JPH05288932A - Production of phase difference plate - Google Patents
Production of phase difference plateInfo
- Publication number
- JPH05288932A JPH05288932A JP8534492A JP8534492A JPH05288932A JP H05288932 A JPH05288932 A JP H05288932A JP 8534492 A JP8534492 A JP 8534492A JP 8534492 A JP8534492 A JP 8534492A JP H05288932 A JPH05288932 A JP H05288932A
- Authority
- JP
- Japan
- Prior art keywords
- film
- stretching
- phase difference
- longitudinal direction
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polarising Elements (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、一軸延伸された熱可塑
性樹脂フィルムにて構成され、例えば液晶表示板等に好
適に用いられる位相差板に係り、特に、視野角特性に優
れた位相差板の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a retardation plate which is composed of a uniaxially stretched thermoplastic resin film and is suitably used for, for example, a liquid crystal display plate, and particularly to a retardation film having excellent viewing angle characteristics. The present invention relates to a method for manufacturing a plate.
【0002】[0002]
【従来の技術】位相差板(フィルム)とは、延伸した高
分子フィルムの複屈折性(延伸による分子配向により延
伸方向とそれに直交する方向の屈折率が異なるために生
ずる)を利用し、例えば液晶表示板の液晶で生じた位相
差を解消させる(位相差補償という)もので、従来、こ
の種の位相差板(フィルム)としてはセルロース系樹脂
(特開昭63−167363号公報参照)、塩化ビニル
系樹脂(特公昭45−34477号公報、特開昭56−
125702号公報参照)、ポリカーボネート系樹脂
(特公昭41−12190号公報、特開昭56−130
703号公報参照)、アクリロニトリル系樹脂(特開昭
56−130702号公報参照)、スチレン系樹脂(特
開昭56−125703号公報参照)、オレフィン系樹
脂(特開昭60−24502号公報参照)等が知られて
おり、また、一軸延伸方法としては、縦一軸延伸(特開
平2−191904号公報参照)、横一軸延伸(特開平
2−42406号公報参照)等が提案されている。2. Description of the Related Art A retardation film (film) utilizes the birefringence of a stretched polymer film (generated due to the difference in refractive index between the stretching direction and the direction orthogonal thereto due to the molecular orientation due to stretching). It is intended to eliminate the phase difference generated in the liquid crystal of the liquid crystal display plate (referred to as phase difference compensation). Conventionally, as this type of phase difference plate (film), a cellulose resin (see JP-A-63-167363), Vinyl chloride resin (JP-B-45-34477, JP-A-56-)
125702), polycarbonate resin (Japanese Patent Publication No. 41190/41, JP 56-130).
No. 703), acrylonitrile resin (see JP-A-56-130702), styrene resin (see JP-A-56-125703), olefin resin (see JP-A-60-24502). Etc. are known, and longitudinal uniaxial stretching (see Japanese Patent Application Laid-Open No. 2-191904), transverse uniaxial stretching (see Japanese Patent Application Laid-Open No. 2-42406), and the like have been proposed as uniaxial stretching methods.
【0003】そして、位相差板(フィルム)の上記位相
差補償性能はレターデーション値と呼ばれ、Δn×dで
表される。ここで、Δnは屈折率の異方性、dはフィル
ムの肉厚である。The retardation compensation performance of the retardation film (film) is called a retardation value, and is represented by Δn × d. Here, Δn is the anisotropy of the refractive index, and d is the thickness of the film.
【0004】ところで、入射光とフィルム面に対する法
線との為す角が増大すると、上記レターデーション値は
変化し(延伸方向を軸に回転させた場合と延伸方向に垂
直な軸で回転させた場合とで増減は異なる)液晶表示の
着色が生じる。By the way, when the angle formed by the incident light and the normal to the film surface increases, the retardation value changes (in the case of rotating about the stretching direction and in the case of rotating about the axis perpendicular to the stretching direction). (The increase and decrease are different depending on the). Coloring of the liquid crystal display occurs.
【0005】位相差板(フィルム)のような光学異方体
は3次元方向の屈折率(nx,ny,nz)が一様でな
く、屈折率楕円体で表現される。そして、各方向の屈折
率の関係は、例えば、図5に示す一軸延伸フィルムpに
おいて、xを延伸軸、yをフィルム面内の延伸方向と直
交する軸、zをフィルムの法線方向とすると、固有屈折
率が正のフィルムではnx>ny≧nzの関係があり、
固有屈折率が負のフィルムではnx<ny≦nzの関係
がある。また完全一軸延伸フィルムではフィルム面内の
延伸方向と直交する方向yの屈折率nyとフィルムの法
線方向zの屈折率nzは等しく、ny=nzが成立す
る。An optical anisotropic body such as a retardation film (film) does not have a uniform three-dimensional refractive index (nx, ny, nz) and is represented by a refractive index ellipsoid. The relationship between the refractive indexes in the respective directions is, for example, in the uniaxially stretched film p shown in FIG. 5, where x is the stretching axis, y is the axis orthogonal to the stretching direction in the film plane, and z is the normal direction of the film. , A film having a positive intrinsic refractive index has a relationship of nx> ny ≧ nz,
A film having a negative intrinsic refractive index has a relationship of nx <ny ≦ nz. In the case of a completely uniaxially stretched film, the refractive index ny in the direction y orthogonal to the stretching direction in the film plane and the refractive index nz in the normal direction z of the film are equal, and ny = nz holds.
【0006】以下、一例としてxz面内でz軸からθ
(視角)傾斜した方向からみた複屈折[Δn
xz(θ)]、レターデーション値[Rxz(θ)]はそれ
ぞれ以下の式で表される(電子材料1991年2月号第
40頁参照)。In the following, as an example, θ from the z axis in the xz plane
(Viewing angle) Birefringence [Δn
xz (θ)] and the retardation value [R xz (θ)] are represented by the following formulas (see Electronic Material, February 1991, p. 40).
【0007】[0007]
【数1】 但し、式中dはフィルムの厚さ、nは平均屈折率であ
る。[Equation 1] However, in the formula, d is the thickness of the film, and n is the average refractive index.
【0008】そして、上記(1)(2)式に基づいて計
算した結果を図6に示す。FIG. 6 shows the result calculated based on the above equations (1) and (2).
【0009】図6のグラフ図において、横軸は視角θ、
縦軸はxz面内で視角θにおけるレターデーション値R
xz(θ)を視角0(法線方向zから見た場合)のレター
デーション値Rxz(0)で割った値Rxz(θ)/R
xz(0)を示し、レターデーションRの変化率は[1−
Rxz(θ)/Rxz(0)]の絶対値で表される。また、
図6中aはnz=nyの完全一軸延伸フィルムを示し、
bはnz<nyの完全一軸延伸フィルムを示している。In the graph of FIG. 6, the horizontal axis is the viewing angle θ,
The vertical axis represents the retardation value R at the viewing angle θ in the xz plane.
xz retardation value R xz (0) divided by the value R xz of (θ) the viewing angle 0 (when viewed from the normal direction z) (θ) / R
xz (0), and the rate of change in retardation R is [1-
It is represented by the absolute value of R xz (θ) / R xz (0)]. Also,
In FIG. 6, a represents a completely uniaxially stretched film of nz = ny,
b shows the perfect uniaxially stretched film of nz <ny.
【0010】ここで、視野角は、レターデーションRの
変化率、すなわち[1−Rxz(θ)/Rxz(0)]の絶
対値が小さい程広いのである。そして、図6より完全一
軸延伸(nz=ny)の方がレターデーション値の変化
が少なくかつ視野角が広くなり、他方、分子の配向に二
軸性が存在すると(nz<ny)上述のレターデーショ
ン値の変化は大きくかつ視野角が非常に狭くなることが
確認できる。Here, the viewing angle is wider as the rate of change of the retardation R, that is, the absolute value of [1-R xz (θ) / R xz (0)] is smaller. From FIG. 6, the complete uniaxial stretching (nz = ny) has a smaller change in retardation value and a wider viewing angle, while the molecular orientation has biaxiality (nz <ny). It can be confirmed that the change in the foundation value is large and the viewing angle is very narrow.
【0011】また、θの代わりに、yz面内でz軸から
傾斜した視角φを用いた場合の計算結果を図7に示す。
図7中cはnz=nyの完全一軸延伸フィルムを示し、
dはnz<nyの完全一軸延伸フィルムを示している。FIG. 7 shows the calculation results when a viewing angle φ tilted from the z axis in the yz plane is used instead of θ.
In FIG. 7, c indicates a completely uniaxially stretched film of nz = ny,
d indicates a completely uniaxially stretched film of nz <ny.
【0012】そして、この結果からも分子の配向に二軸
性があるとレターデーション値の変化率、すなわち[1
−Ryz(φ)/Ryz(0)]の絶対値が大きく視野角が
狭くなり、他方、分子の一軸配向性が高い程レターデー
ション値の変化率すなわち[1−Ryz(φ)/R
yz(0)]の絶対値が小さくかつ視野角が広くなる。ま
た、nz=nyの完全一軸延伸の場合が最も視野角が広
くなることが分かる。Also from this result, if the molecular orientation is biaxial, the rate of change in retardation value, that is, [1
The larger the absolute value of −R yz (φ) / R yz (0)] and the narrower the viewing angle, and the higher the uniaxial orientation of the molecule, the higher the rate of change in retardation value, ie, [1-R yz (φ) / R
yz (0)] has a small absolute value and a wide viewing angle. Further, it can be seen that the viewing angle is widest in the case of perfect uniaxial stretching of nz = ny.
【0013】従って、これ等図6及び図7の結果から、
いずれの方向から見る場合も分子の一軸配向性が高い程
レターデーション値の変化率が小さくかつ視野角が広い
ことが分かる。Therefore, from these results of FIG. 6 and FIG.
From any direction, it can be seen that the higher the uniaxial orientation of the molecule, the smaller the rate of change in retardation value and the wider the viewing angle.
【0014】ところで、分子配向の一軸性を高めるため
には延伸方向と垂直な方向に発生する応力(縮小しよう
とする残留応力)をできるだけ小さくすることが必要で
ある。言い換えると、延伸方向と垂直な方向に延伸で生
じると考えられる縮小量だけ延伸方向に垂直な方向に縮
小すれば良いのである。By the way, in order to enhance the uniaxiality of the molecular orientation, it is necessary to minimize the stress generated in the direction perpendicular to the stretching direction (residual stress to be reduced). In other words, it is sufficient to reduce in the direction perpendicular to the stretching direction by the amount of reduction considered to occur in the stretching in the direction perpendicular to the stretching direction.
【0015】特開平2−191904号公報には、この
縮小率[ネックイン率(延伸前後の延伸方向と直交する
方向のフィルムの長さ変化率をいう)と以下称する。す
なわちネックイン率=(b−a)/b×100;ここで
aはアニール後の延伸方向と直交する方向の長さ、bは
延伸前のフィルムの延伸方向と直交する方向の長さであ
る]を検討し、このネックイン率を(1−1/延伸倍率
の平方根)×100(%)〜(1−1/延伸倍率の3乗
根)×100(%)にすることにより視野角特性に優れ
た位相差板(フィルム)が製造できることを開示してい
る。そしてこの具体的な方法として、延伸ロール間距離
をフィルム幅の5倍以上に設定し幅方向の自由な収縮を
許しながら縦方向に延伸する方法(縦一軸自由幅延伸
法)が開示されている。In Japanese Patent Application Laid-Open No. 2-191904, this reduction ratio is referred to as "neck-in ratio (refers to the rate of change in the length of the film in the direction orthogonal to the stretching direction before and after stretching)". That is, neck-in rate = (b−a) / b × 100; where a is the length in the direction orthogonal to the stretching direction after annealing, and b is the length in the direction orthogonal to the stretching direction of the film before stretching. ], And the neck-in ratio is set to (1-1 / square root of draw ratio) × 100 (%) to (1-1 / third root of draw ratio) × 100 (%) It is disclosed that an excellent retardation plate (film) can be manufactured. As this specific method, there is disclosed a method (longitudinal uniaxial free width stretching method) in which the distance between the stretching rolls is set to 5 times or more of the film width and the film is stretched in the longitudinal direction while allowing free shrinkage in the width direction. .
【0016】また、特開平3−23405号公報には、
パンタグラフ式同時二軸テンター延伸機を適用し、フィ
ルムの幅方向両端部を部分的にテンタークリップで保持
して縦方向及び幅方向の両方向を同時に延伸し、0〜
(1−1/延伸倍率の平方根)のネックイン率を有する
位相差板を製造する方法が開示されている。Further, in Japanese Patent Laid-Open No. 3-23405,
Applying a pantograph-type simultaneous biaxial tenter stretching machine, both ends of the film in the width direction are partially held by tenter clips and simultaneously stretched in both the longitudinal direction and the width direction.
A method for producing a retardation plate having a neck-in rate of (1-1 / square root of draw ratio) is disclosed.
【0017】[0017]
【発明が解決しようとする課題】しかし、特開平2−1
91904号公報に開示されている方法は上述したよう
に延伸ロール間距離をフィルム幅の5倍以上に設定して
いるため、ロール間の全域に亘り延伸中の加熱温度を均
一に制御することが困難な問題点があった。However, Japanese Patent Laid-Open No. 2-1.
In the method disclosed in Japanese Patent No. 91904, since the distance between the stretching rolls is set to 5 times or more the film width as described above, it is possible to uniformly control the heating temperature during stretching over the entire area between the rolls. There was a difficult problem.
【0018】また、この方法では間隔を開けて配置され
た延伸ロール間においてフィルムの幅方向の自由な収縮
を許しながらフィルム縦方向への延伸処理を施している
ため、延伸ロール近傍部位におけるフィルムの幅方向の
収縮量に較べて延伸ロール間中央部付近におけるフィル
ムの幅方向収縮量が大きくなり、この収縮率の差異に起
因してフィルムの幅方向両端部における延伸軸(延伸主
軸)の方向とフィルム中央部における延伸軸の方向とが
一致しなくなる欠点があった。従って、延伸処理された
フィルムの幅方向両端部と中央部とでその位相差補償性
能や視野角特性が相違するためフィルムの幅方向両端部
を不良品として大量に廃棄しなければならず、その歩留
まりが悪いといった問題点があった。Further, according to this method, since the film is stretched in the machine direction while allowing the film to freely shrink in the width direction between the stretched rolls arranged at intervals, the film in the vicinity of the stretch roll is processed. The shrinkage amount in the width direction of the film in the vicinity of the central portion between the stretching rolls becomes larger than the shrinkage amount in the width direction. There is a defect that the direction of the stretching axis in the central portion of the film does not match. Therefore, the width direction both ends of the film have to be discarded in large quantities as defective products because the phase difference compensation performance and the viewing angle characteristics are different between the width direction both ends and the center part of the stretched film. There was a problem that the yield was poor.
【0019】他方、特開平3−23405号公報に開示
されている方法においては、フィルムの幅方向両端部を
テンタークリップにより部分的に保持して延伸処理を施
しているため、上記テンタークリップにて保持されない
部位において部分的収縮(ネックイン)が発生し、製造
された位相差板の位相差補償性能と視野角特性の均一性
に問題があった。On the other hand, in the method disclosed in Japanese Patent Application Laid-Open No. 3-23405, since both widthwise end portions of the film are partially held by the tenter clips and stretched, the tenter clips are used. Partial shrinkage (neck-in) occurs in the unsupported portion, and there is a problem in the retardation compensation performance of the manufactured retardation plate and the uniformity of viewing angle characteristics.
【0020】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、フィルムの略全
域に亘り均一でかつ優れた位相差補償性能と視野角特性
を有する位相差板を容易に製造できる方法を提供するこ
とにある。The present invention has been made by paying attention to such a problem, and an object thereof is to provide a phase difference having uniform and excellent phase difference compensation performance and viewing angle characteristics over substantially the entire area of the film. It is to provide a method for easily manufacturing a plate.
【0021】[0021]
【課題を解決するための手段】すなわち、請求項1に係
る発明は、熱可塑性樹脂フィルムをその縦方向の断面形
状が波形となるように賦形し、かつ、この熱可塑性樹脂
フィルムの横方向両端部をその波形形状を保った状態で
固定すると共に、この熱可塑性樹脂フィルムについてそ
の固定部位を除く縦方向の自由な収縮を許しながら横一
軸方向へ延伸処理することを特徴とするものである。That is, the invention according to claim 1 forms a thermoplastic resin film so that its longitudinal cross-sectional shape is corrugated, and the thermoplastic resin film is transversely shaped. It is characterized in that both ends are fixed in a state where the corrugated shape is maintained, and that the thermoplastic resin film is stretched in the lateral uniaxial direction while allowing free contraction in the longitudinal direction excluding the fixed part. .
【0022】この請求項1に係る発明においては波形形
状に賦形された熱可塑性樹脂フィルムをその横方向(幅
方向)両端部を上記波形形状を保ちながら固定した状態
で延伸処理を施しており、延伸処理時におけるフィルム
の横方向の部分的収縮(ネックイン)が起こらないため
特開平3−23405号公報に開示された製造方法の上
述した欠点は解消される。In the invention according to claim 1, the thermoplastic resin film shaped in a corrugated shape is stretched in a state in which both lateral (widthwise) ends thereof are fixed while maintaining the corrugated shape. Since the film does not partially shrink (neck-in) in the lateral direction during the stretching treatment, the above-mentioned drawbacks of the manufacturing method disclosed in JP-A-3-23405 are eliminated.
【0023】また、波形形状に賦形された熱可塑性樹脂
フィルムの横方向両端部を固定した状態でこの固定部位
を除く縦方向の自由な収縮を許しながら横一軸方向へ延
伸処理しており、上記波形形状が平坦形状になるまで縦
方向の均等な収縮が可能になるため縦方向の縮小率を一
定に制御することができ、従って、特開平2−1919
04号公報に開示された製造方法の弊害も解消できる。In addition, the thermoplastic resin film formed in a corrugated shape is stretched in the lateral uniaxial direction while allowing both ends in the lateral direction to be fixed, while allowing free contraction in the longitudinal direction excluding this fixing portion. Since the uniform contraction in the vertical direction is possible until the corrugated shape becomes a flat shape, the contraction rate in the vertical direction can be controlled to be constant.
The adverse effect of the manufacturing method disclosed in Japanese Patent Publication No. 04 can be eliminated.
【0024】以下、図3に示すように上記波形が三角形
状に設定されている場合を例に上げて上記作用を具体的
に説明すると、収縮後のフィルムの長さ(波形の軸に沿
った直線距離で表される)をα、波形に沿ったフィルム
の長さをβとした場合、縦方向の縮小率は(β−α)/
β×100%、横方向の縮小率は0%となり、これ等縮
小率はその部位によらず一定である。従って延伸軸もそ
の部位によらず一定方向に保たれる。The above operation will be described in detail by taking the case where the corrugations are set in a triangular shape as shown in FIG. 3 as an example. The length of the film after shrinkage (along the axis of the corrugations) (Represented by a straight line distance) is α, and the length of the film along the waveform is β, the reduction ratio in the longitudinal direction is (β-α) /
β × 100%, the reduction ratio in the lateral direction is 0%, and these reduction ratios are constant regardless of the part. Therefore, the stretching axis is also maintained in a constant direction regardless of the part.
【0025】そして、この波形の具体的形状としては、
例えば、断面三角形状、断面台形状等の形状が挙げられ
るがこれ等に限定されるものではない。また、そのピッ
チ、波の高さも任意であり、所望の縮小率に対応させて
適宜設定可能である。また、賦形の方法やフィルムの横
方向両端部を固定する方法も任意であり、フィルムに破
れや傷を与えない方法であれば如何なる方法でもよい。Then, as a concrete shape of this waveform,
For example, shapes such as a triangular shape in cross section and a trapezoidal shape in cross section can be cited, but the shape is not limited to these. Further, the pitch and the height of the wave are also arbitrary, and can be appropriately set in correspondence with a desired reduction ratio. Further, a shaping method and a method of fixing both lateral ends of the film are also arbitrary, and any method may be used as long as it does not damage or tear the film.
【0026】また、このような技術的手段において上記
熱可塑性樹脂フィルムの横一軸方向への延伸は横一軸テ
ンター延伸機を改造した装置により可能である。また、
その延伸温度、延伸倍率、延伸速度、ヒートセット(延
伸後の熱処理)温度、ヒートセット時間等の諸条件は所
望の位相差特性に応じて適宜設定することができ、上記
特開平2−191904号に開示された製造方法に較べ
てその制御が極めて容易である。Further, in such a technical means, the stretching of the thermoplastic resin film in the lateral uniaxial direction can be performed by a device obtained by modifying the lateral uniaxial tenter stretching machine. Also,
Various conditions such as the stretching temperature, the stretching ratio, the stretching speed, the heat setting (heat treatment after stretching), the heat setting time and the like can be appropriately set according to the desired retardation characteristics, and are described in JP-A-2-191904. The control is extremely easy as compared with the manufacturing method disclosed in US Pat.
【0027】次に、この技術的手段において適用される
熱可塑性樹脂フィルムとしては、例えば、セルロース系
樹脂、塩化ビニル系樹脂、ポリカーボネート系樹脂、ア
クリロニトリル系樹脂、オレフィン系樹脂、ポリスチレ
ン系樹脂、ポリメタクリル酸メチル系樹脂、ポリサルフ
ォン系樹脂、ポリアリレート系樹脂、ポリエーテルサル
フォン系樹脂等のフィルムが挙げられる。Next, as the thermoplastic resin film applied in this technical means, for example, cellulose resin, vinyl chloride resin, polycarbonate resin, acrylonitrile resin, olefin resin, polystyrene resin, polymethacryl Examples of the film include methyl acid resin, polysulfone resin, polyarylate resin, and polyether sulfone resin.
【0028】また、これらフィルムの製造方法として
は、溶剤キャスト法、カレンダー法又は押出し法のいず
れによって製造してもよい。The film may be produced by any of the solvent casting method, calendering method and extrusion method.
【0029】[0029]
【作用】請求項1に係る発明によれば、熱可塑性樹脂フ
ィルムをその縦方向の断面形状が波形となるように賦形
し、かつ、この熱可塑性樹脂フィルムの横方向両端部を
その波形形状を保った状態で固定すると共に、この熱可
塑性樹脂フィルムについてその固定部位を除く縦方向の
自由な収縮を許しながら横一軸方向へ延伸処理してい
る。According to the first aspect of the present invention, the thermoplastic resin film is shaped so that its longitudinal cross-section has a wavy shape, and both lateral ends of the thermoplastic resin film have the wavy shape. The thermoplastic resin film is stretched in the lateral uniaxial direction while allowing free contraction in the longitudinal direction excluding the fixing portion.
【0030】すなわち、波形形状に賦形された熱可塑性
樹脂フィルムをその横方向両端部を波形形状を保ちなが
ら固定した状態で延伸処理を施しているため延伸処理時
におけるフィルムの横方向の部分的収縮(ネックイン)
が起こらず、また、上記固定部位を除く縦方向の自由な
収縮を許しながら横一軸方向へ延伸処理しており上記波
形形状が平坦形状になるまで縦方向の均等な収縮が可能
になるため縦方向の縮小率を一定に制御できる。That is, since the thermoplastic resin film shaped in a corrugated shape is stretched while the lateral ends of the film are fixed while maintaining the corrugated shape, the film is partially stretched in the lateral direction during the stretching treatment. Contraction (neck-in)
Does not occur, and it is stretched in the horizontal uniaxial direction while allowing free contraction in the vertical direction excluding the fixed part, and uniform contraction in the vertical direction is possible until the corrugated shape becomes a flat shape. The reduction ratio in the direction can be controlled to be constant.
【0031】従って、横一軸方向へ延伸処理されたフィ
ルムの全体に亘りその延伸軸(延伸主軸)の方向を一定
方向へ揃えることが可能となる。Therefore, it becomes possible to align the direction of the stretching axis (main stretching axis) in a fixed direction over the entire film stretched in the lateral uniaxial direction.
【0032】[0032]
【実施例】以下、本発明の実施例について詳細に説明す
る。EXAMPLES Examples of the present invention will be described in detail below.
【0033】[実施例1]幅430mm、厚さ100μ
m、ガラス転移点(Tg)190℃のポリサルフォンフ
ィルムpを図1に示す波形(縮小率14%)に賦形し、
その横方向両端部をその波形形状を保った状態で固定す
ると共に、テンター延伸機を使用し、延伸温度190
℃、延伸倍率1.5倍、ヒートセット温度170℃、ヒ
ートセット時間30sec の条件で横一軸延伸処理を施し
た。Example 1 Width 430 mm, Thickness 100 μ
m, the glass transition point (Tg) of the polysulfone film p of 190 ° C. was shaped into the waveform shown in FIG. 1 (reduction ratio 14%),
The both ends in the transverse direction are fixed while maintaining the corrugated shape, and a tenter stretching machine is used to stretch at a stretching temperature of 190.
C., a draw ratio of 1.5 times, a heat setting temperature of 170.degree. C., and a heat setting time of 30 sec were subjected to transverse uniaxial stretching treatment.
【0034】得られた一軸延伸フィルムの評価は、視野
角特性、R値、端部不良率について行った。The uniaxially stretched film thus obtained was evaluated for viewing angle characteristics, R value and edge defect rate.
【0035】視野角特性としては、フィルムの延伸軸及
び延伸軸と直交する軸(フィルム面内)を軸とし、45
度回転させた時のレターデーション値(590nm)と
0度の時のレターデーション値の差の絶対値を、0度の
時のレターデーション値(590nm)で除した値に1
00を掛けた値の大きい方を代用特性とした。The viewing angle characteristic is 45 with respect to the stretching axis of the film and the axis (in the plane of the film) orthogonal to the stretching axis.
The absolute value of the difference between the retardation value (590 nm) when rotated by 0 degree and the retardation value when 0 degree is divided by the retardation value (590 nm) at 0 degree to be 1
The larger value multiplied by 00 was used as the substitute characteristic.
【0036】尚、この値が小さい方が視野角特性が優れ
ていると言える。It can be said that the smaller this value is, the better the viewing angle characteristic is.
【0037】また、上記R値は、測定波長と位相差値が
等しい時の位相差値である。The R value is a phase difference value when the measured wavelength and the phase difference value are equal.
【0038】次に、上記不良率は、偏光顕微鏡により光
学主軸と延伸方向(フィルムの幅方向)のずれを測定し
てこの軸ずれが1度を越える部位を端部不良部とし、フ
ィルムの左右両側の端部不良部の幅寸法のうち大きい方
を代表値として下記式により算出した。Next, regarding the above-mentioned defect rate, the deviation between the optical principal axis and the stretching direction (the width direction of the film) is measured with a polarization microscope, and the portion where this axis deviation exceeds 1 degree is defined as an end defective portion. The larger one of the width dimensions of the defective end portions on both sides was used as a representative value and calculated by the following formula.
【0039】端部不良率=(端部不良部の幅寸法の代表
値/延伸後の幅寸法)×100% この結果を表1に示す。Edge defect rate = (representative value of width dimension of edge defect portion / width dimension after stretching) × 100% The results are shown in Table 1.
【0040】[実施例2]上記ポリサルフォンフィルム
を図2に示す波形(縮小率14%)に賦形した外は実施
例1と同様にして横一軸延伸を施した。Example 2 Transverse uniaxial stretching was performed in the same manner as in Example 1 except that the polysulfone film was shaped into the waveform shown in FIG. 2 (reduction ratio 14%).
【0041】得られた一軸延伸フィルムの視野角特性、
R値、端部不良率を表1に示す。Viewing angle characteristics of the obtained uniaxially stretched film,
Table 1 shows the R value and the end defect rate.
【0042】[比較例1]幅430mm(初期テンター
クリップ間距離400mm)、厚さ100μm、ガラス
転移点(Tg)190℃のポリサルフォンフィルムをテ
ンター延伸機を使用し、延伸温度195℃、延伸倍率
1.35倍、ヒートセット温度170℃の条件で横一軸
延伸した。Comparative Example 1 A polysulfone film having a width of 430 mm (distance between initial tenter clips is 400 mm), a thickness of 100 μm and a glass transition point (Tg) of 190 ° C. was used with a tenter stretching machine at a stretching temperature of 195 ° C. and a stretching ratio of 1 The film was laterally uniaxially stretched under the conditions of 0.35 times and a heat setting temperature of 170 ° C.
【0043】得られた一軸延伸フィルムの視野角特性、
R値、端部不良率を表1に示す。Viewing angle characteristics of the obtained uniaxially stretched film,
Table 1 shows the R value and the end defect rate.
【0044】[比較例2]幅600mm、厚さ100μ
m、ガラス転移点(Tg)190℃のポリサルフォンフ
ィルムを、縦一軸延伸機を使用し、幅方向の自由な収縮
を許しながら、延伸温度200℃、延伸倍率1.5倍で
縦一軸延伸した。[Comparative Example 2] width 600 mm, thickness 100 μ
A polysulfone film having m and a glass transition point (Tg) of 190 ° C. was longitudinally uniaxially stretched at a stretching temperature of 200 ° C. and a stretching ratio of 1.5 times by using a longitudinal uniaxial stretching machine while allowing free shrinkage in the width direction.
【0045】このときの延伸間距離(図4参照)は80
0mmであり、ネックイン率(延伸により収縮した幅/
延伸前の幅×100%)は17.2%であった。The distance between stretchings at this time (see FIG. 4) is 80.
0 mm, neck-in ratio (width contracted by stretching /
The width before stretching × 100%) was 17.2%.
【0046】得られた一軸延伸フィルムの視野角特性、
R値、端部不良率を表1に示す。Viewing angle characteristics of the obtained uniaxially stretched film,
Table 1 shows the R value and the end defect rate.
【0047】[0047]
【表1】 『確認』上記表1の結果から、熱可塑性樹脂フィルムを
波形に賦形し、かつ、このフィルムの横方向両端部をそ
の波形形状を保った状態で固定すると共に、この固定部
位を除く縦方向の自由な収縮を許しながら横一軸方向へ
延伸処理することにより視野角特性を向上できると共
に、フィルム全域の光学主軸を一定方向に揃えて不良率
を改善できることが確認できた。[Table 1] [Confirmation] From the results shown in Table 1 above, the thermoplastic resin film was formed into a corrugated shape, and both lateral ends of the film were fixed while maintaining the corrugated shape. It was confirmed that the viewing angle characteristics can be improved by stretching the film in the lateral uniaxial direction while allowing the free shrinkage, and the defect rate can be improved by aligning the optical principal axes of the entire film in a certain direction.
【0048】[0048]
【発明の効果】請求項1に係る発明によれば、波形形状
に賦形された熱可塑性樹脂フィルムをその横方向両端部
を波形形状を保ちながら固定した状態で延伸処理を施し
ているため延伸処理時におけるフィルムの横方向の部分
的収縮(ネックイン)が起こらず、また、上記固定部位
を除く縦方向の自由な収縮を許しながら横一軸方向へ延
伸処理しており上記波形形状が平坦形状になるまで縦方
向の均等な収縮が可能になるため縦方向の縮小率を一定
に制御でき、延伸処理されたフィルムの全体に亘りその
延伸軸(延伸主軸)の方向を一定方向へ揃えることが可
能となる。According to the invention of claim 1, since the thermoplastic resin film formed in a corrugated shape is stretched while being fixed at both lateral ends thereof while maintaining the corrugated shape, stretching is performed. No lateral shrinkage (neck-in) occurs in the film during processing, and the film is stretched in the lateral uniaxial direction while allowing free contraction in the longitudinal direction excluding the fixed part, and the corrugated shape is flat. Since uniform shrinkage in the machine direction can be achieved until it becomes uniform, the reduction ratio in the machine direction can be controlled to be constant, and the stretching axis (stretching main axis) can be aligned in a constant direction over the entire stretched film. It will be possible.
【0049】従って、フィルムの略全域に亘り均一でか
つ優れた位相差補償性能と視野角特性を有する位相差板
を容易に製造できる効果を有している。Therefore, there is an effect that a retardation plate having uniform and excellent retardation compensation performance and viewing angle characteristics over almost the entire area of the film can be easily manufactured.
【図1】実施例に係る熱可塑性樹脂フィルムの波形を示
す説明図。FIG. 1 is an explanatory view showing a waveform of a thermoplastic resin film according to an example.
【図2】他の実施例に係る熱可塑性樹脂フィルムの波形
を示す説明図。FIG. 2 is an explanatory view showing a waveform of a thermoplastic resin film according to another example.
【図3】本発明に係る熱可塑性樹脂フィルムの縮小率を
説明するための説明図。FIG. 3 is an explanatory view for explaining a reduction rate of the thermoplastic resin film according to the present invention.
【図4】比較例に係る縦一軸延伸法を示す説明図。FIG. 4 is an explanatory view showing a longitudinal uniaxial stretching method according to a comparative example.
【図5】一軸延伸フィルムの斜視図。FIG. 5 is a perspective view of a uniaxially stretched film.
【図6】xz面内で視角θとRxz(θ)/Rxz(0)と
の関係を示すグラフ図。FIG. 6 is a graph showing the relationship between the viewing angle θ and R xz (θ) / R xz (0) in the xz plane.
【図7】yz面内で視角φとRyz(φ)/Ryz(0)と
の関係を示すグラフ図。FIG. 7 is a graph showing the relationship between the viewing angle φ and R yz (φ) / R yz (0) in the yz plane.
p 一軸延伸フィルム p Uniaxially stretched film
Claims (1)
形状が波形となるように賦形し、かつ、この熱可塑性樹
脂フィルムの横方向両端部をその波形形状を保った状態
で固定すると共に、この熱可塑性樹脂フィルムについて
その固定部位を除く縦方向の自由な収縮を許しながら横
一軸方向へ延伸処理することを特徴とする位相差板の製
造方法。1. A thermoplastic resin film is shaped so that its vertical cross-sectional shape is corrugated, and both lateral ends of this thermoplastic resin film are fixed while maintaining its corrugated shape. A method for producing a retardation plate, which is characterized in that the thermoplastic resin film is stretched in the lateral uniaxial direction while allowing free contraction in the longitudinal direction excluding the fixing portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8534492A JPH05288932A (en) | 1992-04-07 | 1992-04-07 | Production of phase difference plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8534492A JPH05288932A (en) | 1992-04-07 | 1992-04-07 | Production of phase difference plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05288932A true JPH05288932A (en) | 1993-11-05 |
Family
ID=13856048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8534492A Pending JPH05288932A (en) | 1992-04-07 | 1992-04-07 | Production of phase difference plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05288932A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6916440B2 (en) | 2001-05-31 | 2005-07-12 | 3M Innovative Properties Company | Processes and apparatus for making transversely drawn films with substantially uniaxial character |
US6936209B2 (en) | 2002-11-27 | 2005-08-30 | 3M Innovative Properties Company | Methods and devices for processing polymer films |
US6949212B2 (en) | 2002-11-27 | 2005-09-27 | 3M Innovative Properties Company | Methods and devices for stretching polymer films |
US7153122B2 (en) | 2002-05-28 | 2006-12-26 | 3M Innovative Properties Company | Apparatus for making transversely drawn films with substantially uniaxial character |
US9144935B2 (en) | 2007-12-27 | 2015-09-29 | Kaneka Corporation | Method for producing stretched film, method for producing film, and film |
US10350818B2 (en) | 2005-04-08 | 2019-07-16 | 3M Innovative Properties Company | Heat setting optical films |
-
1992
- 1992-04-07 JP JP8534492A patent/JPH05288932A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2277682A2 (en) | 2001-05-31 | 2011-01-26 | 3M Innovative Properties Co. | Process and apparatus for making transversely drawn films with substantially uniaxial orientation |
US10913199B2 (en) | 2001-05-31 | 2021-02-09 | 3M Innovative Properties Company | Processes and apparatus for making transversely drawn films with substantially uniaxial character |
US6939499B2 (en) | 2001-05-31 | 2005-09-06 | 3M Innovative Properties Company | Processes and apparatus for making transversely drawn films with substantially uniaxial character |
US6916440B2 (en) | 2001-05-31 | 2005-07-12 | 3M Innovative Properties Company | Processes and apparatus for making transversely drawn films with substantially uniaxial character |
US9314961B2 (en) | 2001-05-31 | 2016-04-19 | 3M Innovative Properties Company | Processes and apparatus for making transversely drawn films with substantially uniaxial character |
EP2394805A2 (en) | 2001-05-31 | 2011-12-14 | 3M Innovative Properties Co. | Processes and apparatus for making transversely drawn films with substantially uniaxial character |
US7229271B2 (en) | 2001-05-31 | 2007-06-12 | 3M Innovative Properties Company | Apparatus for making transversely drawn films with substantially uniaxial character |
US7153122B2 (en) | 2002-05-28 | 2006-12-26 | 3M Innovative Properties Company | Apparatus for making transversely drawn films with substantially uniaxial character |
US6949212B2 (en) | 2002-11-27 | 2005-09-27 | 3M Innovative Properties Company | Methods and devices for stretching polymer films |
US7316558B2 (en) | 2002-11-27 | 2008-01-08 | 3M Innovative Properties Company | Devices for stretching polymer films |
US7153123B2 (en) | 2002-11-27 | 2006-12-26 | 3M Innovative Properties Company | Devices for conveying, stretching, and taking-away polymer films |
US7104776B2 (en) | 2002-11-27 | 2006-09-12 | 3M Innovative Properties Company | Methods and devices for stretching polymer films |
US6936209B2 (en) | 2002-11-27 | 2005-08-30 | 3M Innovative Properties Company | Methods and devices for processing polymer films |
US10350818B2 (en) | 2005-04-08 | 2019-07-16 | 3M Innovative Properties Company | Heat setting optical films |
US9144935B2 (en) | 2007-12-27 | 2015-09-29 | Kaneka Corporation | Method for producing stretched film, method for producing film, and film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007015369A1 (en) | Process for producing cellulose ester film and liquid crystal display device using the same | |
JP2002326278A (en) | Method for producing oriented film, polarizing film, polarizing plate, and liquid crystal display | |
JP2612196B2 (en) | Phase difference film and method of manufacturing the same | |
EP0458635B1 (en) | Polymeric film optical phase retarder and process for its production | |
JPH05288931A (en) | Production of phase difference plate | |
JPH0651119A (en) | Production of phase difference plate | |
JPH05288932A (en) | Production of phase difference plate | |
JPH0862422A (en) | Phase difference film and its manufacture | |
JPH0511114A (en) | Production of phase difference plate | |
JPH02191904A (en) | Phase difference film and its production | |
JPH0627321A (en) | Production of phase difference plate | |
JPH09230316A (en) | Optical film and its production | |
JPH06160623A (en) | Manufacture of phase difference plate | |
JPH0830765B2 (en) | Method of manufacturing retardation film | |
JPH05150115A (en) | Production of phase difference plate | |
JPH06148428A (en) | Production of phase difference plate | |
JPH05127019A (en) | Production of phase difference plate | |
TWI489156B (en) | Optical film, polarizing plate and liquid crystal display device | |
JPH06300917A (en) | Production of phase difference plate | |
JPH0511111A (en) | Production of phase difference plate | |
JPH06308325A (en) | Production of phase difference plate | |
JP3383359B2 (en) | Method for manufacturing retardation film | |
JPH06235816A (en) | Production of phase shifter plate | |
JP2592697B2 (en) | Method for manufacturing retardation film | |
JPH06160624A (en) | Manufacture of phase difference plate |