JPH05255779A - Production of copper alloy for electrical and electronic equipment - Google Patents
Production of copper alloy for electrical and electronic equipmentInfo
- Publication number
- JPH05255779A JPH05255779A JP8946392A JP8946392A JPH05255779A JP H05255779 A JPH05255779 A JP H05255779A JP 8946392 A JP8946392 A JP 8946392A JP 8946392 A JP8946392 A JP 8946392A JP H05255779 A JPH05255779 A JP H05255779A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- copper alloy
- cold working
- working
- sec
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はトランジスターや集積回
路(IC)等のリードフレーム材、さらには端子,コネ
クター,スイッチ,リレー等のバネ材に好適な電気電子
機器用銅合金の製造法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper alloy for electric and electronic equipment, which is suitable for lead frame materials such as transistors and integrated circuits (IC), and also for spring materials such as terminals, connectors, switches and relays. Is.
【0002】[0002]
【従来の技術】電気電子機器用材料、例えばリードフレ
ーム材に代表される半導体機器材料、及び電気機器用バ
ネ,コネクター,スイッチ等の代表される導電材料とし
ては、従来から黄銅,りん青銅、Sn入り銅,Fe入り
銅等が用いられていた。しかしながら電気電子機器の小
型化,軽量化と高密度化に伴いこれら材料に対して強
度,バネ性及び導電性の高度なバランスが強く要求さ
れ、従来の合金では対応が困難になってきているのが現
状である。そこでこれらの特性に優れ且つ安価なCu−
Ni−Si系のいわゆるコルソン系銅合金が使用される
に至っている。2. Description of the Related Art Materials for electric and electronic devices, for example, semiconductor device materials typified by lead frame materials and conductive materials typified by springs, connectors, switches, etc. for electric devices have hitherto been brass, phosphor bronze, Sn. Copper containing copper and copper containing Fe were used. However, with the downsizing, weight reduction and density increase of electrical and electronic equipment, there is a strong demand for a high balance of strength, elasticity and conductivity for these materials, making it difficult for conventional alloys to meet these requirements. Is the current situation. Therefore, Cu- which is excellent in these characteristics and is inexpensive
Ni-Si type so-called Corson type copper alloys have come to be used.
【0003】しかしながらこのコルソン系銅合金は上記
の強度,バネ性及び導電性等の実用特性には優れている
ものの、製造性の点で著しい欠点を有しているため広く
用いられるには至っていない。即ちコルソン系銅合金は
その製造において、熱間圧延のための加熱昇温中、特に
300〜600℃の温度範囲で鋳造凝固時の残留応力の
作用により脆性割れが発生し、これがその後の熱間圧延
に悪影響を及ぼして歩留りが大幅に低下してしまうので
ある。However, although this Corson type copper alloy is excellent in practical properties such as the strength, spring property and conductivity, it has not been widely used because it has a remarkable defect in terms of manufacturability. .. That is, in the production of Corson type copper alloy, brittle cracking occurs due to the effect of residual stress during casting and solidification during heating and temperature rise for hot rolling, especially in the temperature range of 300 to 600 ° C. This adversely affects rolling, resulting in a significant decrease in yield.
【0004】また上記コルソン系銅合金では良好な強度
や導電性を得るために、高温保持後に急冷処理(溶体化
処理)を施すことが必要であり、このための焼鈍方式と
して従来からバッチ式焼鈍が採用されているので製造工
程が複雑でコスト高となるという問題がある。加えて条
材をコイル状に巻いた状態で焼鈍する際には、表面に曲
げ応力が発生するためこの応力が上記残留応力と同様に
作用して前述のような脆性割れが発生することがあっ
た。この場合には後の冷間圧延で歩留りが大幅に低下す
ることになる。Further, in order to obtain good strength and conductivity, it is necessary to carry out quenching treatment (solution treatment) after holding at high temperature in the Corson type copper alloy, and as a annealing method for this purpose, batch annealing has been conventionally used. However, there is a problem that the manufacturing process is complicated and the cost is high. In addition, when the strip material is annealed in a coiled state, a bending stress is generated on the surface, and this stress may act in the same manner as the above residual stress to cause brittle cracking as described above. It was In this case, the yield will be significantly reduced in the subsequent cold rolling.
【0005】一方熱間加工工程で熱間加工後の急冷によ
り溶体化処理を行う場合には、その後の焼鈍では本質的
な再結晶処理が施されないため、冷間加工による組織的
な異方性が生じて曲げ成形性等の延性が大幅に低下する
問題があった。On the other hand, when the solution treatment is carried out by quenching after the hot working in the hot working step, the essential recrystallization treatment is not performed in the subsequent annealing, so that the structural anisotropy due to the cold working is caused. Therefore, there is a problem that ductility such as bending formability is significantly reduced due to the occurrence of the above phenomenon.
【0006】このような背景からコルソン系銅合金の製
造に対して歩留りの向上と工程の簡略化による製造コス
トの低減及び成形加工性等の性能向上が強く求められて
いた。From such a background, there has been a strong demand for manufacturing a Corson-type copper alloy to improve the yield, reduce the manufacturing cost by simplifying the process, and improve the performance such as moldability.
【0007】[0007]
【課題を解決するための手段】本発明は上記の点に鑑み
鋭意検討された結果なされたものであり、その目的はC
u−Ni−Si系合金の製造方法において、熱間圧延性
を改善すると共に溶体化焼鈍を施す場合に製造コストを
押し上げるバッチ式を採用せずに連続焼鈍方式を用いる
ことにより、強度,バネ性及び導電性に優れ、加えて曲
げ成形性も良好な電気電子機器用銅合金を低コストに製
造できる方法を提供するものである。The present invention has been made as a result of extensive studies in view of the above points, and the purpose thereof is C
In the method of manufacturing the u-Ni-Si alloy, the strength and spring property are improved by using the continuous annealing method without adopting the batch method that improves the hot rolling property and increases the manufacturing cost when performing solution annealing. The present invention also provides a method capable of producing a copper alloy for electric and electronic devices, which has excellent conductivity and good bending formability, at low cost.
【0008】即ち本発明は、Ni:1.0〜4.0wt
%、Si:0.1〜1.0wt%、Zn:0.1〜5.0
wt%、Mn:0.01〜0.2wt%、P:0.01wt%
以下を含有し、又はさらにSn:0.01〜3.0wt%
を含有し、残部Cu及び不可避的不純物からなる銅合金
を、700℃以上の温度で熱間加工を終了し、その後1
0℃/秒以上の速度で急冷した後、冷間加工を施し、さ
らに700℃以上で再結晶を伴う連続焼鈍を施し、その
後10℃/秒以上の速度で急冷した後、冷間加工を施し
て400〜600℃で10分〜5時間の焼鈍を行い、又
はさらにこの熱処理の後40%以下の加工度で冷間加工
を施し、さらに250〜500℃で1分〜5時間の焼鈍
を行うものである。That is, according to the present invention, Ni: 1.0 to 4.0 wt.
%, Si: 0.1 to 1.0 wt%, Zn: 0.1 to 5.0
wt%, Mn: 0.01 to 0.2 wt%, P: 0.01 wt%
Contains the following, or further Sn: 0.01-3.0 wt%
Of the copper alloy containing Cu and the balance Cu and unavoidable impurities is terminated at a temperature of 700 ° C. or higher, and then 1
After quenching at a rate of 0 ° C / sec or more, cold working is performed, continuous annealing accompanied by recrystallization is performed at 700 ° C or more, and then rapid cooling at a rate of 10 ° C / sec or more, followed by cold working. Annealing at 400 to 600 ° C. for 10 minutes to 5 hours, or after this heat treatment, cold working is performed at a working degree of 40% or less, and further annealing at 250 to 500 ° C. for 1 minute to 5 hours. It is a thing.
【0009】[0009]
【作用】先ず合金組成の限定理由を詳細に説明する。First, the reason for limiting the alloy composition will be described in detail.
【0010】NiとSiは、共に強度,バネ性及び導電
性等を付与する元素であり、Ni含有量を1.0〜4.
0wt%に限定したのは、Niが1.0wt%未満ではSi
を0.1wt%以上含有させても高強度と高導電性を得る
ことは難しく、他方Niを4.0wt%を越えて含有させ
ると導電性や曲げ成形性等が低下してしまうからであ
る。Both Ni and Si are elements that impart strength, elasticity and conductivity, and the Ni content is 1.0 to 4.
The limitation to 0 wt% is that if Ni is less than 1.0 wt%, Si
This is because it is difficult to obtain high strength and high conductivity even if the content of Ni is 0.1 wt% or more, and if the content of Ni exceeds 4.0 wt%, the conductivity and bending formability are deteriorated. ..
【0011】またSi含有量を0.1〜1.0wt%に限
定した理由は、Siが0.1wt%未満ではNiを1.0
wt%以上含有させても高強度と高導電性が得られず、他
方Siを1.0wt%を越えて含有させると導電性や半田
付け性が低下するからである。The reason for limiting the Si content to 0.1 to 1.0 wt% is that Ni is 1.0 or less when Si is less than 0.1 wt%.
This is because high strength and high conductivity cannot be obtained even if it is contained in an amount of wt% or more, and on the other hand, if Si is contained in an amount of more than 1.0 wt%, the conductivity and solderability are deteriorated.
【0012】Znは半田及びSnメッキの耐熱剥離性、
耐マイグレーション性を改善する元素であり、これを
0.1〜5.0wt%に限定したのは、0.1wt%未満で
は上記効果が少なく、5.0wt%を越えて含有すると導
電性や半田付け性が低下してしまうからである。Zn is a heat-resistant peeling property of solder and Sn plating,
It is an element that improves the migration resistance, and the reason why it is limited to 0.1 to 5.0 wt% is that the above effects are less than 0.1 wt%, and the conductivity and solder content are higher than 5.0 wt%. This is because the attachability is reduced.
【0013】Mnは熱間加工及び連続焼鈍での脆化うを
防止する元素であり、その含有量を0.01〜0.2wt
%に限定した理由は、0.01wt%未満では上記効果が
少なく、0.2wt%を越えると導電性や半田付け性が低
下するからである。Mn is an element that prevents embrittlement during hot working and continuous annealing, and its content is 0.01 to 0.2 wt.
The reason why the content is limited to 0.1% is that if it is less than 0.01 wt%, the above effect is small, and if it exceeds 0.2 wt%, the conductivity and solderability are deteriorated.
【0014】Pは多量に含有すると熱間加工及び連続焼
鈍での脆化を著しく促進させて、後の加工に悪影響及ぼ
すためその含有量は0.01wt%以下とすることが必要
である。When P is contained in a large amount, embrittlement in hot working and continuous annealing is remarkably promoted, and it adversely affects the subsequent working. Therefore, the content of P must be 0.01 wt% or less.
【0015】なお最適量のMnの添加とP含有量の制御
を合わせて行えば、熱間加工性と焼鈍での脆化が大幅に
改善されることが判明しているが、このうちどちらかが
適性量に制御されないと改善効果は少ない。It has been found that hot workability and embrittlement during annealing can be significantly improved if the optimum amount of Mn is added and the P content is controlled together. However, if it is not controlled to an appropriate amount, the improvement effect is small.
【0016】Snは強度,バネ性及び曲げ成形性を改善
する元素であり、その含有量を0.01〜3.0wt%に
限定したのは、0.01wt%未満では上記効果が少な
く、3.0wt%を越えると導電性や熱間加工性に悪影響
を及ぼすからである。Sn is an element that improves the strength, spring property and bend formability, and the content thereof is limited to 0.01 to 3.0 wt%. This is because if it exceeds 0.0 wt%, the conductivity and hot workability are adversely affected.
【0017】次に製造方法の限定理由について説明す
る。上記組成の銅合金鋳塊を、700℃以上の温度で熱
間加工を終了し、即ち熱間加工の終了温度を700℃以
上とし、その後の急冷速度を10℃/秒以上と限定した
理由は、700℃未満では10℃/秒以上の速度で急冷
しても溶体化が不完全で析出が起こり、その後の連続焼
鈍での溶体化処理に悪影響を及ぼすため最終的に強度や
バネ性が劣化するからである。さらに熱間加工中に脆化
割れが発生し、その後の冷間加工が困難となるためであ
る。Next, the reasons for limiting the manufacturing method will be described. The reason why the hot working of the copper alloy ingot having the above composition is finished at a temperature of 700 ° C. or higher, that is, the end temperature of the hot working is 700 ° C. or higher, and the quenching rate thereafter is limited to 10 ° C./sec or higher is as follows. If the temperature is less than 700 ° C, solution treatment is incomplete even if it is rapidly cooled at a rate of 10 ° C / sec or more, and precipitation occurs, which adversely affects the solution treatment in the subsequent continuous annealing, resulting in deterioration of strength and springiness. Because it does. Furthermore, embrittlement cracking occurs during hot working, which makes subsequent cold working difficult.
【0018】また、急冷速度を10℃/秒以上に限定し
た理由は、10℃/秒未満では、熱間加工の終了温度を
700℃以上としても、冷却中に析出が起こり、連続焼
鈍で溶体化処理を行っても、最終的に良好な強度、バネ
性が得られないからである。The reason for limiting the quenching rate to 10 ° C./sec or more is that if the quenching rate is less than 10 ° C./sec, precipitation occurs during cooling even if the end temperature of hot working is 700 ° C. or more, and the solution is continuously annealed. This is because even if the chemical treatment is performed, good strength and springiness cannot be finally obtained.
【0019】次に、焼鈍方式として連続焼鈍方式を採用
した理由は、バッチ式焼鈍による脆化割れを防止すると
共に工程が簡略化されるため製造コストが大幅に低減す
るからである。Next, the reason for adopting the continuous annealing method as the annealing method is that brittle cracking due to batch annealing is prevented and the process is simplified, so that the manufacturing cost is greatly reduced.
【0020】また、連続焼鈍温度を700℃以上で、そ
の後の急冷速度を10℃/秒以上に限定した理由は、7
00℃未満の温度では、再結晶が起こらずに最終的な曲
げ成形性が著しく劣化するからであり、かつ700℃未
満の温度、10℃/秒未満の冷却速度では、溶体化が不
完全で析出が起こり、最終的な強度、バネ性が劣化する
ためである。The reason for limiting the continuous annealing temperature to 700 ° C. or higher and the subsequent quenching rate to 10 ° C./sec or higher is 7
This is because at a temperature of less than 00 ° C, recrystallization does not occur and the final bendability is significantly deteriorated, and at a temperature of less than 700 ° C and a cooling rate of less than 10 ° C / sec, solution treatment is incomplete. This is because precipitation occurs and the ultimate strength and spring properties deteriorate.
【0021】すなわち、本発明合金においては、最適な
熱間加工条件と連続焼鈍条件を組み合わせることで、低
コストで良好な特性が達成される。That is, in the alloy of the present invention, good properties can be achieved at low cost by combining the optimum hot working conditions and continuous annealing conditions.
【0022】次に冷間加工を施し、400℃〜600℃
で10分〜5時間焼鈍する理由は、焼鈍温度が400℃
未満では析出が不十分であり、他方600℃を越えると
析出物が再溶体化されてしまうため、強度や導電性が向
上しないためである。また焼鈍時間が10分未満では析
出が不十分であるため、強度や導電性が向上せず、他方
5時間を越えても強度や導電性はほとんど変化しないた
めエネルギー的に無駄となるからである。Next, cold working is performed to 400 ° C. to 600 ° C.
The reason for annealing for 10 minutes to 5 hours is that the annealing temperature is 400 ° C.
If it is less than 600 ° C., the precipitation is insufficient. On the other hand, if it exceeds 600 ° C., the precipitate is re-solutionized, so that the strength and conductivity are not improved. Further, if the annealing time is less than 10 minutes, the precipitation is insufficient, so that the strength and the conductivity are not improved, and if the annealing time is more than 5 hours, the strength and the conductivity are hardly changed and it is wasted in terms of energy. ..
【0023】前記熱処理の後、必要に応じて40%以下
の加工度で冷間加工を施す理由は、40%を越える冷間
加工を施すと異方性が増し、曲げ成形性が著しく低下し
てしまうためである。After the above heat treatment, if necessary, cold working is performed at a working ratio of 40% or less. The reason why cold working exceeding 40% is that anisotropy increases and bending formability remarkably decreases. This is because
【0024】さらに250℃〜500℃で1分〜5時間
の焼鈍を行う理由は、局部応力を除去すると共にバネ性
を改善させるものであるが、焼鈍温度が250℃未満で
は効果が少なく、500℃を越えると強度とバネ性が低
下してしまうためである。また焼鈍時間が1分未満では
効果が少なく、5時間を越えても効果は変わらないにも
かかわらずエネルギー的に無駄となるためである。な
お、焼鈍方式はバッチ式、走間式のどちらを用いても同
様な効果を示す。The reason for further annealing at 250 ° C. to 500 ° C. for 1 minute to 5 hours is to remove the local stress and improve the spring property, but if the annealing temperature is less than 250 ° C., the effect is small and 500 This is because if the temperature exceeds ° C, the strength and the elasticity will be deteriorated. Also, if the annealing time is less than 1 minute, the effect is small, and if the annealing time is more than 5 hours, the effect is not changed but the energy is wasted. The same effect can be obtained regardless of whether the annealing method is the batch method or the running method.
【0025】以上のように本発明によればコネクター、
リードフレームなどの電気電子機器部品に使用するのに
好適な熱間加工性、強度、バネ性、導電性及び曲げ成形
性に優れたCu−Ni−Si系の銅合金の製造コストの
大幅な低減が図れ、その効果は工業的に大である。As described above, according to the present invention, the connector,
Significant reduction in manufacturing cost of Cu-Ni-Si-based copper alloys with excellent hot workability, strength, spring properties, conductivity, and bend formability suitable for use in electrical and electronic equipment parts such as lead frames The effect is industrially large.
【0026】[0026]
【実施例】次に本発明を実施例により具体的に説明す
る。EXAMPLES Next, the present invention will be specifically described by way of examples.
【0027】実施例1 表1に示す組成の銅合金を高周波溶解炉により溶解し、
厚さ100mm、幅300mm、長さ1000mmの鋳塊を製
造した。そしてこれら鋳造材を850℃の温度に加熱
し、厚さ12mmまで熱間圧延した後、750℃から50
℃/秒の冷却速度で急冷した。この圧延材を厚さ10mm
まで面削し、加工度94%の冷間圧延後、850℃の連
続焼鈍を施して、100℃/秒の速度で急冷した。続い
て、加工率40%の冷間圧延を施し、460℃で2時間
の焼鈍を行った。さらにこの焼鈍材に加工度20%の冷
間圧延を施し、その後400℃で2時間の焼鈍を施して
本発明例銅合金No.1〜No.4及び比較例銅合金No.5
〜No.10を作製した。 Example 1 A copper alloy having the composition shown in Table 1 was melted in a high frequency melting furnace,
An ingot having a thickness of 100 mm, a width of 300 mm and a length of 1000 mm was produced. Then, these cast materials are heated to a temperature of 850 ° C. and hot-rolled to a thickness of 12 mm, and then 750 ° C. to 50 ° C.
It was rapidly cooled at a cooling rate of ° C / sec. This rolled material is 10mm thick
After chamfering, cold rolling with a workability of 94%, continuous annealing at 850 ° C., and rapid cooling at a rate of 100 ° C./sec. Subsequently, cold rolling was performed at a working rate of 40%, and annealing was performed at 460 ° C. for 2 hours. Further, this annealed material was subjected to cold rolling with a workability of 20%, and then annealed at 400 ° C. for 2 hours to invent example copper alloys No. 1 to No. 4 and comparative example copper alloy No. 5.
~ No. 10 was prepared.
【0028】これらの銅合金No.1〜No.10につい
て、強度、導電率、バネ限界値、曲げ成形性、半田付け
性、半田脆化性を評価し、これらの結果を表1に示し
た。強度についてはJIS−Z2241、導電性につい
てはJIS−H0505、バネ限界値についてはJIS
−H3130にそれぞれ基づいて評価した。曲げ加工性
はJIS−Z2248に基づき、試験片表面に割れが発
生する最小曲げ半径(R)を試験片の厚さ(t)で割っ
た値で示した。また半田付け性については、約230℃
のPb−Sn基共晶半田浴中に試験片を5秒間浸漬し、
半田の濡れ状態を観察した。また、半田脆化性について
は、試験片を半田浴中に浸漬して半田付けを行い、大気
中にて150℃で500時間の熱処理を行った後、取り
出し、180度曲げを行った時の表面の半田剥離状態を
観察した。These copper alloys No. 1 to No. 10 were evaluated for strength, conductivity, spring limit value, bending formability, solderability and solder embrittlement, and the results are shown in Table 1. .. JIS-Z2241 for strength, JIS-H0505 for conductivity, JIS for spring limit value
-Evaluated based on H3130. The bending workability is indicated by a value obtained by dividing the minimum bending radius (R) at which cracks occur on the surface of the test piece by the thickness (t) of the test piece based on JIS-Z2248. Also, solderability is about 230 ℃
The test piece in the Pb-Sn-based eutectic solder bath of
The wet state of the solder was observed. Regarding the solder embrittlement property, the test piece was dipped in a solder bath for soldering, heat-treated in the atmosphere at 150 ° C. for 500 hours, taken out, and then bent 180 degrees. The state of solder peeling on the surface was observed.
【0029】[0029]
【表1】 [Table 1]
【0030】表1に示すごとく、本発明例銅合金ではバ
ランスのとれた良好な特性が得られているのに対し、比
較例5では耐半田脆化性が劣化し、比較例6及び8では
半田付け性が不良である。また比較例7、9、10で
は、熱間圧延により割れが発生しており、比較例10で
は、割れ部を除去して上記の特性評価を行っても導電率
が大幅に低下している。As shown in Table 1, the copper alloys of the present invention provide good and well-balanced properties, while Comparative Example 5 deteriorates the solder embrittlement resistance and Comparative Examples 6 and 8 Poor solderability. Further, in Comparative Examples 7, 9 and 10, cracks occurred due to hot rolling, and in Comparative Example 10, even if the cracked portion was removed and the above-mentioned characteristic evaluation was performed, the conductivity was significantly reduced.
【0031】実施例2 次に表1のNo.2の組成の本発明例銅合金について、ほ
ぼ同一組成の鋳塊を数本製造して、表2に示すような各
種条件で製造を行い、表2に示す各種特性を評価し、そ
れらの結果を表2に併記した。なお、熱間圧延割れが発
生したものについては、その後の加工が困難となったた
めに、製造を中止した。 Example 2 Next, with respect to the copper alloy of the present invention having the composition of No. 2 in Table 1, several ingots having almost the same composition were produced and produced under various conditions as shown in Table 2. Various properties shown in Table 2 were evaluated, and the results are also shown in Table 2. In addition, about the thing which the hot rolling crack generate | occur | produced, since the subsequent processing became difficult, manufacture was discontinued.
【0032】[0032]
【表2】 [Table 2]
【0033】表2に示すごとく、本発明例製造法No.1
1では良好な特性が得られるが、熱間加工条件、連続焼
鈍条件、1回目もしくは2回目の焼鈍条件または最終加
工度が本発明範囲から外れると、熱間加工性、強度、導
電率、バネ限界値、曲げ加工性の何れかが劣化すること
が明かである。この効果は、Snを適正量添加した合金
でも同様である。As shown in Table 2, the production method No. 1 of the present invention example
1, good properties are obtained, but if hot working conditions, continuous annealing conditions, first or second annealing conditions or the final working ratio deviate from the scope of the present invention, hot workability, strength, conductivity, spring It is clear that either the limit value or bending workability deteriorates. This effect is also the same for alloys containing an appropriate amount of Sn.
【0034】[0034]
【発明の効果】このように本発明によれば、端子、コネ
クター、リードフレームなどの電気電子機器部品に使用
するのに好適な強度、バネ性、導電性及び曲げ成形性に
優れたコルソン系銅合金が低コストで製造可能であり、
工業上顕著な効果を奏するものである。As described above, according to the present invention, a Corson-based copper excellent in strength, spring property, conductivity and bending formability suitable for use in electric and electronic equipment parts such as terminals, connectors and lead frames. The alloy can be manufactured at low cost,
It has a remarkable industrial effect.
Claims (4)
1〜1.0wt%、Zn:0.1〜5.0wt%、Mn:
0.01〜0.2wt%、P:0.01wt%以下を含有
し、残部Cu及び不可避的不純物からなる銅合金を、7
00℃以上の温度で熱間加工を終了し、その後10℃/
秒以上の速度で急冷した後、冷間加工を施し、さらに7
00℃以上で再結晶を伴う連続焼鈍を施し、その後10
℃/秒以上の速度で急冷した後、冷間加工を施して40
0〜600℃で10分〜5時間の焼鈍を行うことを特徴
とする電気電子機器用銅合金の製造方法。1. Ni: 1.0 to 4.0 wt%, Si: 0.
1 to 1.0 wt%, Zn: 0.1 to 5.0 wt%, Mn:
A copper alloy containing 0.01 to 0.2 wt% and P: 0.01 wt% or less, the balance being Cu and unavoidable impurities,
Hot working is completed at a temperature of 00 ° C or higher, then 10 ° C /
After quenching at a speed of more than 2 seconds, cold working is performed and further 7
Continuous annealing with recrystallization is performed at 00 ° C or higher, then 10
After quenching at a speed of ℃ / sec or more, cold working is performed to 40
A method for producing a copper alloy for electric and electronic equipment, which comprises performing annealing at 0 to 600 ° C. for 10 minutes to 5 hours.
1〜1.0wt%、Zn:0.1〜5.0wt%、Mn:
0.01〜0.2wt%、P:0.01wt%以下を含有
し、残部Cu及び不可避的不純物からなる銅合金を、7
00℃以上の温度で熱間加工を終了し、その後10℃/
秒以上の速度で急冷した後、冷間加工を施し、さらに7
00℃以上で再結晶を伴う連続焼鈍を施し、その後10
℃/秒以上の速度で急冷した後、冷間加工を施して40
0〜600℃で10分〜5時間の焼鈍を行い、しかる後
40%以下の加工度で冷間加工を施し、さらに250〜
500℃で1分〜5時間の焼鈍を行うことを特徴とする
電気電子機器用銅合金の製造方法。2. Ni: 1.0 to 4.0 wt%, Si: 0.
1 to 1.0 wt%, Zn: 0.1 to 5.0 wt%, Mn:
A copper alloy containing 0.01 to 0.2 wt% and P: 0.01 wt% or less, the balance being Cu and unavoidable impurities,
Hot working is completed at a temperature of 00 ° C or higher, then 10 ° C /
After quenching at a speed of more than 2 seconds, cold working is performed and further 7
Continuous annealing with recrystallization is performed at 00 ° C or higher, then 10
After quenching at a speed of ℃ / sec or more, cold working is performed to 40
Annealing is performed at 0 to 600 ° C. for 10 minutes to 5 hours, then cold working is performed at a working degree of 40% or less, and further 250 to
A method for producing a copper alloy for electric and electronic equipment, which comprises performing annealing at 500 ° C for 1 minute to 5 hours.
1〜1.0wt%、Zn:0.1〜5.0wt%、Mn:
0.01〜0.2wt%、Sn:0.01〜3.0wt%、
P:0.01wt%以下を含有し、残部Cu及び不可避的
不純物からなる銅合金を、700℃以上の温度で熱間加
工を終了し、その後10℃/秒以上の速度で急冷した
後、冷間加工を施し、さらに700℃以上で再結晶を伴
う連続焼鈍を施し、その後10℃/秒以上の速度で急冷
した後、冷間加工を施して400〜600℃で10分〜
5時間の焼鈍を行うことを特徴とする電気電子機器用銅
合金の製造方法。3. Ni: 1.0 to 4.0 wt%, Si: 0.
1 to 1.0 wt%, Zn: 0.1 to 5.0 wt%, Mn:
0.01-0.2 wt%, Sn: 0.01-3.0 wt%,
P: 0.01 wt% or less, a copper alloy containing the balance Cu and unavoidable impurities is hot-worked at a temperature of 700 ° C. or higher, then rapidly cooled at a rate of 10 ° C./sec or higher, and then cooled. Cold working, further continuous annealing accompanied by recrystallization at 700 ° C. or higher, and then rapidly cooled at a rate of 10 ° C./sec or higher, and then cold working at 400 to 600 ° C. for 10 minutes to
A method for producing a copper alloy for electric and electronic equipment, which comprises performing annealing for 5 hours.
1〜1.0wt%、Zn:0.1〜5.0wt%、Mn:
0.01〜0.2wt%、Sn:0.01〜3.0wt%、
P:0.01wt%以下を含有し、残部Cu及び不可避的
不純物からなる銅合金を、700℃以上の温度で熱間加
工を終了し、その後10℃/秒以上の速度で急冷した
後、冷間加工を施し、さらに700℃以上で再結晶を伴
う連続焼鈍を施し、その後10℃/秒以上の速度で急冷
した後、冷間加工を施して400〜600℃で10分〜
5時間の焼鈍を行い、しかる後40%以下の加工度で冷
間加工を施し、さらに250〜500℃で1分〜5時間
の焼鈍を行うことを特徴とする電気電子機器用銅合金の
製造方法。4. Ni: 1.0 to 4.0 wt%, Si: 0.
1 to 1.0 wt%, Zn: 0.1 to 5.0 wt%, Mn:
0.01-0.2 wt%, Sn: 0.01-3.0 wt%,
P: 0.01 wt% or less, a copper alloy containing the balance Cu and unavoidable impurities is hot-worked at a temperature of 700 ° C. or higher, then rapidly cooled at a rate of 10 ° C./sec or higher, and then cooled. Cold working, further continuous annealing accompanied by recrystallization at 700 ° C. or higher, and then rapidly cooled at a rate of 10 ° C./sec or higher, and then cold working at 400 to 600 ° C. for 10 minutes to
Manufacture of a copper alloy for electric and electronic equipment, characterized by performing annealing for 5 hours, then performing cold working at a working degree of 40% or less, and further annealing at 250 to 500 ° C. for 1 minute to 5 hours. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8946392A JP2945208B2 (en) | 1992-03-13 | 1992-03-13 | Method for producing copper alloy for electrical and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8946392A JP2945208B2 (en) | 1992-03-13 | 1992-03-13 | Method for producing copper alloy for electrical and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05255779A true JPH05255779A (en) | 1993-10-05 |
JP2945208B2 JP2945208B2 (en) | 1999-09-06 |
Family
ID=13971407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8946392A Expired - Fee Related JP2945208B2 (en) | 1992-03-13 | 1992-03-13 | Method for producing copper alloy for electrical and electronic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2945208B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307340A (en) * | 2005-03-31 | 2006-11-09 | Nikko Kinzoku Kk | Cu-Ni-Si BASED COPPER ALLOY BAR HAVING EXCELLENT BENDABILITY |
WO2009099198A1 (en) * | 2008-02-08 | 2009-08-13 | The Furukawa Electric Co., Ltd. | Copper alloy material for electric and electronic components |
KR101472348B1 (en) * | 2012-11-09 | 2014-12-15 | 주식회사 풍산 | Copper alloy material for electrical and electronic components and process for producing same |
-
1992
- 1992-03-13 JP JP8946392A patent/JP2945208B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006307340A (en) * | 2005-03-31 | 2006-11-09 | Nikko Kinzoku Kk | Cu-Ni-Si BASED COPPER ALLOY BAR HAVING EXCELLENT BENDABILITY |
JP4574583B2 (en) * | 2005-03-31 | 2010-11-04 | 日鉱金属株式会社 | Cu-Ni-Si copper alloy strip with excellent bending workability |
WO2009099198A1 (en) * | 2008-02-08 | 2009-08-13 | The Furukawa Electric Co., Ltd. | Copper alloy material for electric and electronic components |
KR101472348B1 (en) * | 2012-11-09 | 2014-12-15 | 주식회사 풍산 | Copper alloy material for electrical and electronic components and process for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP2945208B2 (en) | 1999-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3699701B2 (en) | Easy-to-process high-strength, high-conductivity copper alloy | |
JP4787986B2 (en) | Copper alloy and manufacturing method thereof | |
JP2006009137A (en) | Copper alloy | |
KR101917416B1 (en) | Copper-cobalt-silicon alloy for electrode material | |
JP5065478B2 (en) | Copper alloy material for electric and electronic parts and manufacturing method | |
JP5039862B1 (en) | Corson alloy and manufacturing method thereof | |
JP5132467B2 (en) | Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength | |
JP2844120B2 (en) | Manufacturing method of copper base alloy for connector | |
KR20010062360A (en) | copper alloy for electronic materials with excellent surface special and manufacturing method therefor | |
JPH06207233A (en) | Copper alloy for electronic and electrical equipment and its production | |
JP3980808B2 (en) | High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same | |
JPH0718356A (en) | Copper alloy for electronic equipment, its production and ic lead frame | |
KR20160043674A (en) | Copper alloy material for connectors with high strength, high thermal resistance and high corrosion resistance, and excellent bending processiblity, and method for producing same | |
JPH0617209A (en) | Manufacture of copper alloy for electrical and electronic apparatus | |
JP3445432B2 (en) | Copper alloy for electronic equipment with excellent solder wettability and Ag plating resistance to heat swelling | |
JP2945208B2 (en) | Method for producing copper alloy for electrical and electronic equipment | |
JP2004232049A (en) | Cu PLATING TITANIUM COPPER | |
JP2011190469A (en) | Copper alloy material, and method for producing the same | |
JPS6299430A (en) | Copper alloy for terminal or connector and its manufacture | |
JPH10110228A (en) | Copper alloy for electronic equipment and its production | |
JPH1060562A (en) | Copper alloy for electronic equipment and its production | |
JP3519888B2 (en) | Copper alloy for electronic equipment and method for producing the same | |
JPS62227052A (en) | Copper-base alloy for terminal and connector and its production | |
JPH0323620B2 (en) | ||
JPH0827551A (en) | Production of cu-ni-si alloy for electrical and electronic apparatus parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090625 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090625 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100625 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100625 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20110625 |
|
LAPS | Cancellation because of no payment of annual fees |