Nothing Special   »   [go: up one dir, main page]

JPH0862422A - Phase difference film and its manufacture - Google Patents

Phase difference film and its manufacture

Info

Publication number
JPH0862422A
JPH0862422A JP7036933A JP3693395A JPH0862422A JP H0862422 A JPH0862422 A JP H0862422A JP 7036933 A JP7036933 A JP 7036933A JP 3693395 A JP3693395 A JP 3693395A JP H0862422 A JPH0862422 A JP H0862422A
Authority
JP
Japan
Prior art keywords
film
retardation value
retardation
thermoplastic resin
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7036933A
Other languages
Japanese (ja)
Inventor
Akiko Shimizu
朗子 清水
Koji Azuma
浩二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7036933A priority Critical patent/JPH0862422A/en
Publication of JPH0862422A publication Critical patent/JPH0862422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE: To provide a phase difference film which can be used as an optical compensation layer for various types of liquid crystal display devices by providing the film with specific optical characteristics. CONSTITUTION: A thermoplastic resin film is preheated in the condition of Tg<Tp<=(Tg+100 deg.C) (Tg is a glass-transition temperature of thermoplastic resin and Tp is preheating temperature). The preheated film is extended along an axis at a deformation rate of 150-1000%/minute and extension magnification of 2-3 in a condition in which shrinkage does not occur in the orthogonal direction to an extended axis in the condition of Tg<Ts<=(Tg+100 deg.C) (Ts is extension temperature). The film extended along one axis is kept warm (heat treated) for a predetermined time in the condition of (Ts-50 deg.C)<=Ths<Ts (Ths is heat treatment temperature). Thus obtained phase difference film has optical characteristics that retardation value in the face is 50-300nm and the ratio of retardation value in the face to retardation value in the direction of thickness is 0.5 or more and 1.8 or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は位相差フィルムに関する
ものである。
FIELD OF THE INVENTION The present invention relates to a retardation film.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】位相
差フィルムはSTN型液晶表示装置の光学補償層として
一般に使用されているが、近年ではSTN型のみならず
それ以外の方式の液晶表示装置に対する光学補償層とし
ても種々の応用が検討されている。例えば、最近STN
およびTN型液晶表示装置等において、用途に応じて特
殊な視野角特性が要求される場合があり、その結果それ
ぞれの用途に応じて種々の光学特性を有する位相差フィ
ルムが必要とされるようになっている。
2. Description of the Related Art A retardation film is generally used as an optical compensation layer of an STN type liquid crystal display device, but in recent years, not only for the STN type liquid crystal display device but also for other type liquid crystal display devices. Various applications have also been studied as an optical compensation layer. For example, recently STN
In TN type liquid crystal display devices and the like, special viewing angle characteristics may be required depending on applications, and as a result, retardation films having various optical characteristics may be required depending on applications. Has become.

【0003】しかし、現状で開発されている位相差フィ
ルムは前述のSTN型液晶表示装置に用いられている一
軸配向性に近い特性を持つもの、およびEP−A−05
41308号公報に記載されているような面内の屈折率
と厚み方向の屈折率が異なる無機層状化合物層からなる
完全二軸配向性に近い特性を有する位相差フィルムの2
種に限られ、たとえそれらを組み合わせてもこの2種の
位相差フィルムの中間の特性を有するような位相差フィ
ルムはこれまで開発されていなかった。
However, the retardation films currently under development have characteristics close to the uniaxial orientation used in the above-mentioned STN type liquid crystal display device, and EP-A-05.
No. 41308, which is a retardation film having properties close to perfect biaxial orientation, which is composed of an inorganic layered compound layer having different in-plane and in-thickness refractive indices.
The retardation film is limited to the above-mentioned types, and even if they are combined with each other, a retardation film having an intermediate property between these two types of retardation films has not been developed so far.

【0004】また、ユーロディスプレイ’93の予稿集
p.149においては、ベンド配向型のOCBモードの
液晶表示装置(πセル)に対する光学補償層として、n
X =1.618、nY =1.606、nZ =1.49
3、フィルム厚み9.296μmという屈折率構造を有
する位相差フィルムが有効であろうとのシミュレーショ
ンがなされている。これから計算される位相差フィルム
の面内レターデーション値は112nm、(面内のレタ
ーデーション値)/(厚み方向のレターデーション値)
の比は0.101である。
[0004] In addition, a collection of proceedings of Eurodisplay '93 p. 149, n is used as an optical compensation layer for a bend alignment type OCB mode liquid crystal display device (π cell).
X = 1.618, n Y = 1.606, n Z = 1.49
3. It has been simulated that a retardation film having a refractive index structure with a film thickness of 9.296 μm would be effective. The in-plane retardation value of the retardation film calculated from this is 112 nm, (in-plane retardation value) / (thickness direction retardation value)
The ratio is 0.101.

【0005】しかし、これまでSTN型液晶表示装置に
用いられてきた位相差フィルムは一軸配向性のため、
(面内のレターデーション値)/(厚み方向のレターデ
ーション値)の比が2.0以上であり、一方、EP−A
−0541308号公報に記載されているような面内の
屈折率と厚み方向の屈折率が異なる無機層状化合物層か
らなる位相差フィルムでは面内のレターデーションが0
〜50nmのものしか得られないため、現在量産可能な
位相差フィルムとして開発されているものからは例えば
上記のπセルの光学補償層として使用可能な特性を有す
る位相差フィルムを得ることはできない。このため、従
来とは異なる光学特性を有する位相差フィルムの開発が
必要であり、特に軽量な熱可塑性樹脂を用いた位相差フ
ィルムの開発、及びかかる位相差フィルムを効率的にし
かも工業的にも有利に製造する方法の開発が望まれてい
る。
However, since the retardation film used in the STN type liquid crystal display device has been uniaxially oriented,
The ratio of (in-plane retardation value) / (retardation value in the thickness direction) is 2.0 or more, while EP-A
In the retardation film composed of an inorganic layered compound layer having an in-plane refractive index and a thickness-direction refractive index different from each other as described in JP-A-0541308, the in-plane retardation is 0.
Since only a film having a thickness of up to 50 nm can be obtained, it is not possible to obtain a retardation film having properties that can be used as, for example, the optical compensation layer of the above-mentioned π cell from the films currently developed as a mass production retardation film. For this reason, it is necessary to develop a retardation film having optical properties different from those of the conventional one, and particularly to develop a retardation film using a lightweight thermoplastic resin, and to efficiently and industrially use such a retardation film. It is desired to develop an advantageous manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために検討を行なった結果、面内のレターデ
ーション値が50〜300nmであり、(面内のレター
デーション値)/(厚み方向のレターデーション値)の
比が0.5以上1.8以下なる光学特性を有する位相差
フィルムの開発に成功し本発明に到達した。さらに、こ
の面内のレターデーション値が50〜300nmであ
り、(面内のレターデーション値)/(厚み方向のレタ
ーデーション値)の比が0.5以上1.8以下なる光学
特性を有する位相差フィルムと無機層状化合物層からな
る位相差フィルムが積層された(面内のレターデーショ
ン値)/(厚み方向のレターデーション値)の比が0.
03以上0.3未満である積層位相差フィルムの開発に
成功し本発明に到達した。
Means for Solving the Problems As a result of studies to solve the above problems, the inventors found that the in-plane retardation value was 50 to 300 nm, and the (in-plane retardation value) / The retardation film having optical characteristics in which the ratio of (retardation value in the thickness direction) is 0.5 or more and 1.8 or less has been successfully developed, and the present invention has been achieved. Further, the in-plane retardation value is 50 to 300 nm, and the ratio of (in-plane retardation value) / (retardation value in the thickness direction) is 0.5 or more and 1.8 or less. The ratio of (in-plane retardation value) / (retardation value in the thickness direction) in which the retardation film and the retardation film composed of the inorganic layered compound layer are laminated is 0.
The development of a laminated retardation film having a thickness of 03 or more and less than 0.3 has been successful and the present invention has been achieved.

【0007】すなわち本発明は、面内のレターデーショ
ン値が50〜300nmであり、(面内のレターデーシ
ョン値)/(厚み方向のレターデーション値)の比が
0.5以上1.8以下である熱可塑性樹脂フィルムから
なる位相差フィルムおよびその製法、更には該位相差フ
ィルム1枚または2枚以上と無機層状化合物層からなる
位相差フィルム1枚または2枚以上とが積層された(面
内のレターデーション値)/(厚み方向のレターデーシ
ョン値)の比が0.03以上0.3未満である積層位相
差フィルムに関するものである。
That is, in the present invention, the in-plane retardation value is 50 to 300 nm and the ratio of (in-plane retardation value) / (retardation value in the thickness direction) is 0.5 or more and 1.8 or less. A retardation film made of a thermoplastic resin film and a method for producing the same, further, one or more retardation films and one or more retardation films made of an inorganic layered compound layer were laminated (in-plane Retardation value) / (retardation value in the thickness direction) of 0.03 or more and less than 0.3.

【0008】熱可塑性樹脂としては、透明性に優れてい
るものが好ましく用いられる。例えば、ポリカーボネー
ト系樹脂、2酢酸セルロース、ポリビニルアルコール、
ポリサルフォン、ポリエーテルサルフォン、ポリアリレ
ート、等が挙げられる。中でもポリカーボネート系樹
脂、ポリサルフォンが更に好ましい。
As the thermoplastic resin, those having excellent transparency are preferably used. For example, polycarbonate-based resin, cellulose acetate, polyvinyl alcohol,
Examples thereof include polysulfone, polyether sulfone, polyarylate, and the like. Among them, polycarbonate resin and polysulfone are more preferable.

【0009】熱可塑性樹脂フィルムとしては通常、溶剤
キャスト法を用いて製造されたものが用いられる。熱可
塑性樹脂フィルムの厚みは、例えば50〜300μmで
あり、好ましくは100〜200μmである。本発明の
位相差フィルムは例えば、以下の方法で製造できる。
As the thermoplastic resin film, a film produced by using a solvent casting method is usually used. The thickness of the thermoplastic resin film is, for example, 50 to 300 μm, preferably 100 to 200 μm. The retardation film of the present invention can be produced, for example, by the following method.

【0010】溶剤キャスト法により製造された熱可塑性
樹脂フィルムは、予熱部、延伸部、熱処理部を連続して
備えたテンタ−内において、予熱、一軸延伸及び熱処理
が連続して施される。まず、予熱とは、次の延伸処理に
おいて良好に延伸できるよう予め熱可塑性樹脂フィルム
を加熱により軟化させておく処理を言う。装置内に導入
された熱可塑性樹脂フィルムは、Tg<Tp≦(Tg+
100℃)(但し、Tgは熱可塑性樹脂のガラス転移温
度を示し、Tpは予熱温度を示す)で予熱されるが、予
熱時間は樹脂を必要なだけ軟化させかつ必要以上の変形
を抑制するために通常は0.1分〜1分間が好ましい。
The thermoplastic resin film produced by the solvent casting method is continuously subjected to preheating, uniaxial stretching and heat treatment in a tenter provided with a preheating portion, a stretching portion and a heat treatment portion in succession. First, preheating refers to a treatment in which the thermoplastic resin film is previously softened by heating so that it can be favorably stretched in the subsequent stretching treatment. The thermoplastic resin film introduced into the device has Tg <Tp ≦ (Tg +
100 ° C) (however, Tg represents the glass transition temperature of the thermoplastic resin and Tp represents the preheating temperature), but the preheating time is for softening the resin as much as necessary and suppressing excessive deformation. Generally, 0.1 minute to 1 minute is preferable.

【0011】次いで、予熱されたフィルムは延伸部に導
入され、Tg<Ts≦(Tg+100℃)(但し、Ts
は延伸温度を示す。)で、延伸軸と直交する方向の収縮
を起こさないようにした状態で、変形速度150%/分
〜1000%/分、延伸倍率2〜3倍でフィルムの進行
方向と直交する方向へ横一軸延伸される。ここで、延伸
温度、変形速度、延伸倍率は、原反として用いる熱可塑
性樹脂フィルムの種類、厚み、および必要とされる位相
差フィルムの面内のレターデーション値、(面内のレタ
ーデーション値)/(厚み方向のレターデーション値)
の比の値、厚み等により適宜選択される。例えば、ポリ
カーボネートフィルムを用いる場合には、延伸温度は1
90〜220℃、変形速度は150〜600%/mi
n、延伸倍率2〜3倍とするのが好ましい。一般的に
は、延伸温度を低下させるか、変形速度を上昇させる、
あるいは延伸倍率を増加させると面内のレターデーショ
ン値は増加する傾向があり、また、延伸倍率を増加させ
ることにより(面内のレターデーション値)/(厚み方
向のレターデーション値)の比の値は大きくなる傾向が
ある。
Next, the preheated film is introduced into the stretched portion and Tg <Ts ≦ (Tg + 100 ° C.) (where Ts
Indicates the stretching temperature. ), In a state in which the shrinkage in the direction orthogonal to the stretching axis does not occur, the deformation rate is 150% / min to 1000% / min, the stretching ratio is 2 to 3 times, and the film is transversely uniaxial in the direction orthogonal to the traveling direction of the film. It is stretched. Here, the stretching temperature, the deformation rate, and the stretching ratio are the type and thickness of the thermoplastic resin film used as the raw fabric, and the required in-plane retardation value of the retardation film, (in-plane retardation value). / (Retardation value in the thickness direction)
Is appropriately selected depending on the value of the ratio, thickness, etc. For example, when a polycarbonate film is used, the stretching temperature is 1
90-220 ° C, deformation rate 150-600% / mi
It is preferable that the stretching ratio is n and the draw ratio is 2 to 3 times. Generally, lowering the stretching temperature or increasing the deformation rate,
Alternatively, if the stretching ratio is increased, the in-plane retardation value tends to increase, and by increasing the stretching ratio, the value of the ratio of (in-plane retardation value) / (thickness retardation value) Tends to grow.

【0012】さらに、一軸延伸されたフィルムは熱処理
部に導入され、フィルムの配向を固定する等の目的で延
伸後のチャック幅(延伸軸方向の幅)を保った状態で、
(Ts−50℃)≦Ths≦Ts(但し、Thsは熱処
理温度を示す。)で、0.1分〜1分間保温される。こ
の保温を通常、熱処理と称する。このとき、必要な場合
にはフィルムを延伸軸方向に0〜10%の範囲で収縮さ
せてもよい。収縮させるには例えば、チャック幅を所要
の収縮率となるように狭めればよい。前記したテンター
による予熱、一軸延伸及び熱処理の連続処理方法以外で
行うこともできるが、工業的な製造においてはテンター
を用いる方法が好ましい。
Further, the uniaxially stretched film is introduced into a heat treatment section, and the chuck width (width in the stretching axis direction) after stretching is maintained for the purpose of fixing the orientation of the film, etc.
(Ts−50 ° C.) ≦ Ths ≦ Ts (where Ths indicates the heat treatment temperature), and the temperature is kept for 0.1 minute to 1 minute. This heat retention is usually called heat treatment. At this time, if necessary, the film may be shrunk in the stretching axis direction in the range of 0 to 10%. For contraction, for example, the chuck width may be narrowed so as to have a required contraction rate. Although it can be carried out by a method other than the continuous treatment method of preheating by a tenter, uniaxial stretching and heat treatment, a method using a tenter is preferable in industrial production.

【0013】得られる位相差フィルムの面内のレターデ
ーション値は50nm〜300nmであり、(面内のレ
ターデーション値)/(厚み方向のレターデーション
値)の比は0.5以上1.8以下であり、従来の位相差
フィルムとは全く異なる光学特性を有している。
The in-plane retardation value of the obtained retardation film is 50 nm to 300 nm, and the ratio of (in-plane retardation value) / (thickness retardation value) is 0.5 or more and 1.8 or less. And has completely different optical characteristics from the conventional retardation film.

【0014】面内のレターデーション値および(面内の
レターデーション値)/(厚み方向のレターデーション
値)の比の値は、位相差フィルムの用途により適宜選択
される。面内のレターデーション値は、好ましくは80
nm〜200nmであり、厚み方向のレターデーション
値は、好ましくは45nm〜400nmである。位相差
フィルムの厚みは、ハンドリング性の点から好ましくは
50〜150μmである。
The in-plane retardation value and the ratio of (in-plane retardation value) / (retardation value in the thickness direction) are appropriately selected depending on the application of the retardation film. The in-plane retardation value is preferably 80
nm-200 nm, and the retardation value in the thickness direction is preferably 45 nm-400 nm. The thickness of the retardation film is preferably 50 to 150 μm from the viewpoint of handleability.

【0015】本発明の位相差フィルムは、単独もしくは
他の位相差フィルムと組み合わせて種々の液晶表示装置
の光学補償層として使用することができる。例えば、E
P−A−0541308号公報に記載されている、面内
の屈折率と厚み方向の屈折率が異なる無機層状化合物層
からなり、面内のレターデーション値が0〜50nmで
あり、厚み方向のレタ−デ−ション値が50nm〜10
00nmの位相差フィルムと組み合わせて用いることが
できる。
The retardation film of the present invention can be used alone or in combination with other retardation films as an optical compensation layer for various liquid crystal display devices. For example, E
P-A-0541308, which is composed of an inorganic layered compound layer having different in-plane refractive index and refractive index in the thickness direction, has an in-plane retardation value of 0 to 50 nm, and has a thickness direction letter -Dation value is 50 nm to 10
It can be used in combination with a retardation film of 00 nm.

【0016】無機層状化合物層からなる位相差フィルム
は、例えば、EP−A−0541308号公報に記載さ
れているように無機層状化合物を溶媒に膨潤または分散
させた後、塗布、乾燥させることにより得ることができ
る。無機層状化合物としては、例えば、粘土鉱物を用い
ることができる。好ましくは、化学合成され不純物の少
ないナトリウム4珪酸雲母やスメクタイト族であり、ス
メクタイト族に属するものとしては、モンモリロナイ
ト、バイデライト、ノントロナイト、サポナイト、ヘク
トライト、ソーコナイトおよびそれらと類似の結晶構造
を持つ化学合成品等が例示できる。無機層状化合物を膨
潤又は分散させるために用いる溶媒としては、例えば、
ジメチルホルムアミド、ジメチルスルホキシド、ニトロ
メタン、水、メタノール、エチレングリコール等から適
宜選択して用いることができる。
The retardation film comprising an inorganic layered compound layer is obtained, for example, by swelling or dispersing an inorganic layered compound in a solvent as described in EP-A-0541308, then coating and drying. be able to. As the inorganic layered compound, for example, a clay mineral can be used. Preferred are sodium tetrasilicate mica and smectite group which are chemically synthesized and have few impurities, and those belonging to the smectite group have montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite and crystal structures similar to them. Examples include chemically synthesized products. As the solvent used for swelling or dispersing the inorganic layered compound, for example,
It can be appropriately selected and used from dimethylformamide, dimethylsulfoxide, nitromethane, water, methanol, ethylene glycol and the like.

【0017】無機層状化合物層を形成するにあたって
は、EP−A−0541308号公報に記載されている
ように製膜性の向上及び無機層状化合物層の割れ防止等
の力学的性質の向上のために、無機層状化合物の分散液
に光学的に透明な親水性樹脂を混合しておくことが好ま
しく、無機層状化合物/光学的に透明な樹脂の体積比
は、例えば、0.1〜10程度である。光学的に透明な
親水性樹脂としては、例えば、ポリビニルアルコールが
挙げられる。また、光学的に透明な樹脂フィルム上に無
機層状化合物層を形成させることによって、光学的に透
明な樹脂フィルムで補強された無機層状化合物層からな
る位相差フィルムとすることもできる。本発明において
はかかる態様をも無機層状化合物層からなる位相差フィ
ルムと言う。
In forming the inorganic layered compound layer, as described in EP-A-0541308, in order to improve film-forming properties and mechanical properties such as prevention of cracking of the inorganic layered compound layer. It is preferable to mix an optically transparent hydrophilic resin in the dispersion liquid of the inorganic layered compound, and the volume ratio of the inorganic layered compound / the optically transparent resin is, for example, about 0.1 to 10. . Examples of the optically transparent hydrophilic resin include polyvinyl alcohol. Further, by forming an inorganic layered compound layer on an optically transparent resin film, a retardation film composed of an inorganic layered compound layer reinforced with an optically transparent resin film can be obtained. In the present invention, such an embodiment is also referred to as a retardation film including an inorganic layered compound layer.

【0018】本発明の位相差フィルムと無機層状化合物
層からなる位相差フィルムを積層する方法としては特に
限定されないが、例えば、本発明の位相差フィルム上に
直接無機層状化合物層を形成させて積層する方法、ある
いはEP−A−0541308号公報に記載されている
ような光学的に透明な基板上に無機層状化合物層が形成
された無機層状化合物層からなる位相差フィルムと、本
発明の位相差フィルムとを接着剤あるいは粘着剤等によ
り貼合する方法等を用いることができる。積層する各々
の位相差フィルムの枚数、および各々の位相差フィルム
の光学特性、すなわち面内のレターデーションおよび
(面内のレターデーション値)/(厚み方向のレターデ
ーション値)の比の値等は、積層位相差フィルムとして
最終的に必要とされる光学特性に応じて適宜選択され
る。
The method for laminating the retardation film comprising the retardation film of the present invention and the inorganic layered compound layer is not particularly limited, but for example, the inorganic layered compound layer is directly formed on the retardation film of the present invention and laminated. Or a retardation film comprising an inorganic layered compound layer in which an inorganic layered compound layer is formed on an optically transparent substrate as described in EP-A-0541308 and a retardation of the present invention. A method of laminating the film with an adhesive or a pressure-sensitive adhesive can be used. The number of laminated retardation films and the optical properties of each retardation film, that is, the in-plane retardation and the ratio of (in-plane retardation value) / (retardation value in the thickness direction) are The layered retardation film is appropriately selected according to the optical characteristics finally required.

【0019】また、透明基板上に無機層状化合物層が形
成された無機層状化合物層からなる位相差フィルム1枚
または2枚以上と、本発明の位相差フィルム1枚または
2枚以上の積層にあたり、該無機層状化合物層からなる
位相差フィルムが面内のレターデーションを有する場合
には、最終的に必要とされる積層位相差フィルムの光学
特性に応じて、該無機層状化合物層からなる位相差フィ
ルムの各々の遅相軸と本発明の位相差フィルムの各々の
遅相軸を互いに平行あるいは直交するように積層するこ
とにより、最終的に必要とされる光学特性に合うよう調
節することができる。本発明の位相差フィルム1枚また
は2枚以上と無機層状化合物層からなる位相差フィルム
1枚または2枚以上とを積層した積層位相差フィルム
は、(面内のレターデーション値)/(厚み方向のレタ
ーデーション値)の比が0.03以上0.3未満の光学
補償層として用いることができる。
In addition, when laminating one or more retardation films composed of an inorganic layered compound layer having an inorganic layered compound layer formed on a transparent substrate and one or more retardation films of the present invention, When the retardation film composed of the inorganic layered compound layer has an in-plane retardation, the retardation film composed of the inorganic layered compound layer depends on the finally required optical properties of the laminated retardation film. By laminating each slow axis of the above and each slow axis of the retardation film of the present invention so as to be parallel or orthogonal to each other, it is possible to adjust so as to meet the finally required optical characteristics. A laminated retardation film obtained by laminating one or more retardation films of the present invention and one or more retardation films composed of an inorganic layered compound layer has an in-plane retardation value / (thickness direction). It can be used as an optical compensation layer having a ratio of (retardation value) of 0.03 or more and less than 0.3.

【0020】[0020]

【発明の効果】本発明の位相差フィルムは、面内のレタ
ーデーション値が50〜300nmであり、(面内のレ
ターデーション値)/(厚み方向のレターデーション
値)の比が0.5以上1.8以下という新規な光学特性
を有しており、単独もしくは他の位相差フィルムと組み
合わせて種々の方式の液晶表示装置に対する光学補償層
として用いることができる。さらに、本発明の位相差フ
ィルム1枚または2枚以上と無機層状化合物層からなる
位相差フィルム1枚または2枚以上とを積層した積層位
相差フィルムは、(面内のレターデーション値)/(厚
み方向のレターデーション値)の比が0.03以上0.
3未満の光学補償層として用いることができる。また本
発明方法により、上記の位相差フィルムを効率的かつ安
定的にしかも量産性よく、即ち工業的にも極めて有利に
製造することができる。
The retardation film of the present invention has an in-plane retardation value of 50 to 300 nm and a ratio of (in-plane retardation value) / (retardation value in the thickness direction) of 0.5 or more. It has a novel optical property of 1.8 or less, and can be used alone or in combination with other retardation films as an optical compensation layer for liquid crystal display devices of various systems. Furthermore, a laminated retardation film obtained by laminating one or more retardation films of the present invention and one or more retardation films composed of an inorganic layered compound layer has a (in-plane retardation value) / ( The ratio of the retardation value in the thickness direction is 0.03 or more.
It can be used as an optical compensation layer of less than 3. In addition, according to the method of the present invention, the above retardation film can be efficiently and stably produced with good mass productivity, that is, it is industrially extremely advantageous.

【0021】[0021]

【実施例】以下実施例により本発明を詳細に説明する
が、本発明はこれに限定されるものではない。なお、面
内のレタ−デ−ション値は、セナルモンコンペンセータ
ーを装備した偏光顕微鏡を用いて、フィルム面と光学系
が垂直となるようにして求めた。また、厚み方向のレタ
−デ−ション値は、以下の式に従って求めた。 厚み方向のレターデーション値=((nX +nY )/2
−nZ )×d (但し、nX はフィルム面内の最大屈折率、nY はフィ
ルム面内でnX の垂直方向の屈折率、nZ はフィルム厚
み方向の屈折率、dはフィルム厚みを示す。)本発明の
位相差フィルム1枚または2枚以上と無機層状化合物層
からなる位相差フィルム1枚または2枚以上とを積層し
た積層位相差フィルムは、その全体を一層の位相差フィ
ルムとみて、上記と同様にして、面内のレターデーショ
ン値及び厚み方向のレターデーション値を求めた。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto. The in-plane retardation value was determined by using a polarizing microscope equipped with a Senarmont compensator so that the film surface and the optical system were perpendicular to each other. The retardation value in the thickness direction was calculated according to the following formula. Retardation value in the thickness direction = ((n X + n Y ) / 2
−n Z ) × d (where n X is the maximum refractive index in the film plane, n Y is the vertical refractive index of n X in the film plane, n Z is the refractive index in the film thickness direction, and d is the film thickness. The laminated retardation film obtained by laminating one or more retardation films of the present invention and one or more retardation films composed of an inorganic layered compound layer is a single retardation film. Then, the in-plane retardation value and the thickness direction retardation value were determined in the same manner as above.

【0022】実施例1 溶剤キャスト法により、ポリカーボネート(Tg:14
8℃)の連続フィルム(厚さ140μm)を作製した。
このフィルムを、予熱部が3m、延伸部が6m、熱処理
部が3mであるテンター内に導入し、予熱処理(温度2
20℃、20秒間)、フィルムの進行方向と直交する方
向への横一軸延伸処理(変形速度200%/分、延伸温
度207℃、延伸倍率2.2倍)及び熱処理(温度18
0℃、20秒間、延伸軸方向の収縮率0%)を連続的に
行った。得られた位相差フィルムの厚みは58μm、面
内のレターデーション値は101nm、厚み方向のレタ
ーデーション値は143nmであり、(面内のレターデ
ーション値)/(厚み方向のレターデーション値)の比
は0.706であった。
Example 1 Polycarbonate (Tg: 14
A continuous film (thickness 140 μm) at 8 ° C. was produced.
This film was introduced into a tenter having a preheating section of 3 m, a stretching section of 6 m, and a heat treatment section of 3 m, and was preheated (temperature 2
20 ° C., 20 seconds), transverse uniaxial stretching treatment in a direction orthogonal to the film advancing direction (deformation speed 200% / min, stretching temperature 207 ° C., stretching ratio 2.2 times) and heat treatment (temperature 18).
A shrinkage rate of 0% at 0 ° C. for 20 seconds was continuously performed. The thickness of the obtained retardation film was 58 μm, the in-plane retardation value was 101 nm, the thickness direction retardation value was 143 nm, and the ratio of (in-plane retardation value) / (thickness direction retardation value) Was 0.706.

【0023】実施例2 溶剤キャスト法により、ポリカーボネート(Tg:14
8℃)の連続フィルム(厚さ140μm)を作製した。
このフィルムを、実施例1で用いたのと同様のテンター
内に導入し、予熱処理(温度220℃、20秒間)、フ
ィルムの進行方向と直交する方向への横一軸延伸処理
(変形速度233%/分、延伸温度200℃、延伸倍率
2.4倍)及び熱処理(温度180℃、20秒間、延伸
軸方向の収縮率8.3%)を連続して施した。得られた
位相差フィルムの厚みは60μm、面内のレターデーシ
ョン値は117nm、厚み方向のレターデーション値は
159nmであり、(面内のレターデーション値)/
(厚み方向のレターデーション値)の比は0.736で
あった。
Example 2 Polycarbonate (Tg: 14
A continuous film (thickness 140 μm) at 8 ° C. was produced.
This film was introduced into a tenter similar to that used in Example 1, preheated (temperature: 220 ° C., 20 seconds), and transversely uniaxially stretched in a direction orthogonal to the traveling direction of the film (deformation rate 233%). / Min, stretching temperature 200 ° C., stretching ratio 2.4 times) and heat treatment (temperature 180 ° C., 20 seconds, shrinkage ratio in stretching axis direction 8.3%). The thickness of the obtained retardation film was 60 μm, the in-plane retardation value was 117 nm, the thickness direction retardation value was 159 nm, and the (in-plane retardation value) /
The ratio of (retardation value in the thickness direction) was 0.736.

【0024】実施例3 溶剤キャスト法により、ポリカーボネート(Tg:14
8℃)の連続フィルム(厚さ185μm)を作製した。
このフィルムを、実施例1で用いたのと同様のテンター
内に導入し、予熱処理(温度220℃、10秒間)、フ
ィルムの進行方向と直交する方向への横一軸延伸処理
(変形速度467%/分、延伸温度208℃、延伸倍率
2.4倍)及び熱処理(温度200℃、10秒間、延伸
軸方向の収縮率0%)を連続して施した。得られた位相
差フィルムの厚みは70μm、面内のレターデーション
値は119nm、厚み方向のレターデーション値は14
3nmであり、(面内のレターデーション値)/(厚み
方向のレターデーション値)の比は0.832であっ
た。
Example 3 Polycarbonate (Tg: 14
A continuous film (thickness: 185 μm) at 8 ° C. was prepared.
This film was introduced into the same tenter as that used in Example 1, preheated (temperature: 220 ° C., 10 seconds), and transversely uniaxially stretched in a direction orthogonal to the traveling direction of the film (deformation rate: 467%). / Min, stretching temperature of 208 ° C., stretching ratio of 2.4 times) and heat treatment (temperature of 200 ° C., 10 seconds, shrinkage ratio of stretching axis direction 0%) were continuously applied. The obtained retardation film has a thickness of 70 μm, an in-plane retardation value of 119 nm, and a thickness direction retardation value of 14
It was 3 nm, and the ratio of (in-plane retardation value) / (retardation value in the thickness direction) was 0.832.

【0025】実施例4 厚み80μmのトリアセチルセルロースフィルム(富士
写真フィルム株式会社製:フジタック)の表面をケン化
処理したフィルムの上に、合成ヘクトライト(Lapo
rte社製:ラポナイトXLS)の5%水分散液とポリ
ビニルアルコール(クラレ株式会社製:ポバール10
3、ケン化度98.5%:重合度300)の2.5%水
溶液とを3:7(体積比)で混合して得られた水分散液
を、乾燥後の膜厚が23μmになるように成膜し、トリ
アセチルセルロースフィルム上に無機層状化合物層が形
成された無機層状化合物層からなる位相差フィルム(以
下、フィルムA)を得た。フィルムAの面内のレターデ
ーション値は8nmであり、厚み方向のレターデーショ
ン値は370nmであった。またフィルムAの厚みは1
03μmであった。
Example 4 A synthetic hectorite (Lapolite) (Lapo) was placed on a film obtained by saponifying the surface of a triacetyl cellulose film having a thickness of 80 μm (Fujitac, manufactured by Fuji Photo Film Co., Ltd.).
Latte: Laponite XLS) 5% aqueous dispersion and polyvinyl alcohol (Kuraray Co., Ltd .: Poval 10)
3. A 2.5% aqueous solution having a saponification degree of 98.5% and a degree of polymerization of 300 was mixed at a ratio of 3: 7 (volume ratio) to obtain an aqueous dispersion, and the film thickness after drying was 23 μm. As described above, a retardation film (hereinafter, referred to as film A) including an inorganic layered compound layer in which the inorganic layered compound layer was formed on the triacetyl cellulose film was obtained. The in-plane retardation value of the film A was 8 nm, and the retardation value in the thickness direction was 370 nm. The thickness of film A is 1
It was 03 μm.

【0026】2枚のフィルムAを遅相軸が互いに平行に
なるようアクリル系粘着剤により積層し、実施例2と同
様にして作製した位相差フィルムを、その遅相軸がフィ
ルムAの遅相軸と直交するようにアクリル系粘着剤によ
り貼合して、積層位相差フィルムを得た。積層位相差フ
ィルムの厚みは316μm、面内のレターデーション値
は105nm、厚み方向のレターデーション値は101
2nmであり、(面内のレターデーション値)/(厚み
方向のレターデーション値)の比は0.104であっ
た。
A retardation film prepared in the same manner as in Example 2 was prepared by laminating two films A with an acrylic pressure-sensitive adhesive so that the slow axes were parallel to each other. The laminate was laminated with an acrylic pressure-sensitive adhesive so as to be orthogonal to the axis to obtain a laminated retardation film. The thickness of the laminated retardation film was 316 μm, the in-plane retardation value was 105 nm, and the retardation value in the thickness direction was 101.
It was 2 nm, and the ratio of (in-plane retardation value) / (retardation value in the thickness direction) was 0.104.

【0027】実施例5 乾燥後の膜厚を16μmとした以外は、実施例4と同様
にして、無機層状化合物層からなる位相差フィルム(以
下、フィルムB)を得た。フィルムBの面内のレターデ
ーション値は10nmであり、厚み方向のレターデーシ
ョン値は305nmであった。またフィルムBの厚みは
96μmであった。実施例2と同様にして作製した位相
差フィルムを、その遅相軸がフィルムBの遅相軸に対し
て直交するようにアクリル系粘着剤により貼合して、積
層位相差フィルムを得た。積層位相差フィルムの厚みは
211μm、面内のレターデーション値は110nm、
厚み方向のレターデーション値は545nmであり、
(面内のレターデーション値)/(厚み方向のレターデ
ーション値)の比は0.202であった。
Example 5 A retardation film comprising an inorganic layered compound layer (hereinafter referred to as film B) was obtained in the same manner as in Example 4 except that the film thickness after drying was 16 μm. The in-plane retardation value of the film B was 10 nm, and the retardation value in the thickness direction was 305 nm. The thickness of film B was 96 μm. The retardation film produced in the same manner as in Example 2 was laminated with an acrylic pressure-sensitive adhesive so that the slow axis thereof was orthogonal to the slow axis of the film B to obtain a laminated retardation film. The thickness of the laminated retardation film is 211 μm, the in-plane retardation value is 110 nm,
The retardation value in the thickness direction is 545 nm,
The ratio of (in-plane retardation value) / (retardation value in the thickness direction) was 0.202.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 面内のレターデーション値が50〜30
0nmであり、(面内のレターデーション値)/(厚み
方向のレターデーション値)の比が0.5以上1.8以
下である熱可塑性樹脂からなる位相差フィルム。
1. An in-plane retardation value is 50 to 30.
A retardation film made of a thermoplastic resin having a thickness of 0 nm and a ratio of (in-plane retardation value) / (retardation value in the thickness direction) of 0.5 or more and 1.8 or less.
【請求項2】 熱可塑性樹脂が、ポリカーボネート樹脂
またはポリサルフォン樹脂である請求項1記載の位相差
フィルム。
2. The retardation film according to claim 1, wherein the thermoplastic resin is a polycarbonate resin or a polysulfone resin.
【請求項3】 面内のレターデーション値が80〜20
0nmである請求項1記載の位相差フィルム。
3. The in-plane retardation value is 80 to 20.
The retardation film according to claim 1, which has a thickness of 0 nm.
【請求項4】 位相差フィルムが、熱可塑性樹脂フィル
ムを、 下記温度範囲において予熱し、 Tg<Tp≦(Tg+100℃) (Tg:熱可塑性樹脂のガラス転移温度) (Tp:予熱温度) 下記温度範囲において、延伸軸と直交する方向におけ
る長さの収縮を起こさないようにした状態で変形速度1
50%/分〜1000%/分、延伸倍率2〜3倍で一軸
延伸し、 Tg<Ts≦(Tg+100℃) (Ts:延伸温度) 下記温度範囲において熱処理する (Ts−50℃)≦Ths≦Ts (Ths:熱処理温度) ことにより得られたものである請求項1記載の位相差フ
ィルム。
4. The retardation film preheats the thermoplastic resin film in the following temperature range: Tg <Tp ≦ (Tg + 100 ° C.) (Tg: glass transition temperature of thermoplastic resin) (Tp: preheating temperature) Within the range, the deformation rate is 1 with the length not to shrink in the direction orthogonal to the stretching axis.
50% / min to 1000% / min, uniaxially stretched at a stretch ratio of 2 to 3 and Tg <Ts ≦ (Tg + 100 ° C.) (Ts: stretching temperature) Heat treatment in the following temperature range (Ts−50 ° C.) ≦ Ths ≦ The retardation film according to claim 1, which is obtained by Ts (Ths: heat treatment temperature).
【請求項5】 熱可塑性樹脂フィルムを、 下記温度範囲において予熱し、 Tg<Tp≦(Tg+100℃) (Tg:熱可塑性樹脂のガラス転移温度) (Tp:予熱温度) 下記温度範囲において、延伸軸と直交する方向におけ
る長さの収縮を起こさないようにして変形速度150%
/分〜1000%/分、延伸倍率2〜3倍で一軸延伸
し、 Tg<Ts≦(Tg+100℃) (Ts:延伸温度) 下記温度範囲において熱処理する (Ts−50℃)≦Ths≦Ts (Ths:熱処理温度) ことを特徴とする、面内のレターデーション値が50〜
300nmであり、(面内のレターデーション値)/
(厚み方向のレターデーション値)の比が0.5以上
1.8以下である位相差フィルムの製法。
5. A thermoplastic resin film is preheated in the following temperature range, and Tg <Tp ≦ (Tg + 100 ° C.) (Tg: glass transition temperature of thermoplastic resin) (Tp: preheating temperature) The deformation rate is 150% so that the length does not shrink in the direction orthogonal to
/ Min to 1000% / min, uniaxially stretched at a draw ratio of 2 to 3 times, and Tg <Ts ≦ (Tg + 100 ° C.) (Ts: stretching temperature) (Ts−50 ° C.) ≦ Ths ≦ Ts (Ts: 50 ° C.) Ths: heat treatment temperature), the in-plane retardation value is 50 to
300 nm, (in-plane retardation value) /
A method for producing a retardation film having a ratio of (retardation value in the thickness direction) of 0.5 or more and 1.8 or less.
【請求項6】 熱処理を、延伸軸方向の長さを収縮率1
0%以下で収縮させながら行う請求項5記載の方法。
6. A heat treatment, wherein the length in the direction of the stretching axis is 1
The method according to claim 5, which is performed while shrinking at 0% or less.
【請求項7】 熱可塑性樹脂フィルムが、溶剤キャスト
法により得られたものである請求項5記載の方法。
7. The method according to claim 5, wherein the thermoplastic resin film is obtained by a solvent casting method.
【請求項8】 熱可塑性樹脂が、ポリカーボネート樹脂
またはポリサルフォン樹脂である請求項5記載の方法。
8. The method according to claim 5, wherein the thermoplastic resin is a polycarbonate resin or a polysulfone resin.
【請求項9】 面内のレターデーション値が80〜20
0nmである請求項5記載の方法。
9. The in-plane retardation value is 80 to 20.
The method according to claim 5, which is 0 nm.
【請求項10】 面内のレターデーション値が50〜30
0nmであり、(面内のレターデーション値)/(厚み
方向のレターデーション値)の比が0.5以上1.8以
下である熱可塑性樹脂フィルムからなる位相差フィルム
1枚または2枚以上と無機層状化合物層からなる位相差
フィルム1枚または2枚以上が積層された、(面内のレ
ターデーション値)/(厚み方向のレターデーション
値)の比が0.03以上0.3未満である積層位相差フ
ィルム。
10. The in-plane retardation value is 50 to 30.
One or two or more retardation films composed of a thermoplastic resin film having a thickness of 0 nm and a ratio of (in-plane retardation value) / (retardation value in the thickness direction) of 0.5 or more and 1.8 or less. One or two or more retardation films composed of an inorganic layered compound layer are laminated, and the ratio of (in-plane retardation value) / (retardation value in the thickness direction) is 0.03 or more and less than 0.3. Laminated retardation film.
JP7036933A 1994-02-28 1995-02-24 Phase difference film and its manufacture Pending JPH0862422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7036933A JPH0862422A (en) 1994-02-28 1995-02-24 Phase difference film and its manufacture

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3007094 1994-02-28
JP6-30070 1994-06-13
JP6-130623 1994-06-13
JP13062394 1994-06-13
JP7036933A JPH0862422A (en) 1994-02-28 1995-02-24 Phase difference film and its manufacture

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003357446A Division JP2004110051A (en) 1994-02-28 2003-10-17 Laminated phase difference film
JP2003357445A Division JP2004078247A (en) 1994-02-28 2003-10-17 Manufacturing method of phase difference film

Publications (1)

Publication Number Publication Date
JPH0862422A true JPH0862422A (en) 1996-03-08

Family

ID=27286823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7036933A Pending JPH0862422A (en) 1994-02-28 1995-02-24 Phase difference film and its manufacture

Country Status (1)

Country Link
JP (1) JPH0862422A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365436A (en) * 2001-04-03 2002-12-18 Nitto Denko Corp Method for manufacturing alignment film, polarizing film, polarizing plate and liquid crystal display device
JP2005345817A (en) * 2004-06-03 2005-12-15 Sekisui Chem Co Ltd Manufacturing method of retardation film and the retardation film
US7054049B2 (en) 2002-01-23 2006-05-30 Nitto Denko Corporation Optical film, laminated polarizing plate, liquid crystal display using the same, and self-light-emitting display using the same
US7128952B2 (en) 2002-05-24 2006-10-31 Nitto Denko Corporation Optical film
JP2007065664A (en) * 2005-08-29 2007-03-15 Chung Yuan Christian Univ Liquid crystal composite
JP2007084804A (en) * 2005-08-22 2007-04-05 Fujifilm Corp Transparent polymer film, method for producing the same, and retardation film, polarizing plate and liquid crystal display device comprising the film
US7247380B2 (en) 2002-05-13 2007-07-24 Sumitomo Chemical Company, Limited Laminated phase retarder film and a liquid crystal display using the same
KR100750924B1 (en) * 2001-04-10 2007-08-22 삼성전자주식회사 liquid crystal display
JP2007245730A (en) * 2001-05-30 2007-09-27 Konica Minolta Holdings Inc Cellulose ester film, manufacturing method of cellulose ester film, phase difference film, optical compensation sheet, elliptically-polarizing plate, and display
JP2007264287A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Optical film, polarizing plate and liquid crystal display device
EP1928646A1 (en) * 2005-09-29 2008-06-11 FUJIFILM Corporation Thermoplastic resin film and method for producing the same
JP2008537158A (en) * 2005-04-22 2008-09-11 富士フイルム株式会社 Optical film, polarizing plate, and liquid crystal display device
KR100860204B1 (en) * 2001-05-30 2008-09-24 코니카 미놀타 홀딩스 가부시키가이샤 Cellulose Ester Film, Its Manufacturing Method, Optical Retardation Film, Optical Compensation Sheet, Elliptic Polarizing Plate and Image Display
US8120729B2 (en) 2006-11-20 2012-02-21 Lg Chem, Ltd. Optical film and method of manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365436A (en) * 2001-04-03 2002-12-18 Nitto Denko Corp Method for manufacturing alignment film, polarizing film, polarizing plate and liquid crystal display device
KR100750924B1 (en) * 2001-04-10 2007-08-22 삼성전자주식회사 liquid crystal display
JP2010241140A (en) * 2001-05-30 2010-10-28 Konica Minolta Holdings Inc Manufacturing method for cellulose ester film
KR100860204B1 (en) * 2001-05-30 2008-09-24 코니카 미놀타 홀딩스 가부시키가이샤 Cellulose Ester Film, Its Manufacturing Method, Optical Retardation Film, Optical Compensation Sheet, Elliptic Polarizing Plate and Image Display
JP4552962B2 (en) * 2001-05-30 2010-09-29 コニカミノルタホールディングス株式会社 Method for producing cellulose ester film
JP2010253953A (en) * 2001-05-30 2010-11-11 Konica Minolta Holdings Inc Method of manufacturing cellulose ester film
US7740919B2 (en) 2001-05-30 2010-06-22 Konica Corporation Cellulose ester film, its manufacturing method, optical retardation film, optical compensation sheet, elliptic polarizing plate, and image display
JP2007245730A (en) * 2001-05-30 2007-09-27 Konica Minolta Holdings Inc Cellulose ester film, manufacturing method of cellulose ester film, phase difference film, optical compensation sheet, elliptically-polarizing plate, and display
US7054049B2 (en) 2002-01-23 2006-05-30 Nitto Denko Corporation Optical film, laminated polarizing plate, liquid crystal display using the same, and self-light-emitting display using the same
US7247380B2 (en) 2002-05-13 2007-07-24 Sumitomo Chemical Company, Limited Laminated phase retarder film and a liquid crystal display using the same
US7128952B2 (en) 2002-05-24 2006-10-31 Nitto Denko Corporation Optical film
JP2005345817A (en) * 2004-06-03 2005-12-15 Sekisui Chem Co Ltd Manufacturing method of retardation film and the retardation film
JP2008537158A (en) * 2005-04-22 2008-09-11 富士フイルム株式会社 Optical film, polarizing plate, and liquid crystal display device
JP2007084804A (en) * 2005-08-22 2007-04-05 Fujifilm Corp Transparent polymer film, method for producing the same, and retardation film, polarizing plate and liquid crystal display device comprising the film
JP2007065664A (en) * 2005-08-29 2007-03-15 Chung Yuan Christian Univ Liquid crystal composite
JP4598733B2 (en) * 2005-08-29 2010-12-15 私立中原大學 Liquid crystal composite material
EP1928646A1 (en) * 2005-09-29 2008-06-11 FUJIFILM Corporation Thermoplastic resin film and method for producing the same
EP1928646A4 (en) * 2005-09-29 2012-08-29 Fujifilm Corp Thermoplastic resin film and method for producing the same
JP2007264287A (en) * 2006-03-28 2007-10-11 Fujifilm Corp Optical film, polarizing plate and liquid crystal display device
US8120729B2 (en) 2006-11-20 2012-02-21 Lg Chem, Ltd. Optical film and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2818983B2 (en) Method for producing birefringent film
US5888634A (en) Phase retarder film
EP0660141B1 (en) Process for producing phase retarder film
JP4790890B2 (en) Retardation film and continuous production method thereof
EP0482620B1 (en) Birefringent film, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display
JPH0862422A (en) Phase difference film and its manufacture
JP2003121642A (en) Wide viewing angle polarizing plate and liquid crystal display device
JP2003121641A (en) Laminated optical retardation film, polarizing member and liquid crystal display device
JP4754510B2 (en) Manufacturing method of polarizer
JP3168850B2 (en) Method for producing retardation film
JP2001059907A (en) Phase difference sheet and production thereof
JP2004078247A (en) Manufacturing method of phase difference film
JPH11125716A (en) Phase difference plate, its production, elliptical polarizing plate and liquid crystal display device
JP3309452B2 (en) Method for producing retardation film
JP2004110051A (en) Laminated phase difference film
JP4367868B2 (en) Retardation plate continuous manufacturing method, optical member, and liquid crystal display device
JP2000111732A (en) Production of three-dimensional double refractive film
JP2000056131A (en) Phase difference plate, laminated polarizing plate and liquid crystal display device
JPH08146220A (en) Phase difference film
JPH04173844A (en) Production of polyvinyl alcohol phase-difference film having improved property
JP4303827B2 (en) Production method of retardation plate
JP2000162436A (en) Manufacturing method for phase difference film, optical member, and liquid crystal display device
JP2001174632A (en) Method of producing phase difference plate
JP2000304924A (en) Phase plate and its continuous manufacture
JP2001174631A (en) Phase difference plate and method of continuous production of the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004