Nothing Special   »   [go: up one dir, main page]

JP2522354B2 - Method for producing solid base - Google Patents

Method for producing solid base

Info

Publication number
JP2522354B2
JP2522354B2 JP63197367A JP19736788A JP2522354B2 JP 2522354 B2 JP2522354 B2 JP 2522354B2 JP 63197367 A JP63197367 A JP 63197367A JP 19736788 A JP19736788 A JP 19736788A JP 2522354 B2 JP2522354 B2 JP 2522354B2
Authority
JP
Japan
Prior art keywords
solid base
alkali metal
methyl
pentene
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63197367A
Other languages
Japanese (ja)
Other versions
JPH0248042A (en
Inventor
剛夫 鈴鴨
正美 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63197367A priority Critical patent/JP2522354B2/en
Publication of JPH0248042A publication Critical patent/JPH0248042A/en
Application granted granted Critical
Publication of JP2522354B2 publication Critical patent/JP2522354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は固体塩基の製造方法に関し、詳しくは炭酸も
しくはアルミン酸のアルカリ金属塩で前処理したアルミ
ナにアルカリ金属水素化物を特定の温度下で加熱作用せ
しめることによる固体塩基の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for producing a solid base, and more specifically, to alumina pretreated with an alkali metal salt of carbonic acid or aluminate and an alkali metal hydride at a specific temperature. The present invention relates to a method for producing a solid base by heating it.

<従来の技術,発明が解決しようとする問題点> 固体塩基は工業用触媒として用いられ、例えばオレフ
ィンの異性化、水添、脱水素などの反応に用いられる。
<Prior Art and Problems to be Solved by the Invention> Solid bases are used as industrial catalysts, for example, in reactions such as olefin isomerization, hydrogenation and dehydrogenation.

かかる固体塩基としては、従来よりアルカリ金属を表
面積の大きい担体、例えば活性炭、シリカゲル、アルミ
ナ等に分散させた触媒が知られている(J.Am.Chem.So
c.,82,387(1960))。しかしながら、このようなアル
カリ金属を担体に分散せしめた固体塩基は、空気と接触
すると発火して失活するため操作性、安全性等の面で大
きな問題があった。また触媒能力も不満足なものであっ
た。
As such a solid base, conventionally, a catalyst in which an alkali metal is dispersed in a carrier having a large surface area, such as activated carbon, silica gel, or alumina, is known (J. Am. Chem. So.
c., 82 , 387 (1960)). However, such a solid base in which an alkali metal is dispersed in a carrier has a big problem in terms of operability and safety since it ignites and deactivates when contacted with air. Moreover, the catalytic ability was also unsatisfactory.

本発明者らはかかる諸欠点を解決した固体塩基とし
て、既にアルミナ、アルカリ金属水酸化物、アルカリ金
属を原料とした新規な触媒を見出すとともに、このもの
は高い触媒活性を示すのみならず空気中でも発火せず、
より安全であり工業用触媒として優れていることを見出
している(特公昭50−3274号公報)。しかし原料として
アルカリ金属を用いる等の点で必ずしも充分満足し得る
ものではない。
The present inventors have already found a new catalyst that uses alumina, alkali metal hydroxide, and alkali metal as a raw material as a solid base that has solved these drawbacks, and this one not only exhibits high catalytic activity but also in air. Does not ignite,
It has been found that it is safer and is excellent as an industrial catalyst (Japanese Patent Publication No. 50-3274). However, it is not always sufficiently satisfactory in terms of using an alkali metal as a raw material.

一方、アルカリ金属水素化物をアルミナ等の担体に担
持した固体塩基も知られている(特開昭53−121753号公
報、同59−134736号公報)。しかしながら、アルカリ金
属水素化物を用いたかかる固体塩基は、アンモニア、ヒ
ドラジン等の助触媒を併用することによって触媒活性を
示すものであるため、この固体塩基を用いる場合は別途
アンモニア、ヒドラジン等を必要とするという問題の他
に、これ等を反応後に分離除去するための精製装置も必
要とし、操作も繁雑になるなどの問題点を有していた。
On the other hand, a solid base in which an alkali metal hydride is carried on a carrier such as alumina is also known (Japanese Patent Laid-Open Nos. 53-121753 and 59-134736). However, since such a solid base using an alkali metal hydride exhibits catalytic activity by using a cocatalyst such as ammonia or hydrazine, when using this solid base, ammonia, hydrazine or the like is required separately. In addition to such a problem, a purification device for separating and removing these after the reaction is required, and there is a problem that the operation becomes complicated.

本発明者らは、より優れた固体塩基を見出すべく鋭意
検討を重ねた結果、炭酸もしくはアルミン酸のアルカリ
金属塩で前処理したアルミナにアルカリ金属水素化物を
特定の温度下で加熱作用せしめて得られる固体塩基が、
それ単独でも著しく高い活性を示すのみならず安全に取
り扱うことができ、工業用触媒として極めて優れること
を見出すとともに、更に種々の検討を加え本発明を完成
した。
As a result of intensive studies to find out a better solid base, the present inventors have obtained by heating an alumina pretreated with an alkali metal salt of carbonic acid or aluminate with an alkali metal hydride under a specific temperature. Solid base is
Not only does it exhibit extremely high activity by itself, but it can be handled safely, and it has been found to be extremely excellent as an industrial catalyst, and the present invention has been completed by further various studies.

<問題を解決するための手段> すなわち本発明は、不活性ガス雰囲気中、炭酸もしく
はアルミン酸のアルカリ金属塩で前処理したアルミナに
アルカリ金属水素化物を200乃至450℃の温度下で加熱作
用せしめることを特徴とする工業的に優れた固体塩基の
製造方法を提供するものである。
<Means for Solving Problems> That is, according to the present invention, alumina pretreated with an alkali metal salt of carbonic acid or aluminate is heated with an alkali metal hydride at a temperature of 200 to 450 ° C. in an inert gas atmosphere. The present invention provides an industrially excellent method for producing a solid base.

本発明における固体塩基の原料であるアルカリ金属水
素化物としては、周期律表第I族のナトリウム、カリウ
ムなどの水素化物が挙げられる。アルカリ金属水素化物
は2種以上用いることもできる。アルカリ金属水素化物
はアルミナに対し通常2乃至15wt%、好ましくは4乃至
10wt%が使用される。
Examples of the alkali metal hydride that is a raw material of the solid base in the present invention include hydrides of Group I sodium, potassium and the like. Two or more kinds of alkali metal hydrides can be used. Alkali metal hydride is usually 2 to 15 wt% with respect to alumina, preferably 4 to
10 wt% is used.

炭酸もしくはアルミン酸のアルカリ金属塩で前処理し
たアルミナとしては、例えば周期律表第I族のナトリウ
ム、カリウム、リチウム、ルビジウム、セシウムなどの
アルカリ金属の炭酸塩、アルミン酸塩等で前処理したア
ルミナが挙げられる。
As the alumina pretreated with an alkali metal salt of carbonic acid or aluminate, for example, alumina pretreated with an alkali metal carbonate or aluminate of Group I of the periodic table such as sodium, potassium, lithium, rubidium and cesium. Is mentioned.

被処理アルミナとしてはα−アルミナ以外の種々の形
態のアルミナが用いられ、特にγ−、χ−、ρ−、η−
型のような高表面積のアルミナが好ましく用いられる。
また含水品を用いることもできる。アルミナはアルカリ
金属水素化物、炭酸のアルカリ金属塩、アルミン酸のア
ルカリ金属塩等と互いに作用しあって、ある種の新しい
結合を形成するとともに、担体の役目を果しているの
で、アルミナ以外に例えばカオリン、アルミナシリケー
ト等のアルミナ含有物も使用できるが上記のアルミナが
好ましい。
As the alumina to be treated, various forms of alumina other than α-alumina are used, and in particular γ-, χ-, ρ-, η-
A high surface area alumina such as a mold is preferably used.
A water-containing product can also be used. Alumina interacts with alkali metal hydrides, carbonic acid alkali metal salts, aluminate alkali metal salts, etc. to form a kind of new bond and also serves as a carrier. Alumina-containing materials such as alumina silicate can also be used, but the above-mentioned alumina is preferable.

アルミナの前処理は、前記アルカリ金属塩の水溶液を
含浸せしめた後、焼成することにより通常実施される。
アルカリ金属塩の含浸量はアルミナに対して通常5乃至
30wt%、好ましくは5乃至25wt%であり、焼成温度は通
常300乃至700℃である。
The pretreatment of alumina is usually carried out by impregnating the aqueous solution of the alkali metal salt and then calcining.
The amount of alkali metal salt impregnated is usually 5 to 5 with respect to alumina.
It is 30 wt%, preferably 5 to 25 wt%, and the firing temperature is usually 300 to 700 ° C.

本発明の固体塩基は不活性ガス雰囲気中、アルカリ金
属水素化物と、炭酸もしくはアルミン酸のアルカリ金属
塩で前処理したアルミナとを特定の温度下に加熱作用せ
しめて調製されるが不活性ガスとしては例えば窒素、ヘ
リウム、アルゴン等が例示される。
The solid base of the present invention is prepared by heating an alkali metal hydride and alumina pretreated with an alkali metal salt of carbonic acid or aluminate at a specific temperature in an inert gas atmosphere. Examples of nitrogen include nitrogen, helium, and argon.

本発明の固体塩基はその調製温度が極めて重要であ
り、とりわけアルカリ金属水素化物とアルカリ金属塩で
前処理したアルミナとを加熱作用せしめる温度が極めて
重要であり、触媒活性に著しい影響を及ぼす。調整温度
は200乃至450℃、好ましくは220乃至400℃、より好まし
くは250乃至400℃である。
The preparation temperature of the solid base of the present invention is extremely important, especially the temperature at which the alkali metal hydride and the alumina pretreated with the alkali metal salt are heated, and the catalyst activity is significantly affected. The adjusting temperature is 200 to 450 ° C, preferably 220 to 400 ° C, more preferably 250 to 400 ° C.

かかる温度下に固体塩基を調製することにより、これ
までにない著しく活性の高い固体塩基が得られ、少ない
触媒量で効率良く目的反応を完結することができる。
By preparing a solid base at such a temperature, a solid base having a remarkably high activity which has never been obtained can be obtained, and the target reaction can be efficiently completed with a small amount of catalyst.

加熱時間は選定する温度条件等により異なるが、通
常、15分乃至10時間程度で充分である。
The heating time varies depending on the selected temperature conditions and the like, but 15 minutes to 10 hours is usually sufficient.

かくして本発明の固体塩基が製造されるが、該固体塩
基はアルミナとアルカリ金属塩およびアルカリ金属水素
化物が作用しあって、新しい活性種を形成しているもの
と考えられ、アンモニア、ヒドラジン等の助剤なしでし
かも少量で目的反応を完結できるので、工業的規模の種
々の反応に使用される。
Thus, the solid base of the present invention is produced.The solid base is considered to form new active species by the action of alumina and alkali metal salt and alkali metal hydride, such as ammonia and hydrazine. Since the desired reaction can be completed without an auxiliary agent and in a small amount, it is used in various reactions on an industrial scale.

例えば、オレフィン類の異性化や塩基が促進する各種
縮合反応等の種々の反応に利用することができる。なか
でも、オレフィンの異性化に優れた触媒作用を示し、例
えばオレフィンをより安定な内部オレフィンに効率良く
異性化せしめることができる。
For example, it can be used for various reactions such as isomerization of olefins and various condensation reactions promoted by a base. Among them, it exhibits an excellent catalytic action for olefin isomerization, and can efficiently isomerize an olefin into a more stable internal olefin.

オレフィン類を異性化せしめる場合、本発明の固体塩
基の使用量は原料オレフィンに対し、通常1/1000乃至1/
20重量であり、1/500乃至1/100重量でも十分である。ま
た異性化温度は常温でも充分反応が進行するので特に加
温する必要はないが、目的によっては加温しても良い。
通常−30乃至120℃、好ましくは−10乃至100℃の温度範
囲で実施される。
When olefins are isomerized, the amount of the solid base of the present invention to be used is usually 1/1000 to 1/1 / the raw material olefin.
It is 20 weight, and 1/500 to 1/100 weight is sufficient. The isomerization temperature does not need to be particularly warmed because the reaction proceeds sufficiently even at room temperature, but it may be warmed depending on the purpose.
It is usually carried out in the temperature range of -30 to 120 ° C, preferably -10 to 100 ° C.

また異性化反応の原料オレフィンとしては例えば、1
−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテ
ン、1−ノネン、1−デセン、2−メチル−1−ブテ
ン、3−メチル−1−ブテン、4−メチル−1−ペンテ
ン、3−メチル−1−ペンテン、2−メチル−1−ペン
テン、2,3−ジメチル−1−ブテン等の鎖状化合物、ア
リルベンゼン、アリルトルエン等の芳香属化合物、2−
イソプロペニルノルボルナン、5−ビニル−2−ノルボ
ルネン、5−イソプロペニル−2−ノルボルネン、6−
メチル−5−ビニルノルボルネン等の架橋環化合物、メ
チレンシクロペンタン、メチレンシクロヘキサン等の環
状化合物、1,4−ペンタジエン、1,5−ヘキサジエン、2,
5−ジメチル−1,4−ヘキサジエン、2,5−ジメチル−1,5
−ヘキサジエン等の非共役オレフィンなどの末端オレフ
ィン化合物、4−メチル−2−ペンテン、5−(2−プ
ロペニル)−2−ノルボルネン等の末端以外に二重結合
を有し、寄り安定な位置に異性化し得る化合物が挙げら
れる。
The raw material olefin for the isomerization reaction is, for example, 1
-Butene, 1-pentene, 1-hexene, 1-heptene, 1-nonene, 1-decene, 2-methyl-1-butene, 3-methyl-1-butene, 4-methyl-1-pentene, 3-methyl Chain compounds such as -1-pentene, 2-methyl-1-pentene and 2,3-dimethyl-1-butene, aromatic compounds such as allylbenzene and allyltoluene, 2-
Isopropenyl norbornane, 5-vinyl-2-norbornene, 5-isopropenyl-2-norbornene, 6-
Crosslinked ring compounds such as methyl-5-vinylnorbornene, cyclic compounds such as methylenecyclopentane and methylenecyclohexane, 1,4-pentadiene, 1,5-hexadiene, 2,
5-dimethyl-1,4-hexadiene, 2,5-dimethyl-1,5
-A terminal olefin compound such as a non-conjugated olefin such as hexadiene, a double bond other than the terminal such as 4-methyl-2-pentene, and 5- (2-propenyl) -2-norbornene, and an isomer at a more stable position. The compound which can be converted is mentioned.

必要に応じ不活性媒体、例えばペンタン、ヘキサン、
シクロヘキサン、ヘプタン、ドデカン等の炭化水素系溶
媒などで希釈して反応を実施できるが、反応後、触媒の
分離のみでも目的とする高品位の異性化したオレフィン
が得られるため、無媒体か次工程で使用する溶媒を選択
しても良い。
An inert medium, if necessary, such as pentane, hexane,
The reaction can be carried out by diluting it with a hydrocarbon solvent such as cyclohexane, heptane, dodecane, etc., but after the reaction, the desired high-quality isomerized olefin can be obtained only by separating the catalyst. You may select the solvent used by.

異性化反応はバッチ法でも連続法でも実施でき異性化
に当たっては、あらかじめ原料をアルミナ等の乾燥剤で
前処理するとも有効である。より安全に確実に異性化を
行うためには不活性ガス雰囲気下に行えば良い。
The isomerization reaction can be carried out by a batch method or a continuous method, and it is also effective to pretreat the raw material with a drying agent such as alumina in advance for the isomerization. In order to carry out isomerization more safely and surely, it may be carried out under an inert gas atmosphere.

異性化反応生成物はガスクロマトグラフィー等の既知
の方法によって分析され、濾過、デカンテーション等に
より容易に触媒と分離される。
The isomerization reaction product is analyzed by a known method such as gas chromatography and is easily separated from the catalyst by filtration, decantation or the like.

かくして、異性化したオレフィンが得られるが、本発
明の固体塩基触媒を用いれば、アンモニアやヒドラジン
等の助剤なしでも活性が著しく高いので、少ない触媒量
でも極めて効率良く異性化反応を完結することができ
る。その上、重合物等の副生物を殆ど伴うことなく目的
物が選択的に生成し、触媒を分離するのみでも高品位の
目的物が得られる。
Thus, an isomerized olefin can be obtained, but if the solid base catalyst of the present invention is used, the activity is remarkably high even without an auxiliary agent such as ammonia or hydrazine, so that the isomerization reaction can be completed very efficiently even with a small amount of catalyst. You can Moreover, the target product is selectively produced with almost no by-products such as polymerized products, and a high-quality target product can be obtained only by separating the catalyst.

<発明の効果> 本発明の固体塩基は、それ単独でも著しく高い活性を
示し、効率良く目的反応を進行せしめることができるの
みならず安全に取り扱うことができる等の利点を有す
る。
<Effects of the Invention> The solid base of the present invention has a remarkably high activity by itself, and has an advantage that it can be efficiently handled, and can be handled safely.

その上、原料として取り扱い容易で入手し易いアルカ
リ金属水素化物を使用できるので、この点でも本発明は
有利である。
In addition, since an alkali metal hydride that can be easily handled and easily obtained can be used as a raw material, the present invention is also advantageous in this respect.

<実施例> 以下に実施例によって本発明をより詳細に説明する
が、本発明は実施例のみに限定されるものではない。
<Example> Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the examples.

参考例1 300mlフラスコにアルミン酸ナトリウム23.5gと水200m
lを加えてアルミン酸ナトリウムを溶解した。次いでこ
れにγ−アルミナ109gを加え、60℃に加熱攪拌しなが
ら、減圧下に水分を留去し、133.3gの粉末を得た。
Reference example 1 Sodium aluminate 23.5g and water 200m in a 300ml flask
l was added to dissolve sodium aluminate. Then, 109 g of γ-alumina was added thereto, and the water was distilled off under reduced pressure while heating and stirring at 60 ° C. to obtain 133.3 g of powder.

参考例2 参考例1において、アルミン酸ナトリムウの代わりに
炭酸ナトリウム15gを用いる以外は参考例1と同様にし
て123.3gの粉末を得た。
Reference Example 2 In the same manner as in Reference Example 1 except that 15 g of sodium carbonate was used instead of sodium aluminate, 123.3 g of powder was obtained.

実施例1 参考例1で得た粉末25gを100mlのフラスコに入れ、窒
素気流中で攪拌しながら450℃で2時間加熱した後、放
冷した。
Example 1 25 g of the powder obtained in Reference Example 1 was placed in a 100 ml flask, heated at 450 ° C. for 2 hours while stirring in a nitrogen stream, and then allowed to cool.

次いで水素化ナトリウム(市販品を窒素雰囲気下でヘ
キサンを加えて洗浄、濾過し鉱油を除いて乾燥したもの
を使用)1.1gを加え、攪拌しながら350℃に昇温し同温
度で1時間加熱攪拌した後放冷し、24.1gの固体塩基を
得た。
Next, add 1.1 g of sodium hydride (a commercially available product was washed by adding hexane under a nitrogen atmosphere, filtered, dried after removing mineral oil), heated to 350 ° C with stirring and heated at the same temperature for 1 hour. After stirring, the mixture was allowed to cool to obtain 24.1 g of solid base.

実施例2〜7、比較例1〜4 表−1に示す以外は実施例1と同様にして表−1に示
した固体塩基を得た。
Examples 2 to 7 and Comparative Examples 1 to 4 The solid bases shown in Table 1 were obtained in the same manner as in Example 1 except that shown in Table 1.

参考例3 窒素雰囲気下、150mlのフラスコに実施例1で調整し
た固体塩基0.21gを入れ、これに5−ビニル−2−ノル
ボルネン(純度99.9%)76.0gを加え、15〜20℃で10時
間攪拌した。
Reference Example 3 Under a nitrogen atmosphere, 0.21 g of the solid base prepared in Example 1 was placed in a 150 ml flask, 76.0 g of 5-vinyl-2-norbornene (purity 99.9%) was added thereto, and the mixture was heated at 15 to 20 ° C. for 10 hours. It was stirred.

反応後、反応液をガスクロマトグラフィーにより分析
したところ、5−ビニル−2−ノルボルネン(以下、VN
Bという)0.5%、5−エチリデン−2−ノルボルネン
(以下、ENBという)99.4%であった。触媒を濾別して7
5.4gの生成物を得た。
After the reaction, the reaction solution was analyzed by gas chromatography to find that it was 5-vinyl-2-norbornene (hereinafter, VN
B) 0.5% and 5-ethylidene-2-norbornene (hereinafter referred to as ENB) 99.4%. The catalyst is filtered off 7
5.4 g of product was obtained.

参考例4〜13 表−2に示す以外は参考例3と同様にしてVNBの異性
化を行なった。その結果を表−2に示した。
Reference Examples 4 to 13 VNB was isomerized in the same manner as in Reference Example 3 except that shown in Table 2. The results are shown in Table-2.

参考例14 内径5mmΦ、長さ100mmの外套管付ガラス製 の管に、窒素雰囲気下で実施例1で調製した固体塩基0.
96gを充填した。
Reference Example 14 Made of glass with an inner diameter of 5 mmΦ and a length of 100 mm with a jacket tube In a tube of 1., the solid base prepared in Example 1 under a nitrogen atmosphere.
96 g was filled.

外套管に15〜20℃の冷却水を流し、内管上部より3.4g
/hrの流速でVNB(純度99.9%)を流入した。
Cooling water of 15 to 20 ° C is poured into the outer tube, and 3.4 g from the upper part of the inner tube
VNB (purity 99.9%) was introduced at a flow rate of / hr.

反応装置の下部より流出した反応液の組成は以下の通
りであった。
The composition of the reaction liquid flowing out from the lower part of the reactor was as follows.

時間(hr) VNB(%) ENB(%) 15 0.3 99.5 25 0.3 99.5 35 0.3 99.5 45 0.3 99.5 全流出量151.7g、ENB平均純度99.5%であった。Time (hr) VNB (%) ENB (%) 15 0.3 99.5 25 0.3 99.5 35 0.3 99.5 45 0.3 99.5 Total outflow amount was 151.7 g, and ENB average purity was 99.5%.

参考例15 100mlのフラスコに窒素雰囲気下、実施例1で調製し
た固体塩基0.25gを入れこれに4−メチル1−1ペンテ
ン17.5gを加えて215〜20gで16時間攪拌した。
Reference Example 15 Under a nitrogen atmosphere, 0.25 g of the solid base prepared in Example 1 was placed in a 100 ml flask, 17.5 g of 4-methyl 1-1 pentene was added thereto, and the mixture was stirred at 215 to 20 g for 16 hours.

反応後、反応液をガスクロマトグラフィーにより分析
したところ、4−メチル−1−ペンテン0.4%、4−メ
チル−2−ペテン8.9%、2−メチル−2−ペンテン90.
5%であった。
After the reaction, the reaction solution was analyzed by gas chromatography to find that 4-methyl-1-pentene 0.4%, 4-methyl-2-pentene 8.9% and 2-methyl-2-pentene 90.
It was 5%.

参考例16 200mlのフラスコに窒素雰囲気下、実施例2で調製し
た固体塩基0.25gを入れ、これに4−メチル−1−ペン
テン36.2gを加えて15〜20℃で8時間攪拌した。
Reference Example 16 0.25 g of the solid base prepared in Example 2 was placed in a 200 ml flask under a nitrogen atmosphere, 36.2 g of 4-methyl-1-pentene was added thereto, and the mixture was stirred at 15 to 20 ° C. for 8 hours.

反応液を参考例15と同様に分析したところ、4−メチ
ル−1−ペンテン0.4%、4−メチル−2−ペテン9.4
%、2−メチル−2−ペンテ90.2%であった。
When the reaction solution was analyzed in the same manner as in Reference Example 15, 4-methyl-1-pentene 0.4% and 4-methyl-2-pentene 9.4
%, 2-methyl-2-pente 90.2%.

参考例17 100mlのフラスコに窒素雰囲気下、比較例1で調製し
た固体塩基0.3gを入れこれに4−メチル−1−ペンテン
6gを加えて15〜20℃で48時間攪拌した。
Reference Example 17 Under a nitrogen atmosphere, 0.3 g of the solid base prepared in Comparative Example 1 was placed in a 100 ml flask and 4-methyl-1-pentene was added thereto.
6 g was added and the mixture was stirred at 15 to 20 ° C for 48 hours.

反応後、参考例15と同様に分析したところ、4−メチ
ル−1−ペンテン90.7%、4−メチル−2−ペテン5.8
%、2−メチル−2−ペンテン3.3%であった。
After the reaction, when analyzed in the same manner as in Reference Example 15, 4-methyl-1-pentene 90.7%, 4-methyl-2-pentene 5.8
% And 2-methyl-2-pentene 3.3%.

参考例18 100mlのフラスコに窒素雰囲気下、実施例5で調製し
た固体塩基0.25gを入れ、これに4−メチル−1−ペン
テン18gを加えて15〜20℃で16時間攪拌した。
Reference Example 18 Under a nitrogen atmosphere, 0.25 g of the solid base prepared in Example 5 was placed in a 100 ml flask, 18 g of 4-methyl-1-pentene was added thereto, and the mixture was stirred at 15 to 20 ° C. for 16 hours.

反応液を参考例15と同様に分析したところ、4−メチ
ル−1−ペンテン0.5%、4−メチル−2−ペテン8.9
%、2−メチル−2−ペンテン90.4%であった。
When the reaction solution was analyzed in the same manner as in Reference Example 15, 4-methyl-1-pentene 0.5% and 4-methyl-2-pentene 8.9
% And 2-methyl-2-pentene 90.4%.

参考例19 200mlのフラスコに窒素雰囲気下、実施例4で調製し
た固体塩基0.25gを入れこれに4−メチル−1−ペンテ
ン36.3gを加えて15〜20℃で8時間攪拌した。
Reference Example 19 Under a nitrogen atmosphere, 0.25 g of the solid base prepared in Example 4 was placed in a 200 ml flask, 36.3 g of 4-methyl-1-pentene was added thereto, and the mixture was stirred at 15 to 20 ° C. for 8 hours.

反応後、参考例15と同様に分析したところ、4−メチ
ル−1−ペンテン0.4%、4−メチル−2−ペテン8.8
%、2−メチル−2−ペンテン90.6%であった。
After the reaction, when analyzed in the same manner as in Reference Example 15, 4-methyl-1-pentene 0.4% and 4-methyl-2-pentene 8.8
% And 2-methyl-2-pentene 90.6%.

参考例20 100mlのフラスコに窒素雰囲気下、比較例3で調製し
た固体塩基0.31gを入れ、これに4−メチル−1−ペン
テン6gを加えて15〜20℃で48時間攪拌した。
Reference Example 20 0.31 g of the solid base prepared in Comparative Example 3 was placed in a 100 ml flask under a nitrogen atmosphere, 6 g of 4-methyl-1-pentene was added thereto, and the mixture was stirred at 15 to 20 ° C. for 48 hours.

反応液を参考例15と同様に分析したところ、4−メチ
ル−1−ペンテン89.3%、4−メチル−2−ペンテン6.
7%、2−メチル−2−ペンテン3.8%であった。
When the reaction solution was analyzed in the same manner as in Reference Example 15, 4-methyl-1-pentene 89.3% and 4-methyl-2-pentene 6.
7% and 2-methyl-2-pentene 3.8%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 15/44 9546−4H C07C 15/44 // C07B 61/00 300 C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C07C 15/44 9546-4H C07C 15/44 // C07B 61/00 300 C07B 61/00 300

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】不活性ガス雰囲気中、炭酸もしくはアルミ
ン酸のアルカリ金属塩で前処理したアルミナにアルカリ
金属水素化物を200乃至450℃の温度下で加熱作用せしめ
ることを特徴とする固体塩基の製造方法。
1. Production of a solid base characterized in that alumina pretreated with an alkali metal salt of carbonic acid or aluminate is heated with an alkali metal hydride at a temperature of 200 to 450 ° C. in an inert gas atmosphere. Method.
JP63197367A 1988-08-08 1988-08-08 Method for producing solid base Expired - Fee Related JP2522354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197367A JP2522354B2 (en) 1988-08-08 1988-08-08 Method for producing solid base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197367A JP2522354B2 (en) 1988-08-08 1988-08-08 Method for producing solid base

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6138808A Division JPH0819011B2 (en) 1994-06-21 1994-06-21 Internal olefin manufacturing method

Publications (2)

Publication Number Publication Date
JPH0248042A JPH0248042A (en) 1990-02-16
JP2522354B2 true JP2522354B2 (en) 1996-08-07

Family

ID=16373317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197367A Expired - Fee Related JP2522354B2 (en) 1988-08-08 1988-08-08 Method for producing solid base

Country Status (1)

Country Link
JP (1) JP2522354B2 (en)

Also Published As

Publication number Publication date
JPH0248042A (en) 1990-02-16

Similar Documents

Publication Publication Date Title
US4987114A (en) Solid base and process for producing the same for preparing internal olefins
US4822764A (en) Solid base catalyst for the preparation of internal olefins and process for preparing the catalyst
US4786626A (en) Solid base
EP0219637B1 (en) Process for preparing 5-ethylidene-2-norbornene
JP2522354B2 (en) Method for producing solid base
US4877918A (en) Process for preparing internal olefins
EP0587716B1 (en) Catalyst and its use for the isomerisation of olefins
JPH0769937A (en) Production of internal olefin
JPS63196526A (en) Production of inner olefin
JPH0674216B2 (en) Internal olefin manufacturing method
JPH0684318B2 (en) Internal olefin production method
JPH0840944A (en) Production of inner olefin
KR940011891B1 (en) Process for preparing solid base
JPH06200B2 (en) Method for producing solid base catalyst
JPH0551341B2 (en)
JPH0683786B2 (en) Method for producing solid base
JPH0686395B2 (en) Internal olefin production method
JPH067919B2 (en) Method for producing solid base catalyst
JPH0674221B2 (en) Alkenyl norbornene isomerization method
JPH0581570B2 (en)
KR950003114B1 (en) Process for preparing 5-ethylidene-2-norbornene
JPH0434977B2 (en)
JPH0674220B2 (en) Alkenyl norbornene isomerization method
JPH02139038A (en) Manufacture of solid base
JPH0134A (en) Internal olefin production method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees