JP3105052B2 - Method of forming fuel electrode for solid oxide fuel cell - Google Patents
Method of forming fuel electrode for solid oxide fuel cellInfo
- Publication number
- JP3105052B2 JP3105052B2 JP03353121A JP35312191A JP3105052B2 JP 3105052 B2 JP3105052 B2 JP 3105052B2 JP 03353121 A JP03353121 A JP 03353121A JP 35312191 A JP35312191 A JP 35312191A JP 3105052 B2 JP3105052 B2 JP 3105052B2
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- fuel cell
- nickel
- electrode
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、固体電解質燃料電池用
燃料電極の形成方法の改良に関し、さらに詳しくは、電
気化学反応や導電性に優れるとともに、燃料電池に簡単
に効率よく組み込むことができ、その場合他の部材との
間で熱応力による損傷や破壊の生じることのない固体電
解質燃料電池用燃料電極を形成する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method of forming a fuel electrode for a solid oxide fuel cell, and more particularly, to a method of easily and efficiently incorporating a fuel cell having excellent electrochemical reaction and conductivity. In this case, the present invention relates to a method of forming a fuel electrode for a solid oxide fuel cell, which does not cause damage or destruction due to thermal stress between other members.
【0002】[0002]
【従来の技術】固体電解質燃料電池は、電気化学反応や
導電性を高めるためにニッケルなどの導電性金属を電極
などの部材に用いると、これと固体電解質やセパレータ
のような集電材などの他の部材との間における熱膨張特
性の不適合などにより、熱応力による歪みで電池の損傷
や破壊が生じやすい。また、燃料電極に金属を用いると
高温における還元雰囲気では収縮しやすく、通気性の低
下や接触抵抗の増加により電池性能を低下させる。2. Description of the Related Art In a solid oxide fuel cell, when a conductive metal such as nickel is used for a member such as an electrode in order to enhance an electrochemical reaction or conductivity, the material is used in combination with a solid electrolyte or a current collector such as a separator. The battery is likely to be damaged or broken due to distortion due to thermal stress due to incompatibility of the thermal expansion characteristics with the member. In addition, when a metal is used for the fuel electrode, it tends to shrink in a reducing atmosphere at a high temperature, and the battery performance is lowered due to a decrease in air permeability and an increase in contact resistance.
【0003】また、金属とセラミックスの多孔質焼結
体、特にニッケルジルコニアサーメットは熱膨張率を固
体電解質のそれに近似できるため燃料電極の材料として
よく検討されているが、このものは非導電性のセラミッ
クスの混合割合に限界があり、導電性の低下は免れな
い。A porous sintered body of metal and ceramics, particularly nickel zirconia cermet, is often studied as a material for a fuel electrode because its coefficient of thermal expansion can be approximated to that of a solid electrolyte. There is a limit to the mixing ratio of ceramics, and a decrease in conductivity is inevitable.
【0004】これらの問題を解消すべく、最近、表面に
ニッケル粒子をコーティングしたセラミックス粒子を用
いて板状に成形し、焼成してなる固体電解質燃料電池用
燃料電極が提案されている(特開平3−49156号公
報)。In order to solve these problems, there has recently been proposed a fuel electrode for a solid electrolyte fuel cell which is formed into a plate shape using ceramic particles coated with nickel particles on the surface and then fired (see Japanese Patent Application Laid-Open No. HEI 9-163568). 3-49156).
【0005】[0005]
【発明が解決しようとする課題】しかしながら、この電
極は前記粒子を成形板に成形加工し、次いで得られた成
形板を焼成して多孔質焼結板として得られるものであっ
て、該電極を用いて固体電解質燃料電池とするには、多
孔質である電極板上へ緻密な固体電解質膜を形成する工
程を要し、製造工程が煩雑になるのを免れない。However, this electrode is obtained by forming the particles into a molded plate, and then firing the obtained molded plate to obtain a porous sintered plate. In order to use it as a solid electrolyte fuel cell, a step of forming a dense solid electrolyte membrane on a porous electrode plate is required, and the manufacturing process is inevitably complicated.
【0006】本発明は、このような事情の下、電気化学
反応や導電性に優れるとともに、燃料電池に簡単に効率
よく組み込むことができ、その場合他の部材との間で熱
応力による損傷や破壊の生じることのない固体電解質燃
料電池用燃料電極を形成する方法を提供することを目的
としてなされたものである。[0006] Under such circumstances, the present invention has excellent electrochemical reaction and conductivity, and can be easily and efficiently incorporated into a fuel cell. An object of the present invention is to provide a method for forming a fuel electrode for a solid oxide fuel cell that does not cause destruction.
【0007】[0007]
【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する固体電解質燃料電池用燃料電極の形
成法を開発するために種々研究を重ねた結果、固体電解
質板の一方の面に、表面がニッケルで被覆されたセラミ
ックス粒子を被着させて多孔質の均一膜を形成させるこ
とにより、電極を単独に形成させるのではなく、固体電
解質と電極とを複合一体化でき、かつ電極自体にも上記
の望ましい特性を付与しえて、その目的を達成しうるこ
とを見出し、この知見に基づいて本発明を完成するに至
った。The present inventors have made various studies to develop a method for forming a fuel electrode for a solid electrolyte fuel cell having the above-mentioned preferable characteristics, and as a result, have found that one surface of a solid electrolyte plate has been developed. By applying ceramic particles coated with nickel on the surface to form a porous uniform film, the solid electrolyte and the electrode can be combined and integrated, instead of forming the electrode alone. It has been found that the above-mentioned desirable properties can be imparted to itself, and the object can be achieved, and based on this finding, the present invention has been completed.
【0008】すなわち、本発明は、固体電解質板の一方
の面に、セラミックス粒子の表面がニッケルで被覆され
た粒子を有機系バインダーに分散させた塗布液を塗布
し、乾燥後、焼結するか、あるいは固体電解質板の一方
の面に、セラミックス粒子の表面がニッケルで被覆され
た粒子をプラズマ溶射により被着させることを特徴とす
る固体電解質燃料電池用燃料電極の形成方法を提供する
ものである。That is, according to the present invention, a coating solution in which ceramic particles whose surfaces are coated with nickel is dispersed in an organic binder is applied to one surface of a solid electrolyte plate, dried, and then sintered. Another object of the present invention is to provide a method for forming a fuel electrode for a solid electrolyte fuel cell, which comprises applying, on one surface of a solid electrolyte plate, particles having ceramic particles coated with nickel by plasma spraying. .
【0009】本発明方法において燃料電極の被着は、セ
ラミックス粒子の表面がニッケルで被覆された粒子(以
下、ニッケル被覆セラミックス粒子という)を用い、そ
れを溶剤を含むバインダーに分散させて塗布液を調製
し、この塗布液を固体電解質板の片面に塗布したのち、
溶剤を乾燥除去し、引き続く加熱によりバインダーを焼
去し、最後に約1300〜1400℃の高温で焼結する
かあるいは固体電解質板の片方の面にニッケル被覆セラ
ミックス粒子をプラズマ溶射することにより行われる。In the method of the present invention, the fuel electrode is adhered by using particles whose surface is coated with nickel (hereinafter referred to as nickel-coated ceramic particles), dispersing the particles in a binder containing a solvent, and applying a coating solution. After preparing and applying this coating solution to one side of the solid electrolyte plate,
The solvent is removed by drying, the binder is burned off by subsequent heating, and finally, sintering is performed at a high temperature of about 1300 to 1400 ° C., or plasma spraying of nickel-coated ceramic particles on one surface of the solid electrolyte plate. .
【0010】このようにして形成される燃料電極は、導
電性に優れ、熱膨張率が電解質に近い値を示し、しかも
多孔質でガスの透過性に優れる。The fuel electrode thus formed is excellent in conductivity, exhibits a coefficient of thermal expansion close to that of the electrolyte, and is porous and excellent in gas permeability.
【0011】本発明に用いるセラミックス粒子は特に制
限されないが、有利にはジルコニア、セリア、イットリ
ア安定化ジルコニア、部分安定化ジルコニアなど、通常
の固体電解質材料が用いられるが、線膨張係数などの熱
膨張率の小さいアルミナ、炭化ケイ素などのセラミック
ス粒子等であってもよい。Although the ceramic particles used in the present invention are not particularly limited, it is preferable to use ordinary solid electrolyte materials such as zirconia, ceria, yttria-stabilized zirconia, and partially stabilized zirconia. Ceramic particles such as alumina and silicon carbide having a small ratio may be used.
【0012】また、セラミックス粒子の粒径は、通常5
〜70μm、好ましくは10〜50μmの範囲で選ばれ
る。この粒径が5μm未満では形成される電極層の気孔
率を低下させるし、また70μmを超えると電気化学反
応にかかわるニッケルの表面積が不十分となるので好ま
しくない。The particle size of the ceramic particles is usually 5
It is selected in a range of from 70 to 70 µm, preferably from 10 to 50 µm. If the particle size is less than 5 μm, the porosity of the formed electrode layer will be reduced, and if it exceeds 70 μm, the surface area of nickel involved in the electrochemical reaction will be insufficient.
【0013】このセラミックス粒子とニッケルとの使用
割合は、重量比で通常95:5〜10:90、好ましく
は70:30〜30:70の範囲で選ばれる。この割合
が10:90未満では電極と他の燃料電池部材との間の
熱膨張特性の整合性が不十分となるし、また95:5を
超えるとニッケルによる被覆が完全でないか、あるいは
被膜が非常に薄くなるためセラミックス粒子との剥離を
生じやすくなり、導電性が低下するので好ましくない。The use ratio of the ceramic particles to nickel is selected in a range of usually 95: 5 to 10:90, preferably 70:30 to 30:70 by weight. If this ratio is less than 10:90, the matching of the thermal expansion characteristics between the electrode and other fuel cell members becomes insufficient, and if it exceeds 95: 5, the coating with nickel is not complete or the coating is not complete. Since it is very thin, peeling off from the ceramic particles is apt to occur, and the conductivity is undesirably reduced.
【0014】上記塗布方法は、常法、例えば上記固体電
解質板の所定面にはけ塗り法やスクリーン印刷法などを
施す方法が用いられる。バインダーとしては、ポリビニ
ルブチラール、ポリビニルアルコール、メチルセルロー
スなどが、また溶剤としてはアルコール、ケトン、芳香
族の有機溶剤などが用いられ、その他分散助剤等も必要
に応じて添加される。該バインダーの使用割合はニッケ
ル被覆セラミックス粒子に対し、通常2〜20重量%、
好ましくは5〜10重量%の範囲が適当である。As the above-mentioned coating method, a method of applying a brush coating method, a screen printing method, or the like to a predetermined surface of the solid electrolyte plate, for example, is used. As the binder, polyvinyl butyral, polyvinyl alcohol, methylcellulose, or the like is used. As the solvent, alcohol, ketone, aromatic organic solvent, or the like is used, and other dispersing aids are also added as needed. The use ratio of the binder is usually 2 to 20% by weight based on the nickel-coated ceramic particles,
Preferably, the range is 5 to 10% by weight.
【0015】また、本発明方法は、ニッケル被覆セラミ
ックス粒子と少量のニッケル粒子との混合系を被着させ
る場合も包含する。The method of the present invention also includes the case where a mixed system of nickel-coated ceramic particles and a small amount of nickel particles is applied.
【0016】上記固体電解質板を形成する材料は、酸素
イオン伝導性を有するものであれば特に制限されず、例
えばイットリア安定化ジルコニア(YSZ)、カルシア
安定化ジルコニア(CSZ)のような安定化ジルコニア
や、これら安定化ジルコニアにアルミナなどの金属酸化
物を添加した公知の固体電解質材料が挙げられる。The material forming the solid electrolyte plate is not particularly limited as long as it has oxygen ion conductivity. For example, stabilized zirconia such as yttria-stabilized zirconia (YSZ) and calcia-stabilized zirconia (CSZ) And a known solid electrolyte material obtained by adding a metal oxide such as alumina to these stabilized zirconia.
【0017】本発明方法により得られた燃料電極を付設
した固体電解質板は、それと他方の面に付設されたカソ
ード(空気極)とで単電池を構成するので、集電材と交
互に集積することにより容易に固体電解質燃料電池を作
製しうる。Since the solid electrolyte plate provided with the fuel electrode obtained by the method of the present invention and the cathode (air electrode) provided on the other surface constitute a unit cell, the solid electrolyte plate is alternately integrated with the current collector. Thus, a solid electrolyte fuel cell can be manufactured more easily.
【0018】この際に用いられる集電材は、通常セパレ
ータと端子板からなる。The current collector used at this time usually comprises a separator and a terminal plate.
【0019】セパレータは、単電池数より1個少ない、
ガス透過性のない緻密な導電板であり、片面と他面に通
常は互いに交差方向となるように溝を施してそれぞれ燃
料ガス及び酸化剤ガスのガス流路が形成されている。ま
た、端子板は、ガス透過性のない緻密な2枚の導電板で
あり、各片面に通常複数の平行溝加工を施してそれぞれ
酸化剤ガスのガス流路及び燃料ガスのガス流路が形成さ
れている。The separator is one less than the number of cells,
It is a dense conductive plate having no gas permeability, and has grooves formed on one side and the other side so as to be generally in the direction crossing each other, thereby forming gas flow paths for the fuel gas and the oxidizing gas. Further, the terminal plate is a dense two conductive plate having no gas permeability, and a plurality of parallel grooves are usually formed on one side to form a gas flow path for the oxidizing gas and a gas flow path for the fuel gas. Have been.
【0020】このように、セパレータは隣接する単セル
の電極間を電気的に接続するとともに、両面に燃料ガス
及び酸化剤ガスの流路となる溝が形成され、各流路はそ
れぞれセルのカソード側及びアノード側における各ガス
の通路を構成する。各ガス通路となる溝は平行に複数配
設され、片面の溝と他面の溝とは互いに交差方向、好ま
しくは直角方向に配置される。このように配置すれば、
セルを集積後、燃料ガスの入口及び出口、酸化剤ガスの
入口及び出口をそれぞれ同じ側端面上に配置することが
でき、集積セルとしてガス供給・排出系の構成を簡単か
つ容易とすることができる。As described above, the separator electrically connects the electrodes of the adjacent single cells, and has grooves formed on both surfaces thereof as flow paths for the fuel gas and the oxidizing gas. Each gas passage on the anode side and the anode side is constituted. A plurality of grooves serving as gas passages are arranged in parallel, and the grooves on one side and the grooves on the other side are arranged in a direction crossing each other, preferably in a direction perpendicular to each other. With this arrangement,
After accumulating the cells, the inlet and outlet of the fuel gas and the inlet and outlet of the oxidizing gas can be arranged on the same side end face, respectively, and the configuration of the gas supply / discharge system as an integrated cell can be made simple and easy. it can.
【0021】セパレータ及び端子板に用いる上記導電板
としては、通常、ニッケル、コバルトなどの金属、ニッ
ケル、クロム、コバルト、鉄などを含む耐熱合金、各種
焼結体などが用いられる。この焼結体としては、例えば
アルカリ土類金属及びCo、Ni、Fe、Znその他金
属をドープしたランタンクロマイト系複合酸化物、炭化
ケイ素、ケイ素化モリブデン、ケイ素化クロムなどの導
電性セラミックス、導電性金属材料と耐熱性無機化合物
とを非酸化性雰囲気、例えば還元雰囲気下あるいは真空
中で焼成した焼結体などが挙げられる。上記導電性金属
材料としては、例えばニッケル金属、ニッケル基合金、
コバルト金属、コバルト基合金、鉄金属、鉄基合金など
が挙げられ、このニッケル基合金としては、Ni‐Cr
系合金、Ni‐Cr‐Fe系合金、Ni‐Cr‐Mo系
合金、Ni‐Cr‐Mo‐Co系合金、Ni‐Cr‐M
o‐Fe系合金などが、またコバルト基合金としては、
Co‐Cr系合金、Co‐Cr‐Fe系合金、Co‐C
r‐W系合金、Co‐Cr‐Ni‐W系合金などが、ま
た鉄基合金としては、Fe−Ni‐Cr系合金、Fe‐
Cr‐Ni系合金、Fe‐Cr‐Ni‐Co系合金など
がそれぞれ挙げられる。また、耐熱性無機化合物として
は、例えばアルミナ、シリカ、チタニア、酸化インジウ
ム、酸化第二スズ、炭化ケイ素、窒化ケイ素、ランタン
クロマイト系複合酸化物、イットリウムクロマイト系複
合酸化物などが挙げられる。As the conductive plate used for the separator and the terminal plate, metals such as nickel and cobalt, heat-resistant alloys containing nickel, chromium, cobalt, iron and the like, and various sintered bodies are generally used. Examples of the sintered body include lanthanum chromite-based composite oxides doped with alkaline earth metals and Co, Ni, Fe, Zn, and other metals, conductive ceramics such as silicon carbide, molybdenum silicide, and chromium silicide. Examples include a sintered body obtained by firing a metal material and a heat-resistant inorganic compound in a non-oxidizing atmosphere, for example, in a reducing atmosphere or in a vacuum. As the conductive metal material, for example, nickel metal, nickel-based alloy,
Cobalt metal, cobalt-based alloy, iron metal, iron-based alloy, and the like. As the nickel-based alloy, Ni-Cr
Alloy, Ni-Cr-Fe alloy, Ni-Cr-Mo alloy, Ni-Cr-Mo-Co alloy, Ni-Cr-M
o-Fe alloys and the like, and cobalt based alloys,
Co-Cr alloy, Co-Cr-Fe alloy, Co-C
r-W alloys, Co-Cr-Ni-W alloys and the like, and iron-based alloys include Fe-Ni-Cr alloys, Fe-
Cr-Ni-based alloys, Fe-Cr-Ni-Co-based alloys, and the like can be given. Examples of the heat-resistant inorganic compound include alumina, silica, titania, indium oxide, stannic oxide, silicon carbide, silicon nitride, lanthanum chromite-based composite oxide, and yttrium chromite-based composite oxide.
【0022】次に、上記固体電解質燃料電池の作製方法
の好適な態様を説明する。電極付き固体電解質板すなわ
ち固体電解質板の一面及び他面にそれぞれアノード及び
カソードを形成して成る3層構造板をセパレータを介し
て積層し単セルの多段直列構造体を形成し、単セルの積
層数を適宜調整し、両端に端子板をそれぞれ設けること
により、多数の単セルからなる直列型の積層多段セルか
らなる電池本体を組み立てる。その際、固体電解質板の
一面及び他面に配設された電極すなわちアノード、カソ
ードとセパレータあるいは一方又は他方の電極と端子板
との間に封止材を介在させてガスリークしないように封
止するのがよい。封止材はセパレータあるいは端子板の
溝方向に沿う端縁部に配設される。Next, a preferred embodiment of the method for producing the solid electrolyte fuel cell will be described. A solid electrolyte plate with electrodes, that is, a three-layer structure plate having an anode and a cathode formed on one surface and the other surface of the solid electrolyte plate, respectively, is laminated via a separator to form a single-cell multi-stage series structure, and a single-cell lamination By appropriately adjusting the number and providing terminal plates at both ends, a battery body composed of a series of stacked multi-stage cells composed of many single cells is assembled. At this time, sealing is performed so as not to cause gas leakage by interposing a sealing material between the electrodes, that is, the anode, the cathode and the separator, or one or the other electrode and the terminal plate disposed on one surface and the other surface of the solid electrolyte plate. Is good. The sealing material is provided on the edge of the separator or the terminal plate along the groove direction.
【0023】こうして組み立てられた電池本体すなわち
積層多段セルに燃料ガス、空気等の酸化剤ガスの給、排
気管等を付設したマニホールドを取り付ける。例えば、
円筒型マニホールドでは、その内面と、これに内接する
セルの周面とにより仕切られた四室が燃料ガス及び酸化
剤ガスの供給、排出空間となってガス通路の形成部材と
なるとともに外壁にもなる構造を有する。A manifold provided with a supply and exhaust pipe for supplying an oxidizing gas such as fuel gas or air is attached to the battery body thus assembled, that is, a stacked multi-stage cell. For example,
In the cylindrical manifold, four chambers partitioned by the inner surface and the peripheral surface of the cell inscribed therein serve as supply and discharge spaces for the fuel gas and the oxidizing gas, forming the gas passage forming member, and also forming the outer wall. Having a structure of
【0024】[0024]
【発明の効果】本発明方法によれば、電気化学反応や導
電性に優れるとともに、燃料電池に簡単に効率よく組み
込むことができ、その場合他の部材との間で熱応力によ
る損傷や破壊の生じることのない固体電解質燃料電池用
燃料電極を作製することができる。特に、プラズマ溶射
法を用いると、従来の単なるニッケル/ジルコニア混合
物を溶射する場合のようなジルコニアが溶けにくく被着
しにくいという問題を容易に解消することができ、生成
するニッケル被覆セラミックス粒子が、相互に接触し合
う表面の溶けやすいニッケル同士の融着により強固に被
着されるようになるという利点がある。According to the method of the present invention, not only the electrochemical reaction and the conductivity are excellent, but also the fuel cell can be easily and efficiently incorporated into the fuel cell. A fuel electrode for a solid oxide fuel cell that does not occur can be manufactured. In particular, when the plasma spraying method is used, the problem that zirconia is not easily melted and hardly adhered as in the case of spraying a conventional nickel / zirconia mixture can be easily solved, and the resulting nickel-coated ceramic particles are There is an advantage that it can be firmly adhered by fusion of easily meltable nickel on the surfaces that are in contact with each other.
【0025】[0025]
【実施例】次に実施例によって本発明をさらに詳細に説
明する。Next, the present invention will be described in more detail by way of examples.
【0026】実施例1 3段直列セルの固体電解質燃料電池を以下のとおり作製
した。Example 1 A three-stage series cell solid electrolyte fuel cell was manufactured as follows.
【0027】固体電解質板には、イットリアを3モル%
添加した部分安定化ジルコニア(以下安定化ジルコニア
という)からなる50×50×0.2mmの焼成した板
状物を用いた。そして、酸素通路側にLa0.9S
r0.1MnO3粒子(平均粒径5μm)をポリビニル
ブチラールのテルピネオール溶液に分散させた塗布液を
厚さ0.3mmに塗布してカソードとし、水素通路側に
安定化ジルコニア粒子(平均粒径50μm)の表面にN
iを被覆した粒子(安定化ジルコニア:Ni=1/1重
量比)をポリビニルブチラールのテルピネオール溶液に
分散させた塗布液を厚さ0.3mmに塗布して燃料電極
とした。セパレータ及び端子板の集電体はNi系合金製
の50×50×5mmの平板にガス流路として深さ1.
0mmの溝を設けたものを用いた。The solid electrolyte plate contains 3 mol% of yttria.
A 50 x 50 x 0.2 mm calcined plate made of the added partially stabilized zirconia (hereinafter referred to as stabilized zirconia) was used. Then, La 0 . 9 S
r 0 . 1 A coating liquid in which MnO 3 particles (average particle size: 5 μm) were dispersed in a terpineol solution of polyvinyl butyral was applied to a thickness of 0.3 mm to form a cathode, and stabilized zirconia particles (average particle size: 50 μm) were provided on the hydrogen passage side. N on the surface
A coating liquid in which particles coated with i (stabilized zirconia: Ni = 1/1 weight ratio) were dispersed in a terpineol solution of polyvinyl butyral was applied to a thickness of 0.3 mm to obtain a fuel electrode. The current collector of the separator and the terminal plate is a 50 × 50 × 5 mm flat plate made of a Ni-based alloy and has a depth of 1.times.
The one provided with a groove of 0 mm was used.
【0028】この電極を付設した固体電解質板と集電体
を単セルが3層になるように積層し、この電極付き固体
電解質板と集電体の間に軟化点が約800℃のガラスペ
ーストを塗布してガス封止用とした。このガラスペース
トは電池の作動温度で軟化してガスを封止する。A solid electrolyte plate provided with the electrodes and a current collector are laminated so as to form three single cells, and a glass paste having a softening point of about 800 ° C. is provided between the solid electrolyte plate with the electrodes and the current collector. Was applied for gas sealing. This glass paste softens at the operating temperature of the battery and seals the gas.
【0029】こうして集積した電池本体に円筒状アルミ
ナ製マニホールドを取り付けた。マニホールドと電池本
体との接触部分はガラスペーストを塗布してガス封止用
とした。電気の取り出し部である端子には、白金リード
線を溶接し、電気的に接続した。A cylindrical alumina manifold was attached to the battery body thus integrated. A glass paste was applied to a contact portion between the manifold and the battery body for gas sealing. A platinum lead wire was welded and electrically connected to a terminal serving as an electrical outlet.
【0030】このようにして作製した燃料電池を加熱し
た。すなわち、室温から150℃までは1℃/分で加熱
し、150℃から300℃までは5℃/分で昇温し、ガ
ラスペーストの溶媒、塗布電極のバインダーを除去し
た。300℃以上では、水素通路側にアノードの酸化を
防止するため、窒素ガスを流し、5℃/分で1000℃
まで昇温した。その後、1000℃に保持してアノード
側に水素、カソード側に酸素を流し、発電を開始した。
開放電圧は1.28V、オーミック抵抗は40mΩ、ガ
スクロスリークは水素の0.1%以下であった。The fuel cell thus manufactured was heated. That is, heating was performed at a rate of 1 ° C./minute from room temperature to 150 ° C., and the temperature was increased at a rate of 5 ° C./minute from 150 ° C. to 300 ° C. to remove the solvent for the glass paste and the binder for the coated electrode. At a temperature of 300 ° C. or higher, a nitrogen gas is flown at a rate of 5 ° C./min.
Temperature. Thereafter, while maintaining the temperature at 1000 ° C., hydrogen was supplied to the anode side and oxygen was supplied to the cathode side to start power generation.
The open voltage was 1.28 V, the ohmic resistance was 40 mΩ, and the gas cross leak was 0.1% or less of hydrogen.
【0031】この電池の電流−電圧特性(放電特性)を
表1に示す。Table 1 shows the current-voltage characteristics (discharge characteristics) of this battery.
【0032】[0032]
【表1】 [Table 1]
【0033】比較例 実施例1のアノード原料に代えて平均粒径5μmのNi
粉末と平均粒径50μmの安定化ジルコニア粉末を重量
比6:4の割合で混合した混合物を用いたこと以外は実
施例1と同様にして燃料電池を作製した。この電池を実
施例1と同様に、加熱後、発電させた。開放電圧は1.
28V、オーミック抵抗は60mΩ、ガスクロスリーク
は水素の0.1%以下であった。Comparative Example In place of the anode material of Example 1, Ni having an average particle size of 5 μm was used.
A fuel cell was produced in the same manner as in Example 1, except that a mixture of powder and stabilized zirconia powder having an average particle size of 50 μm in a weight ratio of 6: 4 was used. This battery was heated and generated power in the same manner as in Example 1. The open circuit voltage is 1.
28 V, ohmic resistance was 60 mΩ, and gas cross leak was 0.1% or less of hydrogen.
【0034】この電池の電流−電圧特性(放電特性)を
表2に示す。Table 2 shows the current-voltage characteristics (discharge characteristics) of this battery.
【0035】[0035]
【表2】 [Table 2]
【0036】実施例2 実施例1に用いたものと同じ固体電解質板の一方の面
に、ニッケル被覆ジルコニア粒子(平均粒径40μm、
ジルコニア/Ni重量比=1/1)をプラズマ電流40
0アンペア、溶射圧力300トールの条件下で溶射し厚
み180μmの燃料電極を形成させた。次いで、実施例
1と同様の方法で、他方の面にカソード極材を塗布し、
燃料電池を作製した。Example 2 Nickel-coated zirconia particles (average particle size of 40 μm, on one surface of the same solid electrolyte plate as used in Example 1)
(Zirconia / Ni weight ratio = 1/1) with plasma current 40
The fuel was sprayed under the conditions of 0 ampere and a spray pressure of 300 Torr to form a fuel electrode having a thickness of 180 μm. Next, in the same manner as in Example 1, a cathode electrode material was applied to the other surface,
A fuel cell was manufactured.
【0037】この電池を実施例1と同様に、加熱後、発
電させた結果、開放電圧は1.28V、オーミック抵抗
は35mΩ、ガスクロスリークは水素の0.1%以下で
あった。This battery was heated and then generated power in the same manner as in Example 1. As a result, the open voltage was 1.28 V, the ohmic resistance was 35 mΩ, and the gas cross leak was 0.1% or less of hydrogen.
【0038】この電池の電流−電圧特性(放電特性)を
表3に示す。Table 3 shows the current-voltage characteristics (discharge characteristics) of this battery.
【0039】[0039]
【表3】 [Table 3]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番 1号 東燃株式会社総合研究所内 (56)参考文献 特開 平3−95860(JP,A) 特開 平3−49156(JP,A) 特開 平5−174833(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 8/98 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Toshihiko Yoshida 1-3-1, Nishitsurugaoka, Oi-machi, Iruma-gun, Saitama Prefecture Tonen Co., Ltd. (56) References JP-A-3-95860 (JP, A) JP-A-3-49156 (JP, A) JP-A-5-174833 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/86-8/98
Claims (2)
ス粒子の表面がニッケルで被覆された粒子を有機系バイ
ンダーに分散させた塗布液を塗布し、乾燥後、焼結する
ことを特徴とする固体電解質燃料電池用燃料電極の形成
方法。The present invention is characterized in that a coating liquid in which particles of ceramic particles whose surfaces are coated with nickel is dispersed in an organic binder is applied to one surface of a solid electrolyte plate, dried, and then sintered. A method for forming a fuel electrode for a solid oxide fuel cell.
ス粒子の表面がニッケルで被覆された粒子をプラズマ溶
射により被着させることを特徴とする固体電解質燃料電
池用燃料電極の形成方法。2. A method for forming a fuel electrode for a solid electrolyte fuel cell, comprising applying, on one surface of a solid electrolyte plate, particles of ceramic particles whose surfaces are coated with nickel by plasma spraying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03353121A JP3105052B2 (en) | 1991-12-18 | 1991-12-18 | Method of forming fuel electrode for solid oxide fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03353121A JP3105052B2 (en) | 1991-12-18 | 1991-12-18 | Method of forming fuel electrode for solid oxide fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05174835A JPH05174835A (en) | 1993-07-13 |
JP3105052B2 true JP3105052B2 (en) | 2000-10-30 |
Family
ID=18428710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03353121A Expired - Fee Related JP3105052B2 (en) | 1991-12-18 | 1991-12-18 | Method of forming fuel electrode for solid oxide fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3105052B2 (en) |
-
1991
- 1991-12-18 JP JP03353121A patent/JP3105052B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05174835A (en) | 1993-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6893760B2 (en) | Solid oxide fuel cell | |
WO2001089017A1 (en) | High performance solid electrolyte fuel cells | |
JPH08185870A (en) | Separator for solid electrolyte fuel cell | |
JP2001196069A (en) | Fuel cell | |
JP2012014850A (en) | Lateral stripe type solid oxide fuel battery cell stack, lateral stripe type solid oxide fuel battery bundle, and fuel battery | |
JP2003007318A (en) | Solid electrolyte fuel cell | |
JP3105052B2 (en) | Method of forming fuel electrode for solid oxide fuel cell | |
JP3547062B2 (en) | Sealing material for fuel cells | |
JPH07245113A (en) | Solid electrolyte for fuel cell and solid electrolyte fuel cell using this | |
JPH06196186A (en) | High temperature type fuel cell | |
JPH05174846A (en) | Solid electrolyte type fuel cell | |
JPH05174836A (en) | Forming method for fuel electrode of solid electrolytic fuel cell | |
JPH07130385A (en) | Cylindrical lateral band type solid electrolyte electrolytic cell | |
JPH0652869A (en) | Solid electrolyte film of fuel cell and manufacture thereof | |
JPH06150958A (en) | Solid electrolyte fuel cell | |
JP3257363B2 (en) | Solid oxide fuel cell | |
JPH05174833A (en) | Fuel electrode material for solid electrolyte fuel cell | |
CA2560769C (en) | Electrolyte electrode assembly and method of producing the same | |
JPH06219834A (en) | Sintered compact with electric conductivity at high temperature and its production | |
JP3101358B2 (en) | Solid oxide fuel cell separator | |
JPH07114931A (en) | Solid electrolyte type fuel cell | |
JPH05174844A (en) | Solid electrolyte type fuel cell | |
JPH06168734A (en) | External manifold type high temperature fuel cell | |
JPH0681062A (en) | Sintered compact with high-temperature electric conductivity and its production | |
JPH06111846A (en) | High-temperature type fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080901 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |