Nothing Special   »   [go: up one dir, main page]

JPH05174844A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH05174844A
JPH05174844A JP3182866A JP18286691A JPH05174844A JP H05174844 A JPH05174844 A JP H05174844A JP 3182866 A JP3182866 A JP 3182866A JP 18286691 A JP18286691 A JP 18286691A JP H05174844 A JPH05174844 A JP H05174844A
Authority
JP
Japan
Prior art keywords
separator
gas
fuel cell
electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3182866A
Other languages
Japanese (ja)
Inventor
Atsushi Tsunoda
淳 角田
Hiroshi Seto
浩志 瀬戸
Toshihiko Yoshida
利彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3182866A priority Critical patent/JPH05174844A/en
Publication of JPH05174844A publication Critical patent/JPH05174844A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a solid electrolyte type fuel cell able to prevent the leakage of gas with a simple structure, by providing steps provided with an insertion groove for an unit cell consisting of 3-layer structure on both ends of one face of a separator respectively, and providing on the other face of the separator recessed portions or notches able to fit in members like the step. CONSTITUTION:An unit cell of a fuel cell consists of a 3-layered plate constructed with a platelike porous positive electrode 13, a dense solid electrolyte film produced on the electrode 13 and a negative electrode 12 of a specified metal corresponding to the electrode 13 coated on the film 11 except a peripheral area. On both faces of a separator 14 grooves 14a, 14b perpendicular to each other are provided as gas channels respectively, and on both ends of one face of the separator 14, respective flat steps provided with a horizontal groove 14c for insertion of the unit cell are provided vertically. And on the other face of the separator 14, recessed portions or notches able to fit in members corresponding to flat steps of another separator 14 or outer terminal plates 15, 16 are provided respectively. Thereby the generation of gaps between unit cells can be prevented to obtain a proper gas seal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスシール性の良好な
固体電解質型燃料電池に関するものである。さらに詳し
くいえば、本発明は、セパレータに設けた差し込み部に
単位セルを装着した、構造に起因するガスリークを防止
しうる支持膜型固体電解質燃料電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell having a good gas sealing property. More specifically, the present invention relates to a support membrane type solid electrolyte fuel cell in which a unit cell is attached to an insertion portion provided in a separator and which can prevent gas leakage due to the structure.

【0002】[0002]

【従来の技術】燃料電池は、水素、一酸化炭素、炭化水
素等の燃焼性化学物質やそれを含有する燃料を活物質に
用い、該化学物質や燃料の酸化反応を電気化学的に行わ
せ、酸化過程におけるエネルギー変化を直接的に電気エ
ネルギーに変換させる電池であって、高いエネルギー変
換効率を期待しうるものである。
2. Description of the Related Art A fuel cell uses a combustible chemical substance such as hydrogen, carbon monoxide, or hydrocarbon, or a fuel containing the same as an active material, and causes an oxidation reaction of the chemical substance or fuel to be performed electrochemically. A battery that directly converts energy changes in the oxidation process into electric energy, and is expected to have high energy conversion efficiency.

【0003】中でも特に高い効率を期待しうるものとし
て、近年、第一世代のリン酸型、第二世代の溶融炭酸塩
型に続く第三世代の固体電解質型燃料電池、中でも集積
度の高い平板型のものが注目されている。
Among them, particularly high efficiency can be expected, and in recent years, the third generation solid oxide fuel cell following the first generation phosphoric acid type and the second generation molten carbonate type, especially the flat plate having a high degree of integration The type is drawing attention.

【0004】平板型固体電解質燃料電池は通常マニホー
ルドに収納されるとともに、ガス通路が形成されるが、
このような電池の問題点の一つにガスリークがある。こ
のガスリーク対策は特に平板状多孔質電極を支持体と
し、その上に緻密な電解質膜を形成して成るスタックに
おいて重要視され、種々のガスリークを防止するガス封
止方法が提案されている。例えば、多孔質電極の側面に
も緻密膜を形成して該側面からのガスリークを防止する
方法(実開平2−62659号公報、特開平2−255
2号公報)や、ガスを中央から供給し外周部に流出させ
る方法(特開平2−168568号公報、特開平2−2
6869号公報、特開平2−28662号公報)などが
ある。
A flat plate solid oxide fuel cell is usually housed in a manifold and has a gas passage formed therein.
One of the problems with such a battery is gas leakage. This measure against gas leak is particularly important in a stack in which a flat plate-like porous electrode is used as a support and a dense electrolyte membrane is formed thereon, and various gas sealing methods for preventing gas leak have been proposed. For example, a method of forming a dense film on the side surface of the porous electrode to prevent gas leakage from the side surface (Japanese Utility Model Laid-Open No. 2-62659, JP-A-2-255).
No. 2) or a method of supplying gas from the center and flowing out to the outer peripheral portion (JP-A-2-168568, JP-A-2-2).
6869, JP-A-2-28662) and the like.

【0005】しかしながら、前者は多孔質電極支持体に
部分的に緻密部を形成させるのが困難であるし、また後
者は外周部での燃料ガスの燃焼による温度上昇の制御が
困難である上に、構造が複雑でコスト高になるのを免れ
ない。
However, it is difficult for the former to partially form a dense portion on the porous electrode support, and for the latter, it is difficult to control the temperature rise due to the combustion of fuel gas at the outer periphery. However, the structure is complicated and the cost is high.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の多孔質電極支持体と緻密電解質膜を有するスタッ
クについてのガス封止技術の欠点を克服し、技術的に困
難な多孔質体の部分緻密化を必要とせず、簡単な構造で
ガス封止しうる固体電解質型燃料電池を提供することを
目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of the gas sealing technology for a stack having such a conventional porous electrode support and a dense electrolyte membrane and is a technically difficult porous body. The object of the present invention is to provide a solid oxide fuel cell that does not require partial densification and can be gas-sealed with a simple structure.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する固体電解質型燃料電池を開発するた
めに種々研究を重ねた結果、セパレータに多孔質電極支
持体と緻密電解質膜を有する電極−電解質膜一体積層型
平板の差し込み部をもつ段部及びそれに対応して設けた
単セル同士を積み重ねるための凹段部あるいは切欠段部
を設けることにより、その目的を達成しうることを見出
し、この知見に基づいて本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted various studies to develop a solid oxide fuel cell having the above-mentioned preferable characteristics, and as a result, a separator is provided with a porous electrode support and a dense electrolyte membrane. It is possible to achieve the object by providing a stepped portion having the insertion portion of the electrode-electrolyte membrane integrated laminated type flat plate having and a concave stepped portion or notched stepped portion for stacking the unit cells provided corresponding thereto. The present invention has been completed based on the findings.

【0008】すなわち、本発明は、平板状多孔質電極を
支持体とし、その上に緻密な固体電解質膜を形成させ、
さらにその上に他方の電極を形成した3層構造板からな
る単位セルをセパレータを介して積層した電池におい
て、セパレータの一面の両端部に上記3層構造板差し込
み用の溝付き段部を立設するとともに、他面に該段部相
当のものがほぼ嵌装しうる凹段部あるいは切欠段部を設
けたことを特徴とする固体電解質型燃料電池を提供する
ものである。
That is, according to the present invention, a flat plate-like porous electrode is used as a support, and a dense solid electrolyte membrane is formed thereon,
Further, in a battery in which unit cells composed of a three-layer structure plate on which the other electrode is formed are laminated via a separator, a grooved step portion for inserting the above three-layer structure plate is erected on both ends of one surface of the separator. In addition, the present invention provides a solid oxide fuel cell characterized in that a concave stepped portion or a notched stepped portion into which the stepped portion can be fitted is provided on the other surface.

【0009】本発明に用いる単セルは、平板状多孔質電
極を支持体とし、その上に緻密な固体電解質膜をほぼ全
面にプラズマ溶射法、熱CVD法、電子ビーム蒸着法、
スパッタ法などにより形成させ、さらにその上に他方の
電極を好ましくは一方の一対の側縁部を残したまま形成
させた3層構造板からなるものである。この平板状多孔
質電極としてはアノード及び/又はカソードが用いられ
る。
The unit cell used in the present invention has a flat plate-like porous electrode as a support, and a dense solid electrolyte membrane on almost the entire surface thereof by plasma spraying, thermal CVD, electron beam evaporation,
The three-layer structure plate is formed by a sputtering method or the like, and the other electrode is preferably formed thereon with one pair of side edge portions left. An anode and / or a cathode is used as this flat plate-shaped porous electrode.

【0010】上記固体電解質膜は酸素イオン導電性を有
するものであれば特に制限されず、例えばイットリア安
定化ジルコニア(YSZ)、カルシア安定化ジルコニア
(CSZ)のような安定化ジルコニアなどの公知の固体
電解質材料、あるいは安定化ジルコニアとアルミナ等の
金属酸化物からなる多結晶焼結体固体電解質材料を上記
平板状多孔質電極上に緻密に形成したものであり、その
厚さは通常0.01〜0.3mm程度、好ましくは0.
02〜0.25mm程度が適当である。この厚さが0.
3mmを超えると抵抗が大きくなりすぎて好ましくな
い。
The solid electrolyte membrane is not particularly limited as long as it has oxygen ion conductivity, and known solids such as stabilized zirconia such as yttria-stabilized zirconia (YSZ) and calcia-stabilized zirconia (CSZ). An electrolyte material or a polycrystalline sintered solid electrolyte material composed of stabilized zirconia and a metal oxide such as alumina is densely formed on the flat plate-like porous electrode, and the thickness thereof is usually 0.01 to 0.3 mm, preferably 0.
About 0.2 to 0.25 mm is suitable. This thickness is 0.
If it exceeds 3 mm, the resistance becomes too large, which is not preferable.

【0011】本発明に用いる電極としてのカソード及び
アノードは高温下でそれぞれ酸化剤ガス及び燃料ガスに
対して耐食性のある導電性材料であれば特に制限されな
いが、LaSr1−xMnOをカソード材、Ni‐
ZrOサーメットをアノード材とするのが好ましい。
電解質膜形成用基板としての電極でない側の電極は、通
常上記固体電解質板上に所定の粉末をはけ塗り法やスク
リーン印刷法などで塗布する方法の他、プラズマ溶射法
を用いて被着される。この塗布により形成させた電極は
乾燥あるいはバーンアウトしてバインダー及び/又は媒
体を除去するようにする。
The cathode and the anode as the electrodes used in the present invention are not particularly limited as long as they are conductive materials having corrosion resistance to the oxidant gas and the fuel gas, respectively, at high temperature, but La x Sr 1-x MnO 3 is used. Cathode material, Ni-
It is preferable to use ZrO 2 cermet as the anode material.
The electrode on the side other than the electrode as the substrate for forming an electrolyte membrane is usually deposited by using a plasma spraying method in addition to a method of applying a predetermined powder on the solid electrolyte plate by a brush coating method or a screen printing method. It The electrode formed by this coating is dried or burned out to remove the binder and / or the medium.

【0012】本発明に用いるセパレータは、通常上記3
層構造板の枚数より1枚少ない、ガスリークのない緻密
な導電板の両面に複数の溝を好ましくは各面間で互いに
交差方向に設けそれぞれ燃料ガス及び酸化剤ガスのガス
流路を形成させたものであって、しかもその一面の両端
部に上記3層構造板差し込み用の溝付き段部好ましくは
水平溝付き偏平段部を立設するとともに、他面に該段部
相当のものがほぼ嵌装しうる凹段部あるいは切欠段部を
設けたものである。また、セパレータ同士の接触、封止
面は電気絶縁する必要があり、それには溶射法等により
アルミナなどの絶縁膜を形成するか、あるいは絶縁性薄
板を挟み込むとよい。
The separator used in the present invention is usually the above-mentioned 3
A plurality of grooves are provided on both surfaces of a dense conductive plate having no gas leakage, which is one less than the number of layered structure plates, preferably in mutually intersecting directions between the surfaces to form gas flow paths for fuel gas and oxidant gas, respectively. In addition, a grooved step portion for inserting the three-layer structure plate, preferably a flat step portion with a horizontal groove, is erected on both ends of one surface of the one surface, and an equivalent portion of the step portion is fitted on the other surface. A concave step portion or a notch step portion that can be mounted is provided. Further, the contact between the separators and the sealing surface must be electrically insulated, and an insulating film of alumina or the like may be formed thereon by a thermal spraying method or an insulating thin plate may be sandwiched therebetween.

【0013】また、外部端子板は、ガスリークのないち
密な2枚の導電板の片面に複数の溝を設けそれぞれ酸化
剤ガスのガス流路及び燃料ガスのガス流路を形成させた
ものであり、好ましくは各対応電極に適合した上記セパ
レータの一面の構造を有する。
In the external terminal plate, a plurality of grooves are provided on one surface of two dense conductive plates having no gas leak, and a gas flow path for an oxidant gas and a gas flow path for a fuel gas are formed on each surface. Preferably, it has a structure of one surface of the above-mentioned separator adapted to each corresponding electrode.

【0014】このように、セパレータは隣接する単セル
の電極間を電気的に接続するとともに、両面に燃料ガス
及び酸化剤ガスの流路となる溝が形成され、各流路はそ
れぞれセルのカソード側及びアノード側における各ガス
の通路を構成する。各ガス通路となる溝は平行に複数配
設され、好ましくは片面の溝と他面の溝とは互いに交差
方向、特に直角方向に配置される。このように配置すれ
ば、セルを集積後、燃料ガスの入口及び出口、酸化剤ガ
スの入口及び出口をそれぞれ同じ側端面上に配置するこ
とができ、集積セルとしてガス供給・排出系の構成を簡
単かつ容易とすることができる。
As described above, the separator electrically connects the electrodes of the adjacent single cells, and has grooves on both sides which serve as flow passages for the fuel gas and the oxidant gas, and each flow passage has its own cathode. The passages of each gas on the side of the anode and the side of the anode. A plurality of grooves serving as the respective gas passages are arranged in parallel, and preferably the groove on one surface and the groove on the other surface are arranged in a direction intersecting with each other, particularly in a right angle direction. With this arrangement, after the cells are integrated, the inlet and outlet of the fuel gas and the inlet and the outlet of the oxidant gas can be arranged on the same side end face, and the gas supply / exhaust system is configured as an integrated cell. Can be simple and easy.

【0015】セパレータ及び端子板に用いる上記導電板
としては、ニッケル、コバルトなどの金属、ニッケル、
クロム、コバルトなどを含む合金、各種焼結体、例えば
アルカリ土類金属及びCo、Ni、Fe、Znその他金
属をドープしたランタンクロマイト系複合酸化物、炭化
ケイ素、ケイ素化モリブデン、ケイ素化クロムなどの導
電性セラミックスや、ニッケル金属、ニッケル基合金、
コバルト金属又はコバルト基合金と、アルミナ、シリ
カ、チタニア、酸化インジウム、酸化第二スズ、炭化ケ
イ素及び窒化ケイ素の中から選ばれた少なくとも1種の
無機系化合物あるいはランタンクロマイト系複合酸化物
やイットリウムクロマイト系複合酸化物などの導電性無
機酸化物とを非酸化性雰囲気、例えば還元雰囲気下ある
いは真空中で焼成した焼結体などが挙げられる。
As the conductive plate used for the separator and the terminal plate, a metal such as nickel or cobalt, nickel,
Alloys containing chromium, cobalt, etc., various sintered bodies such as lanthanum chromite composite oxides doped with alkaline earth metals and Co, Ni, Fe, Zn and other metals, silicon carbide, molybdenum silicide, chromium silicide, etc. Conductive ceramics, nickel metal, nickel-based alloy,
Cobalt metal or cobalt-based alloy and at least one inorganic compound selected from alumina, silica, titania, indium oxide, stannic oxide, silicon carbide and silicon nitride, or lanthanum chromite complex oxide or yttrium chromite. Examples thereof include a sintered body obtained by firing a conductive inorganic oxide such as a complex oxide with a non-oxidizing atmosphere, for example, in a reducing atmosphere or in a vacuum.

【0016】上記ニッケル基合金としては、Ni‐Cr
系合金、Ni‐Cr‐Fe系合金、Ni‐Cr‐Mo系
合金、Ni‐Cr‐Mo‐Co系合金、Ni‐Cr‐M
o‐Fe系合金などが、またコバルト基合金としては、
Co‐Cr系合金、Co‐Cr‐Fe系合金、Co‐C
r‐W系合金、Co‐Cr‐Ni‐W系合金などが挙げ
られる。
The nickel-based alloy is Ni-Cr.
System alloy, Ni-Cr-Fe system alloy, Ni-Cr-Mo system alloy, Ni-Cr-Mo-Co system alloy, Ni-Cr-M
o-Fe alloys and the like, and cobalt-based alloys,
Co-Cr type alloy, Co-Cr-Fe type alloy, Co-C
Examples thereof include r-W based alloys and Co-Cr-Ni-W based alloys.

【0017】本発明においては、これら3層構造板より
なる単位セル、セパレータ、及び外部端子板を用い、3
層構造板を所定のセパレータの差し込み部に装着し、こ
れを所定段数積層し単セルの多段直列構造体を形成し、
単セルの積層数を適宜調整し、両端に外部端子板をそれ
ぞれ設けることにより、多数の単セルからなる直列型の
積層多段セルからなる電池本体が組み立てられる。その
際、セパレータ同士、3層構造板とセパレータ、セパレ
ータと外部端子板あるいは3層構造板と外部端子板との
間に例えばセパレータあるいは外部端子板の溝方向に沿
う端縁部などにおいて封止剤を介在させてガス漏れしな
いように封止する。
In the present invention, a unit cell composed of these three-layer structure plates, a separator, and an external terminal plate are used, and
The layer structure plate is attached to the insertion part of the predetermined separator, and a predetermined number of layers are laminated to form a multi-stage series structure of a single cell,
By properly adjusting the number of stacked single cells and providing external terminal plates at both ends, a battery body composed of a series-type stacked multi-stage cell composed of a large number of single cells can be assembled. At that time, between the separators, between the three-layer structure plate and the separator, between the separator and the external terminal plate, or between the three-layer structure plate and the external terminal plate, for example, at the edge portion of the separator or the external terminal plate along the groove direction, etc. To prevent gas from leaking.

【0018】これら3層構造板、セパレータ及び外部端
子板を前記したように積層して電池本体を形成する際に
用いられる前記封止剤は、電池の作動温度において軟化
状態となるか、あるいは該作動温度以上の軟化温度を有
し、該作動温度で固化するものであって、しかも該作動
温度で燃料ガスや酸化剤ガス等の原料ガス及び発生ガス
に対して耐食性があるもの、例えば燃料ガスに水素、酸
化剤ガスに酸素又は空気を用いた場合、耐還元性、耐酸
化性及び耐水蒸気性があるものであれば特に制限されな
いが、軟化点が500℃以上好ましくは600℃〜12
00℃のガラスが好ましい。このようなガラスとして
は、例えばソーダライムガラス、硼酸塩ガラス、硼ケイ
酸ガラス、アルミノケイ酸ガラスなどが挙げられる。こ
れらのガラスは板状、フェルト状として用いる他、有機
バインダーなどの有機物質に分散させてペースト状と
し、これを所要の封止部に塗布し、電池を組み立てたの
ち、該有機物質をバーンアウトして該ガラスを復元させ
るようにしてもよい。
The encapsulant used when forming the battery body by laminating the three-layer structure plate, the separator and the external terminal plate as described above becomes a softened state at the operating temperature of the battery, or Those having a softening temperature equal to or higher than the operating temperature and solidifying at the operating temperature, and having corrosion resistance to the raw material gas such as fuel gas and oxidant gas and the generated gas at the operating temperature, for example, fuel gas When hydrogen or oxygen or air is used as the oxidant gas, it is not particularly limited as long as it has reduction resistance, oxidation resistance and water vapor resistance, but has a softening point of 500 ° C. or higher, preferably 600 ° C. to 12 ° C.
Glass at 00 ° C is preferred. Examples of such glass include soda lime glass, borate glass, borosilicate glass, and aluminosilicate glass. These glasses are used in the form of plates and felts, or they are dispersed in an organic substance such as an organic binder to form a paste, which is applied to the required sealing part, and after assembling a battery, the organic substance is burned out. Then, the glass may be restored.

【0019】軟化点が電池の作動温度(900〜110
0℃)以下のガラスとしては、電池の作動温度で粘度が
10〜10ポアズであるものが望ましい。また、軟
化点が電池の作動温度(900〜1100℃)以上のガ
ラスの場合には、一度軟化点以上の温度まで昇温した
後、作動温度まで降温して固化した状態でガスをシール
する。この場合、ガラスの熱膨張係数は6×10−6
12×10−6cm−1が望ましい。また、高温下、長
期間の使用とともにガラス相からより安定な結晶相へ相
転位するものであってもよい。
The softening point is the operating temperature of the battery (900 to 110).
The glass having a temperature of 0 ° C. or less is preferably one having a viscosity of 10 2 to 10 7 poise at the operating temperature of the battery. When the glass has a softening point of not less than the operating temperature of the battery (900 to 1100 ° C.), the temperature is once raised to the softening point or more and then lowered to the operating temperature to solidify the gas. In this case, the coefficient of thermal expansion of glass is 6 × 10 −6
12 × 10 −6 cm −1 is desirable. Further, it may be one that undergoes a phase transition from a glass phase to a more stable crystal phase with long-term use at high temperature.

【0020】上記封止剤の介在手段としては、例えば電
極を形成した固体電解質板及びセパレータの少なくとも
一方の表面に上記ペースト状のガラスすなわちガラスペ
ーストを塗布して積層する手段、電極を形成した固体電
解質板とセパレータの間に上記ガラスを挟持して積層す
る手段、電極を形成した固体電解質板及びセパレータの
少なくとも一方の表面に上記ガラスペーストを塗布し、
これらの間に上記ガラスを介在させて積層する手段など
が挙げられる。
The means for interposing the above-mentioned sealant is, for example, means for applying and laminating the above paste-like glass, that is, glass paste, on at least one surface of the solid electrolyte plate and the separator on which electrodes are formed, and the solid for which electrodes are formed. Means for sandwiching and laminating the glass between the electrolyte plate and the separator, applying the glass paste on at least one surface of the solid electrolyte plate and the separator on which the electrode is formed,
Means for laminating with the glass interposed therebetween may be used.

【0021】また、ガスリーク防止用封止剤を有機物質
に分散させてペースト状として用いる場合には、該ペー
スト状物を所要の封止部に塗布し、電池を組み立てたの
ち、該有機物質を乾燥、蒸発あるいはバーンアウトによ
り除去してガスリーク防止用封止材を復元させるように
する。
When the sealing agent for preventing gas leak is dispersed in an organic substance to be used as a paste, the paste is applied to a required sealing portion to assemble a battery, and then the organic substance is added. The sealing material for gas leak prevention is restored by removing it by drying, evaporation or burnout.

【0022】次に、本発明においては、こうして組み立
てられた電池本体すなわち積層多段セルをマニホールド
内へ収容して所望の燃料電池が作製される。このマニホ
ールドは、その内面と、これに内接するセルの周面とに
より仕切られた四室が燃料ガス及び酸化剤ガスの供給、
排出空間となってガス通路の形成部材となるとともに外
壁にもなる構造を有する。
Next, in the present invention, the desired fuel cell is manufactured by accommodating the thus assembled cell body, that is, the laminated multi-stage cells in the manifold. In this manifold, four chambers partitioned by the inner surface of the manifold and the peripheral surface of the cell inscribed therein supply fuel gas and oxidant gas,
It has a structure that serves as a discharge space, serves as a member for forming a gas passage, and also serves as an outer wall.

【0023】[0023]

【実施例】図1の集合様式に従い、3段直列セルからな
る固体電解質型燃料電池本体を以下のとおり作製した。
各セルにおいてNi/ZrO(1/1重量比)サーメ
ットからなる厚さ1.0mmの平板状多孔質アノード1
3上に、イットリアを8モル%添加した安定化ジルコニ
アを厚さ0.05mmの電解質11としてプラズマ照射
した。電解質11上にLaSrMnO
末を有機バインダーに分散させて厚さ0.2mmに塗布
してカソードとした。このようにして多孔質アノード、
電解質及びカソードからなる3層構造板が作製された。
セパレータ14はNi系合金製で、両面に互いにほぼ直
交するガス通路としての溝14a、14bを有し、かつ
その一面の両端部に上記3層構造板差し込み用の水平溝
14c付き偏平段部を立設するとともに、多面に該偏平
段部相当のものがほぼ嵌装しうる凹段部あるいは切欠段
部を設けたものである。
EXAMPLE A solid oxide fuel cell main body consisting of three-stage series cells was produced as follows according to the assembly mode of FIG.
A plate-like porous anode 1 made of Ni / ZrO 2 (1/1 weight ratio) cermet and having a thickness of 1.0 mm in each cell 1
The stabilized zirconia added with 8 mol% of yttria was plasma-irradiated on the No. 3 as an electrolyte 11 having a thickness of 0.05 mm. La 0 . 9 Sr 0 . 1 MnO 3 powder was dispersed in an organic binder and applied to a thickness of 0.2 mm to form a cathode. In this way the porous anode,
A three-layer structure plate composed of an electrolyte and a cathode was prepared.
The separator 14 is made of a Ni-based alloy and has grooves 14a and 14b as gas passages which are substantially orthogonal to each other on both sides, and has flat steps with horizontal grooves 14c for inserting the three-layer structure plate at both ends of the one surface. In addition to being erected upright, a concave step portion or a notch step portion into which a flat step portion or the like can be almost fitted is provided on multiple surfaces.

【0024】セパレータの上記偏平段部に上記3層構造
板を差し込み、セパレータを重ね合わせると、一方のセ
パレータの上記偏平段部と他方のセパレータの凹段部あ
るいは切欠段部がほぼ適合密着して単位セル間で間隙を
生じることがない。
When the three-layer structure plate is inserted into the flat step portion of the separator and the separators are stacked, the flat step portion of one separator and the concave step portion or the notch step portion of the other separator are fitted to each other in a substantially conforming manner. No gap is generated between the unit cells.

【0025】積層セルの両端の各外部端子板15,16
は各対応電極に適合したセパレータの一面の構造を有し
ている。すなわち、アノード側が対面する外部端子板1
6はその対面側すなわち内側にのみガス通路を有し、か
つ対面側に上記偏平段部を有するとともに、他面側すな
わち外側は平面としたものであり、またカソード側が対
面する外部端子板15はその対面側すなわち内側にのみ
ガス通路を有し、かつ対面側に上記凹段部あるいは切欠
段部を有するとともに、他面側すなわち外側は平面とし
たものである。
External terminal boards 15 and 16 at both ends of the laminated cell
Has a structure on one surface of a separator that is suitable for each corresponding electrode. That is, the external terminal board 1 whose anode side faces
6 has a gas passage only on the facing side, that is, on the inner side, and has the flattened step portion on the facing side, and the other side, that is, the outer side is a flat surface, and the external terminal plate 15 facing the cathode side is The gas passage is provided only on the facing side, that is, the inner side, and the concave step portion or the notched step portion is provided on the facing side, and the other surface side, that is, the outer side is a flat surface.

【0026】この3層構造板からなる単位セルとセパレ
ータ、外部端子を単セルが3層になるように集積した。
The unit cell composed of this three-layer structure plate, the separator, and the external terminal were integrated so that each single cell had three layers.

【0027】図2に集積セルのガス封止方法を示す。多
孔質アノード13の側面から流出する燃料ガスはセパレ
ータ14の上記偏平段部と緻密な電解質11との間で封
止される。また、酸化剤ガスは上方のセパレータ14の
下面と緻密な電解質11との間で封止される。セパレー
タ14間のガスリークはセパレータの四隅の重ね合わせ
部分でジルコニア系の無機接着剤で接着し封止される。
この部分は電気的に絶縁するためにアルミナ膜が溶射さ
れている。これらの封止部分は軟化点が約800℃のガ
ラスペーストを塗布してガス封止をした。このガラスペ
ーストは電池の作動温度では十分に軟化してガスを封止
する。
FIG. 2 shows a gas sealing method for the integrated cell. The fuel gas flowing out from the side surface of the porous anode 13 is sealed between the flat step portion of the separator 14 and the dense electrolyte 11. Further, the oxidant gas is sealed between the lower surface of the upper separator 14 and the dense electrolyte 11. Gas leaks between the separators 14 are adhered and sealed with a zirconia-based inorganic adhesive at the overlapping portions of the four corners of the separator.
This portion is sprayed with an alumina film for electrical insulation. A glass paste having a softening point of about 800 ° C. was applied to these sealed portions for gas sealing. This glass paste softens sufficiently at the operating temperature of the battery to seal the gas.

【0028】こうして集積した電池本体を円筒状アルミ
ナ製マニホールドに納めた。マニホールドと電池本体と
の接触部分はガラスペーストを塗布してガス封止した。
外部端子には、白金リード線を挿入し、電気的接続を行
った。
The battery body thus integrated was placed in a cylindrical alumina manifold. The contact portion between the manifold and the battery body was coated with glass paste and gas-sealed.
A platinum lead wire was inserted into the external terminal for electrical connection.

【0029】このようにして作製した積層型セルを図3
のように円筒状マニホールド32内に挿入し、溝14
a、14bの出口が管壁に面するように配置した。電池
本体31とマニホールド32の接触箇所(4ケ所)を上
記と同じガラスペーストで封止すれば、溝14a、14
bのそれぞれの両端がそれぞれマニホールド32の壁と
電池本体31で形成された4つのガス通路33〜36と
対応する。また、電気の取り出し部には白金リード線を
溶接し、電気的に接続した。
The laminated cell manufactured in this manner is shown in FIG.
Insert into the cylindrical manifold 32 as shown in
The outlets of a and 14b were arranged so as to face the tube wall. If the contact points (4 points) between the battery body 31 and the manifold 32 are sealed with the same glass paste as above, the grooves 14a, 14
Both ends of b correspond to the four gas passages 33 to 36 formed by the wall of the manifold 32 and the battery body 31, respectively. In addition, a platinum lead wire was welded to the electrical outlet to electrically connect it.

【0030】このようにして作製した3段積層の固体電
解質型燃料電池を加熱した。室温から150℃までは1
℃/minで加熱昇温させ、ガラスペーストの溶媒を蒸
発させた。150℃から350℃までは5℃/minで
昇温させた。350℃以上では水素通路側にアノードの
酸化を防止するため、窒素ガスを流し、5℃/minで
1000℃まで昇温した。その後、1000℃に保持し
てアノード側に水素、カソード側に酸素を流し、発電を
開始した。電解質部分の面積が25cmのセルの放電
特性を表1に示す。
The three-stage stacked solid oxide fuel cell thus produced was heated. 1 from room temperature to 150 ° C
The solvent of the glass paste was evaporated by heating at a temperature of ° C / min. The temperature was raised from 150 ° C to 350 ° C at 5 ° C / min. At 350 ° C. or higher, in order to prevent oxidation of the anode on the hydrogen passage side, nitrogen gas was flown and the temperature was raised to 1000 ° C. at 5 ° C./min. Then, the temperature was maintained at 1000 ° C., hydrogen was flown to the anode side and oxygen was flown to the cathode side to start power generation. Table 1 shows the discharge characteristics of a cell in which the area of the electrolyte portion is 25 cm 2 .

【0031】[0031]

【表1】 開放電圧は3.3Vでガスクロスリークは水素の5.0
%以下と良好な封止性を示した。
[Table 1] The open circuit voltage is 3.3V and the gas cross leak is 5.0 of hydrogen.
% Or less, indicating a good sealing property.

【0032】[0032]

【発明の効果】本発明によれば、簡単な製作工程で組立
容易かつ安価に固体電解質型燃料電池を作製することが
できる。また、ガスシールは自立膜型の平板状電池と同
様のシール材で良好に行える。
According to the present invention, a solid oxide fuel cell can be manufactured easily and inexpensively by a simple manufacturing process. Further, the gas seal can be satisfactorily performed with a sealant similar to that of the self-supporting membrane type flat battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】 直列セルの集合様式の1例の説明図。FIG. 1 is an explanatory diagram of an example of an assembly mode of series cells.

【図2】 集積セルのガス封止方法を示す説明図。FIG. 2 is an explanatory view showing a gas sealing method for an integrated cell.

【図3】 3段直列セルからなる電池本体をマニホール
ドに収納して完成品とした燃料電池の説明図。
FIG. 3 is an explanatory view of a fuel cell, which is a completed product, in which a cell body composed of three-stage series cells is housed in a manifold.

【符号の説明】[Explanation of symbols]

11 電解質 12 カソード 13 アノード 14 セパレータ 14a、14b 溝 14c 水平溝 15、16 外部端子板 31 電池本体 32 マニホールド 33〜36 ガス通路 11 Electrolyte 12 Cathode 13 Anode 14 Separator 14a, 14b Groove 14c Horizontal groove 15, 16 External terminal plate 31 Battery body 32 Manifold 33-36 Gas passage

【手続補正書】[Procedure amendment]

【提出日】平成3年8月8日[Submission date] August 8, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Yoshida 1-3-1 Nishitsurugaoka, Oi-cho, Iruma-gun, Saitama Tonen Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平板状多孔質電極を支持体とし、その上
に緻密な固体電解質膜を形成させ、さらにその上に他方
の電極を形成した3層構造板からなる単位セルをセパレ
ータを介して積層した電池において、セパレータの一面
の両端部に上記3層構造板差し込み用の溝付き段部を立
設するとともに、他面に該段部相当のものがほぼ嵌装し
うる凹段部あるいは切欠段部を設けたことを特徴とする
固体電解質型燃料電池。
1. A unit cell composed of a three-layer structure plate having a flat plate-like porous electrode as a support, a dense solid electrolyte membrane formed thereon, and the other electrode formed thereon, with a separator interposed therebetween. In the laminated battery, a grooved step portion for inserting the above-mentioned three-layer structure plate is provided upright on both ends of one surface of the separator, and a concave step portion or notch into which the equivalent of the step portion can be almost fitted on the other surface. A solid oxide fuel cell having a step portion.
【請求項2】 電池本体がマニホールドに収容されてい
る請求項1記載の固体電解質型燃料電池。
2. The solid oxide fuel cell according to claim 1, wherein the cell body is housed in a manifold.
JP3182866A 1991-06-29 1991-06-29 Solid electrolyte type fuel cell Pending JPH05174844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3182866A JPH05174844A (en) 1991-06-29 1991-06-29 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182866A JPH05174844A (en) 1991-06-29 1991-06-29 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH05174844A true JPH05174844A (en) 1993-07-13

Family

ID=16125811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182866A Pending JPH05174844A (en) 1991-06-29 1991-06-29 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH05174844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013299A2 (en) * 2000-08-10 2002-02-14 Forschungszentrum Jülich GmbH Fuel cell stack with internal gas connections
JP2003100322A (en) * 2001-09-19 2003-04-04 Honda Motor Co Ltd Fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013299A2 (en) * 2000-08-10 2002-02-14 Forschungszentrum Jülich GmbH Fuel cell stack with internal gas connections
WO2002013299A3 (en) * 2000-08-10 2002-12-12 Forschungszentrum Juelich Gmbh Fuel cell stack with internal gas connections
US7026067B2 (en) 2000-08-10 2006-04-11 Forschungszentrum Jülich GmbH Fuel cell stack with internal gas connections
JP2003100322A (en) * 2001-09-19 2003-04-04 Honda Motor Co Ltd Fuel cell

Similar Documents

Publication Publication Date Title
US7740966B2 (en) Electrochemical cell stack assembly
US8354202B2 (en) Multilayer glass-ceramic seals for fuel cells
US7422819B2 (en) Ceramic coatings for insulating modular fuel cell cassettes in a solid-oxide fuel cell stack
US7455700B2 (en) Method for creating solid oxide fuel cell anodes and electrodes for other electrochemical devices
CA1306494C (en) Fuel cell
JPH0660891A (en) Sealing material for fuel cell
KR20120037175A (en) A fuel cell and a manufacturing metheod thereof
JP3166888B2 (en) Solid oxide fuel cell stack
JPH05174846A (en) Solid electrolyte type fuel cell
JPH05174844A (en) Solid electrolyte type fuel cell
JP3547062B2 (en) Sealing material for fuel cells
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH02168568A (en) Fuel battery with solid electrolyte
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH0294365A (en) Solid electrolyte fuel cell
JP3301558B2 (en) Flat solid electrolyte fuel cell
JPH06150958A (en) Solid electrolyte fuel cell
JPH06111845A (en) Manufacture of solid electrolytic type fuel cell and fuel cell assembly
JPH0412468A (en) High-temperature fuel cell
JPH10189023A (en) Solid electrolyte fuel cell having honeycomb monolithic structure
JP3105052B2 (en) Method of forming fuel electrode for solid oxide fuel cell
JPH05174833A (en) Fuel electrode material for solid electrolyte fuel cell
JPH056774A (en) Solid electrolyte type fuel cell
JPH05174836A (en) Forming method for fuel electrode of solid electrolytic fuel cell
JPH0294367A (en) Solid electrolyte fuel cell