Nothing Special   »   [go: up one dir, main page]

JP2011046543A - Carbon fiber-reinforced carbon composite material and method for manufacturing the same - Google Patents

Carbon fiber-reinforced carbon composite material and method for manufacturing the same Download PDF

Info

Publication number
JP2011046543A
JP2011046543A JP2009194259A JP2009194259A JP2011046543A JP 2011046543 A JP2011046543 A JP 2011046543A JP 2009194259 A JP2009194259 A JP 2009194259A JP 2009194259 A JP2009194259 A JP 2009194259A JP 2011046543 A JP2011046543 A JP 2011046543A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin
carbon
composite
carbonized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009194259A
Other languages
Japanese (ja)
Inventor
Takeshi Nakatsuji
毅 仲辻
Toru Fujii
藤井  透
Kazuya Okubo
和也 大窪
Kiyotaka Kotakeuchi
清貴 小武内
Yasunori Takeuchi
康徳 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunstar Engineering Inc
Doshisha Co Ltd
Original Assignee
Sunstar Engineering Inc
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunstar Engineering Inc, Doshisha Co Ltd filed Critical Sunstar Engineering Inc
Priority to JP2009194259A priority Critical patent/JP2011046543A/en
Publication of JP2011046543A publication Critical patent/JP2011046543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a C/C composite manufactured through a resin impregnation method, which acquires sufficient strength as a brake material and improved shear strength between layers, even when omitting or reducing the number of cycles of a densification process wherein resin impregnation and baking are repeated in a manufacturing process for the C/C composite by the resin impregnation method, and the method for manufacturing the same. <P>SOLUTION: The carbon fiber-reinforced carbon composite material is manufactured through the resin impregnation method comprising: heating and press-molding a carbon fiber preform prepared by impregnating a carbon fiber with a carbon precursor resin; and baking the same in an inert atmosphere. Here, a carbonized microfibrillated cellulose powder is contained in the carbon fiber precursor resin so as to provide the C/C composite that acquires sufficient strength as a brake material etc. even when omitting or reducing the number of cycles of a densification process wherein resin impregnation and baking are repeated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭素繊維強化炭素複合材料(以下、「C/Cコンポジット」ともいう。)及びその製造方法に関するものであり、更に詳しくは、緻密化工程を行わないもしくは回数を減らしてもブレーキ材料などとして十分な曲げ強度を有するC/Cコンポジット及びその製造方法に関するものである。   The present invention relates to a carbon fiber reinforced carbon composite material (hereinafter also referred to as “C / C composite”) and a method for producing the same, and more specifically, a brake material without performing a densification step or reducing the number of times. In particular, the present invention relates to a C / C composite having a sufficient bending strength and a manufacturing method thereof.

C/Cコンポジットは、炭素繊維をフィラーとし、マトリクスを炭素とした複合材料であり、一般的には炭素材料に較べて機械的特性が高く、金属材料に較べて軽量であり、従来の材料に比べて多くの利点がある。更に、C/Cコンポジットには、耐熱特性が高く、摩擦・磨耗特性が良いなどの利点もある。このため、C/Cコンポジットは、宇宙往還機用のノズルコーンや、リーディングエッジ、航空機や自動車用のブレーキディスク、人工歯根などに広く利用されている。   C / C composite is a composite material with carbon fiber as filler and matrix as carbon. Generally, it has higher mechanical properties than carbon material and lighter than metal material. There are many advantages. Further, the C / C composite has advantages such as high heat resistance and good friction and wear characteristics. For this reason, C / C composites are widely used for nozzle cones for spacecrafts, leading edges, brake disks for aircraft and automobiles, artificial tooth roots, and the like.

前記のようにC/Cコンポジットは優れた機械的特性を有するが、その製造には多くの手間と時間がかかるという問題がある。一般的なC/Cコンポジットの製造方法としては、樹脂含浸法と化学気相蒸着法(CVD法)が挙げられる。前記樹脂含浸法は、CVD法に較べて大掛かりな設備を必要とせず、簡便な方法である。この樹脂含浸法は、フラン樹脂やフェノール樹脂など、炭素前駆体としての熱硬化性樹脂を含浸した炭素繊維プリフォームを成形硬化させた後、不活性雰囲気中で炭化してC/Cコンポジットを得る方法である。しかしながら、通常、樹脂の炭素化収率は60%程度であるため、製品の必要とする密度、機械的強度が得られるまで、樹脂を繰り返し含浸、焼成する緻密化の工程を必要としていた(特許文献1、2等参照。)。また、C/Cコンポジットには、層間の剪断強度、特にモードIIの層間靭性値が低いという問題がある。   As described above, the C / C composite has excellent mechanical properties, but its production requires a lot of labor and time. As a general method for producing a C / C composite, there are a resin impregnation method and a chemical vapor deposition method (CVD method). The resin impregnation method is a simple method that does not require large-scale equipment as compared with the CVD method. In this resin impregnation method, a carbon fiber preform impregnated with a thermosetting resin as a carbon precursor such as furan resin or phenol resin is molded and cured, and then carbonized in an inert atmosphere to obtain a C / C composite. Is the method. However, since the carbonization yield of the resin is usually about 60%, a densification step in which the resin is repeatedly impregnated and fired is required until the required density and mechanical strength of the product are obtained (patent) (Refer to Literature 1, 2 etc.). Further, the C / C composite has a problem that the interlaminar shear strength, particularly the mode II interlaminar toughness value is low.

特開平5−345667号公報JP-A-5-345667 特開2003−342081号公報Japanese Patent Laid-Open No. 2003-342081

本発明は、上記のような従来のC/Cコンポジットにおける問題に鑑み、樹脂含浸法によるC/Cコンポジットの製造において、樹脂含浸及び焼成を繰り返す緻密化工程を行わないもしくは回数を減らしても、ブレーキ材料などとして十分な強度を有し、層間の剪断強度も改善されたC/Cコンポジット及びその製造方法を提供することを目的とするものである。   In view of the problems in the conventional C / C composite as described above, in the production of the C / C composite by the resin impregnation method, even if the densification step of repeating resin impregnation and firing is not performed or the number of times is reduced, It is an object of the present invention to provide a C / C composite having a sufficient strength as a brake material and the like and having improved interlayer shear strength and a method for producing the same.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、樹脂含浸法によりC/Cコンポジットを製造する際に、フィラーとしての炭素繊維に含浸するマトリクスの前駆体となる樹脂(母材樹脂)に予め炭素を添加することで、製品の機械的特性が向上し、緻密化工程を行わないもしくは回数を減らしても製品に必要な機械的強度を付与し、また層間の剪断強度も改善されたC/Cコンポジットが得られることを見出し、本発明を完成させるに至った。   As a result of intensive research to achieve the above object, the present inventors, as a result of the resin (the precursor of the matrix impregnated into the carbon fiber as the filler) when producing the C / C composite by the resin impregnation method ( By adding carbon to the base material resin in advance, the mechanical properties of the product are improved, the required mechanical strength is given to the product even if the densification process is not performed or the number of times is reduced, and the interlaminar shear strength In addition, the present inventors have found that an improved C / C composite can be obtained and completed the present invention.

即ち、本発明に係る炭素繊維強化炭素複合材料(C/Cコンポジット)は、炭素前駆体樹脂に炭化ミクロフィブリル化セルロース(以下、「炭化MFC」ともいう。)粉末を含有させてなることを特徴とする。   That is, the carbon fiber reinforced carbon composite material (C / C composite) according to the present invention comprises carbon precursor resin containing carbonized microfibrillated cellulose (hereinafter also referred to as “carbonized MFC”) powder. And

また、本発明に係る炭素繊維強化炭素複合材料の製造方法は、炭素繊維に炭素前駆体樹脂を含浸した炭素繊維プリフォームを加熱加圧成形した後、不活性雰囲気中で焼成する樹脂含浸法による炭素繊維強化炭素複合材料の製造方法であって、前記炭素繊維前駆体樹脂に炭化MFC粉末を含有させてなることを特徴とする。なお、本発明で前記「炭素繊維プリフォーム」とは、シート状などの所定に成形した炭素繊維にマトリクスとなる前駆体樹脂(母材樹脂)が含浸されたものをいい、樹脂含浸した炭素繊維をシート状などに成形したもの、シート状などの所定の形状に成形した炭素繊維集合体に樹脂含浸したものの両方を含み、フィラメントワイディング法により成形することもできる。   Further, the method for producing a carbon fiber reinforced carbon composite material according to the present invention is based on a resin impregnation method in which a carbon fiber preform obtained by impregnating a carbon precursor resin into carbon fiber is heated and pressed and then fired in an inert atmosphere. A method for producing a carbon fiber reinforced carbon composite material, wherein the carbon fiber precursor resin contains carbonized MFC powder. In the present invention, the “carbon fiber preform” refers to a sheet-like carbon fiber impregnated with a precursor resin (matrix resin) serving as a matrix, and the resin-impregnated carbon fiber. Can be formed by a filament wiping method, including both those formed into a sheet shape, and those obtained by impregnating a carbon fiber aggregate formed into a predetermined shape such as a sheet shape with a resin.

前記炭化MFC粉末は、凍結乾燥したミクロフィブリル化セルロース(以下、「MFC」ともいう。)を不活性雰囲気中で炭化したものが好ましい。また、前記炭素前駆体樹脂(母材樹脂)としてはフェノール樹脂を用いることが好ましい。   The carbonized MFC powder is preferably obtained by carbonizing freeze-dried microfibrillated cellulose (hereinafter also referred to as “MFC”) in an inert atmosphere. Moreover, it is preferable to use a phenol resin as said carbon precursor resin (base material resin).

上記のような本発明に係る炭素繊維強化炭素複合材料(C/Cコンポジット)は、ブレーキ材料として好適に使用できる。   The carbon fiber reinforced carbon composite material (C / C composite) according to the present invention as described above can be suitably used as a brake material.

以上にしてなる本願発明に係るC/Cコンポジットは、前駆体樹脂に予め炭素粉末を添加しておくことで、通常のC/Cコンポジットに較べて曲げ強度及び層間の剪断強度が改善され、緻密化を行わないもしくは回数を減らしてもブレーキ材料などとして十分な曲げ強度を有する。   The C / C composite according to the present invention having the above-described structure is improved in bending strength and interlaminar shear strength by adding carbon powder to the precursor resin in advance, compared with a normal C / C composite. Even if it is not made or the number of times is reduced, it has sufficient bending strength as a brake material.

更に、本発明では、前駆体樹脂に添加する前記炭素粉末として、凍結乾燥したMFCを不活性雰囲気中で炭化した炭化MFC粉末を用いる。通常、MFCは、水分を含んだ状態でのみ3次元ネットワーク構造の維持が可能であり、そのまま炭化させると、MFCに含まれる水分が乾燥、蒸発し、自己凝縮とネットワーク構造による絡み合いが発生してしまう。そこで、炭化の前処理として、凍結乾燥により、MFCに吸着した水分を取り除いたうえで炭化することで、MFCに含まれている、樹脂にとって有害な水分が除去されるとともに、ミクロフィブリル化セルロースの3次元微細構造を維持したまま炭化することができ、前駆体樹脂に対する分散性が向上し、樹脂粘度の上昇を抑制することができる。   Furthermore, in the present invention, carbonized MFC powder obtained by carbonizing freeze-dried MFC in an inert atmosphere is used as the carbon powder added to the precursor resin. Normally, MFC can maintain a three-dimensional network structure only when it contains moisture. If carbonized as it is, the moisture contained in MFC will dry and evaporate, and entanglement will occur due to self-condensation and network structure. End up. Therefore, as a pretreatment for carbonization, by removing the water adsorbed on the MFC by lyophilization and then carbonizing, the water harmful to the resin contained in the MFC is removed, and the microfibrillated cellulose Carbonization can be performed while maintaining the three-dimensional microstructure, dispersibility with respect to the precursor resin is improved, and an increase in resin viscosity can be suppressed.

更に、前記前駆体樹脂(母材樹脂)としてフェノール樹脂を用いることで、安価で炭化収率良くC/Cコンポジットを製造することができる。   Further, by using a phenol resin as the precursor resin (matrix resin), a C / C composite can be produced at a low cost and with a high carbonization yield.

凍結乾燥したミクロフィブリル化セルロースを不活性雰囲気中で炭化した炭化ミクロフィブリル化セルロースの顕微鏡写真。A photomicrograph of carbonized microfibrillated cellulose obtained by carbonizing freeze-dried microfibrillated cellulose in an inert atmosphere. 曲げ強度試験の模式図。The schematic diagram of a bending strength test. モードII層間破壊靭性値を測定するENF試験(End Notched Flexure 試験)の模式図。The schematic diagram of the ENF test (End Notched Flexure test) which measures a mode II interlaminar fracture toughness value. ENF試験の試験片寸法を示す説明図。Explanatory drawing which shows the test piece dimension of an ENF test. 曲げ弾性率の測定結果を示すグラフ。The graph which shows the measurement result of a bending elastic modulus. 最大曲げ応力の測定結果を示すグラフ。The graph which shows the measurement result of the maximum bending stress. ENF試験より求めたモードII層間破壊靭性値GIICを示すグラフ。The graph which shows the mode II interlaminar fracture toughness value GIIC calculated | required from the ENF test.

本発明では、樹脂含浸法によりC/Cコンポジットを製造する際に、炭素繊維に含浸する炭素前駆体樹脂(母材樹脂)に炭化ミクロフィブリル化セルロース粉末を添加することを特徴とするものであり、それ以外は公知の樹脂含浸法によるC/Cコンポジットの製造方法と同様である。   In the present invention, when a C / C composite is produced by a resin impregnation method, carbonized microfibrillated cellulose powder is added to a carbon precursor resin (matrix resin) impregnated in carbon fibers. Other than that, it is the same as the method for producing a C / C composite by a known resin impregnation method.

例えば、フィラー原料となる炭素繊維としては、ピッチ系、PAN系、レーヨン系などの炭素繊維のいずれを用いてもよい。また、炭素繊維の径や弾性率は、一般に複合材として用いられる範囲でよく、特に限定はない。更に、炭素繊維のプリフォームの形態も特に限定されず、フィラメントワイディング方法により成形した1次元配向プリフォーム、平織り、朱子織り、織布、不織布などの2次元配向プリフォーム、3次元配向プリフォームのいずれでもよい。   For example, any carbon fiber such as pitch-based, PAN-based, or rayon-based may be used as the carbon fiber serving as a filler material. Further, the diameter and elastic modulus of the carbon fiber may be in a range generally used as a composite material and are not particularly limited. Further, the form of the carbon fiber preform is not particularly limited, and a one-dimensional oriented preform formed by a filament wiping method, a two-dimensional oriented preform such as a plain weave, satin weave, a woven fabric, and a non-woven fabric, and a three-dimensional oriented preform. Either of these may be used.

炭素繊維に含浸する、C/Cコンポジットのマトリックスとなる前駆体樹脂(母材樹脂)についても特に限定はなく、フェノール樹脂、フラン樹脂、更には石油系、石炭系ピッチ等の公知のマトリクス樹脂をいずれも用いることができる。これらの樹脂の中でも、フェノール樹脂が安価で且つ炭化収率が高いことから好ましい。   There is no particular limitation on the precursor resin (matrix resin) which is impregnated into the carbon fiber and becomes the matrix of the C / C composite, and a known matrix resin such as phenol resin, furan resin, and petroleum-based or coal-based pitch is used. Either can be used. Among these resins, a phenol resin is preferable because it is inexpensive and has a high carbonization yield.

本発明では、樹脂含浸法によりC/Cコンポジットを製造する際に、炭素繊維プリフォームに含浸するマトリクスとしての前駆体樹脂(母材樹脂)に炭素粉末が添加される。この炭素粉末として、本発明では、MFCを不活性雰囲気中で炭化した炭化MFC粉末を使用することで、炭化収率の改善及び炭化MFC粉末の3次元微細構造によりC/Cコンポジットの界面特性の改善が期待され、曲げ強度など、層間の剪断強度などの機械的強度が向上すると考えられる。一方、同じ炭素粉末であっても、例えば黒鉛を前駆体樹脂(母材樹脂)に添加しても、本発明のC/Cコンポジットのような曲げ強度や層間の剪断強度などの向上効果は得られない(後述の実施例、参考例、比較例を参照。)。特に、凍結乾燥したMFCを不活性雰囲気中で炭化することで、MFCの有する3次元構造を維持したままの炭素粉末を得ることができる(図1参照。)。凍結乾燥せずに炭化したものでは、3次元構造が維持されず、目的とする曲げ強度などの改善効果が十分に発揮されない場合がある。   In the present invention, when a C / C composite is produced by a resin impregnation method, carbon powder is added to a precursor resin (matrix resin) as a matrix to be impregnated into the carbon fiber preform. In the present invention, carbonized MFC powder obtained by carbonizing MFC in an inert atmosphere is used as the carbon powder, thereby improving the carbonization yield and improving the interface characteristics of the C / C composite due to the three-dimensional microstructure of the carbonized MFC powder. Improvement is expected, and it is considered that mechanical strength such as shear strength between layers such as bending strength is improved. On the other hand, even if the same carbon powder is used, for example, if graphite is added to the precursor resin (matrix resin), the effect of improving the bending strength and interlaminar shear strength of the C / C composite of the present invention is obtained. (See Examples, Reference Examples and Comparative Examples below). In particular, carbon powder that maintains the three-dimensional structure of MFC can be obtained by carbonizing freeze-dried MFC in an inert atmosphere (see FIG. 1). When carbonized without being lyophilized, the three-dimensional structure is not maintained, and there are cases where the intended effect of improving the bending strength or the like is not sufficiently exhibited.

MFCの炭化は、水分を含んだMFCを、凍結乾燥機を用いて凍結乾燥し、凍結乾燥後のMFCを、不活性雰囲気中で、高温、例えば800℃で3〜5時間程度焼成することで、炭化MFC粉末が得られる。   Carbonization of MFC is performed by freeze-drying MFC containing moisture using a freeze dryer, and firing the freeze-dried MFC in an inert atmosphere at a high temperature, for example, 800 ° C. for about 3 to 5 hours. Carbonized MFC powder is obtained.

フィラーとなる炭素繊維への前駆体樹脂の含浸方法、樹脂付着量などは公知のものでよい。また、炭素繊維プリフォームの作製は、予め炭素繊維を含浸したものを1次元配向プリフォーム、平織り、朱子織り、織布、不織布などの2次元配向プリフォーム、3次元配向プリフォームに形成してもよいし、炭素繊維を前記のような所定形状の炭素繊維複合体に形成したうえで樹脂含浸を行ってもよい。   The method of impregnating the precursor resin into the carbon fiber used as the filler, the resin adhesion amount, and the like may be known. The carbon fiber preform is prepared by forming a carbon fiber pre-impregnated one-dimensionally oriented preform, plain weave, satin weave, woven fabric, non-woven fabric, etc. Alternatively, resin impregnation may be performed after carbon fibers are formed into a carbon fiber composite having a predetermined shape as described above.

前記前駆体樹脂への炭化MFC粉末の添加量には特に限定はないが、添加量が少ないと効果が発揮されない場合があるが、1重量%の添加で、目的とする曲げ強度の改善効果が得られている。   The amount of carbonized MFC powder added to the precursor resin is not particularly limited, but if the added amount is small, the effect may not be exhibited, but the addition of 1% by weight has the effect of improving the desired bending strength. Has been obtained.

前記炭化MFC粉末を添加した前駆体樹脂を炭素繊維に含浸することで、母材となる炭素繊維プリフォームを得る。この炭素繊維プリフォームを、加熱加圧成形した後、不活性雰囲気中で炭化する。母材となる炭素繊維プリフォームを、例えば、150℃、15MPa程度の高温、高圧条件下で成形することで、炭素前駆体樹脂の炭素化収率の向上が期待できる。   A carbon fiber preform as a base material is obtained by impregnating carbon fiber with a precursor resin to which the carbonized MFC powder is added. The carbon fiber preform is heat-pressed and then carbonized in an inert atmosphere. An improvement in the carbonization yield of the carbon precursor resin can be expected by molding the carbon fiber preform as a base material under high temperature and high pressure conditions of about 150 ° C. and about 15 MPa, for example.

前記のようにして成形した炭素繊維プリフォームを、不活性雰囲気中で常温から10時間程度で最高温度、例えば1000℃まで昇温し、1時間程度保持することで、前駆体樹脂が炭素化して目的とするC/Cコンポジットが得られる。   The carbon fiber preform formed as described above is heated to a maximum temperature, for example, 1000 ° C. in about 10 hours from room temperature in an inert atmosphere, and held for about 1 hour, whereby the precursor resin is carbonized. The intended C / C composite is obtained.

上記のような本発明に係るC/Cコンポジットは、樹脂含浸と焼成を繰り返す緻密化工程を行わないもしくは回数を減らしても、航空機、自動車などのブレーキ材料、その他の摺動材料など、C/Cコンポジットと同様の用途に好適に用いることができることから、製造の手間やコストも削減することができる。   The C / C composite according to the present invention as described above can be used as a brake material for aircraft, automobiles, other sliding materials, etc. even if the densification process of repeating resin impregnation and firing is not performed or the number of times is reduced. Since it can be suitably used for the same application as the C composite, it is possible to reduce manufacturing effort and cost.

以下、本発明の実施例を示すが、本発明は、この実施例により何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

<材料>
前駆体樹脂(母材):ノボラック型フェノール樹脂(住友ベークライト製:工業用フェノール樹脂 「スミライト」(登録商標)PR−51697)。
フィラー(強化材):一方向炭素繊維(三菱レーヨン製:「パイロフィル」(登録商標)TR30S12LAB)。
炭素粉末:
(a)炭化させたMFC(MFCは、ダイセル化学工業製:「セリッシュ」(登録商標)を使用)。
(b)黒鉛粉末:日本黒鉛製;黒鉛粉末AUP(粒径[6〜9μm])。
<Material>
Precursor resin (base material): novolak type phenol resin (manufactured by Sumitomo Bakelite: industrial phenol resin “Sumilite” (registered trademark) PR-51697).
Filler (reinforcing material): unidirectional carbon fiber (manufactured by Mitsubishi Rayon: “Pyrofil” (registered trademark) TR30S12LAB).
Carbon powder:
(A) Carbonized MFC (MFC manufactured by Daicel Chemical Industries, Ltd .: “Serisch” (registered trademark) is used).
(B) Graphite powder: made of Japanese graphite; graphite powder AUP (particle size [6-9 μm]).

<実施例1>
(1)炭化MFC粉末の製造
水分を90重量%含んだMFCを、凍結乾燥機(FDU−1100、東京理科機器製)を用いて凍結乾燥し、凍結乾燥後のMFCを、不活性雰囲気中にて800℃にて3時間熱処理を行い、炭化MFC粉末を得た。これを走査型電子顕微鏡 FE−SEM JSEM7001FDを用いて観察し、撮影した写真を図1に示す。
<Example 1>
(1) Production of carbonized MFC powder MFC containing 90% by weight of water was freeze-dried using a freeze dryer (FDU-1100, manufactured by Tokyo Science Equipment Co., Ltd.), and the MFC after freeze-drying was placed in an inert atmosphere. Then, heat treatment was performed at 800 ° C. for 3 hours to obtain carbonized MFC powder. This is observed using a scanning electron microscope FE-SEM JSEM7001FD, and a photograph taken is shown in FIG.

(2)C/Cコンポジットの製造
フェノール樹脂に1重量%の炭化MFC粉末を添加し、プロセスホモジナイザーにて1時間処理し、炭化MFC粉末を樹脂中に分散させた。樹脂と炭素繊維との積層にはフィラメントワインディング法を用いた。ワインディングはフープ巻きとし、繊維ピッチ2mmで1辺が250mmの正方形ボビンに3層巻き取った。これをボビンごと電気炉内で65℃、10時間保持し、樹脂中のエタノールを蒸発乾燥させ予備硬化させた。これをホッタプレスにて、圧力15MPa、温度150℃で2時間プレスし、炭素繊維強化プラスチック(CFRP)を得た。得られたCFRPを、ダイヤモンドカッターを用いて適当なサイズに切り分けた後、管状炉にて不活性雰囲中で常温から昇温率3.33℃/minで、最高温度(1000℃)まで昇温して1時間保持し、C/Cコンポジットを得た。
(2) Production of C / C composite 1% by weight of carbonized MFC powder was added to the phenol resin, and the carbonized MFC powder was dispersed in the resin by treatment with a process homogenizer for 1 hour. Filament winding was used for laminating the resin and carbon fiber. The winding was hoop wound, and three layers were wound around a square bobbin having a fiber pitch of 2 mm and a side of 250 mm. This was kept at 65 ° C. for 10 hours in an electric furnace together with the bobbin, and the ethanol in the resin was evaporated and dried to be precured. This was pressed by a hotter press at a pressure of 15 MPa and a temperature of 150 ° C. for 2 hours to obtain a carbon fiber reinforced plastic (CFRP). The obtained CFRP was cut into a suitable size using a diamond cutter and then raised from room temperature to a maximum temperature (1000 ° C.) at a temperature rising rate of 3.33 ° C./min in an inert atmosphere in a tubular furnace. Warm and hold for 1 hour to obtain a C / C composite.

<参考例1>
炭化MFC粉末の変わりに、黒鉛粉末1重量%をフェノール樹脂に添加した以外は、実施例1と同様にしてC/Cコンポジットを得た。
<Reference Example 1>
A C / C composite was obtained in the same manner as in Example 1 except that 1% by weight of graphite powder was added to the phenol resin instead of the carbonized MFC powder.

<比較例1>
フェノール樹脂に炭素粉末(炭化MFC)を添加しない以外は、実施例1と同様にしてC/Cコンポジットを得た。
<Comparative Example 1>
A C / C composite was obtained in the same manner as in Example 1 except that no carbon powder (carbonized MFC) was added to the phenol resin.

<評価試験方法>
(1)曲げ試験
三点曲げ試験を行い、曲げ弾性率と最大曲げ応力を求めた。試験片寸法及び試験条件は、JISK7074の三点曲げ試験法に従った。三点曲げ試験の模式図を図2に示す。試験測度は1mm/minとし、支点間距離は80mmとした。試験機は島津製作所製万能試験機オートグラフィAG−Aを用いた。曲げ応力と曲げ弾性率を求める式を以下に示す。
<Evaluation test method>
(1) Bending test A three-point bending test was conducted to determine the flexural modulus and the maximum bending stress. The test piece dimensions and test conditions followed the three-point bending test method of JISK7074. A schematic diagram of the three-point bending test is shown in FIG. The test measure was 1 mm / min, and the fulcrum distance was 80 mm. The testing machine used was a universal testing machine Autograph AG-A manufactured by Shimadzu Corporation. The equations for obtaining the bending stress and bending elastic modulus are shown below.

また、曲げ試験中の試験片の破壊挙動を観察した。   Moreover, the fracture behavior of the test piece during the bending test was observed.

(2)ENF試験
EFN試験(End Notched Flecxure 試験)を行い、モードII破壊靭性値(Interlaminar Fracture Toughess)を測定した。試験機は、島津製作所製万能試験機オートグラフィAG−Aを用いた。試験方法は、JISK7086を参考にした。試験の模式図を図3に示す。試験測度は1mm/minとした。以下に試験片作製手順と、モードII破壊靭性値の導出法を記す。
(2) ENF test An EFN test (End Notched Frexxure test) was performed, and a mode II fracture toughness value (Interlaminar Fracture Toughness) was measured. The testing machine used Shimadzu Corporation universal testing machine Autograph AG-A. The test method was based on JISK7086. A schematic diagram of the test is shown in FIG. The test measure was 1 mm / min. The specimen preparation procedure and the method for deriving the mode II fracture toughness value are described below.

(a)試験片作製
1)母材となるCFRPの積層時に、初期き裂導入のため、銅板(厚さ0.1mm)を積層中央面に挿入する。銅板の辺が繊維方向に対し直角をなすようにした。
2)試験板からダイヤモンドカッターを用いて試験片の長手方向が繊維配列方向に一致するように切り出した。このとき、切断中に水冷して過度の切削熱が生じないようにした。
3)試験片寸法を図4に示す。
(A) Test piece preparation 1) At the time of lamination | stacking of CFRP used as a base material, a copper plate (thickness 0.1mm) is inserted in a lamination | stacking center surface for the introduction of an initial crack. The side of the copper plate was perpendicular to the fiber direction.
2) The test piece was cut out using a diamond cutter so that the longitudinal direction of the test piece coincided with the fiber arrangement direction. At this time, excessive cooling heat was not generated by water cooling during cutting.
3) The test piece dimensions are shown in FIG.

(b)モードII層間破壊靭性値の導出
き裂展開開始直後のモードII層間破壊靭性値は、下記の式で求められる。
(B) Derivation of Mode II Interlaminar Fracture Toughness Value The mode II interlaminar fracture toughness value immediately after the initiation of crack development is obtained by the following equation.

<試験結果>
(1)曲げ試験結果
三点曲げ試験の結果を図5、6に示す。曲げ弾性率については、炭化MFCを添加した実施例1(図5中、「MFC(1.0wt%)」と表示。)について、値にバラツキが多いものの、平均値に向上が見られた。また、最大曲げ応力については、実施例1(図6中、「MFC(1.0wt%)」と表示)は230MPaと、何も添加していない比較例1(図5、6中、「Normal」と表示。)の150MPaと較べて、約53%の向上が見られた。しかし、母材樹脂に黒鉛粉末を添加した参考例1(図5、6中、「Graphite(1.0wt%)」と表示。)では、曲げ弾性率及び最大曲げ応力とも、比較例1と大きな差は見られなかった。
<Test results>
(1) Bending test results The results of the three-point bending test are shown in FIGS. Regarding the flexural modulus, although there was much variation in the value for Example 1 (indicated as “MFC (1.0 wt%)” in FIG. 5) to which carbonized MFC was added, the average value was improved. As for the maximum bending stress, Example 1 (indicated as “MFC (1.0 wt%)” in FIG. 6) is 230 MPa, and Comparative Example 1 in which nothing is added (in FIGS. 5 and 6, “Normal” ”).) Was improved by about 53% compared to 150 MPa. However, in Reference Example 1 (indicated as “Graphite (1.0 wt%)” in FIGS. 5 and 6) in which graphite powder is added to the base resin, both the flexural modulus and the maximum bending stress are larger than those in Comparative Example 1. There was no difference.

更に、三点曲げ試験時の破壊様相の観察では、比較例1(Normal)と参考例1(Graphite)については層間剥離による破壊が起こったのに対し、実施例1(MFC)については、繊維の引張破壊が起こった。このことから、母材樹脂に炭化MFC粉末を添加して製造したC/Cコンポジットは、炭素粉末を添加しない比較例1および炭素粉末として黒鉛を添加した参考例1に較べて層間剥離が起きにくい性質を有することが分かる。   Furthermore, in the observation of the fracture mode during the three-point bending test, the fracture due to delamination occurred in Comparative Example 1 (Normal) and Reference Example 1 (Graphite), whereas in Example 1 (MFC), the fiber Tensile fracture occurred. Therefore, the C / C composite produced by adding the carbonized MFC powder to the base resin is less likely to cause delamination compared to Comparative Example 1 in which no carbon powder is added and Reference Example 1 in which graphite is added as a carbon powder. It can be seen that it has properties.

以上から、母材樹脂に炭化MFC粉末を添加してC/Cコンポジットを製造すると、曲げ強度が向上することが分かる。   From the above, it can be seen that when a carbonized MFC powder is added to a base resin to produce a C / C composite, the bending strength is improved.

(2)EMF試験結果
ENF試験より求めたモードII層間破壊靭性値GIICを図7に示す。図7から明らかなように、母材樹脂に炭化MFCを添加して製造した実施例1のC/Cコンポジット(図7中、「MFC(1wt%)」と表示。)は、何も添加しない比較例1のC/Cコンポジット(図7中、「Normal」と表示。)に較べてGIICが47j/m2から61j/m2と30%向上している。このことから、曲げ試験において最大曲げ強度が向上した原因は、GIICの向上によるものであると推定される。
(2) EMF test result The mode II interlaminar fracture toughness value G IIC obtained from the ENF test is shown in FIG. As is clear from FIG. 7, the C / C composite of Example 1 (shown as “MFC (1 wt%)” in FIG. 7) manufactured by adding carbonized MFC to the base resin does not add anything. Compared to the C / C composite of Comparative Example 1 (indicated as “Normal” in FIG. 7), G IIC is improved by 30% from 47 j / m 2 to 61 j / m 2 . From this, it is estimated that the cause of the improvement in the maximum bending strength in the bending test is due to the improvement in G IIC .

母材樹脂に炭化MFCを添加して製造した実施例1のC/CコンポジットのGIICが向上した原因としては、母材樹脂に炭化MFCを添加することにより、三次元方向にクラックブリッジング機構が得られ、層間破壊靭性値が向上したことが考えられる。クラックブリッジング機構とは、主にアスペクト比(aspect ratio:繊維の長さと直径の比)の高い繊維で強化した複合材料に見られる機構で、マトリクス中をクラックが進展しても繊維は破壊せず、クラックをブリッジ(Bridge)する機構が得られるために、高靭性(toughening)が達成できる。図1から分かるように、炭化MFCは繊維の形態をしており、更に絡み合った繊維により立体的な構造を保っている。このことから、炭化MFCは三次元方向に強化繊維として作用すると考えられる。一方、黒鉛粉末は、それぞれの粒子が細かくアスペクト比は低い。また、黒鉛粉末は炭化MFCとは異なり立体構造も持たないため、ブリッジ効果が得られず、性能が向上しなかったと考えられる。 The reason why the G IIC of the C / C composite of Example 1 manufactured by adding carbonized MFC to the base resin is improved is that a crack bridging mechanism in the three-dimensional direction by adding carbonized MFC to the base resin. It is considered that the interlaminar fracture toughness value was improved. The crack bridging mechanism is a mechanism found in composite materials reinforced mainly with fibers having a high aspect ratio (ratio of fiber length to diameter). The fibers can be broken even if cracks develop in the matrix. In addition, since a mechanism for bridging cracks is obtained, toughening can be achieved. As can be seen from FIG. 1, the carbonized MFC is in the form of fibers, and further maintains a three-dimensional structure with entangled fibers. From this, it is considered that the carbonized MFC acts as a reinforcing fiber in the three-dimensional direction. On the other hand, graphite powder has fine particles and a low aspect ratio. Further, unlike the carbonized MFC, the graphite powder does not have a three-dimensional structure, so the bridge effect cannot be obtained and the performance is not improved.

本発明に係るC/Cコンポジットは、緻密化工程を行わないもしくは回数を減らしても、曲げ強度などの高い機械的強度が得られ、航空機や車両などのブレーキ材料、その他、従来公知の用途に、より安価なC/Cコンポジットとして提供することができる。   The C / C composite according to the present invention can obtain high mechanical strength such as bending strength even if the densification process is not performed or the number of times is reduced, and it can be used for brake materials such as aircraft and vehicles, and other conventionally known applications. Therefore, it can be provided as a cheaper C / C composite.

Claims (8)

炭素前駆体樹脂に炭化ミクロフィブリル化セルロース粉末を含有させてなることを特徴とする炭素繊維強化炭素複合材料。   A carbon fiber reinforced carbon composite material comprising carbon precursor resin containing carbonized microfibrillated cellulose powder. 前記炭化ミクロフィブリル化セルロース粉末が、凍結乾燥したミクロフィブリル化セルロースを不活性雰囲気中で炭化したものである請求項1記載の炭素繊維強化炭素複合材料。   The carbon fiber reinforced carbon composite material according to claim 1, wherein the carbonized microfibrillated cellulose powder is obtained by carbonizing freeze-dried microfibrillated cellulose in an inert atmosphere. 前記炭素前駆体樹脂がフェノール樹脂である請求項1又は2に記載の炭素繊維強化炭素複合材料。   The carbon fiber reinforced carbon composite material according to claim 1 or 2, wherein the carbon precursor resin is a phenol resin. 請求項1〜3のいずれかに記載の炭素繊維強化炭素複合材料からなるブレーキ材料。   The brake material which consists of a carbon fiber reinforced carbon composite material in any one of Claims 1-3. 炭素繊維に炭素前駆体樹脂を含浸した炭素繊維プリフォームを加熱加圧成形した後、不活性雰囲気中で焼成する樹脂含浸法による炭素繊維強化炭素複合材料の製造方法であって、前記炭素繊維前駆体樹脂に炭化ミクロフィブリル化セルロース粉末を含有させてなることを特徴とする炭素繊維強化炭素複合材料の製造方法。   A method for producing a carbon fiber reinforced carbon composite material by a resin impregnation method in which a carbon fiber preform impregnated with a carbon precursor resin is heat-pressed and then fired in an inert atmosphere. A method for producing a carbon fiber-reinforced carbon composite material, comprising carbonized microfibrillated cellulose powder in a body resin. 前記炭素繊維プリフォームを、フィラメントワイディング法により成形してなる請求項5に記載の炭素繊維強化炭素複合材料の製造方法。   The method for producing a carbon fiber reinforced carbon composite material according to claim 5, wherein the carbon fiber preform is formed by a filament wiping method. 前記炭化ミクロフィブリル化セルロース粉末が、凍結乾燥したミクロフィブリル化セルロースを不活性雰囲気中で炭化したものである請求項5又は6に記載の炭素繊維強化炭素複合材料の製造方法。   The method for producing a carbon fiber-reinforced carbon composite material according to claim 5 or 6, wherein the carbonized microfibrillated cellulose powder is obtained by carbonizing freeze-dried microfibrillated cellulose in an inert atmosphere. 前記炭素前駆体樹脂がフェノール樹脂である請求項5〜7のいずれかに記載の炭素繊維強化炭素複合材料の製造方法。   The said carbon precursor resin is a phenol resin, The manufacturing method of the carbon fiber reinforced carbon composite material in any one of Claims 5-7.
JP2009194259A 2009-08-25 2009-08-25 Carbon fiber-reinforced carbon composite material and method for manufacturing the same Pending JP2011046543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194259A JP2011046543A (en) 2009-08-25 2009-08-25 Carbon fiber-reinforced carbon composite material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194259A JP2011046543A (en) 2009-08-25 2009-08-25 Carbon fiber-reinforced carbon composite material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011046543A true JP2011046543A (en) 2011-03-10

Family

ID=43833285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194259A Pending JP2011046543A (en) 2009-08-25 2009-08-25 Carbon fiber-reinforced carbon composite material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011046543A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140058516A (en) 2011-07-28 2014-05-14 미쓰비시 쥬시 가부시끼가이샤 Carbon-fiber-reinforced carbon composite and method of manufacturing same
CN105948821A (en) * 2016-04-27 2016-09-21 航天材料及工艺研究所 Lightweight carbon fiber thermal insulation material surface pore-sealing method
CN110790257A (en) * 2019-11-22 2020-02-14 中国矿业大学 Modulation method for nano carbon material morphology structure transformation based on crystallization induction
JP2020076068A (en) * 2018-11-06 2020-05-21 大阪瓦斯株式会社 Friction material and friction member, and manufacturing method therefor
CN116813365A (en) * 2023-06-30 2023-09-29 浙江星辉新材料科技有限公司 High-temperature-resistant large-size carbon-carbon bearing plate and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140058516A (en) 2011-07-28 2014-05-14 미쓰비시 쥬시 가부시끼가이샤 Carbon-fiber-reinforced carbon composite and method of manufacturing same
US10549503B2 (en) 2011-07-28 2020-02-04 Mitsubishi Chemical Corporation Carbon fiber-reinforced carbon composite and method of manufacturing the same
CN105948821A (en) * 2016-04-27 2016-09-21 航天材料及工艺研究所 Lightweight carbon fiber thermal insulation material surface pore-sealing method
CN105948821B (en) * 2016-04-27 2019-05-24 航天材料及工艺研究所 A kind of lightweight carbon fiber heat insulation material surface method for sealing
JP2020076068A (en) * 2018-11-06 2020-05-21 大阪瓦斯株式会社 Friction material and friction member, and manufacturing method therefor
JP7284681B2 (en) 2018-11-06 2023-05-31 大阪瓦斯株式会社 Friction material, friction member, and manufacturing method thereof
CN110790257A (en) * 2019-11-22 2020-02-14 中国矿业大学 Modulation method for nano carbon material morphology structure transformation based on crystallization induction
CN116813365A (en) * 2023-06-30 2023-09-29 浙江星辉新材料科技有限公司 High-temperature-resistant large-size carbon-carbon bearing plate and preparation method thereof
CN116813365B (en) * 2023-06-30 2024-03-01 浙江星辉新材料科技有限公司 High-temperature-resistant large-size carbon-carbon bearing plate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5327412B2 (en) Carbon fiber reinforced carbon composite and method for producing the same
KR101472850B1 (en) High-temperature-resistant composite
JP4297138B2 (en) Carbon fiber reinforced SiC composite and sliding material
US20070066171A1 (en) Impact resistant, thin ply composite structures and method of manufacturing same
JPWO2006003774A1 (en) Method for producing carbon fiber reinforced carbon composite material suitable for heat sink for semiconductor
EP2634159B1 (en) Carbon-fiber-reinforced silicon-carbide-based composite material
JPH08157273A (en) Unidirectional carbon fiber reinforced carbon composite material and its production
JP2011046543A (en) Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JP2019501849A (en) Carbon fiber reinforced carbide-ceramic composite
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
JP6824601B2 (en) Reinforcing fiber material and its manufacturing method, and fiber reinforced ceramic composite material
JP5522797B2 (en) Carbon fiber reinforced silicon carbide ceramics and method for producing the same
JP6286865B2 (en) Wear resistant parts
WO2021206168A1 (en) C/c composite and method for producing same, and heat-treatment jig and method for producing same
JP2019043099A (en) Carbon fiber sheet laminate and manufacturing method therefor
JP2002255664A (en) C/c composite material and production method therefor
JP2017008272A (en) High functional carbon/carbon composite having high carbon fiber contribution ratio
JP4356870B2 (en) C / C composite manufacturing method, rocket nozzle and re-entry capsule
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP2004217466A (en) Carbon fiber, carbon fiber bundle for carbon composite material and method of manufacturing the same
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
WO2024119186A1 (en) Tps material with enhanced toughness and interlaminar strength