Nothing Special   »   [go: up one dir, main page]

JPH0464467B2 - - Google Patents

Info

Publication number
JPH0464467B2
JPH0464467B2 JP60154515A JP15451585A JPH0464467B2 JP H0464467 B2 JPH0464467 B2 JP H0464467B2 JP 60154515 A JP60154515 A JP 60154515A JP 15451585 A JP15451585 A JP 15451585A JP H0464467 B2 JPH0464467 B2 JP H0464467B2
Authority
JP
Japan
Prior art keywords
oxide film
silicon
substrate
silicon oxide
chip package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60154515A
Other languages
Japanese (ja)
Other versions
JPS6215850A (en
Inventor
Katsuzo Uenishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP60154515A priority Critical patent/JPS6215850A/en
Publication of JPS6215850A publication Critical patent/JPS6215850A/en
Publication of JPH0464467B2 publication Critical patent/JPH0464467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Waveguides (AREA)

Abstract

PURPOSE:To provide low impedance of 50-100OMEGA as the characteristic impedance of the microstrip lines of a multi-chip package substrate even if the width of the line is miniaturized, by providing a very thin silicon oxide film (or silicon nitride film) on a silicon substrate, whose impurity concentration is very high, and using the silicon oxide film as a dielectric material. CONSTITUTION:On a silicon substrate 13, a silicon oxide film 15, whose thickness is, e.g., 1-5mum, is provided. A wiring pattern 21 including microstrip lines 17 and wirings 19 are provided on the silicon oxide film 15. The microstrip lines 17 comprise suitable metal material. The wiring 19 is wider than the microstrip line 17 for external terminals, power source lines and the like. A part of the silicon oxide film 15 is removed in order to reduce grounding inductance, and a through hole 13 reaching the silicon substrate 13 is provided, in a package substrate 11. The desired circuit part can be grounded to the silicon substrate through said through hole 23 are required.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はシリコン又は化合物半導体からなる
超高速デバイス(半導体チツプ)を実装するため
のマルチチツプパツケージ基板に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a multi-chip package substrate for mounting ultra-high-speed devices (semiconductor chips) made of silicon or compound semiconductors.

(従来の技術) 従来より種々の構造のマルチチツプパツケージ
基板(以下、パツケージ基板と称することもあ
る)が提案されている。このようなパツケージ基
板は例えば文献(プロシーデイング オブ ザ
カスタム インテグレイテツド サーキツツ コ
ンフエレンス(Proceeding of the Custom
Integrated Circuits Conference),1983,p.142
〜146)に開示されている。
(Prior Art) Multi-chip package substrates (hereinafter sometimes referred to as package substrates) of various structures have been proposed. Such package boards are described, for example, in the literature (Procedures of the
Proceeding of the Custom
Integrated Circuits Conference), 1983, p.142
~146).

このような従来のパツケージ基板は公知である
が以下、簡単に説明する。
Such conventional package substrates are well known and will be briefly described below.

先ず、基板として0.6〜1.0mmの厚さのセラミ
ツク基板、0.8〜1.6mmの厚さのテフロン(米国
デユポン社の商標名)樹脂基板又は0.8〜1.6mm
の厚さのガラスエポキシ基板を用い、この基板上
にCr,NiCr,Au,Cu等の中から所望とする材
料を用いて、外部接続端子、電源ライン及び高速
信号を伝達するためのマイクロストリツプ線路を
含む配線パタンが形成されている。又、必要に応
じ、この基板には配線パタンを形成した基板面か
ら、この基板面とは反対側の面(裏面と称する)
に達するスルーホールが設けてある。さらに、こ
の裏面には、一般に、前述したような金属薄膜か
らなるアースラインが形成されている。
First, as a substrate, a ceramic substrate with a thickness of 0.6 to 1.0 mm, a Teflon (trade name of DuPont, USA) resin substrate with a thickness of 0.8 to 1.6 mm, or a substrate with a thickness of 0.8 to 1.6 mm.
A glass epoxy substrate with a thickness of A wiring pattern including a pull line is formed. In addition, if necessary, from the substrate surface on which the wiring pattern is formed, to the surface opposite to this substrate surface (referred to as the back surface).
A through hole is provided to reach the Further, on this back surface, generally, an earth line made of a metal thin film as described above is formed.

このような構造のパツケージ基板は通常、基板
の補強とデバイスからの熱の放熱を目的として、
支持体に固定されている。
A package board with this type of structure usually has a built-in material for the purpose of reinforcing the board and dissipating heat from the device.
fixed to a support.

マイクロストリツプ線路(以下、線路と称する
こともある)の特性インピーダンスZ0は、文献
(日本マイクロエレクトロニクス協会編「IC化実
装技術」(1984−2−20)工業調査会p.202)に記
載されている式によれば、 Z0=377/(w/h)εr[1+1.735 εr -0.074×
(w/h)-0.836] (Ω) で与えられる。ここで、hは誘電体基板の厚さ
m、wはマイクロストリツプ線路の幅m、εrは誘
電体基板の誘電率をそれぞれ示す。従つて、特性
インピダンスZ0は、誘電体の厚さが厚くなる程、
又、誘電体の誘電率が小さくなる程大きくなる。
又、誘電体上に設けたマイクロストリツプ線路の
線幅が狭くなる程、この線路の特性インピダンス
は大きくなる。従来のパツケージ基板では、用い
ている基板が誘電体であり、その厚みが非常に厚
いこと、実装密度の制約により基板上に形成する
線路の線幅をあまり広く出来ないこととにより、
マイクロストリツプ線路の特性インピーダンスは
200Ω以上となつてしまう。
The characteristic impedance Z 0 of a microstrip line (hereinafter sometimes referred to as a line) is given in the literature (edited by the Japan Microelectronics Association, "IC Mounting Technology" (February 20, 1984), Industrial Research Committee, p. 202). According to the stated formula, Z 0 =377/(w/h)ε r [1+1.735 ε r -0.074 ×
(w/h) -0.836 ] (Ω). Here, h is the thickness m of the dielectric substrate, w is the width m of the microstrip line, and ε r is the dielectric constant of the dielectric substrate. Therefore, the characteristic impedance Z 0 increases as the thickness of the dielectric increases.
Further, the smaller the dielectric constant of the dielectric, the larger it becomes.
Furthermore, the narrower the line width of the microstrip line provided on the dielectric, the greater the characteristic impedance of this line. In conventional package boards, the board used is a dielectric material, which is very thick, and the line width formed on the board cannot be made very wide due to restrictions on packaging density.
The characteristic impedance of the microstrip line is
It becomes over 200Ω.

(発明が解決しようとする問題点) このような従来のマルチチツプパツケージ基板
に、超高速信号を扱うガリウム砒素IC、シリコ
ンバイポーラ素子等の超高速デバイスを実装する
と、これらのデバイスに対してマイクロストリツ
プ線路の特性インピーダンスは負荷となる。高速
信号を忠実に伝達するためには、信号伝達に用い
る線路の特性インピーダンスは50〜100Ωである
必要がある。従つて、従来の線路のようにその特
性インピーダンスが200Ω以上もあると、デバイ
スと線路との間でインピーダンス不整合が生じ
る。このため、不整合部分での信号の反射による
損失及び信号波形の歪により信号の伝達が正確に
行えないという問題点があつた。
(Problems to be Solved by the Invention) When ultra-high-speed devices such as gallium arsenide ICs that handle ultra-high-speed signals and silicon bipolar elements are mounted on such conventional multi-chip package substrates, micro-stroll The characteristic impedance of the lip line becomes a load. In order to faithfully transmit high-speed signals, the characteristic impedance of the line used for signal transmission must be 50 to 100Ω. Therefore, when a conventional line has a characteristic impedance of 200Ω or more, impedance mismatch occurs between the device and the line. For this reason, there is a problem in that signals cannot be transmitted accurately due to loss due to reflection of signals at mismatched portions and distortion of signal waveforms.

例えば、ガリウム砒素ICやシリコンバイポー
ラ素子では、これらIC及び素子が超高速用とな
るとそのデザインルールは1μm以下となり、又、
そのIC及び素子内部の高速信号線の線幅も2〜
4μmと微細になる。従つて、特性インピーダンス
が50Ωのマイクロストリツプ線路を構成するため
には、誘電体の誘電率にもよるが、2〜4μmとし
た高速信号線の線幅と同様にμmオーダの線幅で
マイクロストリツプ線路を形成する必要がある。
従来のパツケージ基板にこのように微細な線路を
形成したのでは、特性インピーダンス50Ωのマイ
クロストリツプ線路の実現は不可能であつた。
For example, in the case of gallium arsenide ICs and silicon bipolar devices, when these ICs and devices are used for ultra-high speed applications, the design rule is 1 μm or less, and
The line width of the high-speed signal line inside the IC and element is also 2~
It becomes as fine as 4μm. Therefore, in order to construct a microstrip line with a characteristic impedance of 50Ω, it is necessary to have a line width on the μm order, similar to the line width of high-speed signal lines of 2 to 4 μm, depending on the permittivity of the dielectric material. It is necessary to form a microstrip line.
By forming such fine lines on a conventional package substrate, it was impossible to realize a microstrip line with a characteristic impedance of 50Ω.

この発明の目的は、マルチチツプパツケージ基
板のマイクロストリツプ線路の線幅を微細にして
もこの線路の特性インピーダンスを50〜100Ωの
低インピーダンスとすることが出来る、マルチチ
ツプパツケージ基板を提供することにある。
An object of the present invention is to provide a multichip package board that can maintain a low characteristic impedance of 50 to 100Ω even if the line width of the microstrip line on the multichip package board is made fine. It is in.

(問題点を解決するための手段) この目的の達成を図るため、この発明によれ
ば、超高速デバイス実装用のマルチチツプパツケ
ージ基板において、 マルチチツプパツケージは、導電性を有するよ
うに高濃度に不純物添加されたシリコン基板と、
このシリコン基板の表面に形成したシリコン酸化
膜又はシリコン窒化膜と、このシリコン酸化膜又
はシリコン窒化膜に設けたスルーホールと、この
シリコン酸化膜又はシリコン窒化膜に形成されマ
イクロストリツプ線路を有する配線パタンとを含
むことを特徴とする。
(Means for Solving the Problems) In order to achieve this object, according to the present invention, in a multi-chip package substrate for ultra-high-speed device mounting, the multi-chip package is highly concentrated to have conductivity. a silicon substrate doped with impurities,
It has a silicon oxide film or silicon nitride film formed on the surface of this silicon substrate, a through hole provided in this silicon oxide film or silicon nitride film, and a microstrip line formed in this silicon oxide film or silicon nitride film. It is characterized by including a wiring pattern.

(作用) このような構成によれば、導電性を有するシリ
コン基板がマルチチツプパツケージ基板の基板と
して機能し、シリコン酸化膜又はシリコン窒化膜
が誘電体として機能する。さらに、このシリコン
酸化膜又はシリコン窒化膜は非常に薄い膜厚で形
成出来るため、配線パターンの下地となる誘電体
の厚みを非常に薄く出来る。
(Function) According to this configuration, the conductive silicon substrate functions as the substrate of the multi-chip package substrate, and the silicon oxide film or silicon nitride film functions as the dielectric. Furthermore, since this silicon oxide film or silicon nitride film can be formed with a very thin film thickness, the thickness of the dielectric material underlying the wiring pattern can be made very thin.

(実施例) 以下、第1図及び第2図を参照して、この発明
の一実施例につき説明する。尚、これら図はこの
発明が理解出来る程度に概略的に示してあるにす
ぎずその形状、寸法及び配置関係は図示例に限定
されるものではない。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2. Note that these drawings are merely shown schematically to the extent that the present invention can be understood, and the shapes, dimensions, and arrangement relationships are not limited to the illustrated examples.

第1図はこの発明のマルチチツプパツケージ基
板11の一実施例を示す断面図である。この図を
参照してこのパツケージ基板11の構造につき説
明する。
FIG. 1 is a sectional view showing an embodiment of a multi-chip package substrate 11 of the present invention. The structure of this package substrate 11 will be explained with reference to this figure.

図において、13はキヤリア濃度の高いp型シ
リコン基板(n型でも勿論良い)を示し、この場
合、基板を例えばアースラインとして用いる際に
この基板で高速信号の損失が生じないよう、この
基板の抵抗率が0.1Ω以下となるように不純物を
入れてある。このシリコン基板13上には好適な
手段により例えば1〜5μmの膜厚のシリコン酸化
膜15が設けてある。このシリコン酸化膜15上
には従来と同様に好適な金属材料によりマイクロ
ストリツプ線路17と、外部接続端子や電源ライ
ン等のマイクロストリツプ線路より幅広の配線1
9とを含む配線パタン21が設けてある。さら
に、このパツケージ基板11は、接地インダクタ
ンスを低減するため、シリコン酸化膜15の一部
分を除去しシリコン基板13に達するスルーホー
ル23を有しており、必要に応じて、所望とする
回路部分をこのスルーホール23を経てシリコン
基板13に接地出来る。
In the figure, reference numeral 13 indicates a p-type silicon substrate with a high carrier concentration (of course, an n-type silicon substrate may also be used). Impurities are added so that the resistivity is 0.1Ω or less. A silicon oxide film 15 having a thickness of, for example, 1 to 5 μm is provided on this silicon substrate 13 by suitable means. On this silicon oxide film 15, a microstrip line 17 and wiring lines 1 wider than the microstrip line such as external connection terminals and power lines are formed using a suitable metal material as in the past.
A wiring pattern 21 including 9 is provided. Furthermore, in order to reduce grounding inductance, this package substrate 11 has a through hole 23 that reaches the silicon substrate 13 by removing a portion of the silicon oxide film 15. If necessary, a desired circuit portion can be inserted into this through hole 23. It can be grounded to the silicon substrate 13 via the through hole 23.

このような構造のパツケージ基板11では、シ
リコン酸化膜15が誘電体とするため、従来のパ
ツケージ基板で用いられていたセラミック等の誘
電体の厚さと比較して、このシリコン酸化膜15
からなる誘電体の厚さは非常に薄い。
In the package substrate 11 having such a structure, since the silicon oxide film 15 is used as a dielectric, the silicon oxide film 15 is thicker than the dielectric material such as ceramic used in conventional package substrates.
The thickness of the dielectric material made of is very thin.

以下に、この発明のマルチチツプパツケージ基
板11の製造方法につき説明する。
The method for manufacturing the multi-chip package substrate 11 of the present invention will be explained below.

先ず、シリコン酸化膜15の形成方法である
が、シリコン基板13の表面に、例えば半導体製
造技術である気相成長法によりシリコン酸化膜1
5を形成する。又は、シリコン基板表面に熱酸化
処理を行つて二酸化シリコン層をシリコン基板1
3に形成しても良い。
First, regarding the method of forming the silicon oxide film 15, the silicon oxide film 15 is formed on the surface of the silicon substrate 13 by, for example, vapor phase growth, which is a semiconductor manufacturing technology.
form 5. Alternatively, thermal oxidation treatment is performed on the silicon substrate surface to form a silicon dioxide layer on the silicon substrate 1.
3 may be formed.

このシリコン酸化膜15の膜厚は、この膜が絶
縁膜として良好な特性が得られる膜厚であるこ
と。さらに、このシリコン酸化膜15上に形成す
る配線パターン21、特に、実装密度の点から要
求されるマイクロストリツプ線路の線幅と、この
線路に要求される特性インピーダンスとを考慮し
て、適切な膜厚となるように形成する。
The thickness of this silicon oxide film 15 is such that this film has good characteristics as an insulating film. Furthermore, the wiring pattern 21 to be formed on the silicon oxide film 15 is appropriately designed, taking into account the line width of the microstrip line required from the viewpoint of packaging density and the characteristic impedance required for this line. The film is formed to have a film thickness of

次に、フオトエツチング技術により、このシリ
コン酸化膜15の所望とする箇所にシリコン酸化
膜15の表面からシリコン基板13に達するスル
ホール23を形成する。
Next, a through hole 23 reaching from the surface of the silicon oxide film 15 to the silicon substrate 13 is formed at a desired location of the silicon oxide film 15 by photo-etching technology.

次に、このシリコン酸化膜15及びスルーホー
ル23により露出したシリコン基板13の部分上
に真空蒸着法その他好適な方法により、従来と同
様なNiCr,Au等の金属薄膜を形成する。続い
て、この金属薄膜をフオトエツチング技術等の好
適な方法により加工を行い配線パタン21を形成
する。この際、高速信号の伝達を行うマイクロス
トリツプ線路17の線幅は、この線路17の特性
インピーダンスが50〜100Ωの値となるような線
幅に形成する。又、幅広の配線19の線幅は各部
分で要求される電流容量及び電圧降下を考慮して
決定し、外部接続端子部の大きさはボンデイング
条件の制限から決定し、それぞれの寸法に応じて
形成する。
Next, on the silicon oxide film 15 and the portion of the silicon substrate 13 exposed through the through hole 23, a thin metal film of NiCr, Au, etc., similar to the conventional method, is formed by vacuum evaporation or other suitable method. Subsequently, this metal thin film is processed by a suitable method such as photoetching technique to form a wiring pattern 21. At this time, the line width of the microstrip line 17 for transmitting high-speed signals is formed to such a line width that the characteristic impedance of this line 17 becomes a value of 50 to 100 Ω. In addition, the line width of the wide wiring 19 is determined by considering the current capacity and voltage drop required in each part, and the size of the external connection terminal part is determined based on the restrictions of bonding conditions, and is determined according to each dimension. Form.

尚、この実施例で形成した酸化シリコン膜を窒
化シリコン膜としても、この発明の効果の達成が
出来る。この場合の窒化シリコン膜の形成は気相
成長法等の好適な方法で行えば良い。
Note that the effects of the present invention can also be achieved by using a silicon nitride film instead of the silicon oxide film formed in this embodiment. In this case, the silicon nitride film may be formed by a suitable method such as a vapor phase growth method.

第2図はこの発明のマルチチツプパツケージ基
板11の理解を深めるために、このパツケージ基
板11に半導体チツプ25を実装した状態の一例
を示す平面図である。
FIG. 2 is a plan view showing an example of a state in which a semiconductor chip 25 is mounted on the multi-chip package board 11 of the present invention in order to better understand the multi-chip package board 11 of the present invention.

マルチチツプパツケージ基板11へ半導体チツ
プ25を実装する方法は、例えば従来から行われ
ているフリツプチツプボンデイング法により行え
ばよい。
The semiconductor chip 25 may be mounted on the multi-chip package substrate 11 by, for example, the conventional flip-chip bonding method.

尚、このマルチチツプパツケージ基板11には
一個又は複数個の超高速デバイスを実装出来るこ
とは勿論である。又、このマルチチツプパツケー
ジ基板は通常の半導体デバイスの実装用基板とし
て用いても好適である。
It goes without saying that one or more ultra-high speed devices can be mounted on this multi-chip package substrate 11. This multi-chip package substrate is also suitable for use as a mounting substrate for ordinary semiconductor devices.

第3図は、超高速デバイスを実装したマルチチ
ツプパツケージ基板11を、基板の補強とデバイ
スで発生する熱の放熱とを目的として、アルミナ
等で形成した支持体27に固定した状態を示す。
この場合、マルチチツプパツケージ基板11を支
持体27にダイボンデイングした後、パツケージ
基板11に設けた外部接続端子部と支持体27と
の間を金線29でワイヤボンデイングした様子を
示す。この例の他に、例えば、端子を有するフレ
ームに、このマルチチツプパツケージ基板11を
固定した後、樹脂モールドして支持する方法も考
えられる。
FIG. 3 shows a state in which a multi-chip package board 11 on which ultra-high-speed devices are mounted is fixed to a support body 27 made of alumina or the like for the purpose of reinforcing the board and dissipating heat generated by the devices.
In this case, after die bonding the multi-chip package board 11 to the support 27, wire bonding is performed using a gold wire 29 between the external connection terminal portion provided on the package board 11 and the support 27. In addition to this example, for example, a method may be considered in which the multi-chip package board 11 is fixed to a frame having terminals and then supported by resin molding.

(発明の効果) 上述した説明からも明らかなように、この発明
のマルチチツプパツケージ基板によれば、不純物
濃度の高いシリコン基板に非常に薄い膜厚の酸化
シリコン膜(又は窒化シリコン膜)を有してお
り、この酸化シリコン膜を誘電体としている。従
つて、従来のパツケージ基板における誘電体の厚
みが0.6〜1.6mmに対してこの発明のパツケージ
基板の誘電体の厚みは実施例の値を引用しても1
〜5μmと非常に薄い。このため、この酸化シリコ
ン膜上に形成するマイクロストリツプ線路の線幅
を半導体チツプ内部の微細配線の線幅1〜10μm
と同程度にしても、このマイクロストリツプ線路
の特性インピーダンスを50〜100Ωとすることが
出来る。
(Effects of the Invention) As is clear from the above description, the multi-chip package substrate of the present invention has a very thin silicon oxide film (or silicon nitride film) on a silicon substrate with a high impurity concentration. This silicon oxide film is used as a dielectric. Therefore, while the thickness of the dielectric in the conventional package substrate is 0.6 to 1.6 mm, the thickness of the dielectric in the package substrate of this invention is 1.
Very thin at ~5 μm. For this reason, the line width of the microstrip line formed on this silicon oxide film is reduced to 1 to 10 μm, which is the line width of the fine wiring inside the semiconductor chip.
The characteristic impedance of this microstrip line can be made to be 50 to 100 Ω even if the impedance is the same as that of 50 to 100 Ω.

又、シリコン基板に酸化シリコン膜又は窒化シ
リコン膜を形成すること、酸化シリコン膜又は窒
化シリコン膜にスルーホール及び配線パタンを形
成することは従来からある方法により容易に行え
る。又、基板として用いたシリコン基板はその表
面加工等の信頼性は半導体技術で実証されている
ため、その表面に形成する回路パターンは微細な
パターンの形成が可能である。
Furthermore, forming a silicon oxide film or a silicon nitride film on a silicon substrate, and forming through holes and wiring patterns in a silicon oxide film or a silicon nitride film can be easily performed using conventional methods. In addition, since the reliability of the surface processing of the silicon substrate used as the substrate has been proven by semiconductor technology, it is possible to form a fine circuit pattern on the surface of the silicon substrate.

これがため、低い特性インピーダンスを有し、
かつ、実装密度の高いマルチチツプパツケージ基
板を容易に提供できる。
Because of this, it has a low characteristic impedance,
Moreover, a multi-chip package board with high packaging density can be easily provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のマルチチツプパツケージ基
板の一実施例を示す断面図、第2図はこの発明の
マルチチツプパツケージ基板に半導体チツプを実
装した状態を示す平面図、第3図はこの発明のマ
ルチチツプパツケージ基板を支持体に実装した状
態を示す断面図である。 11……マルチチツプパツケージ基板、13…
…導電性を有するシリコン基板、15……シリコ
ン酸化膜、17……マイクロストリツプ線路、1
9……幅広の配線、21……配線パタン、23…
…スルーホール、25……超高速デバイス(半導
体チツプ)、27……支持体、29……金線。
FIG. 1 is a sectional view showing an embodiment of the multi-chip package board of the present invention, FIG. 2 is a plan view showing a state in which semiconductor chips are mounted on the multi-chip package board of the present invention, and FIG. FIG. 3 is a cross-sectional view showing a multi-chip package board mounted on a support. 11...Multi-chip package board, 13...
... conductive silicon substrate, 15 ... silicon oxide film, 17 ... microstrip line, 1
9...Wide wiring, 21...Wiring pattern, 23...
...Through hole, 25...Ultra high-speed device (semiconductor chip), 27...Support, 29...Gold wire.

Claims (1)

【特許請求の範囲】 1 半導体チツプ実装用のマルチチツプパツケー
ジ基板において、 導電性を有するように高濃度に不純物添加され
たシリコン基板と、該シリコン基板の表面に形成
したシリコン酸化膜又はシリコン窒化膜と、該シ
リコン酸化膜又はシリコン窒化膜に設けたスルー
ホールと、該シリコン酸化膜又はシリコン窒化膜
に形成されマイクロストリツプ線路を有する配線
パタンとを含む ことを特徴とするマルチチツプパツケージ基板。
[Scope of Claims] 1. A multi-chip package substrate for mounting semiconductor chips, comprising: a silicon substrate doped with impurities at a high concentration so as to have conductivity; and a silicon oxide film or silicon nitride film formed on the surface of the silicon substrate. A multi-chip package substrate comprising: a through hole provided in the silicon oxide film or silicon nitride film; and a wiring pattern formed in the silicon oxide film or silicon nitride film and having a microstrip line.
JP60154515A 1985-07-13 1985-07-13 Multi-chip package substrate Granted JPS6215850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154515A JPS6215850A (en) 1985-07-13 1985-07-13 Multi-chip package substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154515A JPS6215850A (en) 1985-07-13 1985-07-13 Multi-chip package substrate

Publications (2)

Publication Number Publication Date
JPS6215850A JPS6215850A (en) 1987-01-24
JPH0464467B2 true JPH0464467B2 (en) 1992-10-15

Family

ID=15585939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154515A Granted JPS6215850A (en) 1985-07-13 1985-07-13 Multi-chip package substrate

Country Status (1)

Country Link
JP (1) JPS6215850A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535623B2 (en) * 1989-10-17 1996-09-18 株式会社東芝 Resin-sealed semiconductor device
GB2290171B (en) * 1994-06-03 1998-01-21 Plessey Semiconductors Ltd Inductor chip device
GB2290913B (en) * 1994-06-30 1998-03-11 Plessey Semiconductors Ltd Multi-chip module inductor structure
US6444499B1 (en) * 2000-03-30 2002-09-03 Amkor Technology, Inc. Method for fabricating a snapable multi-package array substrate, snapable multi-package array and snapable packaged electronic components

Also Published As

Publication number Publication date
JPS6215850A (en) 1987-01-24

Similar Documents

Publication Publication Date Title
JP3267409B2 (en) Semiconductor integrated circuit device
US6380048B1 (en) Die paddle enhancement for exposed pad in semiconductor packaging
KR20020005475A (en) High frequency carrier
KR20120012389A (en) Semiconductor structure comprising pillar
JPH04336702A (en) Package
JP2002319658A (en) Semiconductor device
US6507110B1 (en) Microwave device and method for making same
JP3674780B2 (en) High frequency semiconductor device
TWI237925B (en) High-frequency semiconductor device
US6087721A (en) Semiconductor device with a high-frequency bipolar transistor on an insulating substrate
JP4010881B2 (en) Semiconductor module structure
JPH0464467B2 (en)
US6933603B2 (en) Multi-substrate layer semiconductor packages and method for making same
JP2002009193A (en) Semiconductor device
JP2006510201A (en) High density package interconnect wire bond stripline and method thereof
JPH09213730A (en) High-frequency module substrate and high-frequency power amplification module having it
JP2005209770A (en) Semiconductor device
KR100645655B1 (en) Device for connecting an ic terminal to a reference potential
JP2982441B2 (en) Microwave monolithic integrated circuit
JPH0126109Y2 (en)
JPS6348129Y2 (en)
WO2022260141A1 (en) Passive element and electronic device
JP3831173B2 (en) Semiconductor module
JPS62269349A (en) Semiconductor device
JPS6215849A (en) Multi-chip package substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term