Nothing Special   »   [go: up one dir, main page]

JPH04367724A - Catalyst and method for removing nitrogen oxide - Google Patents

Catalyst and method for removing nitrogen oxide

Info

Publication number
JPH04367724A
JPH04367724A JP3142821A JP14282191A JPH04367724A JP H04367724 A JPH04367724 A JP H04367724A JP 3142821 A JP3142821 A JP 3142821A JP 14282191 A JP14282191 A JP 14282191A JP H04367724 A JPH04367724 A JP H04367724A
Authority
JP
Japan
Prior art keywords
catalyst
platinum
sodium
aqueous solution
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3142821A
Other languages
Japanese (ja)
Other versions
JP3398159B2 (en
Inventor
Satoru Inui
哲 乾
Masao Hori
正雄 堀
Kazuo Tsuchiya
一雄 土谷
Tomohisa Ohata
知久 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP14282191A priority Critical patent/JP3398159B2/en
Publication of JPH04367724A publication Critical patent/JPH04367724A/en
Application granted granted Critical
Publication of JP3398159B2 publication Critical patent/JP3398159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To remove nitrogen oxide in the exhaust gas discharged from an internal combustion engine such as a car engine, for example, a gasoline engine or a diesel engine, a boiler or an industrial plant. CONSTITUTION:A catalyst for removing nitrogen oxide is obtained by immersing a monolithic structure composed of refractory inorg. oxide having platinum supported thereon in an aqueous solution of at least one kind of a compound selected from nitrate, carbonate and hydroxide of sodium and/or potassium and subsequently drying and calcining the impregnated structure. Exhaust gas in an oxidizing atmosphere state is passed through the catalyst composed of the monolithic structure of catalytically active components containing sodium and/or potassium, platinum and refractory inorg. oxide to remove nitrogen oxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、窒素酸化物の除去方法
に関する、詳しくは、自動車エンジン等の内燃機関、例
えば、ガソリンエンジン、ディーゼルエンジン、ボイラ
ー、工業用プラント等から排出される排ガス中の窒素酸
化物を除去する方法に関するものである。
[Field of Industrial Application] The present invention relates to a method for removing nitrogen oxides, and more particularly, the present invention relates to a method for removing nitrogen oxides from exhaust gases emitted from internal combustion engines such as automobile engines, such as gasoline engines, diesel engines, boilers, industrial plants, etc. The present invention relates to a method for removing nitrogen oxides.

【0002】0002

【従来の技術】近年、自動車、ボイラー、工業用プラン
ト等の内燃機関から排出される排ガス中には、窒素酸化
物(以下、NOxという場合もある)の有害成分が含ま
れ、これが大気汚染、酸性雨等の原因となっている。こ
のため。このNOx除去について、種々の方面から検討
がなされている。
[Prior Art] In recent years, exhaust gas emitted from internal combustion engines such as automobiles, boilers, and industrial plants contains harmful components such as nitrogen oxides (hereinafter sometimes referred to as NOx), which cause air pollution and It causes acid rain, etc. For this reason. This NOx removal has been studied from various perspectives.

【0003】従来、自動車の排ガス中の窒素酸化物の除
去については、三元触媒が用いられ、炭化水素(HC)
及び一酸化炭素(CO)とともにNOxも除去されてい
る。この方法は、燃料を完全燃焼させるに足りるだけの
空気量を導入しなされている。しかし、この方法は、還
元雰囲気下でNOxを分解する方法であるため、A/F
がリーン(A/F;空気/燃料が空気量が大である場合
)である場合、排ガス中のHC、COの浄化には好適で
あるが、NOxの浄化には、過剰の酸素が原因となり、
NOxを還元除去出来ないものである。
Conventionally, a three-way catalyst has been used to remove nitrogen oxides from automobile exhaust gas.
NOx is also removed along with carbon monoxide (CO). This method introduces a sufficient amount of air to completely burn the fuel. However, since this method decomposes NOx in a reducing atmosphere, the A/F
When the is lean (A/F; air/fuel has a large amount of air), it is suitable for purifying HC and CO in exhaust gas, but it is suitable for purifying NOx due to excess oxygen. ,
It cannot reduce and remove NOx.

【0004】また、内燃機関のうち、ディーゼルエンジ
ン、ボイラー等の場合、アンモニア、水素又は一酸化炭
素の還元剤を用いて、NOx除去する方法が用いられて
いるが、これらの方法は、未反応の還元剤の回収、処理
のために特別な装置が必要となるという問題がある。
[0004] Furthermore, among internal combustion engines, in the case of diesel engines, boilers, etc., methods are used to remove NOx using reducing agents such as ammonia, hydrogen, or carbon monoxide. There is a problem in that special equipment is required to recover and process the reducing agent.

【0005】さらに、一般的な文献を例示すると、炭化
水素による窒素酸化物の還元方法として、活性アルミナ
に白金及びバリウムを担持した触媒をもちいる方法(特
開昭55−67334号)、白金、ロジウム及びタング
ステン、並びにナトリウム及び/又はカリウムの塩化物
をアルミナに担持した触媒をもちいる方法(特公昭58
−45288号)が、開示されているが、これらの方法
はいずれも排ガス中の酸素が大過剰である場合、窒素酸
化物を除去するには十分ではない。
Furthermore, to exemplify general literature, as a method for reducing nitrogen oxides with hydrocarbons, a method using a catalyst in which platinum and barium are supported on activated alumina (Japanese Unexamined Patent Publication No. 55-67334); A method using a catalyst in which rhodium and tungsten and sodium and/or potassium chlorides are supported on alumina (Japanese Patent Publication No. 58
No. 45288) has been disclosed, but none of these methods is sufficient to remove nitrogen oxides when there is a large excess of oxygen in the exhaust gas.

【0006】また、酸化雰囲気下、炭化水素の存在下に
、銅含有触媒を用いてNOxと炭化水素との反応により
、窒素酸化物を除去する方法(特開昭63−10091
9号)が、開示されているが、この方法は、窒素酸化物
の除去しうる温度が高く、低温で窒素酸化物を有効に除
去できないものである。
[0006] Furthermore, a method for removing nitrogen oxides by reacting NOx with hydrocarbons using a copper-containing catalyst in an oxidizing atmosphere and in the presence of hydrocarbons (Japanese Patent Laid-Open No. 63-10091
No. 9) has been disclosed, but this method requires a high temperature at which nitrogen oxides can be removed and cannot effectively remove nitrogen oxides at low temperatures.

【0007】[0007]

【発明が解決しようとする課題】従って、酸化雰囲気下
で、低温から高温に到るまで効率よく、窒素酸化物を除
去しうる方法の開発が望まれている。
[Problems to be Solved by the Invention] Therefore, it is desired to develop a method that can efficiently remove nitrogen oxides from low to high temperatures in an oxidizing atmosphere.

【0008】[0008]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、上記課題を解決する方法として、以下の触媒、及
び方法を見出し発明を完成した。
[Means for Solving the Problems] As a result of intensive research, the present inventors discovered the following catalyst and method as a method for solving the above problems and completed the invention.

【0009】(1)本発明に係る第一の発明は、白金を
担持した耐火性無機酸化物を一体構造体に被覆し、次い
で、該一体構造体をナトリウム及び/又はカリウムの硝
酸塩、炭酸塩又は水酸化物からなる群から選ばれれる少
なくとも一種の水溶液中に浸漬し、乾燥、焼成すること
により得られることを特徴とする触媒である。
(1) The first aspect of the present invention is to coat an integral structure with a refractory inorganic oxide supporting platinum, and then cover the integral structure with sodium and/or potassium nitrates and carbonates. or hydroxides, the catalyst is immersed in at least one kind of aqueous solution selected from the group consisting of hydroxides, dried, and calcined.

【0010】ナトリウム及び/又カリウム源については
、硝酸塩、炭酸塩、又は水酸化物があげられる。これら
以外の各塩、または化合物は好ましい活性が得られない
As sources of sodium and/or potassium, mention may be made of nitrates, carbonates or hydroxides. Salts or compounds other than these do not provide the desired activity.

【0011】ナトリウム及び/又カリウムは、各金属元
素換算で、耐火性無機酸化物に対し1重量%〜20重量
%であることが好ましい。さらに好ましくは5重量%〜
10重量%である。1重量%未満であるときは、高温域
でNOx除去効率が低下するものであり、20重量を越
える場合は、各温度域NOx浄化効率が低下するもので
ある。
[0011] The content of sodium and/or potassium is preferably 1% to 20% by weight based on the refractory inorganic oxide in terms of each metal element. More preferably 5% by weight or more
It is 10% by weight. If it is less than 1% by weight, the NOx removal efficiency will decrease in a high temperature range, and if it exceeds 20% by weight, the NOx purification efficiency will decrease in each temperature range.

【0012】耐火性無機酸化物は、通常触媒用担体とし
て用いられるものであればいずれのものでも良く、例え
ば、αアルミナ、若しくはγ、δ、η、θ等の活性アル
ミナ、チタニア、若しくはジルコニア、又はこれらの複
合酸化物、例えば、アルミナチタニア、アルミナジルコ
ニア、チタニアジルコニア等を用いることができるが、
好ましくは活性アルミナである。
[0012] The refractory inorganic oxide may be any of those commonly used as catalyst carriers, such as α alumina or activated alumina such as γ, δ, η, θ, titania, or zirconia. Alternatively, composite oxides thereof such as alumina titania, alumina zirconia, titania zirconia, etc. can be used,
Activated alumina is preferred.

【0013】またこれらの耐火性無機酸化物は、BET
表面積が50〜200m2/gを有する耐火性無機酸化
物であることが好ましい。
[0013] These refractory inorganic oxides also have BET
Preferably, it is a refractory inorganic oxide having a surface area of 50 to 200 m2/g.

【0014】白金源としては、塩化白金酸、ジニトロジ
アミン白金、白金酸カリウム、または、白金酸ナトリウ
ム等の水溶性塩が好ましく用いられる。白金の担持量は
、耐火性無機酸化物に対して、0.5重量%〜10重量
%であることが好ましく、さらに好ましくは2重量%〜
5重量%である。1重量%未満であるときは、各温度域
でNOx除去効率が低下するものであり、10重量%を
越えて担持しても担持利ょぅに見合う活性は得られない
。また白金は、耐火性無機酸化物に担持されていること
が好ましい。
As the platinum source, water-soluble salts such as chloroplatinic acid, dinitrodiamine platinum, potassium platinate, or sodium platinate are preferably used. The amount of platinum supported is preferably 0.5% to 10% by weight, more preferably 2% to 10% by weight, based on the refractory inorganic oxide.
It is 5% by weight. When the amount is less than 1% by weight, the NOx removal efficiency decreases in each temperature range, and even if it is supported in excess of 10% by weight, the activity commensurate with the amount of support cannot be obtained. Further, platinum is preferably supported on a refractory inorganic oxide.

【0015】一体構造体とは、通常触媒用の担体として
用いられるもの、即ち、コージェーライト等の無機酸化
物ハニカムモノリス、メタルハニカムモノリス、コルゲ
ート、プラグハニカム、ペレット等がもちいられるが、
好ましくは、ハニカムモノリスである。
[0015] The monolithic structure includes those commonly used as carriers for catalysts, such as inorganic oxide honeycomb monoliths such as cordierite, metal honeycomb monoliths, corrugates, plug honeycombs, pellets, etc.
Preferably it is a honeycomb monolith.

【0016】本発明に係る触媒の調製方法を以下に示す
と、(1)耐火性無機物をスラリーとし、これに一体構
造体を浸し、余剰のスラリーを除いたのち乾燥、焼成後
、次いでこの一体構造体を白金含有水溶液に浸漬し、余
剰の液を除いたのち乾燥、焼成後、ついでこの一体構造
体を所定のナトリウム水溶液に浸漬し、余剰の液を除い
たのち乾燥、焼成して完成触媒を得た。(2)耐火性無
機酸化物に白金を通常の手法で担持し、これをスラリー
化した後、一体構造体を浸し、余剰のスラリーを除いた
のち乾燥、焼成後、次いでこの一体構造体を所定のナト
リウム水溶液に浸漬し、余剰の液を除いたのち乾燥、焼
成して完成触媒を得た。(3)耐火性無機物をスラリー
とし、これに一体構造体を浸し、余剰のスラリーを除い
たのち乾燥、焼成後、次いでこの一体構造体を白金と所
定のナトリウム含有の混合水溶液に浸し、余剰のスラリ
ーを除いたのち乾燥、焼成して完成触媒を得た。この調
製手順のうち、乾燥は、80℃〜150℃で30分から
3時間が好ましく、焼成は、300℃〜600℃で1時
間〜5時間が好ましい。また、これらの調製方法のうち
好ましくは、(2)の調製方法である。
The method for preparing the catalyst according to the present invention is as follows: (1) A refractory inorganic substance is made into a slurry, an integral structure is immersed in the slurry, excess slurry is removed, and the integral structure is dried and calcined. The structure is immersed in a platinum-containing aqueous solution, the excess liquid is removed, and then dried and fired.Then, this integrated structure is immersed in a specified sodium aqueous solution, the excess liquid is removed, and the finished catalyst is dried and fired. I got it. (2) Platinum is supported on a refractory inorganic oxide using a conventional method, this is made into a slurry, the integral structure is immersed, the excess slurry is removed, and the integral structure is dried and fired. The catalyst was immersed in an aqueous sodium solution, the excess liquid was removed, and the catalyst was dried and calcined to obtain a finished catalyst. (3) A refractory inorganic substance is made into a slurry, the integral structure is immersed in it, the excess slurry is removed, the integral structure is dried and fired, and then the integral structure is immersed in a mixed aqueous solution containing platinum and a specified amount of sodium. After removing the slurry, it was dried and calcined to obtain a finished catalyst. Among this preparation procedure, drying is preferably performed at 80°C to 150°C for 30 minutes to 3 hours, and baking is preferably performed at 300°C to 600°C for 1 hour to 5 hours. Moreover, among these preparation methods, the preparation method (2) is preferable.

【0017】(2)酸化雰囲気状態にある排ガスを炭化
水素存在下、ナトリウム及び/又カリウム、並びに白金
及び耐火性無機酸化物を含有してなる触媒活性成分を一
体構造体に被覆してなる触媒に通過させてなることを特
徴とする窒素酸化物除去方法である。
(2) A catalyst formed by covering exhaust gas in an oxidizing atmosphere in the presence of hydrocarbons with a catalytically active component containing sodium and/or potassium, platinum, and a refractory inorganic oxide on an integral structure. This is a method for removing nitrogen oxides, characterized by passing the nitrogen oxides through the nitrogen oxides.

【0018】炭化水素としては、飽和若しくは不飽和の
鎖状、環状又は芳香族の炭化水素の何れでも良いが、好
ましくは、不飽和の鎖状炭化水素であり、例えば、エチ
レン、プロピレン、ブテン等があげられる。
The hydrocarbons may be saturated or unsaturated chain, cyclic or aromatic hydrocarbons, but unsaturated chain hydrocarbons are preferred, such as ethylene, propylene, butene, etc. can be given.

【0019】排ガス中の炭化水素(メタン換算)と窒素
酸化物との含有量がモル比で0.5〜0.02であるこ
とが好ましい。0.5を越える場合は、炭化水素は優先
的に反応してNOxとの反応が起こり難くなり、そのた
めNOx除去効率が低下するものであり、0.02未満
である場合は、炭化水素濃度をこれ以上あげてもそれに
見合ったNOの除去効果は認められ難いものである。
It is preferable that the content of hydrocarbons (in terms of methane) and nitrogen oxides in the exhaust gas is in a molar ratio of 0.5 to 0.02. If it exceeds 0.5, hydrocarbons react preferentially and it becomes difficult to react with NOx, which reduces the NOx removal efficiency, and if it exceeds 0.02, the hydrocarbon concentration decreases. Even if the temperature is increased beyond this level, it is difficult to see a commensurate NO removal effect.

【0020】また、炭化水素は通常、排ガスに含まれる
が、例えば、ディーゼルエンジン排ガスは炭化水素の含
有量が低く、上記の炭化水素と窒素酸化物と含有量の比
の範囲に無い場合があり、このような場合、窒素酸化物
を十分除去するには、その不足分については、触媒に対
し排ガス入口側から新たに炭化水素を添加する必要があ
る。
[0020]Although hydrocarbons are normally contained in exhaust gas, for example, diesel engine exhaust gas has a low hydrocarbon content and may not be within the above range of hydrocarbon to nitrogen oxide content ratio. In such a case, in order to sufficiently remove nitrogen oxides, it is necessary to newly add hydrocarbons to the catalyst from the exhaust gas inlet side to make up for the deficiency.

【0021】(実施例)以下、実施例により、詳細に本
発明を説明するが、本発明の趣旨に反しないかぎりこれ
らに限定されるものではない。
(Examples) The present invention will be explained in detail with reference to Examples below, but the invention is not limited thereto unless it goes against the spirit of the invention.

【0022】(実施例1)BET表面積100m/g2
を有する活性アルミナ100gに白金5gを有するジニ
トロジアミン白金の水溶液を加え、混合し、120℃で
2時間乾燥、500℃で2時間焼成した。この得られた
粉体をボールミルにより湿式粉砕して、水性スラリーを
得、これに市販のコージェライト質ハニカム担体(日本
碍子(製)、横断面が1インチ平方当たり、400個の
ガス流通セルを有し、直径33mmφ、長さ76m、体
積65ml)を浸漬したのち、余剰のスラリーを圧縮空
気により吹き飛ばした。次いで、120℃で2時間乾燥
、500℃で2時間焼成し、白金担持アルミナ粉体を被
覆したハニカム担体を得た。
(Example 1) BET surface area 100m/g2
An aqueous solution of dinitrodiamine platinum containing 5 g of platinum was added to 100 g of activated alumina having 5 g of platinum, mixed, dried at 120° C. for 2 hours, and calcined at 500° C. for 2 hours. The obtained powder was wet-pulverized using a ball mill to obtain an aqueous slurry, and a commercially available cordierite honeycomb carrier (manufactured by Nippon Insulators) with a cross section of 400 gas flow cells per square inch was added to the slurry. After immersing a slurry (diameter: 33 mmφ, length: 76 m, volume: 65 ml), excess slurry was blown off with compressed air. Next, it was dried at 120°C for 2 hours and fired at 500°C for 2 hours to obtain a honeycomb carrier coated with platinum-supported alumina powder.

【0023】さらに、得られたハニカム担体を4.3モ
ル/l(リットル)の硝酸ナトリウム水溶液に浸漬した
のち、過剰の溶液を圧縮空気により吹き払い、これを1
20℃で2時間乾燥し、500℃で焼成して、完成触媒
(A)を得た。この触媒には、活性アルミナに対して白
金が5重量%、ナトリウムが10重量%担持されていた
Further, the obtained honeycomb carrier was immersed in a 4.3 mol/l (liter) aqueous sodium nitrate solution, and then the excess solution was blown off with compressed air.
It was dried at 20°C for 2 hours and calcined at 500°C to obtain a finished catalyst (A). This catalyst supported 5% by weight of platinum and 10% by weight of sodium based on activated alumina.

【0024】(実施例2)実施例1において、4.3モ
ル/lの硝酸ナトリウム水溶液に変えて、2.1モル/
lの硝酸ナトリウム水溶液を用いる以外は、実施例1と
同様にして完成触媒(B)を得た。この触媒には、活性
アルミナに対して白金が5重量%、ナトリウムが5重量
%担持されていた。
(Example 2) In Example 1, instead of 4.3 mol/l of sodium nitrate aqueous solution, 2.1 mol/l of sodium nitrate aqueous solution was used.
A completed catalyst (B) was obtained in the same manner as in Example 1, except that 1 of the sodium nitrate aqueous solution was used. This catalyst supported 5% by weight of platinum and 5% by weight of sodium based on activated alumina.

【0025】(実施例3)実施例2において、白金5g
含有するジニトロジアミン白金の水溶液に変えて白金1
g含有するジニトロジアミン白金の水溶液を用いる以外
は、実施例2と同様にして、完成触媒(C)を得た。こ
の触媒には、活性アルミナに対して白金が1重量%、ナ
トリウムが5重量%担持されていた。
(Example 3) In Example 2, 5 g of platinum
platinum 1 instead of the dinitrodiamine platinum aqueous solution containing
A finished catalyst (C) was obtained in the same manner as in Example 2, except that an aqueous solution of dinitrodiamine platinum containing g was used. This catalyst supported 1% by weight of platinum and 5% by weight of sodium based on activated alumina.

【0026】(実施例4)実施例1において、4.3モ
ル/lの硝酸ナトリウム水溶液に変えて2.5モル/l
の炭酸カリウム水溶液を用いる以外は、実施例1と同様
にして完成触媒(D)を得た。この触媒には、活性アル
ミナに対して白金が5重量%、カリウムが10重量%担
持されていた。
(Example 4) In Example 1, the 4.3 mol/l sodium nitrate aqueous solution was replaced with 2.5 mol/l.
A completed catalyst (D) was obtained in the same manner as in Example 1, except for using the potassium carbonate aqueous solution. This catalyst supported 5% by weight of platinum and 10% by weight of potassium based on activated alumina.

【0027】(実施例5)実施例1において、4.3モ
ル/lの硝酸ナトリウム水溶液に変えて4.3モル/l
の炭酸ナトリウム水溶液を用いる以外は、実施例1と同
様にして完成触媒(E)を得た。この触媒には、活性ア
ルミナに対して白金が5重量%、ナトリウムが10重量
%担持されていた。
(Example 5) In Example 1, the 4.3 mol/l sodium nitrate aqueous solution was replaced with 4.3 mol/l.
A finished catalyst (E) was obtained in the same manner as in Example 1, except for using an aqueous sodium carbonate solution. This catalyst supported 5% by weight of platinum and 10% by weight of sodium based on activated alumina.

【0028】(実施例6)実施例1において、4.3モ
ル/lの硝酸ナトリウム水溶液に変えて4.3モル/l
の水酸化ナトリウム水溶液を用いる以外は、実施例1と
同様にして完成触媒(F)を得た。この触媒には、活性
アルミナに対して白金が5重量%、ナトリウムが10重
量%担持されていた。
(Example 6) In Example 1, the 4.3 mol/l sodium nitrate aqueous solution was replaced with 4.3 mol/l.
A completed catalyst (F) was obtained in the same manner as in Example 1, except for using an aqueous sodium hydroxide solution. This catalyst supported 5% by weight of platinum and 10% by weight of sodium based on activated alumina.

【0029】(比較例1)実施例1において、4.3モ
ル/lの硝酸ナトリウム水溶液に変えて4.3モル/l
の塩化ナトリウム水溶液を用いる以外は、実施例1と同
様にして完成触媒(G)を得た。この触媒には、活性ア
ルミナに対して白金が5重量%、ナトリウムが10重量
%担持されていた。
(Comparative Example 1) In Example 1, 4.3 mol/l of sodium nitrate aqueous solution was used instead of 4.3 mol/l of sodium nitrate aqueous solution.
A finished catalyst (G) was obtained in the same manner as in Example 1, except for using the aqueous sodium chloride solution. This catalyst supported 5% by weight of platinum and 10% by weight of sodium based on activated alumina.

【0030】(比較例2)白金5gを含むジニトロジア
ミン白金水溶液と硝酸ナトリウム36.9gを含む水溶
液を実施例1で用いた活性アルミナ100gに添加、混
合し、その後120℃で2時間乾燥、500℃で2時間
焼成した。この得られた粉体をボールミルで湿式粉砕し
水性スラリーを得た。このスラリーに実施例1で用いた
ものと同様のハニカム担体を浸漬したのち、余剰のスラ
リーを圧縮空気により吹き飛ばした。次いで、120℃
で2時間乾燥、500℃で2時間焼成し、完成触媒(H
)を得た。この触媒には、活性アルミナに対して白金が
5重量%、ナトリウムが10重量%担持されていた。
(Comparative Example 2) A dinitrodiamine platinum aqueous solution containing 5 g of platinum and an aqueous solution containing 36.9 g of sodium nitrate were added to and mixed with 100 g of activated alumina used in Example 1, and then dried at 120° C. for 2 hours and heated to 500° C. It was baked at ℃ for 2 hours. The obtained powder was wet-milled using a ball mill to obtain an aqueous slurry. A honeycomb carrier similar to that used in Example 1 was immersed in this slurry, and then excess slurry was blown off with compressed air. Then 120℃
The finished catalyst (H
) was obtained. This catalyst supported 5% by weight of platinum and 10% by weight of sodium based on activated alumina.

【0031】(比較例3)白金5gを含むジニトロジア
ミン白金の水溶液を実施例1で用いた活性アルミナに添
加、混合したのち、120℃で2時間乾燥し、500℃
で2時間焼成した。この粉体に硝酸ナトリウム36.9
gを含有する水溶液を添加、混合したのち、120℃で
2時間乾燥し、500℃で2時間焼成した。得られた粉
体をボールミルで湿式粉砕し、水性スラリーとし、この
スラリーに実施例1で用いたものと同様のハニカム担体
を浸漬したのち、余剰のスラリーを圧縮空気により吹き
飛ばした。次いで、120℃で2時間乾燥、500℃で
2時間焼成し、完成触媒(I)を得た。この触媒には、
活性アルミナに対して白金が5重量%、ナトリウムが1
0重量%担持されていた。
(Comparative Example 3) An aqueous solution of dinitrodiamine platinum containing 5 g of platinum was added to the activated alumina used in Example 1 and mixed, dried at 120°C for 2 hours, and heated to 500°C.
Baked for 2 hours. Sodium nitrate 36.9
After adding and mixing an aqueous solution containing g, the mixture was dried at 120°C for 2 hours and fired at 500°C for 2 hours. The obtained powder was wet-pulverized in a ball mill to obtain an aqueous slurry. A honeycomb carrier similar to that used in Example 1 was immersed in this slurry, and the excess slurry was blown off with compressed air. Next, it was dried at 120°C for 2 hours and calcined at 500°C for 2 hours to obtain a completed catalyst (I). This catalyst has
Platinum is 5% by weight and sodium is 1% by weight based on activated alumina.
It was supported at 0% by weight.

【0032】(比較例4)硝酸ナトリウム36.9gを
含有する水溶液を実施例1で用いた活性アルミナに添加
、混合したのち、120℃で2時間乾燥、500℃で2
時間焼成した。この粉体に、白金5gを含むジニトロジ
アミン白金の水溶液を添加、混合したのち、120℃で
2時間乾燥し、500℃で2時間焼成した。この粉体を
ボールミルで湿式粉砕し、水性スラリーとし、このスラ
リーに実施例1で用いたの同様のハニカム担体を浸漬し
たのち、余剰のスラリーを圧縮空気により吹き飛ばした
。次いで、120℃で2時間乾燥、500℃で2時間焼
成し、完成触媒(J)を得た。この触媒には、活性アル
ミナに対して白金が5重量%、ナトリウムが10重量%
担持されていた。
(Comparative Example 4) After adding and mixing an aqueous solution containing 36.9 g of sodium nitrate to the activated alumina used in Example 1, drying at 120°C for 2 hours, and drying at 500°C for 2 hours.
Baked for an hour. After adding and mixing an aqueous solution of dinitrodiamine platinum containing 5 g of platinum to this powder, the mixture was dried at 120°C for 2 hours and calcined at 500°C for 2 hours. This powder was wet-pulverized in a ball mill to obtain an aqueous slurry. A honeycomb carrier similar to that used in Example 1 was immersed in this slurry, and the excess slurry was blown off with compressed air. Next, it was dried at 120°C for 2 hours and calcined at 500°C for 2 hours to obtain a finished catalyst (J). This catalyst contains 5% by weight platinum and 10% by weight sodium based on activated alumina.
It was being carried.

【0033】(比較例5)ZSM−5型ゼオライトの調
製方法は文献(Rapidonal  Crystal
ling  Method  ,Proceeding
8th  International  Congr
ess  on  Catalysis,Berlin
,Berlin,1984,Vol3,P569)に基
いておこなった。得られたゼオライトハ、X線回折によ
りZSM−5型ゼオライトであることを確認した。
(Comparative Example 5) The method for preparing ZSM-5 type zeolite is described in the literature (Rapidonal Crystal
lingMethod,Proceeding
8th International Congr.
Ess on Catalysis, Berlin
, Berlin, 1984, Vol. 3, P. 569). The obtained zeolite was confirmed to be ZSM-5 type zeolite by X-ray diffraction.

【0034】上記の手順により得られたZSM−5型ゼ
オライト100gに純水400gを加え、98℃で2時
間撹拌し、80℃で0.2モル/lの銅アンミン作田医
水溶液をゆっくり滴下した。滴下終了後も80度で12
時間加熱撹拌し、イオン交換した。さらに、イオン交換
されたゼオライトは濾過し、さらに硝酸イオンが検出さ
れなくなるまで十分に洗浄した。このイオン交換された
ゼオライトを120℃、24時間乾燥した。この得られ
た粉体をボールミルにより湿式粉砕して、水性スラリー
を得、これに実施例1で用いたものと同様のコージェラ
イト質ハニカム担体を浸漬したのち、余剰のスラリーを
圧縮空気により吹き飛ばした。
[0034] 400 g of pure water was added to 100 g of ZSM-5 type zeolite obtained by the above procedure, stirred at 98°C for 2 hours, and 0.2 mol/l copper ammine Sakuta medical solution was slowly added dropwise at 80°C. . 12 at 80 degrees even after dripping
The mixture was heated and stirred for hours to perform ion exchange. Furthermore, the ion-exchanged zeolite was filtered and thoroughly washed until nitrate ions were no longer detected. This ion-exchanged zeolite was dried at 120°C for 24 hours. The obtained powder was wet-pulverized in a ball mill to obtain an aqueous slurry, into which a cordierite honeycomb carrier similar to that used in Example 1 was immersed, and the excess slurry was blown off with compressed air. .

【0035】次いで、120℃で2時間乾燥し、500
℃で焼成して、完成触媒(K)を得た。この触媒には、
銅の担持率はZSM−5型ゼオライトに対して、5.8
重量%であった。
[0035] Next, it was dried at 120°C for 2 hours, and
The finished catalyst (K) was obtained by calcination at ℃. This catalyst has
The copper loading rate is 5.8 for ZSM-5 type zeolite.
% by weight.

【0036】(実施例7)実施例1〜6及び比較例1〜
5で調製した触媒(A)〜(K)について、触媒活性テ
ストを以下の条件によりおこなった。直径34.5mm
φ、長さ300mmのステンレス製反応管に触媒を充填
し、反応ガスとして、NOが750ppm、プロピレン
が1000ppm(メタン換算)、COが0.2容量%
、水蒸気が10容量%二酸化炭素13.5容量%、及び
残りは窒素からなるガスを用い、SVが20000/H
rの条件で導入した。触媒入口温度は、200℃〜40
0℃の範囲で触媒評価をし、その結果を表1に示した。
(Example 7) Examples 1-6 and Comparative Examples 1-
A catalytic activity test was conducted on the catalysts (A) to (K) prepared in 5 under the following conditions. Diameter 34.5mm
A stainless steel reaction tube with a diameter of 300 mm in length was filled with a catalyst, and the reaction gases were NO 750 ppm, propylene 1000 ppm (methane equivalent), and CO 0.2% by volume.
, using a gas in which water vapor is 10% by volume, carbon dioxide 13.5% by volume, and the remainder is nitrogen, and the SV is 20000/H.
It was introduced under the conditions of r. Catalyst inlet temperature is 200℃~40℃
The catalyst was evaluated in the range of 0°C, and the results are shown in Table 1.

【0037】また、上記触媒評価の反応ガスの酸素2.
0容量%を10容量%に変えて、同様に触媒評価をし、
素の結果を表2に示した。
[0037] In addition, oxygen of the reaction gas in the above catalyst evaluation 2.
Change 0 volume% to 10 volume% and evaluate the catalyst in the same way,
The raw results are shown in Table 2.

【0038】(実施例8)実施例7において、評価用の
触媒を実施例1により得られた触媒(A)に変え、プロ
ピレンの濃度とNOの濃度を表3に示す各濃度に変えた
以外は実施例7と同様にして触媒評価をし、素の結果を
表3に示した。
(Example 8) In Example 7, except that the catalyst for evaluation was changed to the catalyst (A) obtained in Example 1, and the concentration of propylene and the concentration of NO were changed to each concentration shown in Table 3. The catalyst was evaluated in the same manner as in Example 7, and the raw results are shown in Table 3.

【0039】[0039]

【表1】[Table 1]

【0040】[0040]

【表2】[Table 2]

【0041】[0041]

【表3】[Table 3]

【0042】[0042]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】白金を担持した耐火性無機酸化物を一体構
造体に被覆し、次いで該一体構造体をナトリウム及び/
又はカリウムの硝酸塩、炭酸塩及び水酸化物からなる群
から選ばれれる少なくとも一種の水溶液中に浸漬し、乾
燥、焼成することにより得られることを特徴とする窒素
酸化物除去用触媒。
Claim 1: A monolithic structure is coated with a refractory inorganic oxide carrying platinum, and then the monolithic structure is coated with a refractory inorganic oxide supporting platinum.
or a catalyst for removing nitrogen oxides, which is obtained by immersing the catalyst in at least one aqueous solution selected from the group consisting of potassium nitrates, carbonates, and hydroxides, drying, and calcining the catalyst.
【請求項2】耐火性無機酸化物が、活性アルミナである
請求項1記載の触媒。
2. The catalyst according to claim 1, wherein the refractory inorganic oxide is activated alumina.
【請求項3】酸化雰囲気状態にある排ガスを炭化水素存
在下、ナトリウム及び/又カリウム、並びに白金及び耐
火性無機酸化物を含有してなる触媒活性成分を一体構造
体に被覆してなる触媒に通過させてなることを特徴とす
る窒素酸化物除去方法。
[Claim 3] Exhaust gas in an oxidizing atmosphere is processed in the presence of hydrocarbons into a catalyst comprising a monolithic structure coated with a catalytic active component containing sodium and/or potassium, platinum, and a refractory inorganic oxide. A method for removing nitrogen oxides, characterized by passing through the nitrogen oxides.
【請求項4】排ガス中の炭化水素(メタン換算)と窒素
酸化物との含有比がモル比で0.5〜0.02である請
求項3記載の方法。
4. The method according to claim 3, wherein the molar ratio of hydrocarbons (in terms of methane) to nitrogen oxides in the exhaust gas is 0.5 to 0.02.
【請求項5】該触媒が、白金を担持した耐火性無機酸化
物を一体構造体に被覆し、次いで該一体構造体をナトリ
ウム及び/又カリウムの硝酸塩、炭酸塩及び水酸化物か
らなる群から選ばれれる少なくとも一種の水溶液中に浸
漬し、乾燥、焼成することにより得られるものである請
求項3記載の方法。
5. The catalyst comprises a monolithic structure coated with a platinum-supported refractory inorganic oxide, and then the monolithic structure is formed from a group consisting of sodium and/or potassium nitrates, carbonates, and hydroxides. 4. The method according to claim 3, which is obtained by immersing in at least one selected aqueous solution, drying, and baking.
JP14282191A 1991-06-14 1991-06-14 Nitrogen oxide removal method Expired - Lifetime JP3398159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14282191A JP3398159B2 (en) 1991-06-14 1991-06-14 Nitrogen oxide removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14282191A JP3398159B2 (en) 1991-06-14 1991-06-14 Nitrogen oxide removal method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001266151A Division JP3423703B2 (en) 2001-09-03 2001-09-03 Nitrogen oxide removal catalyst

Publications (2)

Publication Number Publication Date
JPH04367724A true JPH04367724A (en) 1992-12-21
JP3398159B2 JP3398159B2 (en) 2003-04-21

Family

ID=15324412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14282191A Expired - Lifetime JP3398159B2 (en) 1991-06-14 1991-06-14 Nitrogen oxide removal method

Country Status (1)

Country Link
JP (1) JP3398159B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687495A2 (en) 1994-06-17 1995-12-20 ICT Co., Ltd. Catalyst for purifying exhaust gas from lean burn engine and method for purification
WO2013073032A1 (en) * 2011-11-17 2013-05-23 三菱重工業株式会社 Exhaust gas treatment catalyst, method for producing exhaust gas treatment catalyst, and method for regenerating exhaust gas treatment catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687495A2 (en) 1994-06-17 1995-12-20 ICT Co., Ltd. Catalyst for purifying exhaust gas from lean burn engine and method for purification
WO2013073032A1 (en) * 2011-11-17 2013-05-23 三菱重工業株式会社 Exhaust gas treatment catalyst, method for producing exhaust gas treatment catalyst, and method for regenerating exhaust gas treatment catalyst
US9249706B2 (en) 2011-11-17 2016-02-02 Mitsubishi Hitachi Power Systems, Ltd. Method for regenerating exhaust gas treatment catalyst

Also Published As

Publication number Publication date
JP3398159B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
JP5526410B2 (en) Method for removing nitrogen oxides in exhaust gas
US5714130A (en) Exhaust gas cleaner and method for cleaning exhaust gas
US6214307B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
US5935529A (en) Exhaust gas cleaner and method for cleaning exhaust gas
CA1328653C (en) Catalysts
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH04367724A (en) Catalyst and method for removing nitrogen oxide
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JP3956158B2 (en) Nitrogen oxide removal catalyst
JP3423703B2 (en) Nitrogen oxide removal catalyst
JP2006026635A (en) Method of removing nitrogen oxides contained in exhaust gas
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
KR0166465B1 (en) Preparation of catalyst for cleaning exhaust gases
JPH07155555A (en) Purifying method of internal combustion engine exhaust gas
JP4588134B2 (en) Nitrogen oxide purification catalyst
JP3302036B2 (en) Nitrogen oxide removal method
JP2971274B2 (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method using the same
JPH0557196A (en) Production of catalyst for purifying exhaust gas
JPH10156184A (en) Catalyst for removing nitrogen oxide
JPH05103949A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide with the same
JPH05103985A (en) Catalyst for removal of nitrogen oxide and method for removing nitrogen oxide with the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9