Nothing Special   »   [go: up one dir, main page]

JPH0532457A - Carbon fiber-reinforced carbon composite material and its production - Google Patents

Carbon fiber-reinforced carbon composite material and its production

Info

Publication number
JPH0532457A
JPH0532457A JP3209987A JP20998791A JPH0532457A JP H0532457 A JPH0532457 A JP H0532457A JP 3209987 A JP3209987 A JP 3209987A JP 20998791 A JP20998791 A JP 20998791A JP H0532457 A JPH0532457 A JP H0532457A
Authority
JP
Japan
Prior art keywords
carbonaceous
fiber
carbon
resin
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3209987A
Other languages
Japanese (ja)
Inventor
Yoichi Kurihara
陽一 栗原
Shinichi Inaba
伸一 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP3209987A priority Critical patent/JPH0532457A/en
Publication of JPH0532457A publication Critical patent/JPH0532457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a carbon fiber-reinforced carbon composite material useful especially as a brake material because of high strength while keeping the frictional characteristics of conventional friction material and, furthermore, usable widely in the field of aerospace material and other general C/C composite use. CONSTITUTION:The objective carbon fiber-reinforced carbon composite material is produced by bonding carbonized glassy carbon fine particles having spherical or granular form and carbonaceous fiber resistant to graphitization with a carbonaceous matrix composed of a baked resin. It can be produced by forming an agglomerate of glassy carbon fine particles, a carbonizable resin and carbonaceous long fibers, compression-molding the prepreg, baking and carbonizing in a non-oxidizing atmosphere to obtain a composite material composed of 2-35wt.% of carbonized glassy carbon fine particles, 5-50wt.% of carbonaceous material originated from the resin and 40-85wt.% of the carbonaceous long fibers. Both of the reinforcing fiber and the matrix of the obtained carbon fiber-reinforced carbon composite material have glassy structure essentially resistant to graphitization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ロケットノズル、航空
機のブレーキ材料など宇宙航空材料あるいは高速レーシ
ングカーなど自動車のブレーキ材料に使われる炭素繊維
強化炭素複合材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced carbon composite material for use in aerospace materials such as rocket nozzles and brake materials for aircraft, or as brake materials for automobiles such as high speed racing cars, and a method for producing the same.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合材料(以下C/C
コンポジットと記載する)は高温強度に優れ且つ、軽量
であるので、航空機や高速レーシングカーのブレーキ
材、ロケットノズルなどに使用される所謂光端複合材料
である。このC/Cコンポジットは、例えば以下のよう
にして製造される。先ず、炭素質長繊維やその織物にフ
ェノール、フラン及びエポキシ樹脂等の熱硬化性樹脂又
はピッチを含浸し、又は塗工してプリプレグ体を作成す
る。次いで、このプリプレグ体を積層して多層体をつく
る。あるいは,炭素質短繊維と熱硬化性樹脂又はピッチ
を水に分散させた後、抄紙法で集合体を作る。これらの
多層体あるいは集合体をプレス成形などにより一体化し
た後、マトリックス樹脂を炭化及び黒鉛化する。このよ
うな炭素質長繊維を用いた成形法によるC/Cコンポジ
ットは、炭化処理過程で樹脂の熱分解ガスの発生による
ガス膨れや樹脂の収縮による層間剥離,クラック等が起
こり易いという大きな問題があった。
2. Description of the Related Art Carbon fiber reinforced carbon composite materials (hereinafter C / C
Since it is excellent in high temperature strength and lightweight, it is a so-called optical edge composite material used for brake materials of aircrafts and high-speed racing cars, rocket nozzles and the like. This C / C composite is manufactured as follows, for example. First, a carbonaceous long fiber or its woven fabric is impregnated with or coated with a thermosetting resin such as phenol, furan and epoxy resin or pitch to prepare a prepreg body. Next, this prepreg body is laminated to form a multilayer body. Alternatively, the carbonaceous short fibers and the thermosetting resin or pitch are dispersed in water, and then an aggregate is prepared by a papermaking method. After integrating these multilayer bodies or aggregates by press molding or the like, the matrix resin is carbonized and graphitized. The C / C composite produced by the molding method using such carbonaceous long fibers has a big problem that gas swelling due to generation of thermal decomposition gas of the resin in the carbonization process and delamination and cracking due to contraction of the resin are likely to occur. there were.

【0003】この問題の対策として、黒鉛粉末のフィラ
ーを使う方法も提案されている(特開昭57−2098
83)。しかし、前記黒鉛粉末のフィラーを使う方法に
は、改善はみられるが昇温速度を速くした場合、あるい
は5mm以上の板厚の厚いC/Cコンポジットを製造す
る場合は、脱ガス不十分になるため膨れが生じたり、樹
脂の収縮により層間に微小クラックが発生したりして強
度的に十分なものが得られなかった。又、得られた製品
は炭素質の中に黒鉛化部分とガラス状カーボン部分が混
在するため、例えば従来のガラス状カーボンが主体のブ
レーキ材料とは摩擦特性が異なり、扱いに慣れを要する
という問題もあった。
As a measure against this problem, a method using a filler of graphite powder has been proposed (Japanese Patent Laid-Open No. 57-2098).
83). However, although the method using the graphite powder filler is improved, degassing becomes insufficient when the temperature rising rate is increased or when a thick C / C composite having a plate thickness of 5 mm or more is produced. As a result, swelling occurred, and microscopic cracks were generated between the layers due to resin shrinkage, so that sufficient strength could not be obtained. Further, since the obtained product has a mixture of graphitized portion and glassy carbon portion in carbonaceous matter, for example, the friction characteristics are different from the conventional glassy carbon-based brake material, and it takes a long time to handle it. There was also.

【0004】[0004]

【発明が解決しようとする課題】本発明者等は、上述の
問題点に鑑み鋭意研究を続けた結果、本発明を完成した
ものであってその目的とするところは高強度でかつ、黒
鉛化部分の少ない炭素繊維強化炭素複合材料及びその製
造方法を提供するにある。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted intensive studies in view of the above-mentioned problems, and as a result, have completed the present invention, and the purpose thereof is high strength and graphitization. (EN) A carbon fiber reinforced carbon composite material having a small number of parts and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上述の目的は、球状乃至
粒状のガラス状カーボン微粒子の炭化物と難黒鉛化性の
炭素質繊維とを焼成樹脂炭素質マトリックスにて固着し
てなる炭素繊維強化炭素複合材料並びに
The above-mentioned object is to provide a carbon fiber reinforced carbon in which a carbide of spherical or granular glassy carbon fine particles and a non-graphitizable carbonaceous fiber are fixed in a calcined resin carbonaceous matrix. Composite materials and

【0006】ガラス状カーボン微粒子、炭化可能な樹脂
及び炭素質長繊維からなる集合体を作成し、次いで該集
合体を加圧成形した後、非酸化性雰囲気下で焼成炭化
し、ガラス状カーボン微粒子の炭化物が2〜35wt%
樹脂に由来する炭素質が5〜50wt%、炭素質長繊維
が40〜85wt%にしたことを特徴とする炭素繊維強
化炭素複合材料(以下C/Cコンポジットと略記する)
の製造方法により達成される。
[0006] An aggregate composed of glassy carbon fine particles, a carbonizable resin and a carbonaceous long fiber is prepared, and then the aggregate is pressure-molded, followed by firing and carbonization in a non-oxidizing atmosphere to obtain glassy carbon fine particles. 2 to 35 wt% of carbide
Carbon fiber reinforced carbon composite material (hereinafter abbreviated as C / C composite), characterized in that carbonaceous matter derived from resin is 5 to 50 wt% and carbonaceous long fiber is 40 to 85 wt%
It is achieved by the manufacturing method of.

【0007】本発明のC/Cコンポジットの製造方法と
しては、ガラス状カーボン微粒子と炭化可能な樹脂とを
まず溶剤に希釈して樹脂ワニスとし、これを炭素質長繊
維に含浸させプリプレグを得る。次にこのプリプレグ体
を積層して多層体を作成する。あるいは炭素質短繊維と
ガラス状カーボン微粒子と炭化可能な樹脂とを水に均一
に分散させた後、抄紙法で集合体を作成する。これらの
多層体あるいは集合体をプレス成形オートクレーブ成形
などにより樹脂を硬化させ前駆成形体を製造する。この
ようにして得られた前駆成形体を常圧焼成、加圧焼成あ
るいは両者の組合せにより焼成してC/Cコンポジット
とする。ガラス状カーボン微粒子の配合量は焼成・炭化
して得られるC/Cコンポジット中に占めるガラス状カ
ーボン微粒子の炭化物が2〜35wt%、好ましくは4
〜20wt%となるように調製するのが良い。配合量が
2wt%未満では焼成・炭化時に発生した樹脂の熱分解
ガスのガス抜けが悪く、また、樹脂の収縮が大きく影響
してガス膨れ、層間剥離,クラック等を引き起こす。一
方、35wt%を上回ると、繊維間接着力が著しく低い
C/Cコンポジットとなってしまう。炭化可能な樹脂の
配合量は、焼性・炭化後C/Cコンポジット中に占める
炭素質が5〜50wt%、好ましくは10〜40wt%
になるように調製する。配合量が5wt%未満の場合、
得られるC/Cコンポジットの繊維間接着力は著しく低
下する。一方、配合量が50wt%を上廻ると焼成・炭
化時に熱分解ガスが多量に発生し、更に樹脂の収縮が大
きく影響してガス膨れ、クラックが発生する。
In the method for producing the C / C composite of the present invention, the glassy carbon fine particles and the carbonizable resin are first diluted in a solvent to form a resin varnish, which is impregnated into carbonaceous long fibers to obtain a prepreg. Next, this prepreg body is laminated to form a multilayer body. Alternatively, the carbonaceous short fibers, the glassy carbon fine particles and the carbonizable resin are uniformly dispersed in water, and then an aggregate is prepared by a papermaking method. The precursor or molded body is produced by curing the resin of these multilayer bodies or aggregates by press molding autoclave molding or the like. The precursor compact thus obtained is calcined by normal pressure sintering, pressure sintering or a combination of both to obtain a C / C composite. The compounding amount of the glassy carbon fine particles is 2 to 35 wt% of the carbide of the glassy carbon fine particles in the C / C composite obtained by firing and carbonization, preferably 4
It is preferable to adjust the content to be about 20 wt%. If the blending amount is less than 2 wt%, the gas out of the pyrolysis gas of the resin generated during firing and carbonization is poor, and the shrinkage of the resin greatly affects gas swelling, delamination, cracks and the like. On the other hand, if it exceeds 35 wt%, a C / C composite will be obtained in which the adhesive strength between fibers is extremely low. The amount of the carbonizable resin compounded is 5 to 50 wt%, preferably 10 to 40 wt% of carbonaceous material in the C / C composite after firing and carbonization.
To be prepared. When the compounding amount is less than 5 wt%,
The interfiber adhesion of the obtained C / C composite is significantly reduced. On the other hand, if the blending amount exceeds 50 wt%, a large amount of pyrolysis gas is generated during firing and carbonization, and the resin shrinkage greatly affects gas swelling and cracking.

【0008】さらにまた、炭素質繊維の量は、焼成・炭
化後得られるC/Cコンポジット中に40〜85wt
%、好ましくは50〜80wt%に調製する。炭素質長
繊維の量が40wt%未満では繊維による補強効果が不
十分であり、C/Cコンポジットの強度は低下する。一
方、85wt%より多いと繊維間接着力が著しく低下す
る。
Furthermore, the amount of carbonaceous fiber is 40 to 85 wt% in the C / C composite obtained after firing and carbonization.
%, Preferably 50-80 wt%. When the amount of carbonaceous long fibers is less than 40 wt%, the reinforcing effect of the fibers is insufficient and the strength of the C / C composite decreases. On the other hand, if it is more than 85 wt%, the inter-fiber adhesive strength will be significantly reduced.

【0009】つぎに出発原料について説明する。ガラス
状カーボン微粒子は、球状ないし粒状の高純度炭素で、
例えば炭素化可能な球状ないし粒状の樹脂を熱処理して
炭素化したものを用いることができる。このガラス状カ
ーボン微粒子の粒径は100μm以下のもので細かいも
のほどよい。100μmを上廻るものではワニス中で均
質に分散し難く得られるC/Cコンポジットは緻密性に
乏しく、強度も低い。球状ないし粒状のガラス状カーボ
ンは、形状がほぼ完全な球体であり、かつ粒径が均一で
あるため、炭化処理過程で生じるガスが粒子間を通って
なめらかに外部へ抜ける利点がある。また、球状である
ため、繊維を傷つけず繊維の強度を低下させない。
Next, the starting material will be described. Glassy carbon fine particles are spherical or granular high-purity carbon,
For example, a carbonized spherical or granular resin that has been carbonized by heat treatment can be used. The glassy carbon fine particles have a particle size of 100 μm or less, and the finer the better. If it exceeds 100 μm, it is difficult to disperse it uniformly in the varnish, and the obtained C / C composite has poor denseness and low strength. Since spherical or granular glassy carbon is a sphere having a substantially perfect shape and a uniform particle size, it has an advantage that gas generated in the carbonization process smoothly escapes to the outside through the particles. Further, since it is spherical, it does not damage the fiber and does not reduce the strength of the fiber.

【0010】炭化可能な樹脂としては、フェノール樹
脂、フラン樹脂、エポキシ樹脂、アクリル樹脂およびポ
リイミド樹脂等が使用可能で、残炭率が40%以上の高
いものであれば本発明には十分に使用し得る。中でも樹
脂の取扱いが容易で成形体の特性が良好かつ安価なフェ
ノール樹脂が特に好ましい。また残炭率が40%より少
ない樹脂では焼成時に発生するガスの量が多いためにC
/Cコンポジットがガス膨れやクラックを起こし易い。
繊維としては、PAN系、レーヨン系など難黒鉛化性の
構造をもつものが使用でき、PAN系のものを用いれば
強度的に最も優れたものが得られる。難黒鉛化性のもの
としたのは、マトリックスとなる炭化可能な樹脂および
ガラス状カーボン微粒子と本質的に同じ構造とし、すべ
ての構造を難黒鉛化性とするためである。補強繊維の形
態としては、長繊維フィラメントを束ねたロービングを
一方向に引きそろえたもの、およびロービングの織物を
用いた場合優れた強度のものが得られるが、短繊維分散
強化の形態も有効的に作用する。
As the carbonizable resin, a phenol resin, a furan resin, an epoxy resin, an acrylic resin, a polyimide resin or the like can be used, and any resin having a high residual carbon rate of 40% or more can be sufficiently used in the present invention. You can Above all, a phenol resin is particularly preferable because the resin is easy to handle, the characteristics of the molded product are good, and the cost is low. In addition, since the amount of gas generated during firing is large for resins with a residual coal rate of less than 40%, C
The / C composite easily causes gas swelling and cracking.
As the fiber, a fiber having a non-graphitizable structure such as PAN-based or rayon-based fiber can be used, and if PAN-based fiber is used, the most excellent strength can be obtained. The reason why the non-graphitizable property is set is that it has essentially the same structure as the carbonizable resin and the glassy carbon fine particles to be the matrix, and all the structures are non-graphitizable. As the form of the reinforcing fiber, a roving in which long fiber filaments are bundled are aligned in one direction, and a roving woven fabric gives an excellent strength, but the form of short fiber dispersion strengthening is also effective. Act on.

【0011】ガラスカーボン微粒子、炭化可能な樹脂及
び炭素質長繊維の場合の配合方法としては、例えばガラ
ス状カーボン微粒子と炭化可能な樹脂をメチルエチルケ
トン、メタノール、アセトン、トルエン等低沸点の有機
溶媒やその混合溶媒に溶解し、補強繊維に含浸させた
後、オーブン、真空乾燥器等を用いて有機溶媒を除く方
法、あるいは補強繊維を挟んで少なくとも一方にガラス
状カーボン小球体と炭化可能な樹脂との混合物を塗布し
た離型紙を重ね合わせ、加熱ロールにて加熱・加圧処理
して樹脂を補強繊維に転位含浸させる方法などがある
が、補強繊維表面にガラス状カーボン微粒子、炭化可能
な樹脂を均一にむらなく含浸・塗工できるものであれば
いかなる方法でもよい。炭素質繊維が短繊維の場合、短
繊維のペーパー,プリフォームシート等に長繊維の場合
と同様に配合する方法もあるが、ガラス状カーボン微粒
子、炭化可能な樹脂及び炭素質短繊維を混式抄法又は単
純に分散混合し、その集合体を加圧成形させて配合させ
る方法もある。なお本発明はガラス状カーボン微粒子と
炭化可能な樹脂と炭素質繊維の配合方法に特に限定され
ない。
The glass carbon fine particles, the carbonizable resin and the carbonaceous long fiber may be blended, for example, by mixing the glassy carbon fine particles and the carbonizable resin with an organic solvent having a low boiling point such as methyl ethyl ketone, methanol, acetone, or toluene. After dissolving in a mixed solvent and impregnating the reinforcing fiber, a method of removing the organic solvent by using an oven, a vacuum dryer or the like, or between the glassy carbon small spheres and the carbonizable resin on at least one side with the reinforcing fiber interposed therebetween. There is a method of stacking release paper coated with a mixture and heating and pressurizing it with a heating roll to disperse and impregnate the reinforcing fiber with the resin, but the surface of the reinforcing fiber is uniformly glassy carbon fine particles and carbonizable resin. Any method may be used as long as it can be uniformly impregnated and coated. When the carbonaceous fiber is short fiber, there is a method of blending it into short fiber paper, preform sheet, etc. in the same way as long fiber, but glassy carbon fine particles, carbonizable resin and carbonaceous short fiber are mixed. There is also a method of papermaking or a method of simply dispersing and mixing the mixture, and subjecting the aggregate to pressure molding for blending. The present invention is not particularly limited to the method of blending the glassy carbon fine particles, the carbonizable resin and the carbonaceous fiber.

【0012】本発明に示した割合で配合された集合体は
プレス成形、オートクレーブ成形等公知の適宜方法にて
加熱・成形し、前駆成形体を得る。このようにして得ら
れた前駆成形体を常圧焼成、加圧焼成あるいは両者の組
合せにより焼成するとC/Cコンポジットが得られる。
なお、必要に応じて含浸と焼成を繰り返すか、又は化学
気相、蒸着により密度の向上を図り、強度を高めること
もできる。
The aggregate compounded in the proportion shown in the present invention is heated and molded by a known appropriate method such as press molding and autoclave molding to obtain a precursor molded product. A C / C composite is obtained by firing the precursor compact thus obtained by normal pressure firing, pressure firing or a combination of both.
If necessary, the impregnation and firing may be repeated, or the chemical vapor phase or vapor deposition may be used to improve the density and enhance the strength.

【0013】[0013]

【発明の効果】本発明方法により得られる炭素繊維強化
炭素複合材料は、補強繊維およびマトリックスのいずれ
も本質的に難黒鉛化性のガラス状構造を有している。従
来よりブレーキ材としては難黒鉛化性の構造を持つC/
Cコンポジットが主流であり、本発明品は従来の摩擦特
性と変わらず、強度が大きいという点で特にブレーキ材
として優れている。しかしこれに限らず宇宙航空材料や
その他一般的C/Cコンポジット用途に広く利用でき
る。また、ガラス状カーボン微粒子を混合することによ
り、熱分解ガスのガス抜け性の向上および樹脂の収縮率
の低下が可能となりガス膨れやクラックのない高強度の
C/Cコンポジットを得ることができる。従って、緻密
化のための含浸−焼成の繰り返しを大幅に減少あるいは
不必要とするので従来法を上回るコストダウンが達成で
きる。さらには昇温速度を速くしたり、厚みを大きくし
た場合にもクラック等の発生は起らず、生産性の向上や
高品質化が可能となる。
INDUSTRIAL APPLICABILITY The carbon fiber-reinforced carbon composite material obtained by the method of the present invention has both a reinforcing fiber and a matrix, which essentially have a non-graphitizable glass-like structure. Conventionally, C / has a non-graphitizable structure as a brake material
The C composite is the mainstream, and the product of the present invention is particularly excellent as a brake material in that it has the same strength as conventional friction characteristics and high strength. However, it is not limited to this, but can be widely used for aerospace materials and other general C / C composite applications. Further, by mixing the glassy carbon fine particles, it is possible to improve the outgassing property of the pyrolysis gas and reduce the shrinkage ratio of the resin, so that a high-strength C / C composite without gas swelling and cracks can be obtained. Therefore, since the repetition of impregnation-firing for densification is significantly reduced or unnecessary, the cost reduction over the conventional method can be achieved. Furthermore, even when the temperature rising rate is increased or the thickness is increased, cracks and the like do not occur, and it is possible to improve productivity and improve quality.

【0014】[0014]

【実施例】以下に実施例および比較例を挙げて本発明を
具体的に説明する。なお、実施例および比較例で得られ
たC/Cコンポジットの特性は以下のように測定・評価
した。 (1)層間剥離,クラック等の有無 目視および顕微鏡にて観察し、断面に数mmの連続した
剥離又はクラックの有無で判断した。 (2)曲げ試験 JIS K7203に準じた試験を行った。 (3)C/Cコンポジット中の樹脂に由来する炭素質の
割合 ガラスカーボン微粒子及び炭素質繊維の残炭率を100
%と仮定して算出した。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. The characteristics of the C / C composites obtained in the examples and comparative examples were measured and evaluated as follows. (1) Presence or absence of delamination, cracks, etc. Visual observation and observation with a microscope were carried out, and it was judged by the presence or absence of continuous delamination or cracks of several mm on the cross section. (2) Bending test A test according to JIS K7203 was performed. (3) Ratio of carbonaceous matter derived from resin in C / C composite Glass carbon fine particles and carbonaceous fiber residual carbon rate of 100
% Was calculated.

【0015】[0015]

【実施例1】ガス状カーボン微粒子(鐘紡(株)製:ベ
ルパールC−800)と粉末状フェノール樹脂(鐘紡
(株)製:ベルパールS−890)を1:4の割合で混
合し、メチルエチルケトンと2−メトキシエタノールの
混合溶媒(重量非1:1)に溶解して重量濃度42%に
調製した樹脂ワニスを炭素繊維織物(鐘紡(株)製:C
3201)に含浸し、オーブンにて溶媒を除いた後、予
備硬化し、プリプレグ体を得た。このプリプレグ体12
枚を積層し、ホットプレスで30kgf/cm2 の圧力
下で150℃60分間加熱・成形した後、非酸化雰囲気
中で1000℃まで加熱・炭化して厚さ8mmの炭素繊
維強化炭素複合材料を得た。このC/Cコンポジットの
曲げ強度は12.5kg/cm2 ,C/Cコンポジット
巾に占めるガラス状カーボン微粒子、ベルパールS−8
90の炭化物、炭素繊維の重量割合は10:25:65
であった。なお、このC/Cコンポジットに層間剥離は
発生していなかった。ベルパールS−890は他の液状
フェノール樹脂と比べ残炭率が65%と高く、緻密なC
/Cコンポジットが得られるため、より有効的であると
考えられる。
Example 1 Gaseous carbon fine particles (Bellpearl C-800 manufactured by Kanebo Co., Ltd.) and powdered phenolic resin (Belpearl S-890 manufactured by Kanebo Co., Ltd.) were mixed at a ratio of 1: 4, and mixed with methyl ethyl ketone. A resin varnish prepared by dissolving it in a mixed solvent of 2-methoxyethanol (weight: 1: 1) to have a weight concentration of 42% was used as a carbon fiber woven fabric (manufactured by Kanebo Ltd .: C
3201), the solvent was removed in an oven, and then pre-cured to obtain a prepreg body. This prepreg body 12
After laminating the sheets and heating and molding at 150 ° C. for 60 minutes under a pressure of 30 kgf / cm 2 with a hot press, the carbon fiber reinforced carbon composite material having a thickness of 8 mm is heated and carbonized to 1000 ° C. in a non-oxidizing atmosphere. Obtained. The bending strength of this C / C composite was 12.5 kg / cm 2 , and the glassy carbon fine particles occupying the width of the C / C composite were Bellpearl S-8.
90 Carbide and carbon fiber weight ratio is 10:25:65
Met. Delamination did not occur in this C / C composite. Belpearl S-890 has a high residual carbon ratio of 65% compared to other liquid phenolic resins, and a dense C
/ C composite is obtained, so it is considered to be more effective.

【0016】[0016]

【実施例2】実施例1の粉末状フェノール樹脂ベルパー
ルS890に変えて液状フェノール樹脂(昭和高分子
(株)製:BRL−274)を使用した以外は実施例1
と全く同様に配合処理してC/Cコンポジットを得た。
このC/Cコンポジットの曲げ強度は11.0kg/c
2 ガラス状カーボン微粒子液状フェノール樹脂の炭化
物、炭素繊維の重量割合は11:21:68であった。
なお、このC/Cコンポジットに層間剥離は発生してい
なかった。
[Example 2] Example 1 except that a liquid phenol resin (BRL-274 manufactured by Showa High Polymer Co., Ltd.) was used instead of the powdery phenol resin Bellpearl S890 of Example 1.
A compounding treatment was carried out in the same manner as above to obtain a C / C composite.
The bending strength of this C / C composite is 11.0 kg / c.
m 2 Glassy carbon fine particles The weight ratio of the carbide of the liquid phenol resin and the carbon fiber was 11:21:68.
Delamination did not occur in this C / C composite.

【0017】[0017]

【実施例3】ガラス状カーボン微粒子をベルパールC−
600(鐘紡(株)製)とし、粉末状フェノール(ベル
パールS−870)との配合比を1:10に変えたほか
は実施例1と全く同様にして炭素繊維強化炭素複合材料
を得た。このC/Cコンポジットの曲げ強度は10.7
kg/cm2 C/Cコンポジット中に占める。ガラス状
カーボン微粒子、ベルパールC−890の炭化物、炭素
繊維の重量割合は5:31:64であった。なお、この
C/Cコンポジットに層間剥離は発生していなかった。
[Example 3] Glass-like carbon fine particles were added to Belpearl C-
A carbon fiber-reinforced carbon composite material was obtained in exactly the same manner as in Example 1 except that the mixing ratio was 600 (Kanebo Co., Ltd.) and the mixing ratio with powdered phenol (Bellpearl S-870) was changed to 1:10. The bending strength of this C / C composite is 10.7.
Occupy in kg / cm 2 C / C composite. The weight ratio of the glassy carbon fine particles, the bell pearl C-890 carbide, and the carbon fiber was 5:31:64. Delamination did not occur in this C / C composite.

【0018】[0018]

【比較例】ガラス状カーボン微粒子を使用せず、粉末状
フェノール樹脂(ベルパールS−890)と炭素繊維織
物(C3201)のみから実施例1と同様の方法にて炭
素繊維強化炭素複合材料を得た。このC/Cコンポジッ
トの曲げ強度は7.2kg/cm2 ,このC/Cコンポ
ジット中に占めるベルパールS−890の炭化物と炭素
繊維の割合は25:75であった。なお、このC/Cコ
ンポジットにはガスぶくれ、層間剥離が発生していた。
[Comparative Example] A carbon fiber reinforced carbon composite material was obtained in the same manner as in Example 1 from the powdery phenolic resin (Bellpearl S-890) and the carbon fiber woven fabric (C3201) without using glassy carbon fine particles. . The flexural strength of this C / C composite was 7.2 kg / cm 2 , and the ratio of the carbide and carbon fiber of Belpearl S-890 in this C / C composite was 25:75. Gas blister and delamination occurred in this C / C composite.

【0019】[0019]

【比較例2】ガラス状カーボン微粒子(ベルパールC−
800)と粉末状フェノール樹脂((ベルパールS−8
90)とを7:4の割合で混合し、メチルエチルケトン
と2−メトキシエタノールの重量比1:1の混合溶媒に
溶解し、重量濃度54%の樹脂ワニスを調製し、以下実
施例1と同様の条件にて炭素繊維強化炭素複合材料を得
た。C/Cコンポジット中に占めるガラス状カーボン微
粒子、ベルパールS−890の炭化物、炭素繊維織物の
重量割合は45:17:38であった。得られたC/C
コンポジットに層間剥離は発生していなかったが、曲げ
強度は5.2kg/cm2 と低いものであった。
Comparative Example 2 Glassy carbon fine particles (Belpearl C-
800) and powdered phenolic resin ((Bellpearl S-8
90) and 7: 4 were mixed and dissolved in a mixed solvent of methyl ethyl ketone and 2-methoxyethanol in a weight ratio of 1: 1 to prepare a resin varnish having a weight concentration of 54%. A carbon fiber reinforced carbon composite material was obtained under the conditions. The weight ratio of the glassy carbon fine particles, the carbide of Bellpearl S-890, and the carbon fiber woven fabric in the C / C composite was 45:17:38. C / C obtained
Delamination did not occur in the composite, but the bending strength was as low as 5.2 kg / cm 2 .

【0020】[0020]

【比較例3】ガラス状カーボン微粒子(ベルパールC−
800)と粉末状フェノール樹脂(ベルパールS−89
0)とを7:1の割合で混合し、メチルエチルケトンと
2−メトキシエタノールの重量比1:1の混合溶媒に溶
解し、重量濃度39%のワニスを調製し、以下、実施例
1と同様の条件にて炭素繊維強化炭素複合材料を得た。
得られたC/Cコンポジット中に占めるガラス状カーボ
ン微粒子、ベルパールS−890の炭化物、炭素繊維織
物の重量割合は32:3:65であった。得られたC/
Cコンポジットは層間接着力が著しく低い、非常に脆い
ものであった。
Comparative Example 3 Glassy carbon fine particles (Belpearl C-
800) and powdered phenolic resin (Belpearl S-89
0) and 7) in a ratio of 7: 1 and dissolved in a mixed solvent of methyl ethyl ketone and 2-methoxyethanol in a weight ratio of 1: 1 to prepare a varnish having a weight concentration of 39%. A carbon fiber reinforced carbon composite material was obtained under the conditions.
The weight ratio of the glassy carbon fine particles, the carbide of Bellpearl S-890, and the carbon fiber woven fabric in the obtained C / C composite was 32: 3: 65. C / obtained
The C-composite was extremely brittle with a very low interlayer adhesion.

【0021】[0021]

【実施例4】 繊維長5mmのPAN系炭素繊維 60部, ベルパール S890 37部及び ガラス状カーボン微粒子(C−800) 16部 を水に分散させ抄紙法でシート状集合体を作製した。こ
れを10枚積層し以下実施例1の条件で炭素繊維強化炭
素複合材料を得た。このC/Cコンポジットの曲げ強度
は12.0kg/cm2 でクラックの発生はみられなか
った。C/Cコンポジット中に占める炭素繊維、ベルパ
ールS890の炭化物、ガラス状カーボン微粒子の重量
割合は60:24:16であった。
Example 4 60 parts of PAN-based carbon fiber having a fiber length of 5 mm, 37 parts of Belpearl S890 and 16 parts of glassy carbon fine particles (C-800) were dispersed in water to prepare a sheet-like aggregate by a papermaking method. Ten of these were laminated to obtain a carbon fiber reinforced carbon composite material under the conditions of Example 1 below. The flexural strength of this C / C composite was 12.0 kg / cm 2 , and no crack was observed. The weight ratio of the carbon fibers, the carbide of Belpearl S890, and the glassy carbon fine particles in the C / C composite was 60:24:16.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】球条乃至粒状のガラス状カーボン微粒子の
炭化物と難黒鉛化性の炭素質繊維とを焼成樹脂炭素質マ
トリックスで固着してなる炭素繊維強化炭素複合材料。
1. A carbon fiber reinforced carbon composite material comprising a sintered resin carbonaceous matrix in which carbides of spherical or granular glassy carbon fine particles and non-graphitizable carbonaceous fibers are fixed.
【請求項2】ガラス状カーボン微粒子、炭化可能な樹脂
及び炭素質繊維からなる集合体を作成し、次いで該集合
体を加圧成形したのち、非酸化性雰囲気下で焼成炭化
し、ガラス状カーボン微粒子の炭化物が2〜35wt%
樹脂に由来する炭素質が5〜50wt%、炭素質長繊維
が40〜85wt%にしたことを特徴とする炭素繊維強
化炭素複合材料の製造方法。
2. A glassy carbon is prepared by forming an aggregate consisting of glassy carbon fine particles, a carbonizable resin and a carbonaceous fiber, press-molding the aggregate, and then firing and carbonizing the aggregate in a non-oxidizing atmosphere. 2 to 35 wt% of fine grain carbide
A method for producing a carbon fiber-reinforced carbon composite material, wherein the carbonaceous material derived from a resin is 5 to 50 wt% and the carbonaceous long fiber is 40 to 85 wt%.
JP3209987A 1991-07-26 1991-07-26 Carbon fiber-reinforced carbon composite material and its production Pending JPH0532457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209987A JPH0532457A (en) 1991-07-26 1991-07-26 Carbon fiber-reinforced carbon composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209987A JPH0532457A (en) 1991-07-26 1991-07-26 Carbon fiber-reinforced carbon composite material and its production

Publications (1)

Publication Number Publication Date
JPH0532457A true JPH0532457A (en) 1993-02-09

Family

ID=16581988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209987A Pending JPH0532457A (en) 1991-07-26 1991-07-26 Carbon fiber-reinforced carbon composite material and its production

Country Status (1)

Country Link
JP (1) JPH0532457A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519277A (en) * 1998-06-26 2002-07-02 アメリカ合衆国 Carbon matrix composites derived from phthalonitrile resin
JP2008001077A (en) * 2006-06-26 2008-01-10 Matsushita Electric Ind Co Ltd Carbon mold and its manufacturing method
EP1993954A2 (en) * 2006-01-27 2008-11-26 Carbon Ceramics Company, LLC Biphasic nanoporous vitreous carbon material and method of making the same
US7946114B2 (en) 2004-12-21 2011-05-24 Bosch Rexroth Ag Hydraulic control system
CN115716748A (en) * 2022-10-18 2023-02-28 南通星球石墨股份有限公司 Graphite tube modified by resin glassy carbon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519277A (en) * 1998-06-26 2002-07-02 アメリカ合衆国 Carbon matrix composites derived from phthalonitrile resin
US7946114B2 (en) 2004-12-21 2011-05-24 Bosch Rexroth Ag Hydraulic control system
EP1993954A2 (en) * 2006-01-27 2008-11-26 Carbon Ceramics Company, LLC Biphasic nanoporous vitreous carbon material and method of making the same
EP1993954A4 (en) * 2006-01-27 2010-02-24 Carbon Ceramics Company Llc Biphasic nanoporous vitreous carbon material and method of making the same
JP2008001077A (en) * 2006-06-26 2008-01-10 Matsushita Electric Ind Co Ltd Carbon mold and its manufacturing method
CN115716748A (en) * 2022-10-18 2023-02-28 南通星球石墨股份有限公司 Graphite tube modified by resin glassy carbon

Similar Documents

Publication Publication Date Title
US6773528B2 (en) Process for producing fiber-reinforced-silicon carbide composites
US20070066171A1 (en) Impact resistant, thin ply composite structures and method of manufacturing same
EP0714869B1 (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
JPH03150266A (en) Production of carbon/carbon composite material
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JP2011046543A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
ZHENG et al. Preparation and fracture behavior of carbon fiber/SiC composites by multiple impregnation and pyrolysis of polycarbosilane
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
RU2170220C1 (en) Method of preparing carbon-carbon composite material
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
Dhakate et al. Development of vapor grown carbon fibers (VGCF) reinforced carbon/carbon composites
JP3109928B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP3058180B2 (en) Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPH029776A (en) Carbon fiber reinforced carbon composite material and production thereof
JP3288402B2 (en) High strength ribbed carbon fiber reinforced carbon composite material structure
Anilas et al. Carbon-Carbon Composites–A Review
US11795114B1 (en) Process far revolutionary, very thick and very high thermal conductivity carbon-carbon composites
JP3129424B2 (en) High-strength carbon fiber reinforced carbon composite material structure with ribs and method of manufacturing the same
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JPH04154663A (en) Production of carbon fiber reinforced carbon composite material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP3461424B2 (en) Method for producing oxidation resistant C / C composite