【発明の詳細な説明】[Detailed description of the invention]
<産業上の利用分野>
本発明は固体塩基の製造方法に関する。
詳しくはアルミナ、アルカリ金属水酸化物およ
びアルカリ金属水素化物を特定温度下に加熱作用
せしめることを特徴とする新規な固体塩基の製造
方法に関するものである。
<従来の技術、発明が解決しようとする問題点>
固体塩基は工業的に重要な触媒であり、例えば
オレフイン類の異性化、水添、脱水素などの反応
に用いられる。
かかる固体塩基触媒としては、従来よりアルカ
リ金属を表面積の大きい担体、例えば活性炭、シ
リカゲル、アルミナ等に分散させた触媒が知られ
ている(J.Am.Chem.Soc.,82,387(1960))。し
かしながら、このようなアルカリ金属を担体に分
散せしめた固体触媒は空気と接触すると発火して
失活するため操作性、安全性の面で大きな問題が
あつた。また触媒能力も不満足なものであつた。
また固体塩基のかかる諸問題点を解決したもの
として、本発明者らは既にアルミナ、アルカリ金
属水酸化物およびアルカリ金属を原料とした新規
な固体塩基触媒を見出すと伴に、このものはアル
カリ金属のみを担体に分散させた触媒とは異な
り、空気中でも発火などの危険を伴わず、工業的
に適した触媒であることを見い出している(特公
昭50−3274号公報)。しかし、原料としてアルカ
リ金属を用いる点、触媒能力の点で必ずしも充分
満足し得るものではない。
一方、アルカリ金属水素化物を担体に担持した
固体塩基も知られている(特開昭53−121753号公
報、特開昭59−134736号公報)。しかしながらこ
の触媒はアンモニア、ヒドラジン等の助剤を併用
することによつて触媒活性を示すものであるた
め、この触媒を用いる場合は別途アンモニア、ヒ
ドラジン等を必要とするという問題点の他に、こ
れ等を反応後に分離除去するための精製装置等も
必要とし、操作も繁雑になるなどの問題点を有し
ていた。
本発明者らは上記公知固体塩基の諸問題を解決
すべく鋭意検討を重ねた結果、特定の温度下でア
ルミナにアルカリ金属水酸化物とアルカリ金属水
素化物を加熱作用せしめた固体塩基が、それ単独
でも著しく高い触媒活性を示すことを見い出すと
ともに、さらに種々の検討を加えて本発明を完成
した。
<問題点を解決するための手段>
すなわち本発明は、不活性ガス雰囲気中200乃
至500℃の温度下で、アルミナとアルカリ金属水
酸化物とを加熱作用せしめ次でアルカリ金属水素
化物を加熱作用せしめることを特徴とする工業的
に優れた固体塩基の製造方法を提供するものであ
る。
本発明において、アルカリ金属水酸化物として
は水酸化リチウム、水酸化ナトリウム、水酸化カ
リウム、水酸化ルビジウム、水酸化セシウム等が
用いられ、その形態は固体であつても、液体であ
つても水溶液であつても良い。アルカリ金属水素
化物としては周期律表第族のナトリウム、カリ
ウム、リチウムなどの水素化物が挙げられる。ア
ルカリ金属水素化物は2種以上用いることができ
る。
アルカリ金属水酸化物とアルカリ金属水素化物
の組み合わせについては、アルカリ金属水酸化物
とそれに対応するアルカリ金属水素化物、たとえ
ば水酸化ナトリウムと水素化ナトリウム、水酸化
カリウムと水素化カリウム等であつて良いし、ア
ルカリ金属水酸化物とそれと対応しない別のアル
カリ金属水素化物、たとえば水酸化カリウムと水
素化ナトリウム、水酸化ナトリウムと水素化カリ
ウム等の組合わせであつても良い。通常は水酸化
ナトリウム、水素化ナトリウムの組合わせが使用
される。
かかるアルカリ金属水素化物およびアルカリ金
属水酸化物の使用量はアルミナに対してそれぞれ
2乃至10重量%、5乃至40重量%が触媒活性の点
で好ましい。
アルミナとしては表面積の大きい種々の形態の
アルミナが通常使用されるが、特に100乃至300メ
ツシユのγ−アルミナ、x−アルミナなどを使用
することが触媒活性の点で好ましい。またアルミ
ナはアルカリ金属水酸化物およびアルカリ金属水
素化物と互に使用しあつてある種の新しい結合を
形成するとともに、担体の役目を果しているの
で、アルミナ以外に例えばカオリン、アルミナシ
リケート等のアルミナ含有物も使用することがで
きるが上記のアルミナが好ましい。
本発明は不活性ガス雰囲気中で、上記のような
アルミナ、アルカリ金属水酸化物およびアルカリ
金属水素化物を特定の温度下に加熱作用せしめて
固体塩基を調製するものであるが、加熱作用せし
める順序としては、先ずアルミナにアルカリ金属
水酸化物を、次いでアルカリ金属水素化物を作用
せしめるのが最も好ましい。また不活性ガスとし
ては窒素、ヘリウム、アルゴン等が例示される。
本発明において、固体塩基調製時の温度は極め
て重要であり、とりわけアルカリ金属水素化物を
加熱作用させる温度は触媒の活性に著しい影響を
及ぼす。
アルミナとアルカリ金属水酸化物を加熱作用せ
しめる温度は200乃至500℃、より好ましくは250
乃至450℃であり、アルカリ金属水素化物を加熱
作用せしめる温度は200乃至500℃、好ましくは
250乃至450℃である。かかる温度下に固体塩基を
調製することにより、これ迄にない著しく触媒活
性の高い固体塩基が得られ、少ない触媒量で効率
良く、目的反応を完結することができる。
加熱時間は選定する温度条件等により異なる
が、アルカリ金属水酸化物を加熱作用せしめる工
程は通常0.5乃至10時間で充分であり、アルカリ
金属水素化物を加熱せしめる工程は通常10乃至
800分で充分である。
かくして本発明の固体塩基は製造される。該固
体塩基はアルミナとアルカリ金属水酸化物とアル
カリ金属水素化物が加熱により作用し合つて、新
しい活性種を生成していると考えられ、公知のも
のに比べ著しく高い触媒活性を示し、アンモニ
ア、ヒドラジン等の助剤なしでしかも少量でも目
的反応を完結できるので、工業的規模の種々の反
応に使用される。
例えば、オレフイン類の異性化や塩基が促進す
る各種縮合反応等の種々の反応に利用することが
できる。なかでも、オレフインの異性化に優れた
触媒作用を示し、例えば末端オレフインを内部オ
レフインに異性化する場合、とりわけアルケニル
架橋環化合物からアルキリデン架橋環化合物への
異性化に対しては常温で接触するのみで異性化は
進行する。
<発明の効果>
本発明方法で得られる固体塩基は、原料として
取扱いの容易なアルカリ金属水素化物が使用で
き、しかもアンモニアやヒドラジン等の助剤なし
でも著しく高い触媒活性を示し、少量でも効率良
く目的反応を完結し得る等の利点を有し、本発明
は固体塩基の工業的製造として極めて有利であ
る。
<実施例>
以下実施例によつて本発明をより詳細に説明す
るが、本発明は実施例のみに限定されるものでは
ない。
実施例 1
γ−アルミナ26.6gを100mlのフラスコに入れ、
窒素ガス流通下に500℃に昇温し、同温度で1時
間撹拌した。その後330℃に降温し、水酸化ナト
リウム2.5gを加え同温度で8時間撹拌した後放
冷した。
次いで水素化ナトリウム(市販品を窒素雰囲気
下でヘキサンを加えて過洗浄し、鉱油を除去し
たのち、乾燥したものを使用)1.28gを加え撹拌
しながら330℃に昇温し、同温度で1時間撹拌し
た後放冷し、27.8gの固体塩基を得た。
実施例2〜5、比較例1〜3
表−1に示す以外は実施例1と同様にして、表
−1に示した固体塩基を得た。
参考例 1
200mlのフラスコに窒素雰囲気下で実施例1で
調製した固体塩基0.19gを入れ、これに5−ビニ
ル−2−ノルボルネン(純度99.9%)97.1gを加
え15〜20℃で20時間撹拌した。反応後、反応液を
ガスクロマトグラフイーにより分析したところ、
5−ビニル−2−ノルボルネン(VNB)0.5%、
5−エチリデン−2−ノルボルネン(ENB)
99.4%であつた。触媒を別して96.2gの生成物
を得た。
参考例 2〜8
表−2に示す以外は参考例1と同様にして5−
ビニル−2−ノルボルネンの異性化を行なつた。
その結果を表−2に示した。
参考例 9
100mlのフラスコに窒素雰囲気下で実施例1で
調製した固体塩基0.22gを入れ、これに5−イソ
プロペニル−2−ノルボルネン(エキソ体10.1
%、エンド体89.9%)26.4gを加え15〜20℃で16
時間反応した。
反応後、反応液をガスクロマトグラフイーによ
り分析したところ、エキソ−5−イソプロペニル
−2−ノルボルネン0.3%、エンド−5−イソプ
ロペニル−2−ノルボルネン0%、5−イソプロ
ピリデン−2−ノルボルネン99.2%であつた。
<Industrial Field of Application> The present invention relates to a method for producing a solid base. Specifically, the present invention relates to a novel method for producing a solid base, which is characterized by heating alumina, an alkali metal hydroxide, and an alkali metal hydride at a specific temperature. <Prior art and problems to be solved by the invention> Solid bases are industrially important catalysts, and are used, for example, in reactions such as isomerization, hydrogenation, and dehydrogenation of olefins. As such solid base catalysts, catalysts in which alkali metals are dispersed in carriers with large surface areas, such as activated carbon, silica gel, alumina, etc., have been known (J. Am. Chem. Soc., 82 , 387 (1960)). ). However, such a solid catalyst in which an alkali metal is dispersed in a carrier ignites and is deactivated when it comes into contact with air, which poses a major problem in terms of operability and safety. Moreover, the catalytic ability was also unsatisfactory. In addition, the present inventors have already discovered a new solid base catalyst using alumina, alkali metal hydroxide, and an alkali metal as raw materials to solve the problems of solid bases. It has been discovered that, unlike catalysts in which only silica is dispersed in a carrier, there is no risk of ignition even in the air, making it an industrially suitable catalyst (Japanese Patent Publication No. 3274/1983). However, it is not always completely satisfactory in terms of the use of an alkali metal as a raw material and the catalytic ability. On the other hand, solid bases in which an alkali metal hydride is supported on a carrier are also known (JP-A-53-121753, JP-A-59-134736). However, this catalyst exhibits catalytic activity when used in conjunction with auxiliaries such as ammonia and hydrazine, so when using this catalyst, there is the problem that ammonia, hydrazine, etc. are separately required. This method also requires a purification device to separate and remove the substances after the reaction, which poses problems such as complicated operations. The inventors of the present invention have conducted intensive studies to solve the problems of the above-mentioned known solid bases, and have discovered that a solid base is produced by heating alumina with alkali metal hydroxide and alkali metal hydride at a specific temperature. In addition to discovering that it exhibits extremely high catalytic activity even when used alone, the present invention was completed by further conducting various studies. <Means for solving the problem> That is, the present invention heats alumina and an alkali metal hydroxide at a temperature of 200 to 500°C in an inert gas atmosphere, and then heats the alkali metal hydride. The purpose of the present invention is to provide an industrially excellent method for producing a solid base, which is characterized by the following: In the present invention, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, etc. are used as the alkali metal hydroxide, and the form thereof may be solid, liquid, or aqueous solution. It's okay to be. Examples of the alkali metal hydrides include hydrides of sodium, potassium, lithium, etc. in group 3 of the periodic table. Two or more types of alkali metal hydrides can be used. The combination of alkali metal hydroxide and alkali metal hydride may be an alkali metal hydroxide and the corresponding alkali metal hydride, such as sodium hydroxide and sodium hydride, potassium hydroxide and potassium hydride, etc. However, a combination of an alkali metal hydroxide and another alkali metal hydride not corresponding thereto, such as potassium hydroxide and sodium hydride, or sodium hydroxide and potassium hydride, may also be used. Usually a combination of sodium hydroxide and sodium hydride is used. The amount of alkali metal hydride and alkali metal hydroxide used is preferably 2 to 10% by weight and 5 to 40% by weight, respectively, based on the alumina, from the viewpoint of catalytic activity. As the alumina, various forms of alumina having a large surface area are usually used, but it is particularly preferable to use 100 to 300 mesh gamma-alumina, x-alumina, etc. from the viewpoint of catalytic activity. In addition, since alumina is mutually used with alkali metal hydroxides and alkali metal hydrides to form certain new bonds and also plays the role of a carrier, in addition to alumina, alumina-containing materials such as kaolin and alumina silicate, etc. Although alumina can also be used, the above-mentioned alumina is preferred. In the present invention, a solid base is prepared by heating alumina, alkali metal hydroxide, and alkali metal hydride as described above at a specific temperature in an inert gas atmosphere. Most preferably, alumina is first treated with an alkali metal hydroxide and then with an alkali metal hydride. Examples of the inert gas include nitrogen, helium, and argon. In the present invention, the temperature during the preparation of the solid base is extremely important, and in particular, the temperature at which the alkali metal hydride is heated has a significant effect on the activity of the catalyst. The temperature at which the alumina and alkali metal hydroxide are heated is 200 to 500°C, more preferably 250°C.
The temperature at which the alkali metal hydride is heated is 200 to 500°C, preferably 450°C to 450°C.
The temperature is 250 to 450°C. By preparing a solid base at such a temperature, a solid base with an unprecedentedly high catalytic activity can be obtained, and the desired reaction can be efficiently completed with a small amount of catalyst. The heating time varies depending on the selected temperature conditions, etc., but 0.5 to 10 hours is usually sufficient for the process of heating the alkali metal hydroxide, and 10 to 10 hours is usually sufficient for the process of heating the alkali metal hydride.
800 minutes is sufficient. The solid base of the present invention is thus produced. This solid base is thought to be produced by alumina, alkali metal hydroxide, and alkali metal hydride interacting with each other by heating to generate new active species, and exhibits significantly higher catalytic activity than known ones, and has a significantly higher catalytic activity than ammonia, Since the desired reaction can be completed without the use of auxiliary agents such as hydrazine and even in small amounts, it is used in various industrial-scale reactions. For example, it can be used in various reactions such as isomerization of olefins and various condensation reactions promoted by bases. In particular, it exhibits excellent catalytic activity for the isomerization of olefins, and for example, when isomerizing terminal olefins to internal olefins, especially for the isomerization from alkenyl bridged ring compounds to alkylidene bridged ring compounds, it is only necessary to contact at room temperature. Isomerization progresses. <Effects of the Invention> The solid base obtained by the method of the present invention allows the use of easily handled alkali metal hydrides as raw materials, and exhibits extremely high catalytic activity even without auxiliary agents such as ammonia or hydrazine, and can be used efficiently even in small amounts. The present invention has advantages such as being able to complete the desired reaction, and is extremely advantageous for the industrial production of solid bases. <Examples> The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited only to the Examples. Example 1 Put 26.6g of γ-alumina into a 100ml flask,
The temperature was raised to 500°C under nitrogen gas flow, and the mixture was stirred at the same temperature for 1 hour. Thereafter, the temperature was lowered to 330°C, 2.5 g of sodium hydroxide was added, the mixture was stirred at the same temperature for 8 hours, and then allowed to cool. Next, 1.28 g of sodium hydride (a commercially available product was washed with hexane under a nitrogen atmosphere to remove mineral oil, then dried) was added, and the temperature was raised to 330°C with stirring, and at the same temperature it was heated to 330°C. After stirring for an hour, the mixture was allowed to cool to obtain 27.8 g of a solid base. Examples 2 to 5, Comparative Examples 1 to 3 The solid bases shown in Table 1 were obtained in the same manner as in Example 1 except as shown in Table 1. Reference Example 1 0.19 g of the solid base prepared in Example 1 was placed in a 200 ml flask under a nitrogen atmosphere, and 97.1 g of 5-vinyl-2-norbornene (purity 99.9%) was added thereto and stirred at 15 to 20°C for 20 hours. did. After the reaction, the reaction solution was analyzed by gas chromatography.
5-vinyl-2-norbornene (VNB) 0.5%,
5-ethylidene-2-norbornene (ENB)
It was 99.4%. After removing the catalyst, 96.2 g of product was obtained. Reference Examples 2 to 8 5-
Isomerization of vinyl-2-norbornene was carried out.
The results are shown in Table-2. Reference Example 9 0.22 g of the solid base prepared in Example 1 was placed in a 100 ml flask under a nitrogen atmosphere, and 5-isopropenyl-2-norbornene (exo form 10.1
%, endo form 89.9%) and 16.4g at 15-20℃.
Time reacted. After the reaction, the reaction solution was analyzed by gas chromatography and found to be 0.3% exo-5-isopropenyl-2-norbornene, 0% endo-5-isopropenyl-2-norbornene, and 99.2% 5-isopropylidene-2-norbornene. It was hot.
【表】【table】
【表】
参考例 10
100mlのフラスコに窒素雰囲気下、実施例1で
調製した固体塩基0.25gを入れ、これに4−メチ
ル−1−ペンテン20.1gを加え、15〜20℃で、16
時間反応した。
反応後、反応液をガスクロマトグラフイにより
分析したところ、4−メチル−1−ペンテン0.4
%、4−メチル−2−ペンテン8.8%、2−メチ
ル−2−ペンテン90.6%であつた。
参考例 11
200mlのフラスコに窒素雰囲気下、実施例8で
調製した固体塩基0.25gを入れ、これに4−メチ
ル−1−ペンテン87.7gを加え、15〜20℃で、8
時間反応した。
反応後、反応液をガスクロマトグラフイにより
分析したところ、4−メチル−1−ペンテン0.3
%、4−メチル−2−ペンテン9.8%、2−ペン
テン90.2%であつた。
参考例 12
100mlのフラスコに窒素雰囲気下、比較例2で
調製した固体塩基0.80gを入れ、これに4−メチ
ル−1−ペンテン7.0gを加え、15〜20℃で、48
時間反応した。
反応後、反応液をガスクロマトグラフイにより
分析したところ、4−メチル−1−ペンテン90.2
%、4−メチル−2−ペンテン6.2%、2−メチ
ル−2−ペンテン8.6%であつた。
参考例 18
100mlのフラスコに窒素雰囲気下、比較例3で
調製した固体塩基0.31gを入れこれに4−メチル
−ペンテン15.5gを加え、15〜20℃で、48時間反
応した。
反応後、反応液をガスクロマトグラフイにより
分析したところ、4−メチル−1−ペンテン0.7
%、4−メチル−2−ペンテン31.2%、2−メチ
ル−2−ペンテン68.0%であつた。[Table] Reference Example 10 0.25 g of the solid base prepared in Example 1 was placed in a 100 ml flask under a nitrogen atmosphere, 20.1 g of 4-methyl-1-pentene was added thereto, and the mixture was heated at 15 to 20°C for 16
Time reacted. After the reaction, the reaction solution was analyzed by gas chromatography, and it was found that 4-methyl-1-pentene was 0.4
%, 4-methyl-2-pentene 8.8%, and 2-methyl-2-pentene 90.6%. Reference Example 11 0.25 g of the solid base prepared in Example 8 was placed in a 200 ml flask under a nitrogen atmosphere, and 87.7 g of 4-methyl-1-pentene was added thereto.
Time reacted. After the reaction, the reaction solution was analyzed by gas chromatography, and it was found that 4-methyl-1-pentene was 0.3
%, 4-methyl-2-pentene 9.8%, and 2-pentene 90.2%. Reference Example 12 0.80 g of the solid base prepared in Comparative Example 2 was placed in a 100 ml flask under a nitrogen atmosphere, 7.0 g of 4-methyl-1-pentene was added thereto, and 48
Time reacted. After the reaction, the reaction solution was analyzed by gas chromatography, and it was found that 4-methyl-1-pentene was 90.2
%, 4-methyl-2-pentene 6.2%, and 2-methyl-2-pentene 8.6%. Reference Example 18 0.31 g of the solid base prepared in Comparative Example 3 was placed in a 100 ml flask under a nitrogen atmosphere, 15.5 g of 4-methyl-pentene was added thereto, and the mixture was reacted at 15 to 20°C for 48 hours. After the reaction, the reaction solution was analyzed by gas chromatography, and it was found that 4-methyl-1-pentene was 0.7
%, 4-methyl-2-pentene 31.2%, and 2-methyl-2-pentene 68.0%.