Nothing Special   »   [go: up one dir, main page]

JPH04157138A - Sintered alloy for valve seat - Google Patents

Sintered alloy for valve seat

Info

Publication number
JPH04157138A
JPH04157138A JP28021790A JP28021790A JPH04157138A JP H04157138 A JPH04157138 A JP H04157138A JP 28021790 A JP28021790 A JP 28021790A JP 28021790 A JP28021790 A JP 28021790A JP H04157138 A JPH04157138 A JP H04157138A
Authority
JP
Japan
Prior art keywords
powder
mineral
magnesium
sintered alloy
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28021790A
Other languages
Japanese (ja)
Other versions
JP2763826B2 (en
Inventor
Keitaro Suzuki
啓太郎 鈴木
Hiroshi Ikenoue
池ノ上 寛
Tokumasa Aoki
青木 徳眞
Akira Fujiki
章 藤木
Makoto Kano
眞 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Nissan Motor Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2280217A priority Critical patent/JP2763826B2/en
Publication of JPH04157138A publication Critical patent/JPH04157138A/en
Application granted granted Critical
Publication of JP2763826B2 publication Critical patent/JP2763826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the material strength at a high temp. and machinability of a sintered alloy by dispersing a hard phase constituted of Cr, Mo, Si and Co into its matrix in which C, Ni, Mo, Co and Fe are specified and dispersing lubricating substance into its grain boundaries each by a prescribed amt. CONSTITUTION:This sintered alloy for a valve seat is formed of a compsn. constituted of, by weight, 0.4 to 1.2% C, 0.3 to 2.9% Ni, 0.3 to 2.3% Cr, 1.7 to 9.8% Mo, 8 to 22% Co, 0.1 to 0.7% Si, 0.5 to 2% lubricating substance and the balance Fe. The above lubricating substance is constituted of an Mg metasilicate series mineral or, together with this, an Mg orthosilicate series mineral or of an Mg metasilicate series mineral and/or an Mg orthosilicate series mineral and B nitride and/or Mn sulfide. Then, this alloy has a structure in which 5 to 25% hard phase is dispersed into its matrix and 0.5 to 2% lubricating substance is dispersed into its grain boundaries.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、高温下における耐摩耗性に優れると共に被
削性に優れた内燃機関の弁座用焼結合金に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a sintered alloy for a valve seat of an internal combustion engine that has excellent wear resistance under high temperatures and excellent machinability.

〈従来の技術〉 近年、自動車エンジンに使用される燃料の種類も多岐に
わたるようになってきており、また高性能化の傾向に伴
なって、どのような燃料にも対応できるとともに、より
耐久性がある弁座が要求させており、このような部品に
用いられる各種の焼結合金が提案されている。
<Conventional technology> In recent years, the types of fuel used in automobile engines have become more diverse, and with the trend toward higher performance, engines that can be used with any type of fuel and are more durable Certain valve seats are required, and various sintered alloys for use in such parts have been proposed.

しかして、本出願人らもこのようなニーズに対応するた
めに、先に低温領域から高温領域までの範囲において一
様に優れた耐19耗性を示し、エンジンの性格や燃料の
種類に制約されない焼結合金として、特開昭62−10
244号公報に記載したような焼結合金を開発した。
In order to meet these needs, the present applicant and others have previously demonstrated uniformly excellent wear resistance in the range from low-temperature to high-temperature regions, and have demonstrated that there are no restrictions on the characteristics of the engine or the type of fuel. As a sintered alloy that is not
We have developed a sintered alloy as described in Publication No. 244.

この焼結合金は、重量比でC066〜1.2%。This sintered alloy has a weight ratio of C066 to 1.2%.

Ni0.5〜3%+、 M o 0. 5〜3%.  
Co 5゜5〜7.5%及びFe残部の基地中に、Cr
7〜9〜%、Mo26〜30%、  S i 1. 5
〜2. 5%及びCo残部の金属間化合物である硬質1
0が5〜25%分散していることを特徴とするもので、
加えてLPG燃料用に適するように空孔内に鉛を溶浸し
たことを特徴とするものも提案されている。
Ni0.5-3%+, Mo 0. 5-3%.
In the base of Co 5°5~7.5% and the balance of Fe, Cr
7-9-%, Mo26-30%, S i 1. 5
~2. Hard 1 which is an intermetallic compound of 5% and the balance Co
It is characterized by a 5 to 25% dispersion of 0s.
In addition, there has also been proposed a fuel in which lead is infiltrated into the pores to make it suitable for LPG fuel.

〈発明が解決しようとする課題〉 しかしながら、上記したような従来祠のうち鉛を溶浸し
ないtrA料は、特に高温になる箇所に用いると優れた
耐摩耗性を発揮するが、切削加工する際には削り難いと
いう欠点を何しており、良好な切削加工性を有するこの
種の焼結材料が要請されていた。
<Problem to be solved by the invention> However, among the conventional materials mentioned above, the trA material, which does not infiltrate lead, exhibits excellent wear resistance especially when used in areas subject to high temperatures; There has been a demand for this type of sintered material that overcomes the drawback of being difficult to cut and has good machinability.

一方、鉛を溶浸しLPG燃料用とし、でも適している従
来月は、温度が327℃以下の箇所で用いると良好な耐
1?耗性を発揮するが、それよりも高温下では材料の強
度が低下する傾向があり、期待するほと耐摩耗性を発揮
しないため更に改良が望まれていた。
On the other hand, conventional fuel infiltrated with lead and suitable for LPG fuel has a good resistance to 1? However, at higher temperatures, the strength of the material tends to decrease, and it does not exhibit as much wear resistance as expected, so further improvements have been desired.

この発明は、上記のような事情に鑑みてなされたもので
あり、高温下における材料強度が高くしかも良好な切削
性を有する弁座用焼結合金を得ることを目的とするもの
である。
This invention has been made in view of the above circumstances, and aims to obtain a sintered alloy for a valve seat that has high material strength at high temperatures and has good machinability.

く課題を解決するための手段〉 この発明は、」1記のような目的を達成するために、全
体組成が重量比でC0,4〜1.2%、Ni0.3〜2
.9%、  Cr0.  3〜2. 3%lMo1.7
〜9.8%、co8〜22%、Sin。
Means for Solving the Problems> In order to achieve the object as stated in item 1, the present invention has an overall composition of 0.4 to 1.2% by weight of C and 0.3 to 2% of Ni.
.. 9%, Cr0. 3-2. 3%lMo1.7
~9.8%, co8~22%, Sin.

1〜0.7%、潤滑物質0.5〜2%及びFe残りて、
かつC0%〜1.2%、Ni0.5〜3%、Mo0.5
〜3%、 Co 5. 5〜7.  ’5%及びFe残
部の基地中に、Cr7〜9%、Mo26〜30%、Si
1.5〜2.5%およびCo残部の硬質相が5〜25%
と、↑−°l界に潤滑物質0.5〜2%が分散した組織
を呈しており、−1,記載li′を物質はメタ珪酸マグ
ネシウム系鉱物、またはメタ珪酸マグネシラt、系鉱物
とオルト珪酸マグネシウム系鉱物、またはメタ珪酸マグ
ネシウム系鉱物もしくはオルト珪酸マグネシウム系鉱物
の少くとも1秤と窒化硼素もしくは硫化マンガンの少な
くとも1種、が分散していることを特徴とする。
1-0.7%, lubricant 0.5-2% and Fe remaining;
and C0%~1.2%, Ni0.5~3%, Mo0.5
~3%, Co5. 5-7. '5% and Fe balance base, Cr7~9%, Mo26~30%, Si
1.5-2.5% and Co balance hard phase is 5-25%
It exhibits a structure in which 0.5 to 2% of a lubricating substance is dispersed in the ↑-°l world, and the -1, written li' is a magnesium metasilicate-based mineral, or a magnesila metasilicate-based mineral and orthogonal. It is characterized in that at least one of a magnesium silicate mineral, a magnesium metasilicate mineral, or a magnesium orthosilicate mineral and at least one of boron nitride or manganese sulfide are dispersed therein.

また、全体組成が重量比でC064〜1.2%。In addition, the overall composition is C064 to 1.2% by weight.

Ni0.3〜2.9%、Cr0.3〜2.3%。Ni 0.3-2.9%, Cr 0.3-2.3%.

Mo1.7〜9.8%、008〜22%、Sin。Mo1.7-9.8%, 008-22%, Sin.

1〜0.7%、Pb3%以下、潤滑物質0.5〜2%及
びFe残りで、かつC006〜1.2%。
1-0.7%, Pb 3% or less, lubricant 0.5-2% and Fe balance, and C006-1.2%.

Ni0.5〜3%、 hlo 0. 5〜3i’6. 
 Co 5゜5〜7.5%及びFe残部の基地中に1.
Cr7〜9%、Mo26〜30%、Si1.5〜2. 
5%及びCo残部の硬質相が5〜25%と、粒界または
空孔内にPb3%以下と、粒界に潤滑物質0゜5〜2%
が分散した組織を呈しており、−1−記載滑物質はメタ
珪酸マグネシウム系鉱物、またはメタ珪酸マグネシウム
系鉱物とオルト珪酸マグネシウム系鉱物、またはメタ珪
酸マグネシウム系鉱物もしくはオルト珪酸マグネシウム
系鉱物の少(とも1種と窒化硼素もしくは硫化マンガン
の少なくとも1種、が分散していることを特徴とし、か
つメタ珪酸マグネシウム系鉱物粉はエンスタタイト粉。
Ni 0.5-3%, hlo 0. 5-3i'6.
1 in the base of Co 5°5-7.5% and the balance Fe.
Cr7-9%, Mo26-30%, Si1.5-2.
5% and 5% to 25% hard phase with the remainder of Co, 3% or less of Pb in the grain boundaries or in the pores, and 0.5 to 2% of lubricating material at the grain boundaries.
-1- The lubricant described is a magnesium metasilicate mineral, or a magnesium metasilicate mineral and a magnesium orthosilicate mineral, or a magnesium metasilicate mineral or a magnesium orthosilicate mineral. The magnesium metasilicate mineral powder is enstatite powder.

クリノエンスタタイト粉、エンステナイト粉、ハイパー
ステン粉などの少なくとも1種であり、オルト珪酸マグ
ネシラL、系鉱物粉はフォルステライト粉、クリソライ
ト粉などの少なくとも1種、であることを特徴とする。
The powder is characterized in that it is at least one of clinoenstatite powder, enstenite powder, hyperstenite powder, etc., and the orthosilicate magnesilla L and mineral powder is at least one of forsterite powder, chrysolite powder, etc.

基地相は特公昭55−36242号公報記載の焼結合金
組成と同様てあり、Ni及びMoの元素は主に強度の向
」−に寄与し、COは高温硬さを向」ニさせ、Cは黒鉛
粉の形で添加され焼結中に合金化される。なお、基地相
の硬さは約〜(HV300〜380程度である。
The base phase has the same composition as the sintered alloy described in Japanese Patent Publication No. 55-36242, with Ni and Mo elements mainly contributing to strength, CO contributing to high-temperature hardness, and C is added in the form of graphite powder and alloyed during sintering. The hardness of the base phase is about HV300 to 380.

硬質粒子は、特開昭62−10244号公報記載の合金
であるが、開示されている金属間化合物のうちMO33
〜36%、Si4〜12%のコバルト合金が適している
The hard particles are alloys described in JP-A-62-10244, but among the disclosed intermetallic compounds, MO33
~36% Si, 4-12% cobalt alloys are suitable.

特ニ、LPG燃料用エンジンは弁と弁座の舟首がドライ
のため、材料同士か接触[2て起こるアブレッジツブ摩
耗(機械的破壊摩耗)を起こし易いが、このCo系合金
硬質粒子はその低下に打効である。
In particular, LPG-fueled engines have dry valve and valve seat bows, which can easily cause abrasion wear (mechanical destructive wear) that occurs when materials come into contact with each other [2], but this Co-based alloy hard particle reduces this. It is effective.

また、基地組織は上記金属間化合物が分散した組織をし
ており、その硬さはMHV800〜970程度である。
Moreover, the base structure has a structure in which the above-mentioned intermetallic compound is dispersed, and its hardness is about MHV800 to 970.

Co系合金硬質粒子の添加量は、5%以にで耐摩耗性が
安定し10〜20%が好ましいが、25%を越える添加
は費用の割に効果が伴わない。
The amount of Co-based alloy hard particles added is preferably 10 to 20% because wear resistance is stabilized when the amount is 5% or more, but addition of more than 25% is not cost effective.

上記の如き鉄基地中にCo系合金硬質粒子を分散させ、
この材料に更に鉛を添加すると、LPGのような燃料中
に減摩成分が含まれない場合に耐摩耗性が向」−シ、ま
た被削性が向1.する。
Co-based alloy hard particles are dispersed in the iron base as described above,
Further addition of lead to this material improves wear resistance and machinability when the fuel, such as LPG, does not contain anti-friction components. do.

但し、鉛添加したヰA料は、鉛の融点よりも高い327
℃以」−てかつ鉛含有量が多いはどキイ料強度が低下す
る現象があるので、鉛量は3%以下に市どめることが望
ましい。
However, lead-added H-A material has a temperature higher than the melting point of lead.
℃ or higher and the lead content is high, the strength of the key material decreases, so it is desirable to keep the lead content below 3%.

鉛の添加は、溶浸によりまたは混合粉中へ鉛粉の状態で
添加可能であるが、通常の溶浸て鉛を空孔中に充填する
と、焼結体密度が7.2g/cm3の場合には、鉛量は
約10%程度となるので、鉛溶浸温度、圧力、溶浸時間
によってその念浸冊を制御する。
Lead can be added by infiltration or in the form of lead powder into a mixed powder, but when the pores are filled with lead by ordinary infiltration, the density of the sintered body is 7.2 g/cm3. Since the amount of lead is about 10%, the thorough infiltration is controlled by the lead infiltration temperature, pressure, and infiltration time.

鉛は高温強度を低下させるが、溶融鉛の体積膨脂と関係
していると推定される。
Lead reduces high-temperature strength, which is presumed to be related to the volumetric expansion of molten lead.

強度の低下は、通常弁座の各部温度は均一でないから変
化し易く、よって気密性が低下して出力低下したり偏摩
耗の原因になる。
The decrease in strength is caused by the fact that the temperature of each part of the valve seat is usually not uniform and tends to change, resulting in a decrease in airtightness, resulting in a decrease in output and uneven wear.

鉛の含有量を3%以下にすると、高温強度は要求を満足
する。
When the lead content is 3% or less, the high temperature strength meets the requirements.

一方、鉛量ゼロまたは3%以下に止どめることにより被
削性が問題となるが、メタ珪酸マグネシウム系鉱物、オ
ルト珪酸マグネシウム系鉱物、窒化硼素及び硫化マンガ
ンを特定量添加することにより、高温材料強度を低Fさ
せることなく、鉛を多量添加したと同等の被削性が躊ら
れる。
On the other hand, machinability becomes a problem when the amount of lead is kept at zero or below 3%, but by adding specific amounts of magnesium metasilicate minerals, magnesium orthosilicate minerals, boron nitride, and manganese sulfide, Without lowering the high-temperature material strength, machinability equivalent to that obtained by adding a large amount of lead is not achieved.

珪酸マグネシウムは基地の11γ界に介在される固体潤
滑材であり、メタ珪酸マグネシウム(magnesiu
m meLasilicaLe)はMg S t 03
で表わされ、結晶構造が異なる幾つかの種類があるとい
われているが、斜方晶系のエンスタタイl−(ensL
aLiLe、順欠輝石)、単斜晶系のクリノエンスタタ
イト(cl 1noenstaLiLe、斜順欠輝石)
が相当する。
Magnesium silicate is a solid lubricant interposed in the 11γ field of the base, and magnesium metasilicate (magnesiu
m meLasilicaLe) is Mg S t 03
It is said that there are several types with different crystal structures, but the orthorhombic enstatite l-(ensL
aLiLe, clinopyroxene), monoclinic clinoenstatite (cl 1noenstaLiLe, clinopyroxene)
corresponds to

また、天然の鉱石から稍製されたものは、Mgの珪酸塩
とFeの珪酸塩との固溶体、またはこの固溶体とMgの
珪酸塩との固溶体の形であることが一般的で、(Mg、
  F e) S i 03て表わされ、このような形
態のものにはエンステナイト(ensLeniLe)や
ハイバーステン(hypersthen、紫蘇輝石)が
挙げられる。
In addition, those made from natural ores are generally in the form of a solid solution of Mg silicate and Fe silicate, or a solid solution of this solid solution and Mg silicate.
Fe) S i 03, and examples of this type include enstenite (ensLeniLe) and hypersthen (hydropyroxene).

この発明においては、」1記のようなメタ珪酸マグネシ
ウム及びそれを含む珪酸塩をメタ珪酸マグネシウム系鉱
物という。
In this invention, magnesium metasilicate and silicates containing the same as described in item 1 are referred to as magnesium metasilicate minerals.

一方、オルト珪酸マグネシウム(magnesium 
orLhosi I 1cate )はM g 2 S
 t O4で表わされ、産業上はフォルステライト(r
orsLeriLe、苦f−JJiJr!石)とよばれ
る鉱石である。また、1.記と同様にMgやFeの珪酸
塩と固溶体の形であることが−船釣て、このような形態
のものにはクリソライ)・(chrysoliLe S
jJ[R石)かある。
On the other hand, magnesium orthosilicate
or Lhosi I 1cate) is M g 2 S
It is expressed as tO4 and is industrially known as forsterite (r
orsLeriLe, bitter f-JJiJr! It is an ore called stone. Also, 1. Similar to the above, it is in the form of a solid solution with silicate of Mg and Fe.
There is jJ [R stone].

クリソライトは、−に記のフォルステライト(Mg2 
S t 04 )とフエヤライl−(f’ayaliL
e 、 Fe 5iO4)、または更にテフロイト(L
ephr。
Chrysolite is forsterite (Mg2
S t 04 ) and f'ayaliL
e, Fe5iO4), or even Tefroid (L
ephr.

iLe、Mn  5i04)を含む固溶体で、(Mg。iLe, Mn 5i04) in a solid solution containing (Mg.

F e) 2 S t O4または(Mg、  F e
、 Mn) 2S i04て表わされる。
Fe) 2S t O4 or (Mg, Fe
, Mn) 2S i04.

この発明においては、上記のようなオルト珪酸マグネシ
ウム及びそれを含む珪酸塩をオルト珪酸マグネシウム系
鉱物という。
In this invention, the above-described magnesium orthosilicate and silicate containing the same are referred to as magnesium orthosilicate minerals.

潤滑作用としては、0.5重量%以l−添加すれば効果
が認められ、その添加量を増やすとノ(に効果が増大す
るが、2%より多く添加すると固体潤滑剤の体積が多く
なるため焼結体の強度が低くなり好ましくない。
As for the lubricating effect, it is effective when added at 0.5% by weight or less, and the effect increases when the amount added is increased, but when more than 2% is added, the volume of the solid lubricant increases. Therefore, the strength of the sintered body decreases, which is not preferable.

なお、珪酸マグネシウムにはタルクが知られているが、
タルク(Mg3S t40.、・H2O)は焼結中に結
晶水の脱水が起こり、焼結炉ガスを汚染したり、一部が
二酸化珪素(S 102 )となり摺動する相手部+4
をアラタフする虞れがあり好ましくない。
In addition, talc is known as magnesium silicate,
Talc (Mg3S t40., H2O) dehydrates crystal water during sintering, contaminates the sintering furnace gas, and some of it becomes silicon dioxide (S 102 ), causing sliding mating parts +4
This is undesirable as it may cause damage to the data.

メタ珪酸マグネシウム系鉱物やオルト珪酸マグネシウム
系鉱物は、比重が3.2〜3.9程度で襞間性があるた
め固体潤滑剤として作用し、合金の快削性、摺動特性、
なじみ性、耐摩耗性を向トする。
Magnesium metasilicate minerals and magnesium orthosilicate minerals have a specific gravity of about 3.2 to 3.9 and have interfold properties, so they act as solid lubricants, improving the free machinability, sliding properties, and
Improves conformability and abrasion resistance.

なお、メタ珪酸マグネシウム系鉱物とオルト珪酸マグネ
シウム系鉱物を比較すると、後者の方が硬くて襞間しに
くい性質を持っているため、メタ珪酸マグネシウム系鉱
物と混合して用いるのが望ましい。
Note that when comparing magnesium metasilicate minerals and magnesium orthosilicate minerals, the latter is harder and less prone to creases, so it is preferable to use it in combination with magnesium metasilicate minerals.

このような性質を持つ上記珪酸マグネシウム系鉱物の粉
末を、金属粉に添加し圧縮成形及び焼結して製造するの
であるが、粉末成形のときに成形ダイとの摩擦が低下し
、成形性が良くなる。
Powder of the above-mentioned magnesium silicate mineral having such properties is added to metal powder and manufactured by compression molding and sintering, but during powder molding, the friction with the molding die decreases, resulting in poor moldability. Get better.

また、熱に耐して比較的安定であり、粉末冶金の通常の
焼結方法で製造できる。
In addition, it is relatively stable in terms of heat resistance and can be manufactured using normal sintering methods of powder metallurgy.

また、焼結合金の被削性及び耐摩耗性をより向上させる
には、メタ珪酸マグネシラt3系鉱物またはオルト珪酸
マグネシウム系鉱物の一ノjか両方に加え、窒化硼素ま
たは硫化マンガンの少なくとも1種を金属マトリックス
に分散させれば、窒化硼素及び硫化マンガンは固体潤滑
材として作用し、焼結部品の耐摩耗性を向、にさせる。
In order to further improve the machinability and wear resistance of the sintered alloy, in addition to one or both of magnesila metasilicate T3 minerals and magnesium orthosilicate minerals, at least one of boron nitride or manganese sulfide is required. When dispersed in a metal matrix, boron nitride and manganese sulfide act as solid lubricants and improve the wear resistance of sintered parts.

窒化硼素と硫化マンガンの両者を比較すると、被削性で
は窒化硼素、耐摩耗性においては硫化マンガンが優れて
いる。
When boron nitride and manganese sulfide are compared, boron nitride is superior in machinability, while manganese sulfide is superior in wear resistance.

また、その添加量は」1記したと珪酸マグネシウム系鉱
物の潤滑作用の場合と同じ理由で、珪酸マグネシウム系
鉱物と合わせて0.1〜2重量26の範囲となるように
する。
Further, the amount added is set to be in the range of 0.1 to 2 weight 26 in total with the magnesium silicate mineral, for the same reason as in the case of the lubricating effect of the magnesium silicate mineral.

珪酸マグネシウム系鉱物と、窒化硼素もしくは硫化マン
ガンの少な(とも一方の組合せ割合は限定しないが、窒
化硼素及び硫化マンガンのコストが珪酸マグネシウム系
鉱物の10〜30倍程度と高価なため、コスト面から考
慮して半分以下にすることが好ましい。
Magnesium silicate minerals and a small amount of boron nitride or manganese sulfide (although there are no restrictions on the combination ratio of either one, from a cost perspective, boron nitride and manganese sulfide are about 10 to 30 times more expensive than magnesium silicate minerals) In consideration, it is preferable to reduce the amount by half or less.

〈作用〉 この発明に係る弁座用焼結合金は、Ni及びMoを添加
して基地を強化し、Coを添加して高温硬さを向−1−
させ、CO系合金硬¥i粒子を添加してアブレッジツブ
摩耗の低下を図り、更に粒界にメタ珪酸マグネシウム系
鉱物、オルト珪酸マグネシウム系鉱物、窒化硼素、硫化
マンガン等を特定の組み合わせで所定分量分散してなる
合金組織としたことにより、高温下における材料強度が
高くしかも良好な切削性を有する弁座用焼結合金を得る
ことができる。
<Function> The sintered alloy for valve seats according to the present invention has Ni and Mo added to strengthen the base, and Co added to improve high-temperature hardness.
Then, CO-based alloy hard particles are added to reduce abrasion wear, and magnesium metasilicate minerals, magnesium orthosilicate minerals, boron nitride, manganese sulfide, etc. are dispersed in specific combinations in predetermined amounts at the grain boundaries. By forming the alloy structure, it is possible to obtain a sintered alloy for a valve seat that has high material strength at high temperatures and also has good machinability.

〈実施例〉 以下、実施例により説明する。<Example> Examples will be explained below.

組成及び配合割合はIi比である。The composition and blending ratio are Ii ratios.

試料作製にあたり、次の原料粉を準f11シた。In preparing the sample, the following raw material powder was prepared using semi-f11 powder.

(1)基地形成用合金鉄粉 Fe−1,5%Ni−1,5%Mo−6,5%CO合金
鉄粉 (2)硬質tr’t、了形成用コバルト合金粉Co−2
8%MO−8%Cr−2%Si合金粉 (3)天然黒鉛粉 (4)潤滑物質 a;エンスタタイト粉 b;フォルステライト粉 C;窒化硼素粉 d;硫化マンガン粉 (5)ステアリン酸亜鉛粉 比較ヰA1:゛ 従来月であり、基地形成用合金鉄粉にコバルト合金粉1
5%、天然黒鉛粉1%及びステアリン酸亜鉛粉を0.8
%を配合した混合粉を、リング形状に圧縮成形後、アン
モニア分解ガス炉中で温度1200°Cl2O分間の焼
結を行った。
(1) Alloy iron powder Fe-1,5%Ni-1,5%Mo-6,5%CO for base formation (2) Cobalt alloy powder Co-2 for hard tr't and final formation
8% MO-8% Cr-2% Si alloy powder (3) Natural graphite powder (4) Lubricating substance a; enstatite powder b; forsterite powder C; boron nitride powder d; manganese sulfide powder (5) zinc stearate Powder comparison A1: ゛Conventional, cobalt alloy powder 1 is added to alloy iron powder for base formation.
5%, natural graphite powder 1% and zinc stearate powder 0.8%
% was compression molded into a ring shape, and then sintered in an ammonia decomposition gas furnace at a temperature of 1200°CCl2O for minutes.

比較材2〜6: 十、記比較trA’ 1に鉛溶浸させた+4料であり、
溶浸温度及び時間を種々変更して鉛念浸量が異なる試料
としである。
Comparative materials 2 to 6: 10. Comparison trA' 1 is +4 material infiltrated with lead,
Samples with different amounts of lead dipping were prepared by varying the infiltration temperature and time.

比較材7〜9及び発明祠1〜7: メタ珪酸マグネシウム系鉱物の一例であるエンスタタイ
ト粉、オル斗珪酸マグネシウム系鉱物の一例であるフォ
ルステライトと、窒化硼素及び硫化マンガンの粉末を、
1.記比較+flと同じ混合粉に所定示添加し成形及び
焼結した試f[である。
Comparative materials 7 to 9 and invention shrines 1 to 7: Enstatite powder, which is an example of a magnesium metasilicate mineral, forsterite, which is an example of a magnesium ortosilicate mineral, and powders of boron nitride and manganese sulfide,
1. Sample f was obtained by adding a predetermined amount to the same mixed powder as in Comparison +fl, molding and sintering.

発明ヰA8〜9: 発明祠2のエンスタタイト粉を1%を含む焼結体に鉛含
浸した試料である。
Invention A8-9: These are samples in which a sintered body containing 1% of the enstatite powder of Invention Shrine 2 was impregnated with lead.

これら試料の高温における圧環強さ、切削性及び耐摩耗
性を測定した。
The radial crushing strength, machinability, and wear resistance of these samples at high temperatures were measured.

圧環強さは、温度400°Cての測定値である。The radial crushing strength is a value measured at a temperature of 400°C.

また切削性は、旋盤を用いて試料の外iそを切削代0.
5mm、1回の送りQ、1mmで切削加工したときの切
削抵抗値(主分力)を測定し、比較月1を100とする
指数で表した。
In addition, machinability was measured by cutting the outer edge of the sample using a lathe with a cutting allowance of 0.
The cutting resistance value (principal force) when cutting was performed at 5 mm, one feed Q, and 1 mm was measured, and expressed as an index with comparison month 1 as 100.

耐摩耗性は、各試料を弁座所定;」法に切削加工し、模
擬エンジン試験機に装着してLPG燃t4jjスて弁座
の温度を400℃に設定し、30時間連続運転した後の
弁座摩耗量で表した。
Wear resistance was determined by cutting each sample according to the specified valve seat method, mounting it on a simulated engine test machine, setting the temperature of the valve seat at 400°C with LPG combustion, and after continuous operation for 30 hours. Expressed as valve seat wear amount.

この試験機は、カム軸をモータで駆動するJfifMの
もので、温度1回転数、弁のスプリング圧などを任意に
設定でき、短時間に苛酷な試験を行なうことができる。
This testing machine is a JfifM model whose camshaft is driven by a motor, and the temperature, number of rotations, valve spring pressure, etc. can be set arbitrarily, and severe tests can be conducted in a short period of time.

」二記各試料における以上の測定結果を表に示す。The above measurement results for each sample are shown in the table.

この結果から明らかなように、比較月1〜6は鉛の効果
を示しており、鉛母が増加すると切削性は良くなるか、
圧環強さ及び耐摩耗性が低下している。
As is clear from this result, comparative months 1 to 6 show the effect of lead, and machinability improves as the lead base increases.
Radial crushing strength and wear resistance are reduced.

従って、圧環強さ及び摩耗冊から鉛帝は3%以下が好ま
しいことが分る。
Therefore, it can be seen from the radial crushing strength and abrasion test that the lead content is preferably 3% or less.

比較祠7〜8及び発明材1〜3は、エンスタタイト粉の
添加♀の効果を示しているものであり、エンスタタイト
粉の添加量が増加すると被削性が良好になる。
Comparative materials 7 to 8 and invention materials 1 to 3 show the effect of addition of enstatite powder (♀), and as the amount of enstatite powder added increases, machinability becomes better.

また、耐摩耗性も向−1ニし1〜2%のときに最も良好
であるが、3%になると悪化する傾向を示し、更に圧環
強さは低下している。
Further, the wear resistance is best when the content is 1 to 2%, but it tends to deteriorate when the content is 3%, and the radial crushing strength is further decreased.

このことから、エンスタタイトは被削性を改善し、特定
金で耐摩耗性を向上させるが、添加によって基Hの密度
を低下させて圧環強さを低下し、添加量が多過ぎると耐
7耗性も悪くなることを示している。
From this, enstatite improves machinability and wear resistance with specific gold, but addition lowers the density of group H and reduces radial crushing strength, and if too much is added, This indicates that wear resistance also deteriorates.

比較祠9はフォルステライト粉の添加量の効果を示して
いるものであり、エンスタタイトに比べ被削性が劣って
いる。
Comparative hole 9 shows the effect of the amount of forsterite powder added, and has inferior machinability compared to enstatite.

発明材4は、エンスタタイトとフォルステライトとが共
存している場合で、被削性が改善されていることが分る
Inventive material 4 is a case where enstatite and forsterite coexist, and it can be seen that the machinability is improved.

発明材5〜7は窒化硼素及び硫化マンガンの効果を示し
ており、窒化硼素は特に被削性の向1−に、また硫化マ
ンガンは特に耐摩耗性の向1−に効果があることが分る
Invention materials 5 to 7 show the effects of boron nitride and manganese sulfide, and it is clear that boron nitride is particularly effective in improving machinability (1-), and manganese sulfide is particularly effective in improving wear resistance (1-). Ru.

発明材8〜9は、被削性は良好であるが、鉛が含まれて
いるため圧環強さ及び耐摩耗性は僅かに劣っている。
Inventive materials 8 to 9 have good machinability, but are slightly inferior in radial crushing strength and wear resistance because they contain lead.

〈発明の効果〉 以上説明したように、この発明に係る弁座用焼結合金は
、Ni及びMoを添加して基地を強化し、Coを添加し
て高温硬さを向1−させ、CO系合金硬質粒子を添加し
てアブレッジツブ摩耗の低下を図り、更に粒界にメタ珪
酸マグネシラt、系鉱物。
<Effects of the Invention> As explained above, the sintered alloy for valve seats according to the present invention has Ni and Mo added to strengthen the base, Co added to improve high-temperature hardness, and CO Addition of hard particles of the alloy to reduce abrasion wear, and magnesila metasilicate T and minerals to the grain boundaries.

オルト珪酸マグネシウム系鉱物、窒化硼素、硫化マンガ
ン等を特定の組み合わせで所定分但分散してなる合金組
織としたことにより、高温下における祠f・1強度が高
くしかも良好な切削性をrlする内燃機関の弁座用焼結
合金を得ることができる。
By creating an alloy structure in which a specific combination of magnesium orthosilicate minerals, boron nitride, manganese sulfide, etc. are dispersed in a predetermined amount, an internal combustion engine with high f-1 strength under high temperatures and good machinability is achieved. A sintered alloy for engine valve seats can be obtained.

また、熱に対して比較的安定であり、しかも焼結中に脱
水分解が行われないため、通常の焼結手段で低コストに
製造することができる等の効果を有する。。
Furthermore, since it is relatively stable against heat and does not undergo dehydration and decomposition during sintering, it has the advantage that it can be manufactured at low cost by ordinary sintering means. .

特許出願人  日立粉末冶金株式会社 日産自動車株式会社Patent applicant Hitachi Powder Metallurgy Co., Ltd. Nissan Motor Co., Ltd

Claims (1)

【特許請求の範囲】 1、全体組成が重量比でC0.4〜1.2%、Ni0.
3〜2.9%、Cr0.3〜2.3%、Mo1.7〜9
.8%、Co8〜22%、Si0.1〜0.7%、潤滑
物質0.5〜2%及びFe残りで、かつC0.6〜1.
2%、Ni0.5〜3%、Mo0.5〜3%、Co5.
5〜7.5%及びFe残部の基地中に、Cr7〜9%、
Mo26〜30%、Si1.5〜2.5%及びCo残部
の硬質相が5〜25%と、粒界に潤滑物質0.5〜2%
が分散した組織を呈しており、上記潤滑物質はメタ珪酸
マグネシウム系鉱物、またはメタ珪酸マグネシウム系鉱
物とオルト珪酸マグネシウム系鉱物、またはメタ珪酸マ
グネシウム系鉱物もしくはオルト珪酸マグネシウム系鉱
物の少くとも1種と窒化硼素もしくは硫化マンガンの少
なくとも1種、が分散していることを特徴とする弁座用
焼結合金。 2、全体組成が重量比でC0.4〜1.2%、Ni0.
3〜2.9%、Cr0.3〜2.3%、Mo1.7〜9
.8%、Co8〜22%、Si0.1〜0.7%、Pb
3%以下、潤滑物質0.5〜2%及びFe残りで、かつ
C0.6〜1.2%、Ni0.5〜3%、Mo0.5〜
3%、Co5.5〜7.5%及びFe残部の基地中に、
Cr7〜9%、Mo26〜30%、Si1.5〜2.5
%及びCo残部の硬質相が5〜25%と、粒界または空
孔内にPb3%以下と、粒界に潤滑物質0.5〜2%が
分散した組織を呈しており、上記潤滑物質はメタ珪酸マ
グネシウム系鉱物、またはメタ珪酸マグネシウム系鉱物
とオルト珪酸マグネシウム系鉱物、またはメタ珪酸マグ
ネシウム系鉱物もしくはオルト珪酸マグネシウム系鉱物
の少くとも1種と窒化硼素もしくは硫化マンガンの少な
くとも1種、が分散していることを特徴とする弁座用焼
結合金。 3、メタ珪酸マグネシウム系鉱物粉はエンスタタイト粉
、クリノエンスタタイト粉、エンステナイト粉、ハイパ
ーステン粉などの少なくとも1種であり、オルト珪酸マ
グネシウム系鉱物粉はフォルステライト粉、クリソライ
ト粉などの少なくとも1種、であることを特徴とする請
求項1または2の記載の弁座用焼結合金。
[Claims] 1. The overall composition is C0.4-1.2% by weight, Ni0.
3-2.9%, Cr0.3-2.3%, Mo1.7-9
.. 8%, Co 8-22%, Si 0.1-0.7%, lubricant 0.5-2% and Fe remainder, and C 0.6-1.
2%, Ni0.5-3%, Mo0.5-3%, Co5.
7-9% Cr in the base of 5-7.5% and the remainder Fe;
26-30% Mo, 1.5-2.5% Si, 5-25% hard phase with the remainder of Co, and 0.5-2% lubricant at grain boundaries.
has a dispersed structure, and the lubricating substance is composed of at least one of a magnesium metasilicate mineral, a magnesium metasilicate mineral and a magnesium orthosilicate mineral, or a magnesium metasilicate mineral or a magnesium orthosilicate mineral. A sintered alloy for a valve seat, characterized in that at least one of boron nitride and manganese sulfide is dispersed therein. 2. The overall composition is C0.4-1.2% by weight, Ni0.
3-2.9%, Cr0.3-2.3%, Mo1.7-9
.. 8%, Co8-22%, Si0.1-0.7%, Pb
3% or less, lubricating substance 0.5-2% and Fe remainder, and C0.6-1.2%, Ni0.5-3%, Mo0.5-
3%, Co5.5-7.5% and Fe balance base,
Cr7-9%, Mo26-30%, Si1.5-2.5
It exhibits a structure in which the hard phase of % and Co balance is 5 to 25%, Pb is 3% or less in the grain boundaries or pores, and 0.5 to 2% of the lubricating substance is dispersed in the grain boundaries. A magnesium metasilicate mineral, a magnesium metasilicate mineral and a magnesium orthosilicate mineral, or at least one magnesium metasilicate mineral or a magnesium orthosilicate mineral and at least one of boron nitride or manganese sulfide are dispersed. A sintered alloy for valve seats that is characterized by: 3. The magnesium metasilicate mineral powder is at least one of enstatite powder, clinoenstatite powder, enstenite powder, hyperstenite powder, etc., and the magnesium orthosilicate mineral powder is at least one of forsterite powder, chrysolite powder, etc. The sintered alloy for a valve seat according to claim 1 or 2, wherein the sintered alloy is of type 1.
JP2280217A 1990-10-18 1990-10-18 Sintered alloy for valve seat Expired - Fee Related JP2763826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280217A JP2763826B2 (en) 1990-10-18 1990-10-18 Sintered alloy for valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280217A JP2763826B2 (en) 1990-10-18 1990-10-18 Sintered alloy for valve seat

Publications (2)

Publication Number Publication Date
JPH04157138A true JPH04157138A (en) 1992-05-29
JP2763826B2 JP2763826B2 (en) 1998-06-11

Family

ID=17621947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280217A Expired - Fee Related JP2763826B2 (en) 1990-10-18 1990-10-18 Sintered alloy for valve seat

Country Status (1)

Country Link
JP (1) JP2763826B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765269A1 (en) * 1997-06-27 1998-12-31 Nippon Piston Ring Co Ltd VALVE SEAT FOR INTERNAL COMBUSTION ENGINE
US6613120B2 (en) 1999-12-17 2003-09-02 Toyota Jidosha Kabushiki Kaisha Hard particles, wear resistant iron-based sintered alloy, method of producing wear resistant iron-based sintered alloy, valve seat, and cylinder head
US7575619B2 (en) 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
JP2010189755A (en) * 2009-02-20 2010-09-02 Jfe Steel Corp Iron-based powder mixture
KR20160023848A (en) 2013-07-18 2016-03-03 제이에프이 스틸 가부시키가이샤 Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sintered body
WO2016177419A1 (en) * 2015-05-06 2016-11-10 Volvo Truck Corporation Valve seat insert
CN106270528A (en) * 2015-06-23 2017-01-04 马勒国际有限公司 The method manufacturing valve cup ring
US10058922B2 (en) 2014-08-22 2018-08-28 Toyota Jidosha Kabushiki Kaisha Compact for producing a sintered alloy, a wear-resistant iron-based sintered alloy, and a method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127021B2 (en) 2002-11-06 2008-07-30 トヨタ自動車株式会社 Hard particles, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210244A (en) * 1985-07-08 1987-01-19 Hitachi Powdered Metals Co Ltd Sintered alloy excellent in wear resistance at high temperature
JPS63118047A (en) * 1986-10-29 1988-05-23 イートンコーポレーション Powder metal parts and production thereof
JPH01255604A (en) * 1988-04-05 1989-10-12 Kawasaki Steel Corp Ferrous mixed powder for powder metallurgy having excellent machinability and mechanical property after sintering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210244A (en) * 1985-07-08 1987-01-19 Hitachi Powdered Metals Co Ltd Sintered alloy excellent in wear resistance at high temperature
JPS63118047A (en) * 1986-10-29 1988-05-23 イートンコーポレーション Powder metal parts and production thereof
JPH01255604A (en) * 1988-04-05 1989-10-12 Kawasaki Steel Corp Ferrous mixed powder for powder metallurgy having excellent machinability and mechanical property after sintering

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765269A1 (en) * 1997-06-27 1998-12-31 Nippon Piston Ring Co Ltd VALVE SEAT FOR INTERNAL COMBUSTION ENGINE
US6613120B2 (en) 1999-12-17 2003-09-02 Toyota Jidosha Kabushiki Kaisha Hard particles, wear resistant iron-based sintered alloy, method of producing wear resistant iron-based sintered alloy, valve seat, and cylinder head
US7575619B2 (en) 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
JP2010189755A (en) * 2009-02-20 2010-09-02 Jfe Steel Corp Iron-based powder mixture
KR20160023848A (en) 2013-07-18 2016-03-03 제이에프이 스틸 가부시키가이샤 Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sintered body
US10058922B2 (en) 2014-08-22 2018-08-28 Toyota Jidosha Kabushiki Kaisha Compact for producing a sintered alloy, a wear-resistant iron-based sintered alloy, and a method for producing the same
WO2016177419A1 (en) * 2015-05-06 2016-11-10 Volvo Truck Corporation Valve seat insert
US10605130B2 (en) 2015-05-06 2020-03-31 Volvo Truck Corporation Valve seat insert
CN106270528A (en) * 2015-06-23 2017-01-04 马勒国际有限公司 The method manufacturing valve cup ring
CN106270528B (en) * 2015-06-23 2019-11-22 马勒国际有限公司 The method for manufacturing valve cup ring

Also Published As

Publication number Publication date
JP2763826B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
US4671491A (en) Valve-seat insert for internal combustion engines and its production
JP4624600B2 (en) Sintered alloy, manufacturing method thereof and valve seat
JP2713658B2 (en) Sintered wear-resistant sliding member
US20020084004A1 (en) Iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JPH0313299B2 (en)
US9744591B2 (en) Iron base sintered sliding member and method for producing same
JPH04157138A (en) Sintered alloy for valve seat
AU696267B2 (en) Wear-resistant sintered ferrous alloy for valve seat
US4080205A (en) Sintered alloy having wear-resistance at high temperature
US3790352A (en) Sintered alloy having wear resistance at high temperature
JPH0555593B2 (en)
JP2706561B2 (en) Valve seat material for internal combustion engine and method of manufacturing the same
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JP2553664B2 (en) High temperature wear resistant iron-based sintered alloy
JPH0115583B2 (en)
JPS62207847A (en) Ferrous sintered alloy for valve seat
JP2002069598A (en) Valve guide material
JPH0313546A (en) Ferrous sintered alloy for valve seat
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS625985B2 (en)
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPS62202058A (en) Iron-base sintered alloy for valve seat
JP3763605B2 (en) Sintered alloy material for valve seats
JPS5871355A (en) Sintered alloy as valve seat material for diesel engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees