JPH04291729A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH04291729A JPH04291729A JP5530891A JP5530891A JPH04291729A JP H04291729 A JPH04291729 A JP H04291729A JP 5530891 A JP5530891 A JP 5530891A JP 5530891 A JP5530891 A JP 5530891A JP H04291729 A JPH04291729 A JP H04291729A
- Authority
- JP
- Japan
- Prior art keywords
- diffusion
- forming
- coating
- temperature
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000004065 semiconductor Substances 0.000 title claims description 5
- 238000009792 diffusion process Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 19
- 229910052796 boron Inorganic materials 0.000 claims abstract description 9
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000012298 atmosphere Substances 0.000 claims abstract description 4
- 230000001476 alcoholic effect Effects 0.000 claims abstract description 3
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229920000620 organic polymer Polymers 0.000 claims abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 3
- 239000001301 oxygen Substances 0.000 claims abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 4
- 239000003960 organic solvent Substances 0.000 abstract description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 abstract description 2
- 238000005468 ion implantation Methods 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Bipolar Transistors (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、浅い拡散層の形成方法
に関し、特に、浅い接合を必要とする超高速バイポーラ
・トランジスタのエミッタ及びベース層の形成方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming shallow diffusion layers, and more particularly to a method for forming emitter and base layers of ultrafast bipolar transistors requiring shallow junctions.
【0002】0002
【従来の技術】従来、半導体中にドーパントを導入する
方法としては、熱拡散法及びイオン注入法がよく知られ
ている。しかし、5インチ以上の大口径ウェハーに対し
ては、熱拡散法は、ウェハーの面内均一性が悪く、イオ
ン注入法が主流となっている。2. Description of the Related Art Conventionally, thermal diffusion and ion implantation are well known methods for introducing dopants into semiconductors. However, for large diameter wafers of 5 inches or more, the thermal diffusion method has poor in-plane uniformity of the wafer, and the ion implantation method has become mainstream.
【0003】このイオン注入法により、浅い接合を形成
する方法としては、一般に、例えばボロンの場合、B+
より重いBF2 + イオンを用いて、低加速電圧で
注入する方法とあらかじめ、Si+ あるいはGe+
イオンを注入して、シリコン基板の表面をアモルファス
化した後、低加速電圧で注入する方法が研究されてきた
。[0003] Generally speaking, in the case of boron, for example, B +
A method of implanting heavier BF2 + ions at a low acceleration voltage and a method of implanting Si+ or Ge+ ions in advance
Research has been conducted on a method in which ions are implanted to make the surface of a silicon substrate amorphous, and then implanted at a low acceleration voltage.
【0004】更に、他の方法としては、ドーパントを含
んだプラズマを作り、プラズマ中に生成したドーパント
イオンをイオンシース等により引出し、シリコン基板中
に打ち込むプラズマドーピング法や、B2 H6 (ジ
ボラン)ガス中にエキシマレーザを照射し、レーザ光に
より表面に吸着したB2 H6 を分解するとともに、
溶融シリコン基板表面にドープするエキシマレーザドー
プ法が研究されている。Furthermore, other methods include plasma doping, in which a plasma containing a dopant is created, the dopant ions generated in the plasma are drawn out using an ion sheath, etc., and implanted into a silicon substrate; is irradiated with an excimer laser, the B2 H6 adsorbed on the surface is decomposed by the laser light, and
An excimer laser doping method in which the surface of a molten silicon substrate is doped has been studied.
【0005】[0005]
【発明が解決しようとする課題】この従来の浅い接合の
形成方法であるイオン注入法では、導入された不純物イ
オンの活性化やイオン注入時のダメージ回復のために、
注入後高温アニールが不可欠である。このアニールのた
め、0.1μm以下という極浅い拡散層の形成は不可能
となっている。また、もし高温アニールが不十分でダメ
ージが回復していなければ、リーク電流の発生による特
性劣化が生じてしまう問題がある。また、イオン注入を
より低加速電圧化することは、ドープの面内均一性を悪
化する原因となる。[Problems to be Solved by the Invention] In the ion implantation method, which is the conventional method for forming shallow junctions, in order to activate the introduced impurity ions and recover damage during ion implantation,
A high temperature anneal after implantation is essential. This annealing makes it impossible to form an extremely shallow diffusion layer of 0.1 μm or less. Furthermore, if the high temperature annealing is insufficient and the damage is not recovered, there is a problem that characteristics may deteriorate due to the generation of leakage current. Furthermore, lowering the acceleration voltage for ion implantation causes deterioration of in-plane doping uniformity.
【0006】また、プラズマドーピング法及びエキシマ
レーザドープ法は、確かに極浅い拡散層の形成は可能で
あるがドープ深さ(Xj)と表面濃度(Ns)を独立に
制御することが困難でしかも現在のところドープの面内
均一性が悪いこと、表面濃度が高く、制御性が悪いこと
等いくつもの問題点をかかえている。Furthermore, although plasma doping and excimer laser doping are capable of forming extremely shallow diffusion layers, it is difficult to independently control the doping depth (Xj) and surface concentration (Ns). At present, there are many problems such as poor in-plane doping uniformity, high surface concentration, and poor controllability.
【0007】[0007]
【課題を解決するための手段】本発明の浅い接合の形成
方法は、塗布拡散源としてそれぞれn型,P型不純物で
あるB,P,Asの酸化物(例えば、B2 O3 ,P
2 O5 等)を有機性高分子と反応させてポリマー化
し、アルコール系溶媒に溶解させたものを用い、シリコ
ン基板上に塗布する工程とその後、200℃以上、拡散
温度以下の酸素雰囲気中で焼成し、不純物層(B2 O
3 等)を形成する工程と、850℃以下という低温領
域で数秒〜数十分拡散を行う工程を有している。[Means for Solving the Problems] The shallow junction forming method of the present invention uses oxides of B, P, and As (for example, B2 O3, P
2 O5, etc.) with an organic polymer and dissolved in an alcoholic solvent, the process of applying the polymer onto a silicon substrate, followed by baking in an oxygen atmosphere at a temperature of 200°C or higher and lower than the diffusion temperature. and the impurity layer (B2O
3 etc.) and a step of performing diffusion at a low temperature of 850° C. or lower for several seconds to several tens of minutes.
【0008】[0008]
【実施例】次に、本発明の一実施例として不純物として
ボロンを含有する塗布拡散源(例えば東京応化株式会社
製ポリ・ボロン・フィルム(PBF))を用いた例につ
いて断面図を参照して説明する。[Example] Next, as an example of the present invention, an example using a coating diffusion source containing boron as an impurity (for example, poly boron film (PBF) manufactured by Tokyo Ohka Co., Ltd.) will be described with reference to a cross-sectional view. explain.
【0009】まず、10Ωcm程度のn型シリコン基板
を酸化し、表面にシリコン酸化膜(SiO2 )を形成
した後フォトリソグラフィ技術によりSiO2 膜をパ
ターニングする(図1(A))。次いで塗布拡散源であ
るPBFをスピンナーを用いてウェハー上に塗布する(
図1(B))。この時アルコール系有機溶媒は飛散して
しまう。次いで、200℃以上拡散温度以下(例えば6
00℃)の数%〜100%酸素雰囲気中で30分程度炉
ベークすることにより、有機物はすべて二酸化炭素(C
O2 )と水分(H2 O)に分解し、あとには、酸化
ホウ素(B2 O3 )膜が生じる(図1(C))。次
いで、同一炉内で窒素雰囲気にパージした後、温度コン
トローラにより所定の拡散温度まで昇温し、数分〜数十
分の拡散を行う(図1(D))。この時、図2に示すよ
うに窒素のトータル流量を400l/H以上にする必要
がある。
最後に、600℃前後に降温した後、炉より引き出し、
純水及び弗酸の混合液により、ボロンガラス層を除去す
る(図1(E))。First, an n-type silicon substrate of about 10 Ωcm is oxidized to form a silicon oxide film (SiO2) on the surface, and then the SiO2 film is patterned by photolithography (FIG. 1(A)). Next, PBF, which is a coating diffusion source, is coated onto the wafer using a spinner (
Figure 1(B)). At this time, the alcohol-based organic solvent is scattered. Next, the temperature is 200°C or higher and lower than the diffusion temperature (for example, 6°C).
All organic matter is converted to carbon dioxide (C
It decomposes into water (H2O) and water (H2O), and a boron oxide (B2O3) film is formed afterwards (FIG. 1(C)). Next, after purging the same furnace to a nitrogen atmosphere, the temperature is raised to a predetermined diffusion temperature using a temperature controller, and diffusion is performed for several minutes to several tens of minutes (FIG. 1(D)). At this time, as shown in FIG. 2, the total flow rate of nitrogen needs to be 400 l/H or more. Finally, after the temperature has dropped to around 600℃, it is removed from the furnace.
The boron glass layer is removed using a mixed solution of pure water and hydrofluoric acid (FIG. 1(E)).
【0010】以上の工程を通常のパイポーラ・トランジ
スタの製造工程中に付加することにより、図3に示すよ
うな極浅いベース層を形成することができる。By adding the above steps to the normal bipolar transistor manufacturing process, an extremely shallow base layer as shown in FIG. 3 can be formed.
【0011】他の実施例として、前実施例の図1(C)
の焼成後、炉より引き出し、直ちに常圧化学気相成長法
(以下常圧CVD)により、B2 O3 膜上にSiO
2 膜を堆積させる。次いで、ウェハーを洗浄後ランプ
アニール装置により数秒〜数十秒の短時間拡散を行う。
これにより、前実施例よりさらに極浅い拡散層を形成す
ることができる。As another embodiment, FIG. 1(C) of the previous embodiment
After firing, SiO is removed from the furnace and immediately deposited on the B2 O3 film by atmospheric pressure chemical vapor deposition (hereinafter referred to as atmospheric CVD).
2 Deposit the film. Next, after cleaning the wafer, diffusion is performed for a short period of several seconds to several tens of seconds using a lamp annealing device. As a result, a much shallower diffusion layer can be formed than in the previous example.
【0012】0012
【発明の効果】以上、説明したように本発明は、フォト
レジストとほぼ同一成分を用いるため、ウェハーの大口
径化にイオン注入同様対応でき、スループットも大であ
る。しかも、焼成後は100%B2 O3 膜のため、
不純物拡散源中の濃度分布や偏析計数などを考慮する必
要がなく、それだけプロセスパラメータを単純化できる
。また、塗布膜厚の不均一性によるドープの均一性への
影響も小さく、イオン注入法のようなダメージも発生し
ない。As explained above, since the present invention uses substantially the same components as photoresist, it can cope with increasing the diameter of wafers in the same way as ion implantation, and has a high throughput. Moreover, since it is a 100% B2 O3 film after firing,
There is no need to consider the concentration distribution in the impurity diffusion source, the segregation coefficient, etc., and the process parameters can be simplified accordingly. In addition, the influence of non-uniformity of the coating film thickness on doping uniformity is small, and damage unlike ion implantation does not occur.
【0013】加えて、塗布拡散源からの低温加熱拡散の
ため、拡散開始時点では分布深さはなく、それだけ浅い
接合形成の可能性が高い。In addition, because of the low-temperature heating diffusion from the coating diffusion source, there is no depth of distribution at the time of starting the diffusion, and the possibility of forming a shallow junction is higher.
【0014】以上のような利点をバイポーラ・トランジ
スタのエミッタ及びベース形成に用いることによりトラ
ンジスタ性能及び歩留りの飛躍的向上が望める。By utilizing the above-mentioned advantages in forming the emitter and base of a bipolar transistor, a dramatic improvement in transistor performance and yield can be expected.
【図1】本発明の一実施例を示す工程断面図である。FIG. 1 is a process sectional view showing an embodiment of the present invention.
【図2】本発明実施時の窒素トータル流量依存性である
。FIG. 2 shows dependence on nitrogen total flow rate when the present invention is implemented.
【図3】本発明実施時のSIMS分析による不純物濃度
分布である。FIG. 3 is an impurity concentration distribution obtained by SIMS analysis during implementation of the present invention.
1 n型シリコン基板(10Ωcm以上)2
熱シリコン酸化膜(SiO2 )3 アルコ
ール系有機溶媒
4 塗布後のポリ・ボロン・フィルム5
焼成時の二酸化炭素
6 焼成時の水分
7 拡散後のボロンガラス層(B2 O3 )8
P型極浅い拡散層1 N-type silicon substrate (10Ωcm or more) 2
Thermal silicon oxide film (SiO2) 3 Alcohol-based organic solvent 4 Poly boron film after coating 5
Carbon dioxide during firing 6 Moisture during firing 7 Boron glass layer after diffusion (B2 O3) 8
P-type ultra-shallow diffusion layer
Claims (3)
る工程と、その後、200℃以上かつ拡散温度以下で数
%〜100%酸素雰囲気中で焼成して不純物層(例えば
B2 O3 )を形成する工程と、900℃以下の低温
で数秒〜数十分拡散する工程とを含むことを特徴とする
半導体装置の製造方法。[Claim 1] A step of applying a coating diffusion source onto a silicon substrate, and then baking in an oxygen atmosphere of several percent to 100% at a temperature of 200° C. or higher and lower than the diffusion temperature to form an impurity layer (for example, B2 O3). 1. A method for manufacturing a semiconductor device, comprising: a step of diffusing at a low temperature of 900° C. or less for several seconds to several tens of minutes.
,P型不純物であるB,P,Asの酸化物(例えばB2
O3 ,P2 O5 ,As2 O5 等)を有機性
高分子と反応させてポリマー化し、アルコール系溶媒に
溶解させたものを用いることを特徴とする請求項1記載
の半導体装置の製造方法。2. As the coating diffusion source, oxides of B, P, and As (for example, B2
2. The method of manufacturing a semiconductor device according to claim 1, characterized in that the method uses a polymer obtained by reacting O3, P2 O5, As2 O5, etc. with an organic polymer and dissolving it in an alcoholic solvent.
素ガスとし、そのトータル流量を400l/H以上とす
ることを特徴とする請求項1又は2記載の半導体装置の
製造方法。3. The method of manufacturing a semiconductor device according to claim 1, wherein the atmosphere during said diffusion is 100% nitrogen gas, and the total flow rate thereof is 400 l/H or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5530891A JPH04291729A (en) | 1991-03-20 | 1991-03-20 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5530891A JPH04291729A (en) | 1991-03-20 | 1991-03-20 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04291729A true JPH04291729A (en) | 1992-10-15 |
Family
ID=12994942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5530891A Pending JPH04291729A (en) | 1991-03-20 | 1991-03-20 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04291729A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002075892A (en) * | 2000-08-28 | 2002-03-15 | Sanken Electric Co Ltd | Liquid impurity raw material, and semiconductor device |
JP2006156646A (en) * | 2004-11-29 | 2006-06-15 | Sharp Corp | Solar cell manufacturing method |
-
1991
- 1991-03-20 JP JP5530891A patent/JPH04291729A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002075892A (en) * | 2000-08-28 | 2002-03-15 | Sanken Electric Co Ltd | Liquid impurity raw material, and semiconductor device |
JP2006156646A (en) * | 2004-11-29 | 2006-06-15 | Sharp Corp | Solar cell manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5925574A (en) | Method of producing a bipolar transistor | |
EP0090940B1 (en) | Method of forming emitter and intrinsic base regions of a bipolar transistor | |
JP5367940B2 (en) | Horizontal PNP transistor and manufacturing method thereof | |
JP3079575B2 (en) | Method for manufacturing semiconductor device | |
JPS618931A (en) | Manufacture of semiconductor device | |
US6555451B1 (en) | Method for making shallow diffusion junctions in semiconductors using elemental doping | |
JPS5917243A (en) | Manufacture of semiconductor device | |
JPH04291729A (en) | Manufacture of semiconductor device | |
JPH07153778A (en) | Formation of transistor with emitter having reinforced efficiency | |
JP3578345B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JPH02126634A (en) | Manufacture of semiconductor device and manufacturing device therefor | |
JPH03163821A (en) | Manufacture of semiconductor device | |
CN113053736B (en) | Manufacturing method of semiconductor device | |
JPS6189668A (en) | Manufacture of semiconductor device | |
JPS63236310A (en) | Semiconductor device and manufacture thereof | |
JPH02135737A (en) | Manufacture of semiconductor device | |
JPH0574729A (en) | Manufacture of semiconductor device | |
JPH01147869A (en) | Manufacture of semiconductor device | |
KR100256246B1 (en) | Method of forming gate electrode in semiconductor device | |
JPS6386565A (en) | Manufacture of semiconductor device | |
JP2013168562A (en) | Semiconductor device manufacturing method | |
JPH1140572A (en) | Semiconductor device and manufacture thereof | |
JPH0283928A (en) | Manufacture of semiconductor device and semiconductor device obtained thereby | |
JPS6255689B2 (en) | ||
JPH09115922A (en) | Manufacture of semiconductor device |