JP2971274B2 - Nitrogen oxide removal catalyst and nitrogen oxide removal method using the same - Google Patents
Nitrogen oxide removal catalyst and nitrogen oxide removal method using the sameInfo
- Publication number
- JP2971274B2 JP2971274B2 JP4319974A JP31997492A JP2971274B2 JP 2971274 B2 JP2971274 B2 JP 2971274B2 JP 4319974 A JP4319974 A JP 4319974A JP 31997492 A JP31997492 A JP 31997492A JP 2971274 B2 JP2971274 B2 JP 2971274B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- iridium
- refractory inorganic
- inorganic oxide
- tantalum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は窒素酸化物除去用触媒お
よびそれを用いてなる窒素酸化物除去方法に関する。詳
しくは自動車エンジン等の内燃機関、例えば、ガソリン
エンジン、ディーゼルエンジン、ボイラー工業用プラン
ト等の内燃機関から排出される排ガス中の窒素酸化物を
除去する触媒およびそれを用いてなる窒素酸化物除去方
法に関するものである。The present invention relates to a catalyst for removing nitrogen oxides and a method for removing nitrogen oxides using the same. More specifically, a catalyst for removing nitrogen oxides from exhaust gas discharged from an internal combustion engine such as an automobile engine, for example, a gasoline engine, a diesel engine, a boiler industrial plant, etc., and a nitrogen oxide removal method using the same It is about.
【0002】[0002]
【従来の技術】近年、自動車等の内燃機関、ボイラー、
工業用プラントから排出される排ガス中には窒素酸化物
(以下、窒素酸化物の総称としてNOxという場合もあ
る)の有害成分が含まれ、大気汚染の原因となってい
る。このため、この排ガス中のNOxの除去が種々の方
面から検討されている。従来、例えば自動車の排ガスの
場合、三元触媒を用いて排ガスを処理し、炭化水素(H
C)および一酸化炭素(CO)と同時にNOxを除去す
る方法が用いられている。この方法は燃料が完全燃焼す
るだけの空気(空気と燃料の比を「A/F」という)を
導入する条件で行われる。しかし、A/Fが大きくなる
(以下、「酸化雰囲気状態」という)と排ガス中の炭化
水素、一酸化炭素などの未燃焼成分を完全燃焼させるの
に必要な酸素量より過剰な酸素が存在することにより、
このような酸化雰囲気状態においては通常の三元触媒に
よってNOxを還元除去することは困難である。2. Description of the Related Art In recent years, internal combustion engines such as automobiles, boilers,
Nitrogen oxides in exhaust gas discharged from an industrial plant harmful components (hereinafter sometimes referred to NO x as a generic term of the nitrogen oxides) is included and is responsible for air pollution. Therefore, removal of the NO x in the flue gas has been studied from various quarters. Conventionally, for example, in the case of automobile exhaust gas, the exhaust gas is treated using a three-way catalyst, and the hydrocarbon (H
C) and carbon monoxide (CO) at the same time a method of removing NO x are used. This method is performed under the condition that air is introduced so that the fuel completely burns (the ratio of air to fuel is referred to as “A / F”). However, when the A / F is increased (hereinafter referred to as “oxidizing atmosphere state”), oxygen is present in excess of the amount of oxygen necessary to completely burn unburned components such as hydrocarbons and carbon monoxide in the exhaust gas. By doing
It is difficult to reduce and remove NO x by a conventional three-way catalyst in such an oxidizing atmosphere state.
【0003】また、内燃機関のうち、ディーゼルエンジ
ンボイラーにおいて、窒素酸化物を除去する場合、アン
モニア、水素または一酸化炭素等の還元剤を用いる方法
が一般的である。しかし、この方法においては、未反応
の還元剤の回収、処理のため特別な装置が必要という問
題がある。In a diesel engine boiler among internal combustion engines, a method using a reducing agent such as ammonia, hydrogen or carbon monoxide is generally used to remove nitrogen oxides. However, this method has a problem that a special device is required for collecting and treating the unreacted reducing agent.
【0004】最近、NOxの除去方法として、銅イオン
を含有する結晶性アルミノ珪酸塩からなるNOx分解触
媒を用いる方法が提案されているが、(特開昭60−1
25250号公報、米国特許4,297,328号明細
書)これは単に一酸化窒素(NO)が窒素(N2)と酸
素(O2)とに分解可能であると示されているにすぎ
ず、実際の排ガス条件下で有効に窒素酸化物を除去する
ことは困難である。Recently, as a method for removing NO x, a method using a NO x decomposition catalyst comprising a crystalline aluminosilicate containing copper ions has been proposed (see Japanese Patent Application Laid-Open No. Sho 60-1).
No. 25250, U.S. Pat. No. 4,297,328) This merely indicates that nitric oxide (NO) can be decomposed into nitrogen (N 2 ) and oxygen (O 2 ). It is difficult to effectively remove nitrogen oxides under actual exhaust gas conditions.
【0005】また、特開昭63−100919号公報に
は、炭化水素の存在下に酸化雰囲気下で銅含有触媒を用
いて排ガスを処理するとNOxと炭化水素との反応が優
先的に促進され、NOxが効率よく除去できることが記
載されている。この方法において使用する炭化水素は排
ガス中に含まれている炭化水素でも、あるいは外部から
必要に応じて添加する炭化水素でもよいとされ、その具
体的態様として、排ガスを先ず銅含有触媒に接触させて
NOxを除去し、次いで酸化触媒に接触させて炭化水
素、一酸化炭素などを除去する方法も開示されている。
この方法は、窒素酸化物を除去しうる温度が高く、低温
時にはその効果が少ないものである。Further, in JP-A-63-100919, reaction when treating an exhaust gas by using a copper-containing catalyst and NO x and hydrocarbon is accelerated preferentially in an oxidizing atmosphere in the presence of a hydrocarbon , NO x can be efficiently removed. The hydrocarbons used in this method may be hydrocarbons contained in the exhaust gas or hydrocarbons added as necessary from the outside, and as a specific embodiment, the exhaust gas is first contacted with a copper-containing catalyst. There is also disclosed a method of removing NO x and then contacting it with an oxidation catalyst to remove hydrocarbons, carbon monoxide and the like.
This method has a high temperature at which nitrogen oxides can be removed, and has little effect at low temperatures.
【0006】さらに上記触媒は耐熱性に劣り高温の排ガ
スに曝されるとNOx分解性能が低下するため、この対
策として上記触媒を並列に配置し、排ガスが高温になっ
た時、酸化触媒あるいは三元触媒側へバイパスさせる方
法が開示されている(特開平1−171625号公
報)。Furthermore since the catalyst is exposed to high-temperature exhaust gas poor in heat resistance NO x decomposition performance is lowered, the catalyst is arranged in parallel as a countermeasure, when the exhaust gas becomes high temperature, an oxidation catalyst or A method of bypassing to a three-way catalyst side is disclosed (Japanese Patent Laid-Open No. 1-171625).
【0007】このように、排ガス中のNOxを効率よく
分解除去し、しかも高温耐熱性に優れた窒素酸化物分解
用触媒は開発されていないのが現状である。[0007] Thus, the NO x in the exhaust gas was efficiently decomposed and removed, yet the nitrogen oxide decomposing catalyst having excellent high-temperature resistant is has not yet been developed.
【0008】[0008]
【発明が解決しようとする課題】本発明の目的はNOx
を効率よく除去し、優れた高温耐熱性を有する窒素酸化
物除去用触媒を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide NO x
And to provide a nitrogen oxide removing catalyst having excellent high-temperature heat resistance.
【0009】[0009]
【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意研究の結果、タンタル、ニオブ、イ
ットリウムおよび希土類からなる群から選ばれた少なく
とも1種の金属とイリジウムと耐火性無機酸化物粉末と
からなる触媒活性物質を一体構造体に被覆してなる窒素
酸化物除去用触媒を見出し、本発明を完成するに至っ
た。尚、本願発明に係る窒素酸化物除去用触媒および窒
素酸化物除去方法における窒素酸化物には、亜酸化窒素
を含まない。 Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and have found that at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earths, iridium and fire resistance. The present inventors have found a catalyst for removing nitrogen oxides in which a catalytically active substance comprising an inorganic oxide powder is coated on an integral structure, and have completed the present invention. The nitrogen oxide removing catalyst and the nitrogen oxide
Nitrogen oxides in the method for removing oxides include nitrous oxide.
Not included.
【0010】詳しくは、タンタル、ニオブ、イットリウ
ムおよび希土類元素からなる群から選ばれた少なくとも
1種の金属とイリジウムと耐火性無機酸化物を含有して
なる触媒活性物質を一体構造体に被覆してなる触媒に炭
化水素存在下で酸化雰囲気状態にある排ガスを通過させ
てなることを特徴とする窒素酸化物除去方法である。イ
リジウム源としては、塩化イリジウム、トリクロロヘキ
サアンミンイリジウムなどの水溶性塩が好ましく用いら
れる。イリジウムの含有率は、耐火性無機酸化物に対し
て1〜10重量%であることが好ましい。1重量%未満
である時は、NOx除去効率が低下するものであり、1
0重量%を越えて担持しても担持量に見合うだけの活性
は得られない。また、イリジウムは耐火性無機酸化物に
担持されることが好ましい。More specifically, a catalytically active substance containing at least one metal selected from the group consisting of tantalum, niobium, yttrium, and rare earth elements, iridium, and a refractory inorganic oxide is coated on an integral structure. A method for removing nitrogen oxides, comprising passing an exhaust gas in an oxidizing atmosphere in the presence of a hydrocarbon through a catalyst. As the iridium source, a water-soluble salt such as iridium chloride and trichlorohexammineiridium is preferably used. The content of iridium is preferably 1 to 10% by weight based on the refractory inorganic oxide. When less than 1 wt% is for NO x removal efficiency is lowered, 1
Even if it is carried in excess of 0% by weight, the activity corresponding to the carried amount cannot be obtained. Further, it is preferable that iridium is supported on the refractory inorganic oxide.
【0011】イリジウムを耐火性無機酸化物に担持する
方法は通常の担持方法が用いられる。例えば、(1)イ
リジウム塩の水溶液を耐火性無機酸化物に含浸し、乾
燥、燃成する方法、(2)イリジウム塩の水溶液に耐火
性無機酸化物を入れ、混合した後、ヒドラジン等の還元
剤により還元担持する方法等である。As a method for supporting iridium on the refractory inorganic oxide, a usual supporting method is used. For example, (1) a method of impregnating an aqueous solution of iridium salt with a refractory inorganic oxide, drying and burning, and (2) adding a refractory inorganic oxide to an aqueous solution of iridium salt, mixing and reducing hydrazine and the like. And carrying out reduction carrying with an agent.
【0012】タンタル、ニオブ、イットリウムおよび希
土類元素からなる群から選ばれた少なくとも1種の金属
の出発源として、塩化物、硝酸塩、硫酸塩等の有機溶媒
可溶性および水溶性の塩を用いることができる。As a starting source of at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earth elements, salts soluble in organic solvents such as chlorides, nitrates and sulfates and water-soluble salts can be used. .
【0013】希土類元素とは、ランタン、セリウム、プ
ラセオジウム、ネオジウム、サマリウム、テルビウム、
その他希土類元素、およびこれらの混合希土類元素を用
いることができる。Rare earth elements include lanthanum, cerium, praseodymium, neodymium, samarium, terbium,
Other rare earth elements and mixed rare earth elements thereof can be used.
【0014】タンタル、ニオブ、イットリウムおよび希
土類元素からなる群から選ばれた少なくとも1種の金属
の含有率は、耐火性無機酸化物に対して0.1〜10重
量%であることが好ましい。0.1重量%未満である時
は耐熱試験後においてNOx除去効率が低下するもので
あり、10重量%を越えて担持した時は、耐熱試験後に
おいてNOx除去効率が低下するものである。The content of at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earth elements is preferably 0.1 to 10% by weight based on the refractory inorganic oxide. When the amount is less than 0.1% by weight, the NO x removal efficiency decreases after the heat resistance test, and when the amount exceeds 10% by weight, the NO x removal efficiency decreases after the heat resistance test. .
【0015】タンタル、ニオブ、イットリウムおよび希
土類からなる群から選ばれた少なくとも1種の金属とイ
リジウムとの担持比率は1:5〜20:1が好ましい。
20:1の比率において、イリジウムの担持が小さくな
る時は、初期活性が低下するものであり、1:5の比率
において、イリジウムの担持が大きくなる時は耐熱試験
後のNOx除去効率が低下するものである。The loading ratio of iridium to at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earth is preferably from 1: 5 to 20: 1.
In the ratio of 20: 1, when the loading of iridium decreases, the initial activity decreases, and in the ratio of 1: 5, when the loading of iridium increases, the NO x removal efficiency after the heat test decreases. Is what you do.
【0016】耐火性無機酸化物は通常触媒担体として用
いられるものであれば、いずれでもよく、例えばα−ア
ルミナ、もしくはγ,δ,η,θ等の活性アルミナ、チ
タニア、もしくはジルコニア、またはこれらの複合酸化
物、例えば、アルミナ−チタニア、アルミナ−ジルコニ
ア、チタニア−ジルコニア等を用いることができるが、
好ましくは活性アルミナである。The refractory inorganic oxide may be any one as long as it is generally used as a catalyst carrier. For example, α-alumina or activated alumina such as γ, δ, η, θ, titania, zirconia, or a mixture thereof Complex oxides, for example, alumina-titania, alumina-zirconia, titania-zirconia and the like can be used,
Activated alumina is preferred.
【0017】また、これらの耐火性無機酸化物はBET
表面積が50〜200m2/gを有する耐火性無機酸化
物であることが好ましい。These refractory inorganic oxides are BET
Preferably, it is a refractory inorganic oxide having a surface area of 50 to 200 m 2 / g.
【0018】通常、本発明を用いる触媒の具体的態様を
示すと、三次元構造体といわれる担体、例えばハニカム
モノリス担体、フォーム状の担体、コルケート状の担体
等があり、その材質はセラミック製、メタル製のものが
好ましい。[0018] Normally, indicating specific embodiments of the catalyst using the present invention, a carrier is said to three-dimensional structures, for example, a honeycomb monolith carrier, foamed carrier, there is Koruketo shaped carrier and the like, the material is made of ceramic, Metals are preferred.
【0019】触媒組成物をボールミル等で湿式粉砕し、
スラリー化したものに三次元構造体を浸漬し、被覆して
触媒とする方法等がある。The catalyst composition is wet-ground with a ball mill or the like,
There is a method in which a three-dimensional structure is immersed in a slurry and coated to form a catalyst.
【0020】以下に、触媒を調製する方法を記載する。Hereinafter, a method for preparing the catalyst will be described.
【0021】[0021]
【0022】(2)一体構造体あるいは不活性無機質担
体(以下、「一体構造体等」という)を用いる場合、
(イ)触媒組成物を一括してボールミル等に入れ、湿式
粉砕し、水性スラリーとし、一体構造体等を浸漬し、乾
燥、燃成する方法、(ロ)耐火性無機酸化物をボールミ
ル等により湿式粉砕し、水性スラリーとし、一体構造体
等を浸漬し、乾燥、燃成する。次いで、耐火性無機酸化
物を被覆した一体構造体をイリジウム含有の水溶液に浸
漬し、乾燥、燃成し、さらに、タンタル、ニオブ、イッ
トリウムおよび希土類元素からなる群から選ばれた少な
くとも1種(以下「タンタル等」という)の金属塩の溶
液に該一体構造体を浸漬し、乾燥、燃成する方法、
(ハ)イリジウムを予め耐火性無機酸化物に担持し、イ
リジウム担持耐火性無機酸化物を得、さらにボールミル
等により水性スラリーとし、このスラリー中に一体構造
体等を浸漬し、乾燥、燃成し、イリジウム担持耐火性無
機酸化物を被覆した一体構造体を得、次いで、タンタル
等の金属塩の溶液に浸漬し、乾燥、燃成する方法、
(ニ)タンタルの金属塩の溶液を耐火性無機酸化物に含
浸し、燃成し、得られた粉体をボールミル等で湿式粉砕
し、水性スラリーを得、このスラリーに一体構造等を浸
漬し、乾燥、燃成し、タンタル等担持耐火性無機酸化物
を被覆した一体構造体を得、次いでイリジウム含有水溶
液に浸漬し、乾燥、燃成する方法。(ホ)イリジウムと
タンタル等を予め耐火性無機酸化物に担持した後、ボー
ルミル等で湿式粉砕し、水性スラリーとし、このスラリ
ーに一体構造体等を浸漬し、乾燥、燃成する方法等があ
り、(2)(イ)(ロ)(ハ)(ニ)(ホ)の方法が好
ましい。(2) When an integral structure or an inert inorganic carrier (hereinafter, referred to as “integral structure”) is used,
(A) A method in which the catalyst composition is collectively put into a ball mill or the like, wet-pulverized to form an aqueous slurry, an integrated structure or the like is immersed, dried and burned, and (b) a refractory inorganic oxide is subjected to a ball mill or the like. It is wet-pulverized to form an aqueous slurry, and the integrated structure or the like is immersed, dried and burned. Next, the integrated structure coated with the refractory inorganic oxide is immersed in an iridium-containing aqueous solution, dried and calcined, and further, at least one selected from the group consisting of tantalum, niobium, yttrium, and a rare earth element (hereinafter, referred to as a rare earth element) A method of immersing the integrated structure in a solution of a metal salt of “tantalum or the like”), drying and burning,
(C) Iridium is supported on the refractory inorganic oxide in advance to obtain an iridium-supported refractory inorganic oxide, which is then converted into an aqueous slurry by a ball mill or the like, and the integrated structure is immersed in the slurry, dried and calcined. A method of obtaining an integrated structure coated with iridium-supported refractory inorganic oxide, then immersing in a solution of a metal salt such as tantalum, drying and burning,
(D) A solution of a metal salt of tantalum is impregnated with a refractory inorganic oxide, ignited, and the resulting powder is wet-pulverized with a ball mill or the like to obtain an aqueous slurry. A method of drying, burning, and obtaining an integrated structure coated with a supported refractory inorganic oxide such as tantalum, then immersing in an iridium-containing aqueous solution, drying, and burning. (E) There is a method in which iridium and tantalum are preliminarily supported on a refractory inorganic oxide, then wet-pulverized with a ball mill or the like to form an aqueous slurry, and the integrated structure is immersed in the slurry, dried and calcined. , (2) (a) (b) (c) (d) (e) are preferred.
【0023】また、一体構造体に触媒成分を被覆する場
合は、この触媒成分の被覆量は一体構造体1リットル当
り50〜300gであることが好ましい。50g未満で
ある時は触媒活性の低下を生じるものであり、300g
を越える時は担持量に見合う活性が得られないものであ
る。When the integral structure is coated with the catalyst component, the coating amount of the catalyst component is preferably 50 to 300 g per liter of the integral structure. When the amount is less than 50 g, the catalyst activity is reduced, and the amount is less than 300 g.
When the ratio exceeds the above, the activity corresponding to the amount of the carrier cannot be obtained.
【0024】排ガス中に存在する炭化水素の量は500
〜10000ppm(メタン換算量)であることが好ま
しく、排ガス中にこれらの濃度の炭化水素が存在しない
場合には、適宜、炭化水素のボンベによる添加、燃料一
部添加、燃料を触媒等により転化し、得られる炭化水素
の添加等の炭化水素を添加導入することによって炭化水
素量を補うことで分解除去することができる。The amount of hydrocarbons present in the exhaust gas is 500
When the hydrocarbons do not have these concentrations in the exhaust gas, the addition of the hydrocarbons by a cylinder, the partial addition of the fuel, and the conversion of the fuel by a catalyst or the like are appropriately performed. By adding and introducing a hydrocarbon such as the obtained hydrocarbon, the amount of the hydrocarbon can be compensated to be removed by decomposition.
【0025】[0025]
【発明の効果】本触媒では、イリジウム、耐火性無機酸
化物にタンタル、ニオブ、イットリウムおよび希土類元
素からなる群から選ばれた少なくとも1種の金属を担持
することにより、高温耐熱性が向上し、高温の排ガスに
曝されてもNOx分解活性が維持されるものである。According to the present catalyst, high-temperature heat resistance is improved by supporting at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earth elements on iridium and the refractory inorganic oxide. even when exposed to high temperature exhaust gas in which NO x decomposition activity is maintained.
【0026】[0026]
【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明する。The present invention will now be described more specifically with reference to examples.
【0027】(実施例1)BET表面積100m2/g
を有する活性アルミナ100gにイリジウム5gを含む
塩化イリジウム水溶液を加え、混合し、120℃で2時
間乾燥し、500℃で2時間燃成した。この得られた粉
体に塩化タンタル〔TaCl5〕9.9gを含むイソプ
ロピルアルコール溶液を加え、混合し、乾燥した後50
0℃で2時間燃成した。この粉体をボールミルにより湿
式粉砕して、水性スラリーを得、これに市販のコージェ
ライト質ハニカム担体(日本碍子製、横断面が1インチ
平方当り、400個のガス流通セルを有し、直径33m
mφ、長さ76mmL、体積65ml)を浸漬した後、
余剰のスラリーを圧縮空気により吹き飛ばした。次いで
120℃で2時間乾燥して、完成触媒(A)を得た。こ
の触媒は、活性アルミナに対して、イリジウム5重量
%、タンタル5重量%担持されていた。(Example 1) BET surface area 100 m 2 / g
An aqueous iridium chloride solution containing 5 g of iridium was added to 100 g of activated alumina having the above, mixed, dried at 120 ° C. for 2 hours, and calcined at 500 ° C. for 2 hours. An isopropyl alcohol solution containing 9.9 g of tantalum chloride [TaCl 5 ] is added to the obtained powder, mixed, dried and then dried.
The mixture was calcined at 0 ° C. for 2 hours. This powder was wet-pulverized with a ball mill to obtain an aqueous slurry, and a commercially available cordierite-type honeycomb carrier (manufactured by Nippon Insulator, having a cross section of 400 gas per square inch and a diameter of 33 m)
mφ, length 76 mmL, volume 65 ml)
Excess slurry was blown off with compressed air. Then, drying was performed at 120 ° C. for 2 hours to obtain a completed catalyst (A). This catalyst supported 5% by weight of iridium and 5% by weight of tantalum based on activated alumina.
【0028】(実施例2)実施例1において、塩化タン
タル9.9gを含むイソプロピルアルコール溶液の代り
に塩化タンタル2.0gを用いる以外は実施例1と同様
に行い、完成触媒(B)を得た。この触媒は活性アルミ
ナに対して、イリジウム5重量%、タンタル1重量%担
持されていた。(Example 2) A complete catalyst (B) was obtained in the same manner as in Example 1, except that 2.0 g of tantalum chloride was used instead of the isopropyl alcohol solution containing 9.9 g of tantalum chloride. Was. This catalyst supported 5% by weight of iridium and 1% by weight of tantalum based on activated alumina.
【0029】(実施例3)実施例1において、イリジウ
ム5gを含む塩化イリジウム水溶液および塩化タンタル
9.9gの代りにイリジウム1gを含む塩化イリジウム
水溶液および塩化タンタル39.6gを用いる以外は実
施例1と同様に行い、完成触媒(C)を得た。Example 3 Example 1 was the same as Example 1 except that an aqueous solution of iridium chloride containing 1 g of iridium and 39.6 g of tantalum chloride were used instead of the aqueous solution of iridium chloride containing 5 g of iridium and 9.9 g of tantalum chloride. In the same manner, a completed catalyst (C) was obtained.
【0030】この触媒は活性アルミナに対してイリジウ
ム1重量%、タンタル20重量%担持されていた。This catalyst had 1% by weight of iridium and 20% by weight of tantalum supported on activated alumina.
【0031】(実施例4)実施例1において、塩化タン
タル9.9を含むイソプロピルアルコール溶液の代りに
塩化ニオブ〔NbCl5〕14.5gを含むイソプロピ
ルアルコール溶液を用いる以外は実施例1と同様に行
い、完成触媒(D)を得た。この触媒は活性アルミナに
対してイリジウム5重量%、ニオブ5重量%担持されて
いた。Example 4 Example 1 was repeated, except that an isopropyl alcohol solution containing 14.5 g of niobium chloride [NbCl 5 ] was used instead of the isopropyl alcohol solution containing 9.9 of tantalum chloride. Then, a completed catalyst (D) was obtained. This catalyst supported 5% by weight of iridium and 5% by weight of niobium based on activated alumina.
【0032】(実施例5)実施例1において、塩化タン
タル9.9gを含むイソプロピルアルコール溶液の代り
に硝酸イットリウム〔Y(NO3)3・6H2O〕21.
5gを含む水溶液を用いる以外は実施例1と同様に行
い、完成触媒(E)を得た。この触媒は活性アルミナに
対して、イリジウム5重量%、イットリウム5重量%担
持されていた。Example 5 In Example 1, yttrium nitrate [Y (NO 3 ) 3 .6H 2 O] was used instead of the isopropyl alcohol solution containing 9.9 g of tantalum chloride.
A completed catalyst (E) was obtained in the same manner as in Example 1 except that an aqueous solution containing 5 g was used. This catalyst supported 5% by weight of iridium and 5% by weight of yttrium based on activated alumina.
【0033】(実施例6)実施例1において塩化タンタ
ル9.9gを含むイソプロピルアルコール溶液の代りに
硝酸ランタン〔La(NO3)3・6H2O〕15.6g
を含む水溶液を用いる以外は実施例1と同様に行い、完
成触媒(F)を得た。の触媒は活性アルミナに対してイ
リジウム5重量%、ランタン5重量%担持されていた。Example 6 In Example 1, 15.6 g of lanthanum nitrate [La (NO 3 ) 3 .6H 2 O] was used instead of the isopropyl alcohol solution containing 9.9 g of tantalum chloride.
In the same manner as in Example 1 except for using an aqueous solution containing, a completed catalyst (F) was obtained. Was supported on activated alumina by 5% by weight of iridium and 5% by weight of lanthanum.
【0034】(実施例7)実施例1において塩化タンタ
ル9.9gを含むイソプロピルアルコール溶液の代りに
硝酸セリウム〔Ce(NO3)3・6H2O〕15.5g
を含む水溶液を用いる以外は実施例1と同様に行い、完
成触媒(G)を得た。この触媒は活性アルミナに対して
イリジウム5重量%、セリウム5重量%担持されてい
た。(Example 7) Instead of the isopropyl alcohol solution containing 9.9 g of tantalum chloride in Example 1, 15.5 g of cerium nitrate [Ce (NO 3 ) 3 .6H 2 O] was used.
In the same manner as in Example 1 except for using an aqueous solution containing, a completed catalyst (G) was obtained. This catalyst supported 5% by weight of iridium and 5% by weight of cerium based on activated alumina.
【0035】(比較例1)実施例1で用いた活性アルミ
ナ100gにイリジウム5gを含む塩化イリジウム水溶
液を加え、混合し、120℃で2時間乾燥し、500℃
で2時間燃成した。この粉体をボールミルにより、湿式
粉砕して水性スラリーを得た。以下、実施例1と同様に
行い、完成触媒(I)を得た。Comparative Example 1 An aqueous iridium chloride solution containing 5 g of iridium was added to 100 g of the activated alumina used in Example 1, mixed, dried at 120 ° C. for 2 hours, and then dried at 500 ° C.
For 2 hours. This powder was wet-pulverized with a ball mill to obtain an aqueous slurry. Hereinafter, the same procedure as in Example 1 was performed to obtain a completed catalyst (I).
【0036】この触媒は活性アルミナに対してイリジウ
ム5重量%担持されていた。This catalyst had 5% by weight of iridium supported on activated alumina.
【0037】(比較例2)ZSM−5型ゼオライトの調
製方法は文献(Rapid Crystallizat
ion Method,Proceedings 8t
h International Congress
on Catalysis,Berlin,1984.
Vol.3,P569)に基づいて行った。得られたゼ
オライトはX線回析により、ZSM−5型ゼオライトで
あることを確認した。このZSM−5型ゼオライト10
0gに純水400gを加え、98℃で2時間撹拌した
後、80℃で0.2モル/リットルの銅アンミン錯体水
溶液をゆっくりと滴下した。滴下されたゼオライトをろ
過し、十分に洗浄した後、120℃で24時間乾燥し
た。この得られた粉体をボールミルにより湿式粉砕して
水性スラリーを得た。以下、実施例1と同様に行い、完
成触媒(II)を得た。この触媒はZSM−5型ゼオライ
トに対して銅が5.6重量%担持されていた。(Comparative Example 2) A method for preparing ZSM-5 type zeolite is described in the literature (Rapid Crystallizer).
ion Method, Proceedings 8t
h International Congress
on Catalysis, Berlin, 1984.
Vol. 3, P569). The obtained zeolite was confirmed to be a ZSM-5 type zeolite by X-ray diffraction. This ZSM-5 type zeolite 10
After adding 400 g of pure water to 0 g and stirring at 98 ° C. for 2 hours, a 0.2 mol / L aqueous solution of a copper ammine complex was slowly added dropwise at 80 ° C. The dropped zeolite was filtered, sufficiently washed, and then dried at 120 ° C. for 24 hours. The obtained powder was wet-pulverized by a ball mill to obtain an aqueous slurry. Hereinafter, it carried out similarly to Example 1 and obtained the completed catalyst (II). In this catalyst, 5.6% by weight of copper was supported on the ZSM-5 type zeolite.
【0038】(実施例8)実施例1〜7および比較例
1,2で調製した触媒(A)〜(G),(I),(II)
について下記の初期性能テストおよび経時性能テストを
行った。Example 8 Catalysts (A) to (G), (I) and (II) prepared in Examples 1 to 7 and Comparative Examples 1 and 2
Were subjected to the following initial performance test and time-dependent performance test.
【0039】〔反応ガス組成〕一酸化窒素(NO)75
0ppm、プロピレン(C3H6)1000ppm(メタ
ン換算)、一酸化炭素(CO)0.2容量%、酸素2.
0容量%、水蒸気10容量%、二酸化炭素13.5容量
%、残り窒素である。[Reaction gas composition] Nitric oxide (NO) 75
0 ppm, propylene (C 3 H 6 ) 1000 ppm (converted to methane), carbon monoxide (CO) 0.2% by volume, oxygen 2.
0 volume%, water vapor 10 volume%, carbon dioxide 13.5 volume%, the remaining nitrogen.
【0040】〔初期性能〕直径34.5mmφ、長さ3
00mmのステンレス反応管に触媒を充填した後、上記
組成の反応ガスを空間速度20000Hr~1の条件下で
導入した。触媒床入口温度300℃でNOx洗浄率を測
定して触媒性能を評価した。結果を表1に示す。[Initial performance] diameter 34.5 mmφ, length 3
After filling a catalyst into a 00 mm stainless steel reaction tube, a reaction gas having the above composition was introduced at a space velocity of 20,000 hr- 1 . The catalyst performance was evaluated by measuring the NO x cleaning rate at a catalyst bed inlet temperature of 300 ° C. Table 1 shows the results.
【0041】〔経時性能テスト〕各触媒をマルチコンバ
ーターに充填し、この充填触媒床に市販のガソリン電子
制御エンジンのクルージング時の排ガスを空気と混合し
て空燃比(A/F)を20/1と調製した後、空間速度
(S.V.)160000Hr~1、触媒床温度700℃
の条件下で20時間通した。その後、上記初期性能テス
トと同様に行い、NOx浄化率を測定して触媒性能を評
価した。結果を表1に示す。[Aging Performance Test] Each catalyst was filled in a multi-converter, and the exhaust gas from the cruising of a commercially available gasoline electronically controlled engine was mixed with air to fill the packed catalyst bed, and the air-fuel ratio (A / F) was 20/1. After the preparation, the space velocity (SV) is 160,000 hr- 1 and the catalyst bed temperature is 700 ° C.
For 20 hours. Thereafter, the initial performance test was performed in the same manner as above, and the NO x purification rate was measured to evaluate the catalyst performance. Table 1 shows the results.
【0042】[0042]
【表1】 [Table 1]
【0043】(実施例9)実施例8において反応ガス中
の酸素濃度2.0容量%から10容量%に変更した以外
は実施例8と同様に行い、各触媒の初期性能および経時
性能を評価した。結果を表2に示す。Example 9 The initial performance and the aging performance of each catalyst were evaluated in the same manner as in Example 8, except that the oxygen concentration in the reaction gas was changed from 2.0% by volume to 10% by volume. did. Table 2 shows the results.
【0044】[0044]
【表2】 [Table 2]
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−154603(JP,A) 特開 平6−154604(JP,A) 特公 昭62−41066(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B01J 21/00 - 38/74 B01D 53/86 - 53/94 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-154603 (JP, A) JP-A-6-154604 (JP, A) JP-B 62-41066 (JP, B2) (58) Field (Int.Cl. 6 , DB name) B01J 21/00-38/74 B01D 53/86-53/94
Claims (6)
希土類元素からなる群から選ばれた少なくとも1種の金
属と、イリジウムと、耐火性無機酸化物粉末とからなる
触媒活性物質を一体構造体に被覆してなる酸素雰囲気状
態での窒素酸化物(亜酸化窒素を除く)除去用触媒。1. An integral structure coated with a catalytically active substance comprising at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earth elements, iridium, and a refractory inorganic oxide powder. Oxygen atmosphere
For removal of nitrogen oxides (excluding nitrous oxide) in the dry state .
請求項1に記載の窒素酸化物(亜酸化窒素を除く)除去
用触媒。2. The catalyst for removing nitrogen oxides (excluding nitrous oxide) according to claim 1, wherein the refractory inorganic oxide is activated alumina.
希土類からなる群から選ばれた少なくとも1種の金属の
量が前記耐火性無機酸化物に対して0.1〜10重量%
であり、イリジウムの量が前記耐火性無機酸化物に対し
て1〜10重量%であり、かつ該金属とイリジウムとの
担持比率が1:5〜20:1である請求項1または2に
記載の窒素酸化物(亜酸化窒素を除く)除去用触媒。3. The amount of at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earths is 0.1 to 10% by weight based on the refractory inorganic oxide.
The amount of iridium is 1 to 10% by weight based on the refractory inorganic oxide, and the loading ratio of the metal and iridium is 1: 5 to 20: 1. Catalyst for removing nitrogen oxides (excluding nitrous oxide) .
希土類元素からなる群から選ばれた少なくとも1種の金
属と、イリジウムと、耐火性無機酸化物粉末とからなる
触媒活性物質を一体構造体に被覆してなる触媒に炭化水
素存在下で酸化雰囲気状態にある排気ガスを通過させる
ことを特徴とする窒素酸化物(亜酸化窒素を除く)除去
方法。4. An integral structure coated with a catalytically active substance comprising at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earth elements, iridium, and a refractory inorganic oxide powder. A method for removing nitrogen oxides (excluding nitrous oxide), comprising passing an exhaust gas in an oxidizing atmosphere in the presence of a hydrocarbon through a catalyst.
請求項4に記載の窒素酸化物(亜酸化窒素を除く)除去
方法。5. The method for removing nitrogen oxides (excluding nitrous oxide) according to claim 4, wherein the refractory inorganic oxide is activated alumina.
希土類元素からなる群から選ばれた少なくとも1種の金
属の量が前記耐火性無機酸化物に対して0.1〜10重
量%であり、イリジウムの量が前記耐火性無機酸化物に
対して1〜10重量%であり、かつ該金属とイリジウム
との担持比率が1:5〜20:1である請求項4または
5に記載の窒素酸化物(亜酸化窒素を除く)除去方法。6. The amount of at least one metal selected from the group consisting of tantalum, niobium, yttrium and rare earth elements is 0.1 to 10% by weight based on the refractory inorganic oxide, and the amount of iridium is There is a 1 to 10% by weight with respect to the refractory inorganic oxide, and loading ratio of the metal to iridium is 1: 5 to 20: 1 is claimed in claim 4 or nitrogen oxide according to 5 (nitrite Excluding nitric oxide) removal method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4319974A JP2971274B2 (en) | 1992-11-30 | 1992-11-30 | Nitrogen oxide removal catalyst and nitrogen oxide removal method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4319974A JP2971274B2 (en) | 1992-11-30 | 1992-11-30 | Nitrogen oxide removal catalyst and nitrogen oxide removal method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06165937A JPH06165937A (en) | 1994-06-14 |
JP2971274B2 true JP2971274B2 (en) | 1999-11-02 |
Family
ID=18116337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4319974A Expired - Lifetime JP2971274B2 (en) | 1992-11-30 | 1992-11-30 | Nitrogen oxide removal catalyst and nitrogen oxide removal method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2971274B2 (en) |
-
1992
- 1992-11-30 JP JP4319974A patent/JP2971274B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06165937A (en) | 1994-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4012320B2 (en) | Exhaust gas purification catalyst for lean combustion engine | |
CA1328653C (en) | Catalysts | |
JPH11169712A (en) | Catalyst for purification of exhaust gas | |
JPH08309185A (en) | Catalyst for purifying exhaust gas and method for purification of exhaust gas | |
JPH05220403A (en) | Exhaust gas purifying catalyst | |
JPH05277376A (en) | Nox removing catalyst and nox removing method utilizing the catalyst | |
JP2971274B2 (en) | Nitrogen oxide removal catalyst and nitrogen oxide removal method using the same | |
JP3510908B2 (en) | Exhaust gas purification catalyst | |
JP4330666B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
WO2002055194A1 (en) | Catalyst for clarification of nitrogen oxides | |
JP3398159B2 (en) | Nitrogen oxide removal method | |
JPS59162948A (en) | Catalyst for purifying exhaust gas | |
JP3395525B2 (en) | Internal combustion engine exhaust gas purification catalyst and purification method | |
JP3221706B2 (en) | Nitrogen oxide removal catalyst and exhaust gas purification method using the same | |
JP3447513B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP3015051B2 (en) | Exhaust gas purification method | |
JP3302036B2 (en) | Nitrogen oxide removal method | |
JPH06190282A (en) | Catalyst for purification of exhaust gas | |
JPH0731884A (en) | Catalyst for purifying exhaust gas and purifying method of exhaust gas | |
JP3436765B2 (en) | Diesel engine exhaust gas purification catalyst | |
JP4017089B2 (en) | Nitrogen oxide removal catalyst contained in combustion exhaust gas of diesel engine and nitrogen oxide removal method using the same | |
JP3779793B2 (en) | Catalyst and method for purification of combustion exhaust gas containing methane | |
JP3423703B2 (en) | Nitrogen oxide removal catalyst | |
JPH09276702A (en) | Catalyst for removal of nox | |
JP3320431B2 (en) | Nitrogen oxide removal catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990817 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070827 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080827 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090827 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100827 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100827 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110827 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120827 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120827 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 14 |