconductor substrate, then a polysilicon film is formed, and a silicon nitride film and a silicon oxide film are formed on the polysilicon film. A step of forming a film, a step of patterning an element isolation region formation after the step, a step of forming a field oxide film and etching back the field oxide film after the step, and a step of performing the element isolation after the step. A step of forming a channel stopper by implanting ions in the region.

【0008】[0008]

【作用】シリコン酸化膜とシリコン窒化膜との間にポリ
シリコン膜を形成することにより、シリコン窒化膜を厚
くすることなく、シリコン基板表面とシリコン窒化膜表
面との段差を大きくすることにより、マスクを用いず
に、フィールド酸化膜形成後にイオン注入を行い、チャ
ネルストップ不純物層を形成することができるためため
チャネルストップ不純物層の拡散は生じず、フィールド
酸化膜層直下の不純物濃度は高く、高濃度N型拡散層の
回りの不純物濃度は低く設定することができる。
By forming a polysilicon film between the silicon oxide film and the silicon nitride film, the step difference between the surface of the silicon substrate and the surface of the silicon nitride film can be increased without increasing the thickness of the silicon nitride film. Since the channel stop impurity layer can be formed by performing ion implantation after the field oxide film is formed without using, the diffusion of the channel stop impurity layer does not occur, and the impurity concentration immediately below the field oxide film layer is high and high. The impurity concentration around the N-type diffusion layer can be set low.

【0009】[0009]

【実施例】以下、一実施例に基づいて本発明を詳細に説
明する。図1は本発明の一実施例の製造工程図を示す。
1はP型シリコン基板、2は第1シリコン酸化膜、3は
ポリシリコン膜、4は第1シリコン窒化膜、5は第2シ
リコン酸化膜、6は第2シリコン窒化膜、7は第3シリ
コン酸化膜、8はフィールド酸化膜、9はチャンネルス
トップ不純物層、10は高濃度N型拡散層を示す。
The present invention will be described in detail below based on an example. FIG. 1 shows a manufacturing process diagram of an embodiment of the present invention.
1 is a P-type silicon substrate, 2 is a first silicon oxide film, 3 is a polysilicon film, 4 is a first silicon nitride film, 5 is a second silicon oxide film, 6 is a second silicon nitride film, and 7 is a third silicon film. An oxide film, 8 is a field oxide film, 9 is a channel stop impurity layer, and 10 is a high concentration N-type diffusion layer.

【0010】次に本発明の一実施例の製造工程を説明す
る。まず、P型シリコン基板1上に熱酸化法を用いて、
第1シリコン酸化膜2を500〜800Å形成した後、
CVD法を用いてポリシリコン膜3を4000〜500
0Å,第1シリコン窒化膜4を1000〜2000Å,
第2シリコン酸化膜5を1000〜2000Å順次堆積
する(図1(a))。次に、既知のフォトリソ,エッチ
ング技術を用い、素子分離領域形成のためのパターニン
グを行う(図1(b))。次に、CVD法を用いて第2
シリコン窒化膜6を500〜1000Å,第3シリコン
酸化膜7を1000〜2000Å堆積し(図1
(c)),その後第3シリコン酸化膜7及び第2シリコ
ン窒化膜6をエッチバックした後、第2シリコン酸化膜
5及び第3シリコン酸化膜7をフッ酸処理により除去す
る(図1(d))。次に1000〜1050℃のウェッ
ト雰囲気中で酸化を行うことによって、フィールド酸化
膜8を5000〜7000Å形成し、フッ酸処理によ
り、シリコン基板1の上部のフィールド酸化膜8を20
00〜4000Åエッチングし、フィールド酸化膜8を
1000〜3000Åとすることによって、活性領域上
は5500〜7800Åの絶縁膜(第1シリコン酸化膜
2,ポリシリコン膜3及び第1シリコン窒化膜4の複合
膜)と1000〜3000Åのフィールド酸化膜8との
膜厚差を利用して、ボロンを100〜150KeV,
0.7〜2.0×1013/cm2程度の条件下でイオン
注入を行う。これにより、フィールド酸化膜8直下にチ
ャネルストップ不純物層9が形成される(図1
(e))。次に、熱リン酸処理により第1及び第2シリ
コン窒化膜4,6を除去し、フッ酸処理によりポリシリ
コン膜3及び第1シリコン酸化膜2を除去する。その
後、従来技術により高濃度N型拡散層10(MOS型F
ETにおけるソース又はドレイン層)を形成する。
Next, the manufacturing process of one embodiment of the present invention will be described. First, using a thermal oxidation method on the P-type silicon substrate 1,
After forming the first silicon oxide film 2 of 500 to 800 Å,
The polysilicon film 3 is set to 4000 to 500 by using the CVD method.
0Å, the first silicon nitride film 4 is 1000 to 2000Å,
A second silicon oxide film 5 is deposited in the order of 1000 to 2000Å (FIG. 1A). Next, using known photolithography and etching techniques, patterning for forming an element isolation region is performed (FIG. 1B). Next, the second using the CVD method
The silicon nitride film 6 and the third silicon oxide film 7 are deposited to 500 to 1000Å and 1000 to 2000Å, respectively (see FIG. 1).
(C)) After that, the third silicon oxide film 7 and the second silicon nitride film 6 are etched back, and then the second silicon oxide film 5 and the third silicon oxide film 7 are removed by hydrofluoric acid treatment (FIG. 1 (d). )). Next, the field oxide film 8 is formed to 5000 to 7000 Å by performing oxidation in a wet atmosphere at 1000 to 1050 ° C., and the field oxide film 8 on the silicon substrate 1 is formed to 20 times by hydrofluoric acid treatment.
By etching from 0 to 4000 Å and setting the field oxide film 8 to 1000 to 3000 Å, 5500 to 7800 Å insulating film (composite of the first silicon oxide film 2, the polysilicon film 3 and the first silicon nitride film 4) on the active region Film thickness) and the field oxide film 8 having a thickness of 1000 to 3000 Å, the boron content is 100 to 150 KeV,
Ion implantation is performed under the condition of about 0.7 to 2.0 × 10 13 / cm 2 . As a result, the channel stop impurity layer 9 is formed immediately below the field oxide film 8 (see FIG. 1).
(E)). Next, the first and second silicon nitride films 4 and 6 are removed by hot phosphoric acid treatment, and the polysilicon film 3 and the first silicon oxide film 2 are removed by hydrofluoric acid treatment. After that, the high-concentration N type diffusion layer 10 (MOS type F
Source or drain layer in ET).

【0011】[0011]

【発明の効果】以上詳細に説明した様に、本発明を用い
ることにより、フィールド酸化膜形成後にチャネルスト
ッパー形成のためのイオン注入を行うため、従来のよう
に活性領域への拡散は生じない。また、素子分離領域上
と活性領域上との絶縁膜の厚さの違いにより、素子分離
領域直下にのみ選択的にイオン注入を行えるため、活性
領域への影響はまったくない。また、チャネルストップ
不純物層の拡散は生じないため、フィールド酸化膜直下
の濃度は高く、高濃度N型拡散層の回りの濃度は低く設
定することができるので、接合耐圧の低下を生じず、フ
ィールド反転電圧及びパンチスルー耐圧を高めることが
できる。さらに、活性領域へのしみ出しによる影響はほ
とんどないため、実効チャネル幅の減少も防止できる。
As described in detail above, by using the present invention, ion implantation for forming a channel stopper is performed after forming a field oxide film, so that diffusion into the active region does not occur unlike the conventional case. Further, due to the difference in the thickness of the insulating film on the element isolation region and on the active region, the ion implantation can be selectively performed just below the element isolation region, so there is no influence on the active region. Further, since the diffusion of the channel stop impurity layer does not occur, the concentration directly under the field oxide film can be set high and the concentration around the high concentration N-type diffusion layer can be set low, so that the junction breakdown voltage does not decrease and the field withstand voltage does not decrease. The inversion voltage and the punch-through breakdown voltage can be increased. Furthermore, since there is almost no effect of seeping into the active region, it is possible to prevent the effective channel width from decreasing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の製造工程図である。FIG. 1 is a manufacturing process diagram of an example of the present invention.

【図2】従来技術による素子分離領域の製造工程図であ
る。
FIG. 2 is a manufacturing process diagram of an element isolation region according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 第1シリコン酸化膜 3 ポリシリコン膜 4 第1シリコン窒化膜 5 第2シリコン酸化膜 6 第2シリコン窒化膜 7 第3シリコン酸化膜 8 フィールド酸化膜 9 チャネルストップ不純物層 10 高濃度N型拡散層 1 P-type silicon substrate 2 First silicon oxide film 3 Polysilicon film 4 First silicon nitride film 5 Second silicon oxide film 6 Second silicon nitride film 7 Third silicon oxide film 8 Field oxide film 9 Channel stop impurity layer 10 High Concentration N type diffusion layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にシリコン酸化膜を形成し
た後、ポリシリコン膜を形成し、該ポリシリコン膜上に
シリコン窒化膜及びシリコン酸化膜を形成する工程と、 該工程後、素子分離領域形成のパターニングを行う工程
と、 該工程後、フィールド酸化膜を形成し、該フィールド酸
化膜をエッチバックする工程と、 該工程後、前記素子分離領域にイオン注入を行うことに
よりチャネルストッパーを形成する工程とを有すること
を特徴とする、半導体装置の製造方法。
1. A step of forming a silicon oxide film on a semiconductor substrate, then forming a polysilicon film, and forming a silicon nitride film and a silicon oxide film on the polysilicon film, and after the step, an element isolation region. A step of patterning formation, a step of forming a field oxide film after the step, and a step of etching back the field oxide film, and a step of forming a channel stopper by performing ion implantation in the element isolation region after the step. A method of manufacturing a semiconductor device, comprising:
JP21880691A 1991-08-29 1991-08-29 Manufacture of semiconductor device Pending JPH0555204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21880691A JPH0555204A (en) 1991-08-29 1991-08-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21880691A JPH0555204A (en) 1991-08-29 1991-08-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0555204A true JPH0555204A (en) 1993-03-05

Family

ID=16725644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21880691A Pending JPH0555204A (en) 1991-08-29 1991-08-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0555204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917837B2 (en) 2002-03-28 2005-07-12 Fanuc Ltd Controller having an impact sensor
US7898029B2 (en) 2008-12-17 2011-03-01 Mitsubishi Electric Corporation Semiconductor device internally having insulated gate bipolar transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917837B2 (en) 2002-03-28 2005-07-12 Fanuc Ltd Controller having an impact sensor
US7898029B2 (en) 2008-12-17 2011-03-01 Mitsubishi Electric Corporation Semiconductor device internally having insulated gate bipolar transistor
US8120107B2 (en) 2008-12-17 2012-02-21 Mitsubishi Electric Corporation Semiconductor device internally having insulated gate bipolar transistor

Similar Documents

Publication Publication Date Title
JPH09186245A (en) Manufacture of semiconductor device
JPH04348053A (en) Manufacture of semiconductor device
JPH0555204A (en) Manufacture of semiconductor device
JPH09172062A (en) Semiconductor device and its manufacture
JPS58200554A (en) Manufacture of semiconductor device
JPS6143858B2 (en)
JP3061892B2 (en) Method for manufacturing semiconductor device
JPH05102183A (en) Manufacture of semiconductor device
JP2763216B2 (en) Method for manufacturing semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPH0582784A (en) Manufacture of mis-type semiconductor device
JPH036844A (en) Manufacture of semiconductor integrated circuit
JPH1065156A (en) Manufacturing method for semiconductor device
JP2546650B2 (en) Method of manufacturing bipolar transistor
JPH04237168A (en) Manufacture of mis type semiconductor device
JPH0230145A (en) Manufacture of semiconductor device
JPH05102173A (en) Manufacture of semiconductor substrate
JPH03204968A (en) Semiconductor device and manufacture thereof
JPH02246374A (en) Semiconductor storage device and manufacture thereof
JPS6310574A (en) Manufacture of high withstanding semiconductor element
JPS62131538A (en) Manufacture of semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH05243249A (en) Manufacture of bipolar transistor
JPH05182958A (en) Semiconductor device and method of manufacture that
JPH02309653A (en) Manufacture of semiconductor integrated circuit