JPH0827551A - Production of cu-ni-si alloy for electrical and electronic apparatus parts - Google Patents
Production of cu-ni-si alloy for electrical and electronic apparatus partsInfo
- Publication number
- JPH0827551A JPH0827551A JP16008294A JP16008294A JPH0827551A JP H0827551 A JPH0827551 A JP H0827551A JP 16008294 A JP16008294 A JP 16008294A JP 16008294 A JP16008294 A JP 16008294A JP H0827551 A JPH0827551 A JP H0827551A
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- alloy
- subjected
- working
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、強度及び導電性に優れ
た電気・電子機器部品用CuーNiーSi系合金の製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Cu--Ni--Si alloy for electric and electronic equipment parts having excellent strength and conductivity.
【0002】[0002]
【従来の技術】CuーNiーSi系合金は、リードフレ
ーム、端子、コネクター等の電子・電気機器の部品に使
用されているが、近年電子・電気機器の軽薄短小化のニ
ーズに伴い、使用される部品も小型化が進んでいる。前
記CuーNiーSi系合金は溶体化処理後、熱処理(時
効処理)を行うことによって製造されており、上記熱処
理によりNiーSi化合物を析出させ、強度及び導電率
を向上させている。2. Description of the Related Art Cu-Ni-Si alloys are used for parts of electronic and electrical equipment such as lead frames, terminals and connectors. The components to be manufactured are also getting smaller. The Cu-Ni-Si-based alloy is manufactured by performing a heat treatment (aging treatment) after the solution treatment, and the Ni-Si compound is precipitated by the heat treatment to improve the strength and the electrical conductivity.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前記時
効処理を低温で行うと、析出を充分に進行させ、良好な
導電性を得る為には、長時間の加熱を必要とし、効率が
悪かった。一方、高温で時効処理を行うと、前記加熱時
間は短縮されるが、析出物が粗大化すると共に、再結晶
が進行し、強度が低下するという問題があった。However, when the aging treatment is carried out at a low temperature, long-time heating is required and the efficiency is poor in order to sufficiently promote the precipitation and obtain good conductivity. On the other hand, when the aging treatment is performed at a high temperature, the heating time is shortened, but there is a problem that the precipitates become coarse, recrystallization proceeds, and the strength decreases.
【0004】[0004]
【課題を解決するための手段】本発明は上記の点に鑑み
種々検討の結果、強度及び導電性に優れた電気・電子機
器部品用CuーNiーSi系合金の効率的な製造方法を
開発したものである。The present invention has been made in view of the above points, and as a result of various studies, has developed an efficient method for producing a Cu-Ni-Si alloy for electric / electronic equipment parts having excellent strength and conductivity. It was done.
【0005】即ち、本願請求項1の発明は、Ni:4.
1〜10wt%、Si:1.0〜1.5wt%、Mn:
0.2wt%以下、Zn:1.0wt%以下を含有し、
S含有量が15ppm以下であり、残部がCuと不可避
的不純物とからなる銅合金に、950〜1000℃に1
分以上保持する溶体化処理を施した後、少なくとも30
0〜600℃の温度範囲を10℃/sec以上の冷却速
度で冷却し、50%以上の加工率で冷間加工後、450
〜550℃の温度で、1〜30分熱処理を行い、その後
更に30〜80%の加工率で冷間加工後、380〜44
0℃の温度で、5〜180分熱処理を行うことを特徴と
する電気・電子機器部品用CuーNiーSi系合金の製
造方法である。本願請求項2の発明は、溶体化処理を施
した後、熱間圧延し、少なくとも300〜600℃の温
度範囲を10℃/sec以上の冷却速度で冷却すること
を特徴とする電気・電子機器部品用CuーNiーSi系
合金の製造方法である。即ち、請求項1の発明におい
て、溶体化処理後の加工は圧延、押出等の熱間加工、冷
間加工の内のいずれによっても差し支えないが、溶体化
処理直後に熱間圧延で加工する場合は、NiーSi化合
物が析出する温度範囲(300〜600℃)を所定の冷
却速度で急冷する必要がある。本願請求項3の発明は、
横型連続鋳造により製造した鋳塊に、鋳塊の状態或いは
冷間加工の途中で溶体化処理を施すことを特徴とする電
気・電子機器部品用CuーNiーSi系合金の製造方法
である。即ち、CuーNiーSi系合金は熱間加工性が
余り良好でない為、冷間加工のみで加工することも有効
な加工手段の一つであり、この場合は冷間加工工程をな
るべく短縮する為、横型連続鋳造により厚さ10mm程
度の薄い鋳塊とすることが、生産性の点から好ましい。
本願請求項4の発明は、請求項1〜3の発明において、
380〜440℃で熱処理を行った後、更に5〜15%
の加工率で冷間加工を行い、その後250〜350℃で
熱処理(低温焼鈍)を行うことを特徴とする電気・電子
機器部品用CuーNiーSi系合金の製造方法である。That is, the invention according to claim 1 of the present application is Ni: 4.
1 to 10 wt%, Si: 1.0 to 1.5 wt%, Mn:
0.2 wt% or less, Zn: 1.0 wt% or less,
1 to 950 to 1000 ° C. for a copper alloy having an S content of 15 ppm or less and the balance of Cu and unavoidable impurities.
At least 30 minutes after performing the solution treatment for holding for at least 30 minutes.
After cooling in the temperature range of 0 to 600 ° C. at a cooling rate of 10 ° C./sec or more and cold working at a working rate of 50% or more, 450
A heat treatment is performed at a temperature of ℃ 550 ° C. for 1 to 30 minutes.
A method for producing a Cu—Ni—Si alloy for electric / electronic device parts, comprising performing heat treatment at a temperature of 0 ° C. for 5 to 180 minutes. The invention of claim 2 of the present application is characterized in that after the solution treatment, it is hot-rolled and cooled in a temperature range of at least 300 to 600 ° C. at a cooling rate of 10 ° C./sec or more. It is a method for producing a Cu-Ni-Si alloy for parts. That is, in the invention of claim 1, the working after the solution treatment may be any of hot working such as rolling, extrusion, etc., and cold working. It is necessary to rapidly cool the temperature range (300 to 600 ° C.) at which the Ni—Si compound precipitates at a predetermined cooling rate. The invention of claim 3 of the present application
A method for producing a Cu-Ni-Si-based alloy for electric / electronic device parts, characterized in that an ingot produced by horizontal continuous casting is subjected to a solution treatment in a state of the ingot or during cold working. That is, since the Cu-Ni-Si alloy is not so good in hot workability, working only by cold working is one of the effective working means. In this case, the cold working process is shortened as much as possible. Therefore, it is preferable from the viewpoint of productivity that a thin ingot having a thickness of about 10 mm is formed by horizontal continuous casting.
The invention of claim 4 of the present application is the invention of claims 1 to 3,
After heat treatment at 380 ~ 440 ℃, 5 ~ 15%
Cold working at a working rate of 250 ° C., and then heat treatment (low-temperature annealing) at 250 to 350 ° C. is a method for producing a Cu—Ni—Si alloy for electric / electronic device parts.
【0006】[0006]
【作用】本願請求項1の発明は、以下に詳述するよう
に、(1)Ni、Siの添加量を多くして、強度を向上
させる。(2)溶体化処理を高温で行って、鋳造過程で
生成する晶出相を完全に消失させ、熱間加工性を向上さ
せると共に、析出効果に寄与するNi、Siの固溶量を
多くする。(3)熱処理(時効処理)を2段階に分けて
行うことにより、導電率を向上させ、且つ析出硬化に寄
与する微細な析出物を効率よく生成させる。 の3点を
主な特徴とするものである。 即ち、The invention of claim 1 of the present application improves the strength by (1) increasing the amount of Ni and Si added, as will be described in detail below. (2) The solution treatment is performed at a high temperature to completely eliminate the crystallized phase generated during the casting process, improve the hot workability, and increase the amount of Ni and Si that contribute to the precipitation effect. . (3) By performing the heat treatment (aging treatment) in two stages, the conductivity is improved, and fine precipitates that contribute to precipitation hardening are efficiently generated. The three main features are as follows. That is,
【0007】(1)Ni、Siは、時効処理によりNi
ーSi化合物を析出させ、強度を向上させる為に添加す
る元素であって、その添加量をNi:4.1〜10wt
%、Si:1.0〜1.5wt%の範囲内に限定したの
は、それぞれ下限未満では充分な強度が得られず、上限
を超えると、熱間加工性が悪くなったり、溶体化処理時
の晶出物の固溶が不充分となる為である。本願発明で
は、更にMn、Zn等を添加することが望ましいが、こ
れら元素の添加効果並びに添加量の限定理由は下記の通
りである。Mnは、熱間加工時に割れの原因となるSを
結晶粒界にトラップし、加工性を向上させる効果がある
が、添加量が0.2wt%を超えると、導電率が低下す
ると共に、熱間加工割れ防止の効果も飽和するので、添
加量は0.2wt%以下にする必要がある。Znは、ハ
ンダ付後の界面の劣化を防止し、ハンダ接続部の信頼性
を保証する効果があるが、添加量が1.0wt%を超え
ると、導電率が低下すると共に、その効果も飽和するの
で、添加量は1.0wt%以下にする必要がある。尚、
Sが、15ppmを超えて含有されると、Mnを添加し
た場合であっても、結晶粒界に連続した晶出物(Mn
S)を形成し、熱間加工性を害すると共に、曲げ加工等
の冷間加工性も害するので、S含有量は15ppm以下
にする必要がある。(1) Ni and Si are Ni
-An element that is added to precipitate Si compounds and improve the strength, and the addition amount is Ni: 4.1-10 wt
%, Si: within the range of 1.0 to 1.5 wt% is that when the amount is less than the lower limit, sufficient strength cannot be obtained, and when the amount exceeds the upper limit, hot workability deteriorates or solution treatment is performed. This is because the solid solution of the crystallized product at the time becomes insufficient. In the present invention, it is desirable to further add Mn, Zn, and the like, but the effects of adding these elements and the reasons for limiting the amounts added are as follows. Mn has the effect of trapping S, which causes cracking during hot working, at the crystal grain boundaries and improving workability. However, if the added amount exceeds 0.2 wt%, the electrical conductivity decreases and the thermal conductivity decreases. Since the effect of preventing interwork cracking is also saturated, the addition amount needs to be 0.2 wt% or less. Zn has the effect of preventing deterioration of the interface after soldering and ensuring the reliability of the solder joint, but if the addition amount exceeds 1.0 wt%, the conductivity will decrease and the effect will also saturate. Therefore, the addition amount needs to be 1.0 wt% or less. still,
When S is contained in excess of 15 ppm, even if Mn is added, a crystallized substance (Mn
Since S) is formed and the hot workability is impaired and the cold workability such as bending is impaired, the S content must be 15 ppm or less.
【0008】(2)本願発明において、溶体化処理を9
50〜1000℃で、1分以上行うのは、鋳造過程で生
成する晶出相を完全に消失させ、熱間加工性を向上させ
ると共に、析出効果に寄与するNi、Siの固溶量を多
くする為であり、950℃未満の温度或いは1分未満の
時間では、充分な効果が得られず、1000℃を超える
と、その効果が飽和すると共に、経済的でない為であ
る。又、溶体化処理を施した後冷却する際に、少なくと
も300〜600℃の温度範囲を10℃/sec以上の
冷却速度で急冷するのは、冷却過程で粗大な析出物が生
成するのを防止する為であり、上記条件の範囲外では充
分な強度が得られない。(2) In the present invention, the solution treatment is 9 times.
Performing at 50 to 1000 ° C. for 1 minute or more completely eliminates the crystallized phase generated in the casting process, improves hot workability, and increases the amount of solid solution of Ni and Si that contribute to the precipitation effect. If the temperature is lower than 950 ° C. or the time is shorter than 1 minute, a sufficient effect cannot be obtained, and if the temperature exceeds 1000 ° C., the effect is saturated and it is not economical. In addition, when cooling after performing the solution treatment, rapid cooling at a cooling rate of at least 10 ° C./sec in a temperature range of at least 300 to 600 ° C. prevents formation of coarse precipitates in the cooling process. If the above conditions are not satisfied, sufficient strength cannot be obtained.
【0009】(3)本願発明において熱処理を2段階に
分けて行うのは、一回目の熱処理は高温で行って、比較
的短時間で析出を或る程度進行させると共に、再結晶を
起こさせ、二回目の熱処理は低温で比較的長時間行っ
て、析出効果への寄与が大きい微細な析出物を充分に生
成させ、強度及び導電率を充分に向上させる為である。
而して、一回目の熱処理における析出は、強度及び導電
率の向上に寄与すると共に、二回目の熱処理における析
出を促進し、再結晶を抑制する効果を有している。又一
回目の熱処理における再結晶は、その後の冷間加工にお
ける加工性を向上させる効果を有している。(3) In the present invention, the heat treatment is performed in two stages. The first heat treatment is performed at a high temperature to cause a certain amount of precipitation to proceed in a relatively short time and to cause recrystallization. The second heat treatment is performed at a low temperature for a relatively long period of time to sufficiently generate fine precipitates that greatly contribute to the precipitation effect, and to sufficiently improve strength and conductivity.
Thus, the precipitation in the first heat treatment contributes to the improvement of strength and electrical conductivity, and has the effect of promoting the precipitation in the second heat treatment and suppressing recrystallization. The recrystallization in the first heat treatment has an effect of improving the workability in the subsequent cold working.
【0010】即ち、一回目の熱処理の条件を、450〜
550℃×1〜30分の範囲内に限定したのは、450
℃未満では再結晶が起こらなく、1分未満では再結晶、
析出共に起こらなく、又550℃を超えると析出物が粗
大化しすぎて、強度向上に寄与しなくなり、30分を超
えると析出が進行しすぎて、二回目の熱処理時における
微細な析出物の生成量が少なくなる為である。That is, the condition of the first heat treatment is 450 to
550 ° C. × 1 to 30 minutes limited to 450
Recrystallization does not occur below ℃, recrystallization below 1 minute,
Precipitation does not occur, and if the temperature exceeds 550 ° C., the precipitates become too coarse and do not contribute to the strength improvement. This is because the amount is reduced.
【0011】又本願発明では各熱処理の前に冷間加工を
行っているが、当該冷間加工の作用及びその範囲の限定
理由は下記の通りである。即ち、一回目の熱処理の前に
冷間加工を行うのは、前記熱処理における再結晶を促進
する為であり、その範囲を50%以上に限定したのは、
加工率が50%未満であると、450℃以上に加熱して
も再結晶が起こらない為である。又、二回目の熱処理の
前に冷間加工を行うのは、加工硬化による強度向上を図
ると共に、前記熱処理における析出を促進する為であ
り、その範囲を30〜80%の範囲内に限定したのは、
加工率が30%未満であると、加工硬化が不充分である
と共に、析出が充分に進行しない為である。又、加工率
が80%を超えると、材料の加工が困難となる為であ
る。Further, in the present invention, cold working is performed before each heat treatment, but the action of the cold working and the reason for limiting the range are as follows. That is, the reason why cold working is performed before the first heat treatment is to promote recrystallization in the heat treatment, and the range is limited to 50% or more.
If the working ratio is less than 50%, recrystallization does not occur even when heated to 450 ° C. or more. Further, the reason why cold working is performed before the second heat treatment is to improve the strength by work hardening and promote precipitation in the heat treatment, and the range is limited to the range of 30 to 80%. Is
This is because if the processing rate is less than 30%, work hardening is insufficient and precipitation does not proceed sufficiently. On the other hand, if the processing rate exceeds 80%, it becomes difficult to process the material.
【0012】本願請求項4の発明は、前記2段階の熱処
理後更に冷間加工及び低温焼鈍を行うことによって、導
電率及び延性を更に向上させようとするものである。而
して、加工率を5〜15%の範囲内に限定したのは、5
%未満ではその後に低温焼鈍を行っても導電率及び延性
向上の効果が得られなく、15%を超えると、延性が低
下する為である。又、温度を250〜350℃の範囲内
に限定したのは、250℃未満では導電率及び延性向上
が不充分であり、350℃を超えると、強度が低下する
為である。[0012] The invention of claim 4 of the present application is to further improve the electrical conductivity and ductility by further performing cold working and low temperature annealing after the two-stage heat treatment. The reason why the processing rate is limited to the range of 5 to 15% is as follows.
If it is less than 10%, the effect of improving the conductivity and ductility cannot be obtained even if low-temperature annealing is performed thereafter, and if it exceeds 15%, the ductility decreases. Further, the reason why the temperature is limited to the range of 250 to 350 ° C. is that if the temperature is less than 250 ° C., the conductivity and ductility are insufficiently improved, and if the temperature exceeds 350 ° C., the strength is lowered.
【0013】[0013]
【実施例】次に本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.
【実施例1】表1に示す合金組成(記号:A、B、C、
D)に配合した原料を溶解鋳造して、厚さ50mmの鋳
塊となし、表2に示した温度に20分保持して溶体化処
理を行った後、厚さ10mm迄熱間圧延し、600℃か
らシャワー水の噴射により急冷した。300℃までの冷
却速度は20℃/secであった。この熱間圧延板を
1.2mm迄冷間圧延(加工率:88%)した後、表2
に示した条件で一回目の熱処理を行った。その後更に
0.5mm迄冷間圧延(加工率:58%)した後、表2
に示した条件で二回目の熱処理を行った。尚、一部の試
料(比較例No.13)については、二回目の熱処理を
省略した。このようにして得られた試料について、引張
試験及び導電率測定を行い、その結果を表3に示した。Example 1 Alloy compositions shown in Table 1 (symbols: A, B, C,
The raw material blended in D) was melt-cast to form an ingot having a thickness of 50 mm. After performing a solution treatment while maintaining the temperature shown in Table 2 for 20 minutes, hot rolling was performed to a thickness of 10 mm. It was rapidly cooled from 600 ° C. by spraying shower water. The cooling rate to 300 ° C. was 20 ° C./sec. After cold-rolling this hot-rolled sheet to 1.2 mm (working rate: 88%), Table 2
The first heat treatment was performed under the conditions shown in FIG. After further cold rolling (working rate: 58%) to 0.5 mm, Table 2
The second heat treatment was performed under the conditions shown in. The second heat treatment was omitted for some of the samples (Comparative Example No. 13). The sample thus obtained was subjected to a tensile test and conductivity measurement, and the results are shown in Table 3.
【0014】[0014]
【従来例】表1に示す合金組成(記号A、B)に配合し
た原料を溶解鋳造して、厚さ50mmの鋳塊となし、9
00℃に20分保持して溶体化処理を行った後、厚さ1
0mm迄熱間圧延し、実施例1と同じ条件で急冷した。
この熱間圧延板を0.5mm迄冷間圧延(加工率:95
%)した後、表2に示した条件で一回目の熱処理を行っ
た。このようにして得られた試料について、引張試験及
び導電率測定を行い、その結果を表3に併記した。Conventional Example Raw materials mixed with the alloy compositions (symbols A and B) shown in Table 1 were melt-cast to form ingots having a thickness of 50 mm.
After holding at 00 ° C for 20 minutes for solution treatment, thickness 1
It was hot rolled to 0 mm and quenched under the same conditions as in Example 1.
This hot-rolled sheet is cold-rolled to 0.5 mm (working rate: 95
%), The first heat treatment was performed under the conditions shown in Table 2. The sample thus obtained was subjected to a tensile test and a conductivity measurement, and the results are shown in Table 3.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】[0017]
【表3】 [Table 3]
【0018】表3から明らかなように、本発明例No.
1〜7はいずれも従来例No.16、17よりも強度が
高く、導電性も良好である。一方、溶体化処理温度が本
願発明よりも低い比較例No.8、一回目或いは二回目
の熱処理温度が本願発明の範囲外である比較例No.9
〜12、熱処理を一回しか行わなかった比較例No.1
3、Ni、Si量が本願発明よりも少ない比較例No.
14は、いずれも本願発明よりも強度が低く、二回目の
熱処理温度が本願発明よりも低い比較例No.12は導
電率も低い。尚、Ni、Si量が本願発明よりも多い比
較例No.15は熱間圧延途中で割れを生じ、以後の加
工が不可能であった。As is clear from Table 3, the present invention example No.
Nos. 1 to 7 are all conventional examples. It has higher strength than 16 and 17 and good conductivity. On the other hand, in Comparative Example No. having a solution treatment temperature lower than that of the present invention. 8, Comparative Example No. 8 in which the first or second heat treatment temperature is out of the range of the present invention. 9
To No. 12, Comparative Example No. 1 in which the heat treatment was performed only once. 1
Comparative Example No. 3, in which the amounts of Ni and Si are smaller than those of the present invention.
Comparative Example No. 14 has lower strength than the present invention, and the second heat treatment temperature is lower than that of the present invention. 12 also has low conductivity. It should be noted that Comparative Example Nos. In No. 15, cracks occurred during hot rolling, and subsequent processing was impossible.
【0019】[0019]
【実施例2】表1に示す合金組成(記号:A、B)に配
合した原料を溶解後、横型連続鋳造により10mmの鋳
塊となし、表4に示した温度に20分保持して溶体化処
理を行った後、20℃/secの冷却速度で100℃以
下まで急冷した。この材料を1.2mm迄冷間圧延(加
工率:88%)した後、表4に示した条件で一回目の熱
処理を行った。その後更に0.5mm迄冷間圧延(加工
率:58%)した後、表4に示した条件で二回目の熱処
理を行った(尚、一部の試料ついては、二回目の熱処理
を省略した)。このようにして得られた試料について、
引張試験及び導電率測定を行い、その結果を表5に示し
た。Example 2 After melting the raw materials mixed in the alloy composition (symbols: A and B) shown in Table 1, a horizontal ingot was cast into a 10 mm ingot, which was kept at the temperature shown in Table 4 for 20 minutes to obtain a solution. After the chemical treatment, it was rapidly cooled to 100 ° C. or lower at a cooling rate of 20 ° C./sec. After cold rolling (working rate: 88%) this material to 1.2 mm, a first heat treatment was performed under the conditions shown in Table 4. Then, after further cold rolling (working rate: 58%) to 0.5 mm, a second heat treatment was performed under the conditions shown in Table 4 (for some samples, the second heat treatment was omitted). . About the sample obtained in this way,
A tensile test and a conductivity measurement were performed, and the results are shown in Table 5.
【0020】[0020]
【表4】 [Table 4]
【0021】[0021]
【表5】 [Table 5]
【0022】表5から明らかなように、本発明例No.
21〜27はいずれも表3に示した従来例No.16、
17よりも強度が高く、導電性も良好である。一方、溶
体化処理温度が本願発明よりも低い比較例No.28、
一回目或いは二回目の熱処理温度が本願発明の範囲外で
ある比較例No.29〜32、熱処理を一回しか行わな
かった比較例No.33は、いずれも本願発明よりも強
度が低く、二回目の熱処理温度が本願発明よりも低い比
較例No.32は導電率も低いAs is clear from Table 5, the present invention example no.
Nos. 21 to 27 are all the conventional example Nos. Shown in Table 3. 16,
It has higher strength than 17 and good conductivity. On the other hand, in Comparative Example No. having a solution treatment temperature lower than that of the present invention. 28,
Comparative Example No. 1 in which the first or second heat treatment temperature was out of the range of the present invention. 29 to 32, Comparative Example No. 1 in which the heat treatment was performed only once. In Comparative Example No. 33, the strength is lower than that of the present invention, and the second heat treatment temperature is lower than that of the present invention. 32 also has low conductivity
【0023】[0023]
【実施例3】実施例1で製造した試料の内、No.3の
試料について、更に0.45mmまで冷間圧延し(圧延
率:10%)、表6に示した条件で熱処理を行った。こ
のようにして得られた試料について、引張試験及び導電
率測定を行い、その結果を表6に併記した。Example 3 Of the samples manufactured in Example 1, No. Sample No. 3 was further cold-rolled to 0.45 mm (rolling rate: 10%) and heat-treated under the conditions shown in Table 6. The sample thus obtained was subjected to a tensile test and a conductivity measurement, and the results are shown in Table 6.
【0024】[0024]
【表6】 [Table 6]
【0025】表6から明らかなように、二回目の熱処理
後冷間加工及び熱処理(低温焼鈍)を行った本発明例3
−1、3−2、3ー3はいずれも、表3に示した二回目
の熱処理後の試料(本発明例3)に比べて、導電率及び
延性(伸び)が向上している。一方熱処理温度が本願発
明よりも低い比較例No.3−4は伸びが小さく、熱処
理温度が本願発明よりも高い比較例No.3−5は強度
が低下している。As is clear from Table 6, Example 3 of the present invention in which cold working and heat treatment (low-temperature annealing) were performed after the second heat treatment.
-1, 3-2, and 3-3 are all higher in conductivity and ductility (elongation) than the sample after the second heat treatment shown in Table 3 (Example 3 of the present invention). On the other hand, in Comparative Example No. in which the heat treatment temperature was lower than that of the present invention. Comparative Example No. 3-4 has a small elongation and a heat treatment temperature higher than that of the present invention. 3-5 has decreased strength.
【0026】[0026]
【発明の効果】このように本発明によれば、強度及び導
電性に優れた電気・電子機器部品用CuーNiーSi系
合金を効率的に製造することができ、工業上顕著な効果
を奏するものである。As described above, according to the present invention, it is possible to efficiently produce a Cu—Ni—Si alloy for electric / electronic equipment parts having excellent strength and conductivity, and to achieve a remarkable industrial effect. To play.
Claims (4)
0〜1.5wt%、Mn:0.2wt%以下、Zn:
1.0wt%以下を含有し、S含有量が15ppm以下
であり、残部がCuと不可避的不純物とからなる銅合金
に、950〜1000℃に1分以上保持する溶体化処理
を施した後、少なくとも300〜600℃の温度範囲を
10℃/sec以上の冷却速度で冷却し、50%以上の
加工率で冷間加工後、450〜550℃の温度で、1〜
30分熱処理を行い、その後更に30〜80%の加工率
で冷間加工後、380〜440℃の温度で、5〜180
分熱処理を行うことを特徴とする電気・電子機器部品用
CuーNiーSi系合金の製造方法。1. Ni: 4.1-10 wt%, Si: 1.
0 to 1.5 wt%, Mn: 0.2 wt% or less, Zn:
After subjecting a copper alloy containing 1.0 wt% or less, S content of 15 ppm or less, and the balance of Cu and unavoidable impurities to a solution treatment of holding at 950 to 1000 ° C. for 1 minute or more, After cooling in a temperature range of at least 300 to 600 ° C. at a cooling rate of 10 ° C./sec or more and cold working at a working rate of 50% or more, at a temperature of 450 to 550 ° C., 1 to
After heat treatment for 30 minutes, and then cold working at a working rate of 30 to 80%, a temperature of 380 to 440 ° C. and 5 to 180
A method for producing a Cu-Ni-Si alloy for electric / electronic equipment parts, characterized by performing a partial heat treatment.
なくとも300〜600℃の温度範囲を10℃/sec
以上の冷却速度で冷却することを特徴とする請求項1記
載の電気・電子機器部品用CuーNiーSi系合金の製
造方法。2. After the solution treatment, hot rolling is performed, and a temperature range of at least 300 to 600 ° C. is 10 ° C./sec.
2. The method according to claim 1, wherein the cooling is performed at the above-mentioned cooling rate.
塊の状態或いは冷間加工の途中で溶体化処理を施すこと
を特徴とする請求項1記載の電気・電子機器部品用Cu
ーNiーSi系合金の製造方法。3. The Cu for electric / electronic device parts according to claim 1, wherein the ingot produced by horizontal continuous casting is subjected to a solution treatment in the state of the ingot or during the cold working.
A method for producing a Ni-Si alloy.
更に5〜15%の加工率で冷間加工を行い、その後25
0〜350℃で熱処理を行うことを特徴とする請求項1
〜3記載の電気・電子機器部品用CuーNiーSi系合
金の製造方法。4. After heat treatment at 380 to 440 ° C.,
Further, cold working is performed at a working ratio of 5 to 15%.
The heat treatment is performed at 0 to 350 ° C.
4. The method for producing a Cu—Ni—Si alloy for electric / electronic device parts according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16008294A JP2651122B2 (en) | 1994-07-12 | 1994-07-12 | Method for producing Cu-Ni-Si alloy for electric / electronic device parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16008294A JP2651122B2 (en) | 1994-07-12 | 1994-07-12 | Method for producing Cu-Ni-Si alloy for electric / electronic device parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0827551A true JPH0827551A (en) | 1996-01-30 |
JP2651122B2 JP2651122B2 (en) | 1997-09-10 |
Family
ID=15707483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16008294A Expired - Lifetime JP2651122B2 (en) | 1994-07-12 | 1994-07-12 | Method for producing Cu-Ni-Si alloy for electric / electronic device parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2651122B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6602362B2 (en) | 2000-03-14 | 2003-08-05 | Nippon Mining And Metals Co., Ltd. | Copper-alloy foil to be used for suspension member of hard-disc drive |
CN110195170A (en) * | 2019-06-25 | 2019-09-03 | 太原晋西春雷铜业有限公司 | A kind of preparation method improving Cu-Ni-Si alloy obdurability |
KR20220090880A (en) * | 2020-12-23 | 2022-06-30 | 한국재료연구원 | Cu-Ni-Si-Mn alloy with reduced inclusions and manufacturing method thereof |
CN114752810A (en) * | 2022-03-24 | 2022-07-15 | 江苏恒盈电子科技有限公司 | High-strength semiconductor lead frame for circuit board and preparation method thereof |
-
1994
- 1994-07-12 JP JP16008294A patent/JP2651122B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6602362B2 (en) | 2000-03-14 | 2003-08-05 | Nippon Mining And Metals Co., Ltd. | Copper-alloy foil to be used for suspension member of hard-disc drive |
CN110195170A (en) * | 2019-06-25 | 2019-09-03 | 太原晋西春雷铜业有限公司 | A kind of preparation method improving Cu-Ni-Si alloy obdurability |
CN110195170B (en) * | 2019-06-25 | 2021-04-13 | 太原晋西春雷铜业有限公司 | Preparation method for improving toughness of Cu-Ni-Si alloy |
KR20220090880A (en) * | 2020-12-23 | 2022-06-30 | 한국재료연구원 | Cu-Ni-Si-Mn alloy with reduced inclusions and manufacturing method thereof |
CN114752810A (en) * | 2022-03-24 | 2022-07-15 | 江苏恒盈电子科技有限公司 | High-strength semiconductor lead frame for circuit board and preparation method thereof |
CN114752810B (en) * | 2022-03-24 | 2023-04-11 | 江苏恒盈电子科技有限公司 | High-strength semiconductor lead frame for circuit board and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2651122B2 (en) | 1997-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0841612A (en) | Copper alloy and its preparation | |
JPH09104956A (en) | Production of high strength and high electric conductivity copper alloy | |
JP2001294957A (en) | Copper alloy for connector and its producing method | |
JP4393663B2 (en) | Copper-based alloy strip for terminal and manufacturing method thereof | |
JPS6229503B2 (en) | ||
JP2844120B2 (en) | Manufacturing method of copper base alloy for connector | |
JP3511648B2 (en) | Method for producing high-strength Cu alloy sheet strip | |
CN115652134A (en) | High-strength high-bending-property copper-nickel-silicon alloy and preparation method thereof | |
JPH06264202A (en) | Production of high strength copper alloy | |
KR20010062360A (en) | copper alloy for electronic materials with excellent surface special and manufacturing method therefor | |
JP2000104131A (en) | High strength and high conductivity copper alloy and its production | |
JP4407953B2 (en) | High strength and high conductivity copper alloy sheet | |
JP2651122B2 (en) | Method for producing Cu-Ni-Si alloy for electric / electronic device parts | |
JPS5893860A (en) | Manufacture of high strength copper alloy with high electric conductivity | |
JPH0617209A (en) | Manufacture of copper alloy for electrical and electronic apparatus | |
JP2001262297A (en) | Copper-base alloy bar for terminal, and its manufacturing method | |
JPH0418016B2 (en) | ||
JPS63128158A (en) | Manufacture of high strength copper alloy having high electrical conductivity | |
JP2945208B2 (en) | Method for producing copper alloy for electrical and electronic equipment | |
JPS61143564A (en) | Manufacture of high strength and highly conductive copper base alloy | |
JP3519888B2 (en) | Copper alloy for electronic equipment and method for producing the same | |
JPS61288036A (en) | Copper alloy for lead frame and its production | |
JPH0696757B2 (en) | Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability | |
JPS6141751A (en) | Manufacture of copper alloy material for lead frame | |
KR102442517B1 (en) | Manufacturing method of titanium copper plate, press-formed article and press-formed article before aging treatment |