JPH0518742A - Atomic probe microscope - Google Patents
Atomic probe microscopeInfo
- Publication number
- JPH0518742A JPH0518742A JP17006491A JP17006491A JPH0518742A JP H0518742 A JPH0518742 A JP H0518742A JP 17006491 A JP17006491 A JP 17006491A JP 17006491 A JP17006491 A JP 17006491A JP H0518742 A JPH0518742 A JP H0518742A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- electrode
- sample
- cantilever
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は原子プローブ顕微鏡に関
する。FIELD OF THE INVENTION The present invention relates to an atomic probe microscope.
【0002】[0002]
【従来の技術およびその課題】原子プローブ顕微鏡の代
表的なものとしては走査型トンネル顕微鏡(STM;Sca
nning Tunneling Microscope)と原子間力顕微鏡(AF
M;Atomic Force Microscope)が知られている。2. Description of the Related Art A typical example of an atomic probe microscope is a scanning tunneling microscope (STM; Sca).
nning Tunneling Microscope) and atomic force microscope (AF)
M; Atomic Force Microscope) is known.
【0003】STMは、先鋭な導電性探針を導電性試料
に数Å程度まで近づけ、両者間にバイアス電圧を印加し
た際に流れるトンネル電流を利用した表面形状計測装置
である。一般にSTMでは、探針が試料の表面を走査す
る間、探針と試料との間の距離を一定に保つように探針
・試料間距離がサーボ制御される。この探針の走査およ
びサーボ制御には高電圧で駆動される圧電素子が主に使
用される。The STM is a surface shape measuring apparatus that utilizes a tunnel current that flows when a sharp conductive probe is brought close to a conductive sample by about several Å and a bias voltage is applied between them. Generally, in the STM, the probe-sample distance is servo-controlled so that the distance between the probe and the sample is kept constant while the probe scans the surface of the sample. A piezoelectric element driven by a high voltage is mainly used for scanning and servo control of the probe.
【0004】トンネル電流は、絶縁部材を介して圧電素
子に取り付けられた探針電極から検出される。圧電素子
には、探針が試料表面を一定の間隔を置いて走査するよ
うに、試料表面の凹凸に対応したサーボ電圧が供給され
る。このサーボ電圧が供給される圧電素子の駆動電極と
探針電極との間には絶縁部材が介在し、駆動電極と探針
電極との間に容量が構成される。従って、圧電素子の駆
動電極に時間的に変化するサーボ電圧が印加されると、
容量の電極に交流電圧が供給されたときのように、探針
電極に電流が流れてしまい、正確な測定が行なえない。The tunnel current is detected from the probe electrode attached to the piezoelectric element via the insulating member. A servo voltage corresponding to the unevenness of the sample surface is supplied to the piezoelectric element so that the probe scans the sample surface at a constant interval. An insulating member is interposed between the drive electrode and the probe electrode of the piezoelectric element to which the servo voltage is supplied, and a capacitance is formed between the drive electrode and the probe electrode. Therefore, when a time-varying servo voltage is applied to the drive electrodes of the piezoelectric element,
As when an AC voltage is supplied to the capacitance electrode, a current flows through the probe electrode, and accurate measurement cannot be performed.
【0005】一方、AFMは、弾性体からなる100μ
m〜2000μm長のカンチレバーの自由端部に鋭く尖
った探針を設け、この探針を試料に近づけて、探針先端
と試料表面の原子間に吸着やファンデルワールス力等の
引力を作用させ、これにより生じるカンチレバーの変位
から試料の局所的な形状や物性を測定する。On the other hand, the AFM is an elastic body of 100 μm.
A sharply pointed probe is provided at the free end of the cantilever with a length of m to 2000 μm, and this probe is brought close to the sample to exert attraction force such as adsorption or van der Waals force between the atoms at the tip of the probe and the sample surface. , The local shape and physical properties of the sample are measured from the resulting displacement of the cantilever.
【0006】AFMには、上述の引力を主体とする引力
モードの他に、探針を試料に更に接近させ、探針の一個
の原子と試料の一個の原子との間のパウリ則による原子
間力に基づく斥力モードによる測定がある。前者は10
-7〜10-12Nの力を、後者は10-7N以上の力をカン
チレバーの変位で検出する。In the AFM, in addition to the above-described attractive force mode mainly composed of attractive force, the probe is brought closer to the sample, and the interatomic distance between one atom of the probe and one atom of the sample according to the Pauli law is calculated. There is a force-based repulsive mode measurement. The former is 10
The force of −7 to 10 −12 N and the latter force of 10 −7 N or higher are detected by the displacement of the cantilever.
【0007】AFMの測定としての対象のうち、斥力モ
ードについては、探針先端の原子と試料の原子の最も接
近した原子間のみの力が支配的である。すなわち、最も
接近した原子以外は引力が作用するが、これは斥力に比
べて微小な力であるので無視できる。In the repulsive force mode among the objects to be measured by the AFM, the force between only the atoms closest to the atoms at the tip of the probe and the atoms of the sample is dominant. That is, an attractive force acts on atoms other than the closest atom, but this force is a minute force compared to the repulsive force and can be ignored.
【0008】これに対して引力モードでは、カンチレバ
ーの変位に影響の与える力が原子間力以外に生じてく
る。その一つとして、探針と試料の間に水分子が集積し
て生じるメニスカス力がある。On the other hand, in the attractive mode, a force that affects the displacement of the cantilever occurs in addition to the atomic force. One of them is the meniscus force generated by the accumulation of water molecules between the probe and the sample.
【0009】一般に、水の様に非極性の液体に対して
は、探針とカンチレバーを水に浸して、メニスカス力を
両者に作用させない様にして測定する方法が、カリフォ
ルニア大学バークレイ校の S.Manne, P.K.Hamsma (App
l. Phy. lett. 56(18), 30 April1990) により開発さ
れ、効果を上げている。In general, for a non-polar liquid such as water, a method of immersing a probe and a cantilever in water so that the meniscus force does not act on them is measured by S. of the University of California, Berkeley. Manne, PKHamsma (App
l. Phy. lett. 56 (18), 30 April 1990) and has been effective.
【0010】しかしながら、極性を持つ分極可能な絶縁
物質が探針とカンチレバーの周囲を囲む環境では、AF
M装置の内外に異常なポテンシャルエネルギーを持つ物
体の存在により、絶縁物質が分極するために探針やカン
チレバーの表面に生じる電荷の静電力が作用して正常な
測定ができなくなる。However, in an environment in which a polarizable polarizable insulating material surrounds the probe and the cantilever, AF
Due to the presence of an object having anomalous potential energy inside and outside the M device, the insulating material is polarized, and the electrostatic force of the charge generated on the surface of the probe or the cantilever acts to prevent normal measurement.
【0011】本発明は、正確な測定を行なうことのでき
る原子プローブ顕微鏡を提供することを目的とする。An object of the present invention is to provide an atomic probe microscope capable of making accurate measurements.
【0012】[0012]
【課題を解決するための手段およびその作用】本発明の
原子プローブ顕微鏡は、先端が鋭く尖った探針と、探針
をその自由端部に備え、探針先端と試料表面との間に作
用する力を受けて弾性変位するレバー体と、上記レバー
体の他端部を固定支持する支持手段と、レバー体に対峙
するよう、支持手段と一体に設けられた電極と、試料を
支持する導電性の試料基板と、電極と試料基板との間に
電圧を印加する電源とを備えている。Atomic probe microscope of the present invention is provided with a probe having a sharp tip and a probe at its free end, and acts between the probe tip and the sample surface. Lever body that is elastically displaced by a force that acts on the lever body, a support means that fixes and supports the other end of the lever body, an electrode that is integrally provided with the support means so as to face the lever body, and a conductive material that supports the sample. And a power source for applying a voltage between the electrode and the sample substrate.
【0013】電極と試料基板との間に電源により所定の
電圧が印加され、これにより両電極間に電場が生じす
る。一方、外部のポテンシャル物体から生じる電場は、
その電気力線が電極に入射して終結し、電極と試料基板
で挟まれた空間には入射しない。このように外部ポテン
シャルの電場は電極により遮断される。A predetermined voltage is applied between the electrodes and the sample substrate by a power source, and an electric field is generated between the electrodes. On the other hand, the electric field generated by an external potential object is
The line of electric force is incident on the electrode and is terminated, and does not enter the space sandwiched between the electrode and the sample substrate. Thus, the electric field of the external potential is blocked by the electrodes.
【0014】また本発明の別の原子プローブ顕微鏡は、
導電性の探針と、探針に電気的に接続されたトンネル電
流を取り出すための探針電極と、二枚の板状の圧電体
と、二枚の圧電体に挟まれた板状の共通電極と、各圧電
体に設けられた二本の帯状の駆動電極とを備えた、探針
を走査するためのカンチレバーと、カンチレバーの駆動
電極と探針電極との間に、これらの電極から絶縁されて
設けられた接地電位のガードリング電極とを備えてい
る。Another atomic probe microscope of the present invention is
A conductive probe, a probe electrode electrically connected to the probe for extracting a tunnel current, two plate-shaped piezoelectric bodies, and a plate-shaped common sandwiched between two piezoelectric bodies A cantilever for scanning the probe, which includes an electrode and two strip-shaped drive electrodes provided on each piezoelectric body, and is insulated from the drive electrode of the cantilever and the probe electrode between these electrodes. And a guard ring electrode having a ground potential provided therein.
【0015】カンチレバーの駆動電極と探針電極との間
に設けられたガードリング電極は接地されているため、
駆動電極に印加される電圧の変動成分つまり交流成分は
ガードリング電極で吸収され、探針電極に流入すること
はない。従って、走査のために駆動電極に印加する駆動
電圧がトンネル電流に影響を与えるということがなくな
る。Since the guard ring electrode provided between the drive electrode of the cantilever and the probe electrode is grounded,
The fluctuation component of the voltage applied to the drive electrode, that is, the AC component is absorbed by the guard ring electrode and does not flow into the probe electrode. Therefore, the drive voltage applied to the drive electrode for scanning does not affect the tunnel current.
【0016】[0016]
【実施例】次に本発明の第1の実施例の断面図を図1
に、その下面図を図2に示す。探針12はカンチレバー
14の自由端に設けられ、試料16との間に原子間力が
作用する程度に近づけて支持される。カンチレバー14
は、厚さd1とd2(d1<d2)の部分を持つパイレック
スガラス基板20に陽極接合により固定されている。パ
イレックスガラス基板20の上面には、Crを介してA
uを蒸着した電極22が形成されている。このようなカ
ンチレバー14は、探針と試料との間の距離を調整する
とともに、探針12を走査させるための圧電素子24に
支持されている。また、カンチレバー14の自由端の原
子間力・吸着力による変位を検出するための手段は省略
してある。また、試料16は、Auなどの導電性の試料
基板18の上に化学吸着などの手法を用いて安定に固定
されている。電極22と試料基板18は、所定の電圧を
印加する電源V1に接続されている。1 is a sectional view of a first embodiment of the present invention.
The bottom view is shown in FIG. The probe 12 is provided at the free end of the cantilever 14 and is supported so as to be close to the extent that an atomic force acts on the sample 16. Cantilever 14
Is fixed by anodic bonding to a Pyrex glass substrate 20 having portions of thickness d 1 and d 2 (d 1 <d 2 ). The upper surface of the Pyrex glass substrate 20 is
An electrode 22 is formed by depositing u. Such a cantilever 14 is supported by a piezoelectric element 24 for scanning the probe 12 while adjusting the distance between the probe and the sample. Further, means for detecting the displacement of the free end of the cantilever 14 due to the atomic force / adsorption force is omitted. Further, the sample 16 is stably fixed on the conductive sample substrate 18 such as Au by using a method such as chemical adsorption. The electrode 22 and the sample substrate 18 are connected to a power source V 1 that applies a predetermined voltage.
【0017】本実施例では、電極22と試料基板18と
の間に電源V1により所定の電圧が印加され、両電極間
に電場Eが形成される。一方、外部のポテンシャル物体
から生じる電場Eextは、その電気力線が示すように、
一部は電極22の上面に垂直入射して終結している。他
の電気力線も試料基板18に入射して終結しているか、
電極22以外の空間に入射しており、電極22と試料基
板18で挟まれた空間には入射しない。このように電極
22が外部ポテンシャルの電場Eextを遮断するため、
電場Eextは探針12に影響を与えない。In this embodiment, a predetermined voltage is applied between the electrode 22 and the sample substrate 18 by the power source V 1, and an electric field E is formed between both electrodes. On the other hand, the electric field E ext generated from an external potential object is
A part of the light is vertically incident on the upper surface of the electrode 22 and is terminated. Whether other electric lines of force are incident on the sample substrate 18 and terminated,
The light enters the space other than the electrode 22 and does not enter the space sandwiched between the electrode 22 and the sample substrate 18. In this way, the electrode 22 blocks the electric field E ext of the external potential,
The electric field E ext does not affect the probe 12.
【0018】パイレックスガラス基板は電場Eにより分
極し、その誘電率εや厚さd1,d2等に応じた量の+電
荷と−電荷が、その上面と下面にそれぞれ分布する。ま
た、カンチレバー14と探針12がSi3N4やSiO2
等の絶縁体で形成されている場合は、カンチレバー14
と探針12も分極してその表面に電荷が分布する。さら
に、試料16が分極物質である場合は試料も分極する。
これらの電荷分布による各々の電場は誘電率によって影
響されるが、電極22と試料基板18に与えられたポテ
ンシャルVが所定値に設定されると、探針12の電荷
(先端は高密度)に作用する静電力は、その値により決
定され、制御することができる。このとき、探針12の
電荷は試料16の分極された局所的な電荷と相互作用
し、吸引力が作用して、カンチレバー14が変位する。The Pyrex glass substrate is polarized by the electric field E, and + charges and − charges of an amount corresponding to the dielectric constant ε and the thicknesses d 1 and d 2 of the Pyrex glass substrate are distributed on the upper surface and the lower surface, respectively. In addition, the cantilever 14 and the probe 12 are made of Si 3 N 4 or SiO 2.
If it is made of an insulator such as
The probe 12 is also polarized, and charges are distributed on the surface. Further, when the sample 16 is a polarized substance, the sample is also polarized.
Each electric field due to these charge distributions is affected by the dielectric constant, but when the potential V applied to the electrode 22 and the sample substrate 18 is set to a predetermined value, the electric charge (the tip has a high density) of the probe 12 is generated. The acting electrostatic force is determined by its value and can be controlled. At this time, the electric charge of the probe 12 interacts with the polarized local electric charge of the sample 16, and an attractive force acts to displace the cantilever 14.
【0019】すなわち、探針12の近傍には電源V1の
みにより一定値に制御された電場が生成されているの
で、外部ポテンシャル物体の電場Eextに影響されない
測定ができる。That is, since the electric field controlled to a constant value is generated only by the power source V 1 in the vicinity of the probe 12, it is possible to perform the measurement without being influenced by the electric field E ext of the external potential object.
【0020】本発明の第2の実施例を図3に示す。上述
の実施例と同等の部材には同一符号を付し、その詳細な
説明は省略する。A second embodiment of the present invention is shown in FIG. The same members as those in the above-described embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
【0021】本実施例では、電極22すなわち上方電極
はパイレックスガラス基板の上面の他に側面にも設けら
れている。またパイレックスガラス基板20の薄い部分
(厚さd2の部分)の下面には電極26すなわち下方電
極が設けられている。この電極26は可変電源v1を介
して試料基板18に電気的に接続されている。また、探
針12とカンチレバー14は導電性を有するように、S
iにPを強くドープして作られており、可変電源v2を
介して試料基板18に電気的に接続され、試料16と探
針12に電圧を印加する可変電源v2に接続され、トン
ネル電流iを検出できるAFMが構成される。In this embodiment, the electrode 22, that is, the upper electrode is provided on the side surface as well as the upper surface of the Pyrex glass substrate. An electrode 26, that is, a lower electrode, is provided on the lower surface of the thin portion (thickness d 2 portion) of the Pyrex glass substrate 20. The electrode 26 is electrically connected to the sample substrate 18 via the variable power source v 1 . In addition, the probe 12 and the cantilever 14 have S
i is made strongly doped with P to a, through the variable power supply v 2 is electrically connected to the sample substrate 18 is connected to a variable power supply v 2 for applying a voltage to the sample 16 and the probe 12, the tunnel An AFM that can detect the current i is configured.
【0022】電極22には電源V1により所定の一定値
の電圧が印加される。これにより、上述の実施例と同様
に、外乱の電場Eextが遮断され、探針22への影響が
除去される。電極26には所定の可変電圧が印加され
る。このときの可変入力を図4Aに示すように振幅v、
パルス時間間隔T1,T2のパルス電圧とし、AFMの出
力またはトンネル電流iの出力が図4Bに示すように図
4Aに同期した波形を得たとすると、試料16の電場入
力に対する局部的な分子の配向特性・分極特性の緩和時
間t1,t2を得ることができる。A voltage having a predetermined constant value is applied to the electrode 22 by the power source V 1 . As a result, the electric field E ext of the disturbance is blocked and the influence on the probe 22 is removed, as in the above-described embodiment. A predetermined variable voltage is applied to the electrode 26. The variable input at this time is amplitude v, as shown in FIG.
Assuming that the pulse voltage has pulse time intervals T 1 and T 2 and the output of the AFM or the output of the tunnel current i has a waveform synchronized with FIG. 4A, as shown in FIG. It is possible to obtain the relaxation times t 1 and t 2 of the orientation characteristics and the polarization characteristics of.
【0023】なお、パイレックスガラス基板20と電極
22と電極26を光透過性に作ることは容易であるか
ら、偏光子・検光子で本装置を挟んで試料16の偏光性
を同時に測定することもできる。Since it is easy to make the Pyrex glass substrate 20, the electrode 22, and the electrode 26 light-transmissive, it is possible to measure the polarization of the sample 16 at the same time by sandwiching this device with a polarizer / analyzer. it can.
【0024】本発明の第3の実施例を図5に示す。本実
施例は分極可能な絶縁薄膜28を試料基板18に積層
し、電極22と試料基板18に所定の電圧を印加し、外
部ポテンシャルのEextをシールドするとともに、パイ
レックスガラス基板20と絶縁薄膜28を分極させる。
絶縁薄膜28の分極により試料16の分子層は、化学吸
着を得て固定化される。仮に試料16がコロイド分子
で、溶液30に浮遊しているとすると、分子層の配向を
制御しながら、分子膜の生成と結果の測定ができる。A third embodiment of the present invention is shown in FIG. In this embodiment, a polarizable insulating thin film 28 is laminated on the sample substrate 18, a predetermined voltage is applied to the electrode 22 and the sample substrate 18 to shield the external potential E ext, and at the same time, the Pyrex glass substrate 20 and the insulating thin film 28. To polarize.
Due to the polarization of the insulating thin film 28, the molecular layer of the sample 16 is immobilized by obtaining chemical adsorption. If the sample 16 is colloidal molecules and is suspended in the solution 30, it is possible to form a molecular film and measure the result while controlling the orientation of the molecular layer.
【0025】本発明の第4の実施例を図6に示す。本実
施例は、探針の走査するための素子として、スタンフォ
ード大学のアルブリヒト、C.F.クェート等の開発し
た二組の圧電体バイモルフを組み込んだカンチレバー5
0を用いている。カンチレバー50は中央に共通電極5
2を有し、その上下面にZnO薄膜54と56が設けら
れ、さらにその上下面に長手方向に延びる4本の駆動電
極58a〜58dを備えている。このようなカンチレバ
ー50は4本の駆動電極58a〜58dに印加される電
圧を制御することにより、その先端部が3次元方向に移
動可能である。なお、その動作原理は「USP4,91
2,822」に開示されている。本実施例では、カンチ
レバー50の駆動電極58aと58cの上に絶縁膜62
を介してガードリング電極60が積層されている。ガー
ドリング電極60の上には絶縁膜64が形成され、その
中央を長手方向に延びる探針電極66が設けられ、その
上に探針12が設けられている。A fourth embodiment of the present invention is shown in FIG. In this embodiment, as an element for scanning a probe, Stanford University Albricht, C.I. F. Cantilever 5 incorporating two sets of piezoelectric bimorphs developed by Kuwait and others
0 is used. The cantilever 50 has a common electrode 5 in the center.
2, and ZnO thin films 54 and 56 are provided on the upper and lower surfaces thereof, and four drive electrodes 58a to 58d extending in the longitudinal direction are further provided on the upper and lower surfaces thereof. By controlling the voltage applied to the four drive electrodes 58a to 58d, the cantilever 50 as described above can move its tip in three-dimensional directions. The operating principle is "USP 4,91
2,822 ". In this embodiment, the insulating film 62 is formed on the drive electrodes 58a and 58c of the cantilever 50.
The guard ring electrode 60 is laminated via the. An insulating film 64 is formed on the guard ring electrode 60, a probe electrode 66 extending in the longitudinal direction at the center thereof is provided, and the probe 12 is provided thereon.
【0026】本実施例では、ガードリング電極60は接
地されて接地電位に保たれる。In this embodiment, the guard ring electrode 60 is grounded and kept at the ground potential.
【0027】これにより、駆動電極58a〜58dに変
動性の駆動電圧を印加することにより、駆動電極58a
と58cと探針電極66との間で流れようとする交流成
分はガードリング電極60で遮断される。従って、この
交流成分が探針電極66に流入することがなくなり、駆
動電極に印加する駆動電圧がトンネル電流に影響を与え
るということがなくなる。この結果、探針12の位置が
より正確に求まり、測定精度の向上に効果がある。As a result, by applying a variable drive voltage to the drive electrodes 58a to 58d, the drive electrodes 58a
The AC component that tends to flow between the electrodes 58c and the probe electrode 66 is blocked by the guard ring electrode 60. Therefore, this AC component does not flow into the probe electrode 66, and the drive voltage applied to the drive electrode does not affect the tunnel current. As a result, the position of the probe 12 is obtained more accurately, which is effective in improving the measurement accuracy.
【0028】[0028]
【発明の効果】本発明によれば、外部のポテンシャル物
体から生じる電場は電極で遮断され、電極と試料基板で
挟まれた空間には入射しないので、より正確な測定が行
なえるようになる。According to the present invention, the electric field generated from the external potential object is blocked by the electrode and does not enter the space sandwiched between the electrode and the sample substrate, so that more accurate measurement can be performed.
【0029】また、駆動電圧に印加される電圧の交流成
分はガードリング電極で遮断され、探針に流入すること
がなくなり、測定の精度が向上する。Further, the AC component of the voltage applied to the drive voltage is blocked by the guard ring electrode and does not flow into the probe, so that the measurement accuracy is improved.
【図1】本発明の第1の実施例の側断面図である。FIG. 1 is a side sectional view of a first embodiment of the present invention.
【図2】図1に示したカンチレバーの下面図である。FIG. 2 is a bottom view of the cantilever shown in FIG.
【図3】本発明の第2の実施例を示す。FIG. 3 shows a second embodiment of the present invention.
【図4】図3の下方電極に印加されるパルス電圧と、A
FMまたはトンネル電流の出力のタイムチャートであ
る。4 is a pulse voltage applied to the lower electrode of FIG.
It is a time chart of the output of FM or tunnel current.
【図5】本発明の第3の実施例を示す。FIG. 5 shows a third embodiment of the present invention.
【図6】本発明の第4の実施例を示す。FIG. 6 shows a fourth embodiment of the present invention.
12…探針、14…カンチレバー、18…試料基板、2
0…パイレックスガラス基板、22…電極、V1…電
源。12 ... probe, 14 ... cantilever, 18 ... sample substrate, 2
0 ... Pyrex glass substrate, 22 ... electrode, V 1 ... power.
Claims (2)
に作用する力を受けて弾性変位するレバー体と、 上記レバー体の他端部を固定支持する支持手段と、 レバー体に対峙するよう、支持手段と一体に設けられた
電極と、 試料を支持する導電性の試料基板と、 電極と試料基板との間に電圧を印加する電源とを備えて
いる原子プローブ顕微鏡。1. A probe having a sharp tip, a lever body having the probe at its free end portion, which is elastically displaced by a force acting between the tip of the probe and the sample surface, and the lever body. Means for fixing and supporting the other end of the electrode, an electrode integrally provided with the supporting means so as to face the lever body, a conductive sample substrate for supporting the sample, and a voltage between the electrode and the sample substrate. Atomic probe microscope equipped with a power supply for applying.
の探針電極と、 二枚の板状の圧電体と、二枚の圧電体に挟まれた板状の
共通電極と、各圧電体に設けられた二本の帯状の駆動電
極とを備えた、探針を走査するためのカンチレバーと、 カンチレバーの駆動電極と探針電極との間に、これらの
電極から絶縁されて設けられた接地電位のガードリング
電極とを備えている原子プローブ顕微鏡。2. A conductive probe, a probe electrode electrically connected to the probe for extracting a tunnel current, two plate-shaped piezoelectric bodies, and a piezoelectric body sandwiched between the two piezoelectric bodies. Plate-shaped common electrode and two strip-shaped drive electrodes provided on each piezoelectric body, and a cantilever for scanning the probe, and between the drive electrode of the cantilever and the probe electrode, An atomic probe microscope comprising a grounding guard ring electrode which is provided so as to be insulated from these electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17006491A JPH0518742A (en) | 1991-07-10 | 1991-07-10 | Atomic probe microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17006491A JPH0518742A (en) | 1991-07-10 | 1991-07-10 | Atomic probe microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0518742A true JPH0518742A (en) | 1993-01-26 |
Family
ID=15897963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17006491A Withdrawn JPH0518742A (en) | 1991-07-10 | 1991-07-10 | Atomic probe microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0518742A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960032573A (en) * | 1995-02-15 | 1996-09-17 | 랑피어, 슈타인호프 | Method for producing chemically differentiated images by scanning nuclear microscopy |
-
1991
- 1991-07-10 JP JP17006491A patent/JPH0518742A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960032573A (en) * | 1995-02-15 | 1996-09-17 | 랑피어, 슈타인호프 | Method for producing chemically differentiated images by scanning nuclear microscopy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sohl et al. | Novel technique for dynamic surface tension and viscosity measurements at liquid–gas interfaces | |
JP4897681B2 (en) | Method and apparatus for detecting a time-varying current through an ion channel | |
JP2834173B2 (en) | Scanning tunnel acoustic microscope | |
Joyce et al. | A new force sensor incorporating force‐feedback control for interfacial force microscopy | |
Stipe et al. | Noncontact friction and force fluctuations between closely spaced bodies | |
US6185991B1 (en) | Method and apparatus for measuring mechanical and electrical characteristics of a surface using electrostatic force modulation microscopy which operates in contact mode | |
JP2915554B2 (en) | Barrier height measurement device | |
US7260980B2 (en) | Liquid cell and passivated probe for atomic force microscopy and chemical sensing | |
JP2954492B2 (en) | Method for Determining the Life Constant of Surface Recombination of Minority Carriers in a Sample of Semiconductor Materials | |
Wobschall | Voltage dependence of bilayer membrane capacitance | |
Franke | Evaluation of electrically polar substances by electric scanning force microscopy. Part II: Measurement signals due to electromechanical effects | |
US5136162A (en) | Measuring device in a scanning probe microscope | |
US10132831B2 (en) | Electrostatic force balance microscopy | |
JPH0518742A (en) | Atomic probe microscope | |
JP4758405B2 (en) | Sensor element and physical sensor device | |
Láng | Interface stress measurements in an electrochemical environment | |
JPH1130622A (en) | Scanning capacitance type microscope | |
JP3076467B2 (en) | Surface matching method and tunnel microscope and recording / reproducing apparatus using the same | |
Lü et al. | Surface potential studies using Kelvin force spectroscopy | |
JP2900764B2 (en) | Evaluation method of semiconductor surface thin film | |
US5481189A (en) | Electron tunneling magnetic field sensor with constant tunneling current maintained between tunneling tip and rotatable magnet | |
JPH09257606A (en) | Device for measuring precision shear stress | |
JP2789244B2 (en) | Method of forming microprobe | |
JPH1130623A (en) | Scanning capacitance type microscope | |
JP3185742B2 (en) | Surface measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981008 |