JPH05161016A - Quantized width adjusting circuit utilizing dct conversion ac coefficient - Google Patents
Quantized width adjusting circuit utilizing dct conversion ac coefficientInfo
- Publication number
- JPH05161016A JPH05161016A JP26642791A JP26642791A JPH05161016A JP H05161016 A JPH05161016 A JP H05161016A JP 26642791 A JP26642791 A JP 26642791A JP 26642791 A JP26642791 A JP 26642791A JP H05161016 A JPH05161016 A JP H05161016A
- Authority
- JP
- Japan
- Prior art keywords
- scaling factor
- quantization width
- dct
- coefficient
- inputting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N11/00—Colour television systems
- H04N11/04—Colour television systems using pulse code modulation
- H04N11/042—Codec means
- H04N11/044—Codec means involving transform coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
- H04N19/126—Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
- H04N19/14—Coding unit complexity, e.g. amount of activity or edge presence estimation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
- H04N19/149—Data rate or code amount at the encoder output by estimating the code amount by means of a model, e.g. mathematical model or statistical model
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
- H04N19/15—Data rate or code amount at the encoder output by monitoring actual compressed data size at the memory before deciding storage at the transmission buffer
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Television Signal Processing For Recording (AREA)
- Color Television Systems (AREA)
- Image Processing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はJPEG(CCITTと
ISOのジョイントグループ)から勧告するイメージコ
ンプレッション方式のディジタル映像処理システムにお
ける量子化幅調整回路に関するもので、特に画像を多数
個のブロックに分離して各ブロック別にDCT処理した
後にAC値を利用して画像の複雑性により量個化幅を可
変してS/N比を高めることができる量子化幅調整回路
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantization width adjusting circuit in an image compression type digital video processing system recommended by JPEG (joint group of CCITT and ISO), and in particular, it divides an image into a large number of blocks. The present invention relates to a quantization width adjusting circuit capable of increasing the S / N ratio by performing DCT processing for each block and varying the individualization width according to the complexity of an image by using an AC value.
【0002】[0002]
【従来の技術】一般的に、JPEGから勧告するイメー
ジコンプレッションの方式は図1から見るようにディジ
タルイメージ記録再生装置内でデータ圧縮のためDCT
変換した後に量子化する。このとき、量子化幅は人間の
視覚特性を考慮した8×8ブロックの量子化マトリック
スと一定のスケーリングファクターSによって決定され
た。このように、一定のスケーリングファクターSによ
って量子化幅が決定されると、大変複雑なイメージは正
確に再生されず、単純なイメージは処理過程で多いメモ
リーが必要となる問題点があった。2. Description of the Related Art Generally, the image compression method recommended by JPEG is DCT for data compression in a digital image recording / reproducing apparatus as shown in FIG.
Quantize after conversion. At this time, the quantization width was determined by a quantization matrix of 8 × 8 blocks and a constant scaling factor S considering human visual characteristics. As described above, when the quantization width is determined by the constant scaling factor S, a very complicated image cannot be reproduced accurately, and a simple image requires a large amount of memory in the process.
【0003】[0003]
【発明が解決しようとする課題】従って、本発明の目的
は画像を多数個のブロックに分類して各ブロック別にD
CT処理した後に複雑なイメージはスケーリングファク
ターS値を大幅に与えて量子化幅を小幅にしてデータ圧
縮率を減少させ、単純なイメージはスケーリングファク
ターS値を減少させて与えて量子化幅を大幅にしてデー
タ圧縮率を高めることによってS/N比を向上させるこ
とができる量子化幅調整回路を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to classify an image into a large number of blocks and to add D to each block.
After CT processing, a complex image is given a large scaling factor S value to reduce the quantization width to reduce the data compression rate, and a simple image is given a reduced scaling factor S value to give a large quantization width. Another object of the present invention is to provide a quantization width adjusting circuit that can improve the S / N ratio by increasing the data compression rate.
【0004】本発明の他の目的は画像を多数個のブロッ
クに分けてDCT処理した後にAC値を利用して各ブロ
ック別に画像の複雑性により量子化幅を可変してハード
ウェフ構成を簡素化することができる量子化幅調整回路
を提供することにある。Another object of the present invention is to divide an image into a large number of blocks, perform DCT processing, and then use AC values to change the quantization width depending on the complexity of the image for each block to simplify the hardware structure. Another object of the present invention is to provide a quantization width adjusting circuit that can do this.
【0005】[0005]
【実施例】以下、本発明を添付の図面を参照して詳細に
説明する。ブロックフォーマッティングされたブロック
別の8×8データを入力して1個のDC係数と63個の
AC係数をシリアル出力するDCT10と、前記DCT
10の出力AC係数を入力して絶対値を取るABS20
と、前記ABS20の絶対値を取った63個のAC係数
を順次的に入力して累算する累算器30と、前記累算器
30の累算された係数を入力して各ブロックのイメージ
の複雑性の状態によりスケーリングファクターを決定す
るスケーリングファクター決定部40と、前記スケーリ
ングファクター決定部40で出力されたスケーリングフ
ァクター値により量子化幅を決定する量子化幅調整部5
0と、クロック信号を受けてカウンティングして前記累
算器30及びスケーリングファクター決定部40の動作
制御信号を発生する動作制御部60と、64個のレジス
ターとから構成されて前記DCT10のDCT処理され
たデータを順次的にシフトさせてスケーリングファクタ
ーが決定されるまで遅延させるシフトレジスター70
と、前記シフトレジスター70で遅延されたデータを入
力して前記量子化幅調整部50で決定された量子化幅に
より量子化を遂行するリニア量子化部80とから構成さ
れる。前記構成中の累算器30はクロックが入力される
ことにより前記ABS20の絶対値を取ったAC係数を
加算する加算器31と、前記加算器31で加算されたA
C係数値をラッチ出力するラッチ32で構成され、前記
スケーリングファクター決定部40は前記ラッチ32の
出力信号を入力した後に第1リファレンス値と第1スケ
ーリングファクターの範囲を決定する第1スケーリング
ファクター発生手段と前記ラッチ32の出力信号を入力
して第2リファレンスと比較した後に前記第1スケーリ
ングファクター発生手段から第1スケーリングファクタ
ーの範囲のオーバ信号を受けて論理組合して第2スケー
リングファクター範囲を決定する第2スケーリングファ
クター発生手段と、前記ラッチ32の出力信号を入力し
て第3リファレンス値と比較した後に前記第2スケーリ
ングファクター発生手段から第2スケーリングファクタ
ーの範囲のオーバ信号を受けて論理組合して第3スケー
リングファクターの範囲を決定する第3スケーリングフ
ァクター発生手段と、前記第3スケーリングファクター
の発生手段から第3スケーリングファクターの範囲のオ
ーバ信号を受けて論理組合して第4スケーリングファク
ターの範囲を決定する第4スケーリングファクター発生
手段と、前記第1−第4スケーリングファクター発生手
段からスケーリングファクターの範囲の決定信号を受け
てエンコーディング出力するエンコーダー44とから構
成され、動作制御部60はクロック信号を受けてカウン
ティングして出力端Q0−Q5にカウンティング値を出
力するリングカウンター61と、前記リングカウンター
61の出力端Q0−Q5に出力されたカウンティング値
を入力して前記累算器30及びスケーリングファクター
決定部40のリセット信号を発生するNORゲート62
と、前記リングカウンター61の出力端Q0−Q5に出
力されたカウンティング値を入力して前記スケーリング
ファクター決定部40のイネイブル信号を発生するAN
Dゲート63とから構成される。前記構成に基づいて本
発明の一実施例を図2を参照して詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings. A DCT 10 for inputting block-formatted block-by-block 8 × 8 data and serially outputting one DC coefficient and 63 AC coefficients;
ABS20 that takes the output AC coefficient of 10 and takes the absolute value
And an accumulator 30 for sequentially inputting and accumulating 63 AC coefficients having the absolute value of the ABS 20, and an image of each block by inputting the accumulated coefficients of the accumulator 30. Scaling factor determining unit 40 that determines a scaling factor according to the complexity state, and a quantization width adjusting unit 5 that determines a quantization width based on the scaling factor value output from the scaling factor determining unit 40.
0, an operation control unit 60 that receives a clock signal and counts it to generate an operation control signal of the accumulator 30 and the scaling factor determination unit 40, and a DCT process of the DCT 10 by 64 registers. A shift register 70 that sequentially shifts the stored data and delays it until a scaling factor is determined.
And a linear quantizer 80 that receives the data delayed by the shift register 70 and performs quantization with the quantization width determined by the quantization width adjuster 50. The accumulator 30 in the above configuration is configured such that when a clock is input, an adder 31 that adds an AC coefficient that is an absolute value of the ABS 20 and an A that is added by the adder 31 are added.
The scaling factor determining unit 40 is configured by a latch 32 that latches and outputs a C coefficient value, and the scaling factor determining unit 40 determines a range of the first reference value and the first scaling factor after receiving the output signal of the latch 32. And the output signal of the latch 32 are input and compared with a second reference, and then an over signal in the range of the first scaling factor is received from the first scaling factor generating means and logically combined to determine the second scaling factor range. The second scaling factor generating means and the output signal of the latch 32 are input and compared with a third reference value, and then an over signal in the range of the second scaling factor is received from the second scaling factor generating means and logically combined. Third scaling factor Third scaling factor generating means for determining the range, and fourth scaling factor for logically combining and receiving an over signal of the range of the third scaling factor from the third scaling factor generating means to determine the range of the fourth scaling factor. The operation control unit 60 includes a generating unit and an encoder 44 that receives the determination signal of the scaling factor range from the first to fourth scaling factor generating units and outputs the encoded signal. A ring counter 61 that outputs a counting value to Q0-Q5 and a counting value that is output to the output terminals Q0-Q5 of the ring counter 61 are input to generate reset signals for the accumulator 30 and the scaling factor determining unit 40. You NOR gate 62
And an counting signal output from the output terminals Q0-Q5 of the ring counter 61 to generate an enable signal for the scaling factor determining unit 40.
And a D gate 63. An embodiment of the present invention will be described in detail based on the above configuration with reference to FIG.
【0006】入力端P1を通じてブロックフォーマッテ
ィングされた8×8データを入力するDCT10はクロ
ック端P2を通じてクロック入力されることにより1個
のDC係数と63個のAC係数をシリアルに出力する。
前記DCT10で出力されるAC係数は+,−値をも
つ。ですから、前記DCT10で出力される係数を入力
するABS20は絶対値を取って出力する。前記ABS
20で出力される絶対値を取ったAC係数を順次的に入
力する加算器31はクロック信号によって63個のAC
係数を加算出力する。前記加算器31で加算されたAC
係数を入力するラッチ32はクロック端P2を通じて入
力されるクロックによってラッチ出力する。また、クロ
ック信号を入力するリングカウンター61はクロック端
Q0−Q5に000000を出力するときNORゲート
62は“ハイ”信号を出力して前記ラッチ32と第1−
第3比較器41−43及びエンコーダー44をリセット
させる。また、前記リングカウンター61の出力が11
1111であるときANDゲート63は“ハイ”信号を
出力して前記第1−第3比較器41−43及びエンコー
ダー44をイネイブルさせる。前記ラッチ32のラッチ
出力された値が第1比較器41の入力端Aに入力され、
入力端Bに入力された第1リファレンス値と比較して前
記第1リファレンス値より小さい場合には第1スケーリ
ングファクターとして決定されてエンコーダー44の第
1入力端0に印加される。The DCT 10 for inputting the block-formatted 8 × 8 data through the input terminal P1 outputs one DC coefficient and 63 AC coefficients serially by being clocked through the clock terminal P2.
The AC coefficient output by the DCT 10 has + and-values. Therefore, the ABS 20 which inputs the coefficient output from the DCT 10 takes an absolute value and outputs it. The ABS
The adder 31 for sequentially inputting the AC coefficients, which have the absolute values output at 20, outputs 63 ACs according to the clock signal.
The coefficient is added and output. AC added by the adder 31
The latch 32, which receives the coefficient, latches and outputs it according to the clock input through the clock terminal P2. Further, when the ring counter 61 for inputting a clock signal outputs 000000 to the clock terminals Q0-Q5, the NOR gate 62 outputs a "high" signal to output the latch 32 and the first-first signal.
The third comparators 41-43 and the encoder 44 are reset. The output of the ring counter 61 is 11
When it is 1111, the AND gate 63 outputs a "high" signal to enable the first to third comparators 41-43 and the encoder 44. The value output from the latch 32 is input to the input terminal A of the first comparator 41,
If it is smaller than the first reference value compared with the first reference value input to the input terminal B, it is determined as a first scaling factor and applied to the first input terminal 0 of the encoder 44.
【0007】しかし、前記第1リファレンス値より前記
ラッチ32でラッチ出力された値が同じとか、大きな値
であると、前記ラッチ32の出力値が第2比較器42の
入力端Cに入力されて入力端Dを通じて入力された第2
リファレンス値と比較して前記第2リファレンス値より
小さい場合には前記第1比較器41の出力値がORゲー
トOR1を通じて第2スケーリングファクターとして決
定されてエンコーダー44の入力端1に印加される。However, if the value output by the latch 32 is the same as or larger than the first reference value, the output value of the latch 32 is input to the input terminal C of the second comparator 42. Second input through the input terminal D
When compared with the reference value and smaller than the second reference value, the output value of the first comparator 41 is determined as a second scaling factor through the OR gate OR1 and applied to the input terminal 1 of the encoder 44.
【0008】また、前記ラッチ32の出力値が第2リフ
ァレンス値と同じとか、それより大きい場合には前記ラ
ッチ32の出力値が第3比較器43の入力端Eに入力さ
れて入力端Fを通じて入力された第3リファレンス値と
比較して前記第3リファレンス値より小さい場合には前
記第2比較器42の出力値がORゲートOR2を通じて
第2比較器42の出力値とANDゲートAN2に入力さ
れて論理組合として第3スケーリングファクターとして
決定されてエンコーダー44の入力端2に印加される。
しかし前記ラッチ32の出力値が第3リファレンスと同
じとか、それより大きい場合には第3比較器43の出力
がORゲートOR3に入力されて論理組合することによ
って第4スケーリングファクターとして決定されてエン
コーダー44の入力端3に印加される。When the output value of the latch 32 is the same as or larger than the second reference value, the output value of the latch 32 is input to the input terminal E of the third comparator 43 and passed through the input terminal F. When compared with the input third reference value and smaller than the third reference value, the output value of the second comparator 42 is input to the output value of the second comparator 42 and the AND gate AN2 through the OR gate OR2. Is determined as a logical combination and applied to the input 2 of the encoder 44.
However, when the output value of the latch 32 is equal to or larger than the third reference, the output of the third comparator 43 is input to the OR gate OR3 and logically combined to determine the fourth scaling factor, which is determined by the encoder. Applied to the input terminal 3 of 44.
【0009】これによって、前記エンコーダー64はイ
メージの複雑性により出力されたスケーリングファクタ
ーをエンコーディング出力する。前記エンコーダー64
の出力であるスケーリングファクターは量子化幅決定部
50に印加されて量子化幅を決定する。また、前記DC
T10でDCT処理されたデータを順次的に入力するシ
フトレジスター70は64個のレジスターとから構成さ
れてシフトさせるが、DCT変換係数は量子化するため
に必要としたスケーリングファクターが決定されるまで
遅延させる。前記シフトレジスター70にシフト出力さ
れたデータを入力するリニア量子化部80は前記量子化
幅決定部50で決定された量子化幅によって量子化す
る。Accordingly, the encoder 64 encodes and outputs the scaling factor output according to the complexity of the image. The encoder 64
The scaling factor, which is the output of, is applied to the quantization width determining unit 50 to determine the quantization width. In addition, the DC
The shift register 70 for sequentially inputting the data subjected to the DCT processing at T10 is composed of 64 registers and shifts, but the DCT transform coefficient is delayed until the scaling factor required for quantization is determined. Let The linear quantizer 80, which receives the data shifted and output to the shift register 70, quantizes the data according to the quantization width determined by the quantization width determiner 50.
【0010】[0010]
【発明の効果】上述のようにブロックフォーマッティン
グされた8×8データをDCT処理した後に画像信号の
イメージが複雑なブロックは量子化幅を小幅にして圧縮
率を減少させ、イメージが簡単なブロックは量子化幅を
広幅にして圧縮率を高めることによってS/N比を向上
することができ、ハードウェアの構成を簡素化して費用
を節減することができる利点がある。As described above, after the block-formatted 8 × 8 data is subjected to the DCT processing, a block having a complex image of the image signal has a small quantization width to reduce the compression rate, and a block having a simple image is There is an advantage that the S / N ratio can be improved by widening the quantization width and increasing the compression rate, and the hardware configuration can be simplified and the cost can be reduced.
【図1】JPEG勧告のアルゴリズムブロック構成図で
ある。FIG. 1 is a block diagram of an algorithm block recommended by JPEG.
【図2】本発明によるシステム構成図である。FIG. 2 is a system configuration diagram according to the present invention.
10 DCT 20 ABS 30 累算器 40 スケーリングファクター決定部 50 量子化幅決定部 60 動作制御部 70 シフトレジスター 80 リニア量子化部 10 DCT 20 ABS 30 Accumulator 40 Scaling Factor Determining Section 50 Quantization Width Determining Section 60 Operation Control Section 70 Shift Register 80 Linear Quantization Section
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04N 11/04 Z 9187−5C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H04N 11/04 Z 9187-5C
Claims (4)
ックは8×8データを入力して1個のDC係数と63個
のAC係数をシリアル出力するDCT(10)とスケー
リングファクターを入力して量子化幅を決定する量子化
幅決定部(50)と、前記DCT(10)でDCT処理
されたデータを入力して前記量子化幅決定部(50)の
量子化幅により量子化を遂行するリニア量子化部(8
0)を具備した量子化幅調整回路における前記DCT
(10)で処理された出力係数を入力して絶対値を取る
ABS(20)と、前記ABS(20)の絶対値を取っ
た63個のAC係数を順次的に入力してクロックに周期
を合わせて累算する累算器(30)と、前記累算器(3
0)の累算されたAC係数を入力して各ブロックのイメ
ージの複雑性の状態によりスケーリングファクターを決
定するスケーリングファクター決定部(40)と、クロ
ック信号を受けてカウンティングして前記累算器(3
0)及びスケーリングファクター決定部(40)の動作
制御信号を発生する動作制御部(60)と、前記DCT
(10)でDCT処理されたデータを入力して順次的に
シフトさせてスケーリングファクターが決定されるまで
遅延させるシフトレジスター(70)とから構成される
ことを特徴とする量子化幅調整回路。1. A block-formatted block receives 8 × 8 data, serially outputs one DC coefficient and 63 AC coefficients, and inputs a DCT (10) and a scaling factor to determine a quantization width. And a linear quantizer (50) for inputting the data subjected to the DCT processing by the DCT (10) and performing quantization according to the quantization width of the quantization width determiner (50). 8
0) in the quantization width adjusting circuit
The ABS (20) that takes the absolute value by inputting the output coefficient processed in (10) and the 63 AC coefficients that take the absolute value of the ABS (20) are sequentially input to set the cycle of the clock. An accumulator (30) for accumulating together and the accumulator (3
0) inputting the accumulated AC coefficient and determining a scaling factor according to the complexity of the image of each block, a scaling factor determining unit (40), receiving a clock signal and counting and counting the accumulator ( Three
0) and an operation control unit (60) for generating an operation control signal of the scaling factor determination unit (40), and the DCT.
A quantization width adjusting circuit, comprising: a shift register (70) which receives the data subjected to the DCT processing in (10), sequentially shifts the data, and delays the data until a scaling factor is determined.
力してカウンティングして出力端(Q0−Q5)にカウ
ンティング値を出力するリングカウンター(61)と、
前記リングカウンター(61)の出力端(Q0−Q5)
に出力されたカウンティング値を入力して前記加算器
(31)とスケーリングファクター決定部(40)のリ
セット信号を発生する手段と、前記リングカウンター
(61)の出力端(Q0−Q5)に出力されたカウンテ
ィング値を入力して前記スケーリングファクター決定部
(40)のイネイブル信号を発生する手段とから構成さ
れることを特徴とする請求項1記載の量子化幅調整回
路。2. An operation control unit (60), a ring counter (61) for inputting a clock signal, counting, and outputting a counting value to output terminals (Q0-Q5),
Output terminal (Q0-Q5) of the ring counter (61)
Means for generating the reset signal of the adder (31) and the scaling factor determining unit (40) by inputting the counting value output to the output terminal (Q0-Q5) of the ring counter (61). 2. The quantization width adjusting circuit according to claim 1, further comprising means for inputting a counting value to generate an enable signal of the scaling factor determining unit (40).
0)が前記量子化幅決定部(50)に連結されることを
特徴とする請求項1記載の量子化幅調整回路。3. The scaling factor determination unit (4)
The quantization width adjusting circuit according to claim 1, wherein 0) is connected to the quantization width determining unit (50).
化部(80)に連結されることを特徴とする請求項1記
載の量子化幅調整回路。4. The quantization width adjusting circuit according to claim 1, wherein the shift register (70) is connected to the linear quantizer (80).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019900016438A KR930004265B1 (en) | 1990-10-16 | 1990-10-16 | Quantumized pulse width control circuit |
KR16438/1990 | 1990-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05161016A true JPH05161016A (en) | 1993-06-25 |
Family
ID=19304730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26642791A Pending JPH05161016A (en) | 1990-10-16 | 1991-10-15 | Quantized width adjusting circuit utilizing dct conversion ac coefficient |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH05161016A (en) |
KR (1) | KR930004265B1 (en) |
DE (1) | DE4134554A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107105245A (en) * | 2017-05-26 | 2017-08-29 | 西安电子科技大学 | High speed JPEG method for compressing image based on TMS320C6678 chips |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5285402A (en) * | 1991-11-22 | 1994-02-08 | Intel Corporation | Multiplyless discrete cosine transform |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02202271A (en) * | 1989-01-31 | 1990-08-10 | Konica Corp | Picture data compressor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4698689A (en) * | 1986-03-28 | 1987-10-06 | Gte Laboratories Incorporated | Progressive image transmission |
-
1990
- 1990-10-16 KR KR1019900016438A patent/KR930004265B1/en not_active IP Right Cessation
-
1991
- 1991-10-15 JP JP26642791A patent/JPH05161016A/en active Pending
- 1991-10-15 DE DE19914134554 patent/DE4134554A1/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02202271A (en) * | 1989-01-31 | 1990-08-10 | Konica Corp | Picture data compressor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107105245A (en) * | 2017-05-26 | 2017-08-29 | 西安电子科技大学 | High speed JPEG method for compressing image based on TMS320C6678 chips |
CN107105245B (en) * | 2017-05-26 | 2019-08-06 | 西安电子科技大学 | High speed JPEG method for compressing image based on TMS320C6678 chip |
Also Published As
Publication number | Publication date |
---|---|
KR930004265B1 (en) | 1993-05-22 |
DE4134554A1 (en) | 1992-05-07 |
KR920009073A (en) | 1992-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5146324A (en) | Data compression using a feedforward quantization estimator | |
US7613264B2 (en) | Flexible sampling-rate encoder | |
JP2531955B2 (en) | One-dimensional cosine transform value calculation device, and image coding device and decoding device including the calculation device | |
US6798833B2 (en) | Video frame compression/decompression hardware system | |
JP2000125297A (en) | Method for coding and decoding consecutive image | |
US5719961A (en) | Adaptive technique for encoder and decoder signal transformation | |
KR960040018A (en) | Wavelet Image Compression / Restoration Apparatus and Method Using Human Visual System Modeling | |
EP0369682A2 (en) | Efficient coding method and its decoding method | |
US5822461A (en) | Device for determining a quantizing number of an image signal | |
JPH05161016A (en) | Quantized width adjusting circuit utilizing dct conversion ac coefficient | |
JP3179588B2 (en) | Data encoding apparatus and method | |
JP2841362B2 (en) | High efficiency coding device | |
JPS59178887A (en) | Adaptive encoding/decoding method and device of television image | |
JPS62239693A (en) | Method of data arrangement and reconstruction of digital image signal | |
US5692074A (en) | Image information coding device and image information communication device with block average information and controllable compression | |
JP2794842B2 (en) | Encoding method and decoding method | |
JP3049265B2 (en) | Image data coding circuit | |
JP2537246B2 (en) | Image coding method | |
JP2570794B2 (en) | High-efficiency encoder for television signals. | |
JPS62188575A (en) | Encoding and decoding device for vector quantizing | |
JP3191433B2 (en) | High efficiency coding device | |
JP2001128176A (en) | Image compressing and expanding device | |
JPH0722393B2 (en) | Orthogonal transform coding method for image data | |
Mietens et al. | New scalable DCT computation for resource-constrained systems | |
JPH05130580A (en) | Variable length encoding and decoding device |