Nothing Special   »   [go: up one dir, main page]

JP2763826B2 - Sintered alloy for valve seat - Google Patents

Sintered alloy for valve seat

Info

Publication number
JP2763826B2
JP2763826B2 JP2280217A JP28021790A JP2763826B2 JP 2763826 B2 JP2763826 B2 JP 2763826B2 JP 2280217 A JP2280217 A JP 2280217A JP 28021790 A JP28021790 A JP 28021790A JP 2763826 B2 JP2763826 B2 JP 2763826B2
Authority
JP
Japan
Prior art keywords
powder
mineral
magnesium
valve seat
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2280217A
Other languages
Japanese (ja)
Other versions
JPH04157138A (en
Inventor
啓太郎 鈴木
寛 池ノ上
徳眞 青木
章 藤木
眞 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Nissan Motor Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2280217A priority Critical patent/JP2763826B2/en
Publication of JPH04157138A publication Critical patent/JPH04157138A/en
Application granted granted Critical
Publication of JP2763826B2 publication Critical patent/JP2763826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、高温下における耐摩耗性に優れると共に
被削性に優れた内燃機関の弁座用焼結合金に関するもの
である。
Description: TECHNICAL FIELD The present invention relates to a sintered alloy for a valve seat of an internal combustion engine having excellent wear resistance at high temperatures and excellent machinability.

〈従来の技術〉 近年、自動車エンジンに使用される燃料の種類も多岐
にわたるようになってきており、また高性能化の傾向に
伴なって、どのような燃料にも対応できるとともに、よ
り耐久性がある弁座が要求させており、このような部品
に用いられる各種の焼結合金が提案されている。
<Conventional technology> In recent years, the types of fuels used in automobile engines have been diversified, and with the trend toward higher performance, it can be used with any fuel and has more durability. Some valve seats require such, and various sintered alloys used for such components have been proposed.

しかして、本出願人らもこのようなニーズに対応する
ために、先に低温領域から高温領域までの範囲において
一様に優れた耐摩耗性を示し、エンジンの性格や燃料の
種類に制約されない焼結合金として、特開昭62−10244
号公報に記載したような焼結合金を開発した。
In order to respond to such needs, the present applicants first show uniformly excellent wear resistance in a range from a low temperature region to a high temperature region, and are not restricted by the characteristics of the engine and the type of fuel. As a sintered alloy, JP-A-62-102424
A sintered alloy as described in Japanese Unexamined Patent Publication (Kokai) No. H10-206, was developed.

この焼結合金は、重量比でC0.6〜1.2%,Ni0.5〜3%,
Mo0.5〜3%,Co5.5〜7.5%及びFe残部の基地中に、Cr7
〜9%,Mo26〜30%,Si1.5〜2.5%及びCo残部の金属間化
合物である硬質相が5〜25%分散していることを特徴と
するもので、加えてLPG燃料用に適するように空孔内に
鉛を溶浸したことを特徴とするものも提案されている。
This sintered alloy is C0.6-1.2%, Ni0.5-3%,
In the base of 0.5 to 3% of Mo, 5.5 to 7.5% of Co and the balance of Fe, Cr7
It is characterized in that the hard phase, which is an intermetallic compound of -9%, Mo26-30%, Si1.5-2.5% and the balance of Co, is dispersed in 5-25%, and is also suitable for LPG fuel. As described above, there has been proposed one characterized in that lead is infiltrated into the pores.

〈発明が解決しようとする課題〉 しかしながら、上記したような従来材のうち鉛を溶浸
しない材料は、特に高温になる箇所に用いると優れた耐
摩耗性を発揮するが、切削加工する際には削り難いとい
う欠点を有しており、良好な切削加工性を有するこの種
の焼結材料が要請されていた。
<Problems to be Solved by the Invention> However, among the conventional materials described above, a material that does not infiltrate lead exhibits excellent wear resistance particularly when used in a high temperature area, but when cutting, Has the drawback of being difficult to cut, and there has been a demand for this type of sintered material having good machinability.

一方、鉛を溶浸しLPG燃料用としても適している従来
材は、温度が327℃以下の箇所で用いると良好な耐摩耗
性を発揮するが、それよりも高温下では材料の強度が低
下する傾向があり、期待するほど耐摩耗性を発揮しない
ため更に改良が望まれていた。
On the other hand, conventional materials that are infiltrated with lead and are also suitable for LPG fuel exhibit good wear resistance when used at a temperature of 327 ° C or lower, but the material strength decreases at higher temperatures. There is a tendency to exhibit less wear resistance than expected, and further improvements have been desired.

この発明は、上記のような事情に鑑みてなされたもの
であり、高温下における材料強度が高くしかも良好な切
削性を有する弁座用焼結合金を得ることを目的とするも
のである。
The present invention has been made in view of the above-described circumstances, and has as its object to obtain a sintered alloy for a valve seat having high material strength at high temperatures and good machinability.

〈課題を解決するための手段〉 この発明は、上記のような目的を達成するために、全
体組成が重量比でC0.4〜1.2%,Ni0.3〜2.9%,Cr0.3〜2.
3%,Mo1.7〜9.8%,Co8〜22%,Si0.1〜0.7%,潤滑物質
0.5〜2%及びFe残りで、かつC0.6〜1.2%,Ni0.5〜3
%,Mo0.5〜3%,Co5.5〜7.5%及びFe残部の基地中に、C
r7〜9%,Mo26〜30%,Si1.5〜2.5%及びCo残部の硬質相
が5〜25%と、粒界に潤滑物質0.5〜2%が分散した組
織を呈しており、上記潤滑物質はメタ珪酸マグネシウム
系鉱物、またはメタ珪酸マグネシウム系鉱物とオルト珪
酸マグネシウム系鉱物、またはメタ珪酸マグネシウム系
鉱物もしくはオルト珪酸マグネシウム系鉱物の少くとも
1種と窒化硼素もしくは硫化マンガンの少なくとも1
種、が分散していることを特徴とする。
<Means for Solving the Problems> In order to achieve the above objects, the present invention has a composition in which the total composition is C 0.4 to 1.2%, Ni 0.3 to 2.9%, and Cr 0.3 to 2.
3%, Mo 1.7 to 9.8%, Co 8 to 22%, Si 0.1 to 0.7%, lubricant
0.5-2% and Fe remaining, and C0.6-1.2%, Ni0.5-3
%, Mo 0.5-3%, Co 5.5-7.5% and the balance of Fe
r 7 to 9%, Mo 26 to 30%, Si 1.5 to 2.5% and the balance of the hard phase of Co balance 5 to 25%, exhibiting a structure in which 0.5 to 2% of the lubricating substance is dispersed in the grain boundaries. Is a magnesium metasilicate mineral, or a magnesium metasilicate mineral and a magnesium orthosilicate mineral, or at least one of a magnesium metasilicate mineral or a magnesium orthosilicate mineral and at least one of boron nitride or manganese sulfide
Seeds are dispersed.

また、全体組成が重量比でC0.4〜1.2%,Ni0.3〜2.9
%,Cr0.3〜2.3%,Mo1.7〜9.8%,Co8〜22%,Si0.1〜0.7
%,Pb3%以下,潤滑物質0.5〜2%及びFe残りで、かつC
0.6〜1.2%,Ni0.5〜3%,Mo0.5〜3%,Co5.5〜7.5%及
びFe残部の基地中に、Cr7〜9%,Mo26〜30%,Si1.5〜2.
5%及びCo残部の硬質相が5〜25%と、粒界または空孔
内にPb3%以下と、粒界に潤滑物質0.5〜2%が分散した
組織を呈しており、上記潤滑物質はメタ珪酸マグネシウ
ム系鉱物、またはメタ珪酸マグネシウム系鉱物とオルト
珪酸マグネシウム系鉱物、またはメタ珪酸マグネシウム
系鉱物もしくはオルト珪酸マグネシウム系鉱物の少くと
も1種と窒化硼素もしくは硫化マンガンの少なくとも1
種、が分散していることを特徴とし、かつメタ珪酸マグ
ネシウム系鉱物粉はエンスタタイト粉,クリノエンスタ
タイト粉,エンステナイト粉,ハイパーステン粉の少な
くとも1種であり、オルト珪酸マグネシウム系鉱物粉は
フォルステライト粉,クリソライト粉の少なくとも1
種、であることを特徴とする。
In addition, the total composition is C0.4-1.2%, Ni0.3-2.9% by weight.
%, Cr 0.3 to 2.3%, Mo 1.7 to 9.8%, Co 8 to 22%, Si 0.1 to 0.7
%, Pb 3% or less, lubricating substance 0.5-2% and Fe remaining, and C
0.6 to 1.2%, Ni 0.5 to 3%, Mo 0.5 to 3%, Co 5.5 to 7.5%, and Fe base 9 to 7%, Mo 26 to 30%, Si 1.5 to 2.
5% to 25% of the hard phase with 5% and the balance of Co, 3% or less of Pb in the grain boundaries or vacancies, and 0.5 to 2% of the lubricating material dispersed in the grain boundaries. Magnesium silicate mineral, or magnesium metasilicate mineral and magnesium orthosilicate mineral, or at least one of magnesium metasilicate mineral or magnesium orthosilicate mineral and at least one of boron nitride or manganese sulfide
The magnesium metasilicate mineral powder is at least one of enstatite powder, clinoenstatite powder, ensteinite powder and hyperstain powder, and the magnesium orthosilicate mineral powder is At least one of forsterite powder and chrysolite powder
It is a seed.

基地相は特公昭55−36242号公報記載の焼結合金組成
と同様であり、Ni及びMoの元素は主に強度の向上に寄与
し、Coは高温硬さを向上させ、Cは黒鉛粉の形で添加さ
れ焼結中に合金化される。なお、基地相の硬さは約MHV3
00〜380程度である。
The base phase is the same as the sintered alloy composition described in JP-B-55-36242, in which the elements Ni and Mo mainly contribute to the improvement in strength, Co improves the high-temperature hardness, and C is the graphite powder. Added in form and alloyed during sintering. The hardness of the base phase is about MHV3
It is about 00-380.

硬質粒子は、特開昭62−10244号公報記載の合金であ
るが、開示されている金属間化合物のうちMo33〜36%、
Si4〜12%のコバルト合金が適している。
The hard particles are alloys described in JP-A-62-10244. Of the intermetallic compounds disclosed, Mo 33-36%,
A cobalt alloy with 4-12% Si is suitable.

特に、LPG燃料用エンジンは弁と弁座の介面がドライ
のため、材料同士が接触して起こるアブレッシッブ摩耗
(機械的破壊摩耗)を起こし易いが、このCo系合金硬質
粒子はその低下に有効である。
In particular, engines for LPG fuel are susceptible to abrasive wear (mechanical destructive wear) caused by contact between materials because the interface between the valve and the valve seat is dry. However, these Co-based alloy hard particles are effective in reducing the wear. is there.

また、基地組織は上記金属間化合物が分散した組織を
しており、その硬さはMHV800〜970程度である。
The base structure is a structure in which the above-mentioned intermetallic compound is dispersed, and has a hardness of about MHV 800 to 970.

Co系合金硬質粒子の添加量は、5%以上で耐摩耗性が
安定し10〜20%が好ましいが、25%を越える添加は費用
の割に効果が伴わない。
The addition amount of the Co-based alloy hard particles is 5% or more, and the wear resistance is stable, and 10 to 20% is preferable. However, the addition of more than 25% has no effect for the cost.

上記の如き鉄基地中にCO系合金硬質粒子を分散させ、
この材料に更に鉛を添加すると、LPGのような燃料中に
減摩成分が含まれない場合に耐摩耗性が向上し、また被
削性が向上する。
Disperse the CO-based alloy hard particles in the iron base as above,
When lead is further added to this material, the wear resistance is improved and the machinability is improved when the lubricating component is not contained in the fuel such as LPG.

但し、鉛添加した材料は、鉛の融点よりも高い327℃
以上でかつ鉛含有量が多いほど材料強度が低下する現象
があるので、鉛量は3%以下に止どめることが望まし
い。
However, the material to which lead is added is 327 ° C, which is higher than the melting point of lead.
Since there is a phenomenon in which the material strength decreases as the above and the lead content increases, it is desirable to keep the lead amount to 3% or less.

鉛の添加は、溶浸によりまたは混合粉中へ鉛粉の状態
で添加可能であるが、通常の溶浸で鉛を空孔中に充填す
ると、焼結体密度が7.2g/cm3の場合には、鉛量は約10%
程度となるので、鉛溶浸温度,圧力,溶浸時間によって
その含浸量を制御する。
The addition of lead is susceptible added in the form of lead powder to the or the powder mixture infiltration and filling the lead in holes in the usual infiltration, when the sintered body density is 7.2 g / cm 3 Contains about 10% lead
Therefore, the impregnation amount is controlled by the lead infiltration temperature, pressure and infiltration time.

鉛は高温強度を低下させるが、溶融鉛の体積膨脹と関
係していると推定される。
Lead reduces high temperature strength, but is presumed to be related to the volume expansion of molten lead.

強度の低下は、通常弁座の各部温度は均一でないから
変化し易く、よって気密性が低下して出力低下したり偏
摩耗の原因になる。
The decrease in strength is usually easy to change because the temperature of each part of the valve seat is not uniform, so that the airtightness is reduced and the output is reduced or uneven wear is caused.

鉛の含有量を3%以下にすると、高温強度は要求を満
足する。
When the content of lead is 3% or less, the high temperature strength satisfies the requirement.

一方、鉛量ゼロまたは3%以下に止どめることにより
被削性が問題となるが、メタ珪酸マグネシウム系鉱物、
オルト珪酸マグネシウム系鉱物、窒化硼素及び硫化マン
ガンを特定量添加することにより、高温材料強度を低下
させることなく、鉛を多量添加したと同等の被削性が得
られる。
On the other hand, if the amount of lead is reduced to zero or less than 3%, machinability becomes a problem, but magnesium metasilicate minerals,
By adding specific amounts of the magnesium orthosilicate-based mineral, boron nitride, and manganese sulfide, machinability equivalent to that in which a large amount of lead is added can be obtained without lowering the high-temperature material strength.

珪酸マグネシウムは基地の粒界に介在される固体潤滑
材であり、メタ珪酸マグネシウム(magnesium metasili
cate)はMgSiO3で表わされ、結晶構造が異なる幾つかの
種類があるといわれているが、斜方晶系のエンスタタイ
ト(enstatite、頑火輝石)、単斜晶系のクリノエンス
タタイト(clinoenstatite、斜頑火輝石)が相当する。
Magnesium silicate is a solid lubricant interposed at the grain boundaries of the matrix, and magnesium metasili
cate) is represented by MgSiO 3 and it is said that there are several types with different crystal structures, but orthorhombic enstatite, clinoenstatite monoclinic , Oblique pyroxene).

また、天然の鉱石から精製されたものは、Mgの珪酸塩
とFeの珪酸塩との固溶体、またはこの固溶体とMgの珪酸
塩との固溶体の形であることが一般的で、(Mg,Fe)SiO
3で表わされ、このような形態のものにはエンステナイ
ト(enste nite)やハイパーステン(hypersthen、紫蘇
輝石)が挙げられる。
Further, those purified from natural ores are generally in the form of a solid solution of Mg silicate and Fe silicate, or a solid solution of this solid solution and Mg silicate, (Mg, Fe ) SiO
3 and such forms include ensteinite and hypersthen.

この発明においては、上記のようなメタ珪酸マグネシ
ウム及びそれを含む珪酸塩をメタ珪酸マグネシウム系鉱
物という。
In the present invention, the above magnesium metasilicate and the silicate containing the same are referred to as magnesium metasilicate minerals.

一方、オルト珪酸マグネシウム(magnesium orthosil
icate)はMg2SiO4で表わされ、産業上はフォルステライ
ト(folsterite、苦土橄欖石)とよばれる鉱石である。
また、上記と同様にMgやFeの珪酸塩と固溶体の形である
ことが一般的で、このような形態のものにはクリソライ
ト(chrysolite、橄欖石)がある。
On the other hand, magnesium orthosil
icate) is represented by Mg 2 SiO 4 and is an ore that is industrially called forsterite (folsterite).
It is generally in the form of a solid solution with a silicate of Mg or Fe as in the above, and such a form includes chrysolite (chrysolite, olivine).

クリソライトは、上記のフォルステライト(Mg2Si
O4)とフェヤライト(fayalite、Fe2SiO4)、または更
にテフロイト(tephroite、Mn2SiO4)を含む固溶体で、
(Mg,Fe)2SiO4または(Mg,Fe,Mn)2SiO4で表わされ
る。
Chrysolite is the forsterite (Mg 2 Si
O 4 ) and fayalite (fayalite, Fe 2 SiO 4 ), or even a solid solution containing tephroite (tephroite, Mn 2 SiO 4 )
It is represented by (Mg, Fe) 2 SiO 4 or (Mg, Fe, Mn) 2 SiO 4 .

この発明においては、上記のようなオルト珪酸マグネ
シウム及びそれを含む珪酸塩をオルト珪酸マグネシウム
系鉱物という。
In the present invention, the above-described magnesium orthosilicate and the silicate containing the same are referred to as magnesium orthosilicate-based minerals.

潤滑作用としては、0.5重量%以上添加すれば効果が
認められ、その添加量を増やすと共に効果が増大する
が、2%より多く添加すると固体潤滑剤の体積が多くな
るため焼結体の強度が低くなり好ましくない。
As for the lubricating effect, the effect is recognized when added at 0.5% by weight or more, and the effect increases as the added amount is increased. It is not preferable because it becomes low.

なお、珪酸マグネシウムにはタルクが知られている
が、タルク(Mg3Si4O11・H2O)は焼結中に結晶水の脱水
が起こり、焼結炉ガスを汚染したり、一部が二酸化珪素
(SiO2)となり摺動する相手部材をアッタクする虞れが
あり好ましくない。
Although talc is known as magnesium silicate, talc (Mg 3 Si 4 O 11 .H 2 O) dehydrates crystallization water during sintering, contaminating the sintering furnace gas, Is not preferable because silicon dioxide (SiO 2 ) may be attached to the sliding member.

メタ珪酸マグネシウム系鉱物やオルト珪酸マグネシウ
ム系鉱物は、比重が3.2〜3.9程度で劈開性があるため固
体潤滑剤として作用し、合金の快削性,摺動特性,なじ
み性,耐摩耗性を向上する。
Magnesium metasilicate minerals and orthosilicate magnesium minerals have a specific gravity of about 3.2 to 3.9 and are cleaved, so they act as solid lubricants, improving the alloy's free-cutting properties, sliding properties, conformability, and wear resistance. I do.

なお、メタ珪酸マグネシウム系鉱物とオルト珪酸マグ
ネシウム系鉱物を比較すると、後者の方が硬くて劈開し
にくい性質を持っているため、メタ珪酸マグネシウム系
鉱物と混合して用いるのが望ましい。
When the magnesium metasilicate-based mineral and the magnesium orthosilicate-based mineral are compared, the latter is harder and harder to be cleaved. Therefore, it is desirable to use the magnesium metasilicate-based mineral in combination with the magnesium metasilicate-based mineral.

このような性質を持つ上記珪酸マグネシウム系鉱物の
粉末を、金属粉に添加し圧縮成形及び焼結して製造する
のであるが、粉末成形のときに成形ダイとの摩擦が低下
し、成形性が良くなる。
The powder of the magnesium silicate based mineral having such properties is added to the metal powder, compression molded and sintered, but the friction with the molding die is reduced during powder molding, and the moldability is reduced. Get better.

また、熱に耐して比較的安定であり、粉末冶金の通常
の焼結方法で製造できる。
Further, it is relatively stable against heat and can be manufactured by the usual sintering method of powder metallurgy.

また、焼結合金の被削性及び耐摩耗性をより向上させ
るには、メタ珪酸マグネシウム系鉱物またはオルト珪酸
マグネシウム系鉱物の一方か両方に加え、窒化硼素また
は硫化マンガンの少なくとも1種を金属マトリックスに
分散させれば、窒化硼素及び硫化マンガンは固体潤滑材
として作用し、焼結部品の耐摩耗性を向上させる。
In order to further improve the machinability and wear resistance of the sintered alloy, at least one of boron nitride and manganese sulfide is added to a metal matrix in addition to one or both of a magnesium metasilicate-based mineral and a magnesium orthosilicate-based mineral. If dispersed, the boron nitride and manganese sulfide act as a solid lubricant, improving the wear resistance of the sintered part.

窒化硼素と硫化マンガンの両者を比較すると、被削性
では窒化硼素、耐摩耗性においては硫化マンガンが優れ
ている。
Comparing both boron nitride and manganese sulfide, boron nitride is superior in machinability and manganese sulfide is superior in wear resistance.

また、その添加量は上記したと珪酸マグネシウム系鉱
物の潤滑作用の場合と同じ理由で、珪酸マグネシウム系
鉱物と合わせて0.1〜2重量%の範囲となるようにす
る。
Further, the amount of addition is adjusted to be in the range of 0.1 to 2% by weight in total with the magnesium silicate-based mineral for the same reason as described above for the lubricating action of the magnesium silicate-based mineral.

珪酸マグネシウム系鉱物と、窒化硼素もしくは硫化マ
ンガンの少なくとも一方の組合せ割合は限定しないが、
窒化硼素及び硫化マンガンのコストが珪酸マグネシウム
系鉱物の10〜30倍程度と高価なため、コスト面から考慮
して半分以下にすることが好ましい。
The combination ratio of magnesium silicate based mineral and at least one of boron nitride and manganese sulfide is not limited,
Since the cost of boron nitride and manganese sulfide is as high as about 10 to 30 times that of the magnesium silicate-based mineral, it is preferable to reduce the cost to half or less from the viewpoint of cost.

〈作用〉 この発明に係る弁座用焼結合金は、Ni及びMoを添加し
て基地を強化し、Coを添加して高温硬さを向上させ、Co
系合金硬質粒子を添加してアブレッシッブ摩耗の低下を
図り、更に粒界にメタ珪酸マグネシウム系鉱物,オルト
珪酸マグネシウム系鉱物,窒化硼素,硫化マンガン等を
特定の組み合わせで所定分量分散してなる合金組織とし
たことにより、高温下における材料強度が高くしかも良
好な切削性を有する弁座用焼結合金を得ることができ
る。
<Action> The sintered alloy for a valve seat according to the present invention is characterized in that Ni and Mo are added to strengthen the matrix, Co is added to improve the high-temperature hardness, and Co is added.
Alloy structure that reduces abrasive wear by adding hard alloy-based alloy particles and furthermore, disperses a predetermined amount of magnesium metasilicate-based mineral, magnesium orthosilicate-based mineral, boron nitride, manganese sulfide, etc. in a specific combination at grain boundaries As a result, it is possible to obtain a sintered alloy for a valve seat having high material strength at high temperatures and good cutability.

〈実施例〉 以下、実施例により説明する。<Example> Hereinafter, an example will be described.

組成及び配合割合は重量比である。 Compositions and blending ratios are weight ratios.

試料作製にあたり、次の原料粉を準備した。 In preparing a sample, the following raw material powder was prepared.

(1)基地形成用合金鉄粉 Fe−1.5%Ni−1.5%Mo−6.5%Co合金鉄粉 (2)硬質粒子形成用コバルト合金粉 Co−28%Mo−8%Cr−2%Si合金粉 (3)天然黒鉛粉 (4)潤滑物質 a;エンスタタイト粉 b;フォルステライト粉 c;窒化硼素粉 d;硫化マンガン粉 (5)ステアリン酸亜鉛粉 比較材1: 従来材であり、基地形成用合金鉄粉にコバルト合金粉
15%、天然黒鉛粉1%及びステアリン酸亜鉛粉を0.8%
を配合した混合粉を、リング形状に圧縮成形後、アンモ
ニア分解ガス炉中で温度1200℃,20分間の焼結を行っ
た。
(1) Base-forming alloy iron powder Fe-1.5% Ni-1.5% Mo-6.5% Co alloy iron powder (2) Cobalt alloy powder for forming hard particles Co-28% Mo-8% Cr-2% Si alloy powder (3) Natural graphite powder (4) Lubricating substance a; Enstatite powder b; Forsterite powder c; Boron nitride powder d; Manganese sulfide powder (5) Zinc stearate powder Comparative material 1: Conventional material for base formation Cobalt alloy powder to ferroalloy powder
15%, natural graphite powder 1% and zinc stearate powder 0.8%
Was mixed into a ring shape, and then sintered at a temperature of 1200 ° C. for 20 minutes in an ammonia decomposition gas furnace.

比較材2〜6: 上記比較材1に鉛溶浸させた材料であり、溶浸温度及
び時間を種々変更して鉛含浸量が異なる試料としてあ
る。
Comparative materials 2 to 6: This is a material obtained by infiltrating lead in the comparative material 1 and varying the infiltration temperature and time to prepare samples having different amounts of lead impregnation.

比較材7〜9及び発明材1〜7: メタ珪酸マグネシウム系鉱物の一例であるエンスタタ
イト粉、オルト珪酸マグネシウム系鉱物の一例であるフ
ォルステライトと、窒化硼素及び硫化マンガンの粉末
を、上記比較材1と同じ混合粉に所定量添加し成形及び
焼結した試料である。
Comparative Materials 7-9 and Invention Materials 1-7: Enstatite powder, an example of magnesium metasilicate-based mineral, forsterite, an example of magnesium orthosilicate-based mineral, and powders of boron nitride and manganese sulfide, This is a sample obtained by adding a predetermined amount to the same mixed powder as in No. 1 and molding and sintering.

発明材8〜9: 発明材2のエンスタタイト粉を1%を含む焼結体に鉛
含浸した試料である。
Invention materials 8 to 9: Samples in which the enstatite powder of invention material 2 was lead-impregnated into a sintered body containing 1%.

これら試料の高温における圧環強さ、切削性及び耐摩
耗性を測定した。
The radial crushing strength, machinability and wear resistance of these samples at high temperatures were measured.

圧環強さは、温度400℃での測定値である。 The radial crushing strength is a value measured at a temperature of 400 ° C.

また切削性は、旋盤を用いて試料の外径を切削代0.5m
m,1回の送り0.1mmで切削加工したときの切削抵抗値(主
分力)を測定し、比較材1を100とする指数で表した。
In addition, the machinability is measured by using a lathe to adjust the outer diameter of the sample to 0.5 m.
The cutting resistance value (main component force) when cutting was performed at 0.1 mm per feed at a feed rate of 0.1 mm was measured.

耐摩耗性は、各試料を弁座所定寸法に切削加工し、模
擬エンジン試験機に装着してLPG燃料ガスで弁座の温度
を400℃に設定し、30時間連続運転した後の弁座摩耗量
で表した。
The wear resistance was measured by cutting each sample to the specified size of the valve seat, mounting it on a simulated engine tester, setting the temperature of the valve seat to 400 ° C with LPG fuel gas, and operating the valve seat continuously for 30 hours. Expressed in quantity.

この試験機は、カム軸をモータで駆動する機構のもの
で、温度,回転数,弁のスプリング圧などを任意に設定
でき、短時間に苛酷な試験を行なうことができる。
This tester has a mechanism for driving a camshaft by a motor, and can arbitrarily set a temperature, a rotation speed, a valve spring pressure, and the like, and can perform a severe test in a short time.

上記各試料における以上の測定結果を表に示す。 The results of the above measurements for each sample are shown in the table.

この結果から明らかなように、比較材1〜6は鉛の効
果を示しており、鉛量が増加すると切削性は良くなる
が、圧環強さ及び耐摩耗性が低下している。
As is clear from these results, the comparative materials 1 to 6 show the effect of lead. As the lead content increases, the machinability improves, but the radial crushing strength and wear resistance decrease.

従って、圧環強さ及び摩耗量から鉛量は3%以下が好
ましいことが分る。
Therefore, the lead content is preferably 3% or less from the radial crushing strength and the wear amount.

比較材7〜8及び発明材1〜3は、エンスタタイト粉
の添加量の効果を示しているものであり、エンスタタイ
ト粉の添加量が増加すると被削性が良好になる。
Comparative materials 7 to 8 and invention materials 1 to 3 show the effect of the added amount of enstatite powder, and the machinability becomes better as the added amount of enstatite powder increases.

また、耐摩耗性も向上し1〜2%のときに最も良好で
あるが、3%になると悪化する傾向を示し、更に圧環強
さは低下している。
Further, the abrasion resistance is also improved, and is best when the content is 1 to 2%, but tends to deteriorate when the content is 3%, and the radial crushing strength is further reduced.

このことから、エンスタタイトは被削性を改善し、特
定量で耐摩耗性を向上させるが、添加によって基材の密
度を低下させて圧環強さを低下し、添加量が多過ぎると
耐摩耗性も悪くなることを示している。
For this reason, enstatite improves machinability and improves abrasion resistance at a specific amount.However, addition of the enstatite lowers the density of the base material, lowering the radial crushing strength. It also indicates that sex is worse.

比較材9はフォルステライト粉の添加量の効果を示し
ているものであり、エンスタタイトに比べ被削性が劣っ
ている。
Comparative material 9 shows the effect of the amount of forsterite powder added, and is inferior in machinability as compared with enstatite.

発明材4は、エンスタタイトとフォルステライトとが
共存している場合で、被削性が改善されていることが分
る。
Inventive material 4 shows that machinability is improved when enstatite and forsterite coexist.

発明材5〜7は窒化硼素及び硫化マンガンの効果を示
しており、窒化硼素は特に被削性の向上に、また硫化マ
ンガンは特に耐摩耗性の向上に効果があることが分る。
Invention materials 5 to 7 show the effects of boron nitride and manganese sulfide. It can be seen that boron nitride is particularly effective in improving machinability, and manganese sulfide is particularly effective in improving wear resistance.

発明材8〜9は、被削性は良好であるが、鉛が含まれ
ているため圧環強さ及び耐摩耗性は僅かに劣っている。
Inventive materials 8 to 9 have good machinability, but are slightly inferior in radial crushing strength and wear resistance because they contain lead.

〈発明の効果〉 以上説明したように、この発明に係る弁座用焼結合金
は、Ni及びMoを添加して基地を強化し、Coを添加して高
温硬さを向上させ、Co系合金硬質粒子を添加してアブレ
ッシッブ摩耗の低下を図り、更に粒界にメタ珪酸マグネ
シウム系鉱物,オルト珪酸マグネシウム系鉱物,窒化硼
素,硫化マンガン等を特定の組み合わせで所定分量分散
してなる合金組織としたことにより、高温下における材
料強度が高くしかも良好な切削性を有する内燃機関の弁
座用焼結合金を得ることができる。
<Effects of the Invention> As described above, the sintered alloy for a valve seat according to the present invention is characterized in that Ni and Mo are added to strengthen the matrix, Co is added to improve the high-temperature hardness, and a Co-based alloy is formed. Hard particles are added to reduce abrasive wear, and an alloy structure is formed by dispersing a predetermined amount of magnesium metasilicate mineral, magnesium orthosilicate mineral, boron nitride, manganese sulfide, etc. in a specific combination at grain boundaries. This makes it possible to obtain a sintered alloy for a valve seat of an internal combustion engine, which has high material strength at high temperatures and good cutability.

また、熱に対して比較的安定であり、しかも焼結中に
脱水分解が行われないため、通常の焼結手段で低コスト
に製造することができる等の効果を有する。。
Further, since it is relatively stable to heat and does not undergo dehydration / decomposition during sintering, it has an effect that it can be manufactured at low cost by ordinary sintering means. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤木 章 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (72)発明者 加納 眞 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 平1−255604(JP,A) 特開 平4−157137(JP,A) 特開 昭62−10244(JP,A) 特開 昭63−118047(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 304──────────────────────────────────────────────────続 き Continuing on the front page (72) Akira Fujiki, Inventor Nissan Motor Co., Ltd., 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture (72) Inventor Makoto Kano 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. (56) References JP-A-1-255604 (JP, A) JP-A-4-157137 (JP, A) JP-A-62-11024 (JP, A) JP-A-63-118047 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C22C 38/00 304

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】全体組成が重量比でC0.4〜1.2%,Ni0.3〜
2.9%,Cr0.3〜2.3%,Mo1.7〜9.8%,Co8〜22%,Si0.1〜
0.7%,潤滑物質0.5〜2%及びFe残りで、かつC0.6〜1.
2%,Ni0.5〜3%,Mo0.5〜3%,Co5.5〜7.5%及びFe残部
の基地中に、Cr7〜9%,Mo26〜30%,Si1.5〜2.5%及びC
o残部の硬質相が5〜25%と、粒界に潤滑物質0.5〜2%
が分散した組織を呈しており、上記潤滑物質はメタ珪酸
マグネシウム系鉱物、またはメタ珪酸マグネシウム系鉱
物とオルト珪酸マグネシウム系鉱物、またはメタ珪酸マ
グネシウム系鉱物もしくはオルト珪酸マグネシウム系鉱
物の少くとも1種と窒化硼素もしくは硫化マンガンの少
なくとも1種、が分散していることを特徴とする弁座用
焼結合金。
(1) The total composition is C 0.4-1.2% by weight, Ni 0.3-
2.9%, Cr 0.3 to 2.3%, Mo 1.7 to 9.8%, Co 8 to 22%, Si 0.1 to
0.7%, lubricating substance 0.5-2% and Fe remaining, and C0.6-1.
In the matrix of 2%, Ni 0.5-3%, Mo 0.5-3%, Co 5.5-7.5% and the balance of Fe, Cr 7-9%, Mo 26-30%, Si 1.5-2.5% and C
o The remaining hard phase is 5 to 25% and the lubricating substance is 0.5 to 2% at the grain boundaries.
The lubricating substance is a magnesium metasilicate mineral, or a magnesium metasilicate mineral and a magnesium orthosilicate mineral, or at least one of a magnesium metasilicate mineral or a magnesium orthosilicate mineral. A sintered alloy for a valve seat, wherein at least one of boron nitride and manganese sulfide is dispersed.
【請求項2】全体組成が重量比でC0.4〜1.2%,Ni0.3〜
2.9%,Cr0.3〜2.3%,Mo1.7〜9.8%,Co8〜22%,Si0.1〜
0.7%,Pb3%以下,潤滑物質0.5〜2%及びFe残りで、か
つC0.6〜1.2%,Ni0.5〜3%,Mo0.5〜3%,Co5.5〜7.5%
及びFe残部の基地中に、Cr7〜9%,Mo26〜30%,Si1.5〜
2.5%及びCo残部の硬質相が5〜25%と、粒界または空
孔内にPb3%以下と、粒界に潤滑物質0.5〜2%が分散し
た組織を呈しており、上記潤滑物質はメタ珪酸マグネシ
ウム系鉱物、またはメタ珪酸マグネシウム系鉱物とオル
ト珪酸マグネシウム系鉱物、またはメタ珪酸マグネシウ
ム系鉱物もしくはオルト珪酸マグネシウム系鉱物の少く
とも1種と窒化硼素もしくは硫化マンガンの少なくとも
1種、が分散していることを特徴とする弁座用焼結合
金。
2. The total composition is C 0.4-1.2% by weight, Ni 0.3-
2.9%, Cr 0.3 to 2.3%, Mo 1.7 to 9.8%, Co 8 to 22%, Si 0.1 to
0.7%, Pb3% or less, lubricating substance 0.5-2% and Fe remaining, and C0.6-1.2%, Ni0.5-3%, Mo0.5-3%, Co5.5-7.5%
And in the base of Fe balance, Cr7-9%, Mo26-30%, Si1.5-
The hard phase of 2.5% and the balance of Co is 5 to 25%, Pb is 3% or less in the grain boundaries or vacancies, and 0.5 to 2% of the lubricating material is dispersed in the grain boundaries. A magnesium silicate mineral, or a magnesium metasilicate mineral and a magnesium orthosilicate mineral, or at least one of a magnesium metasilicate mineral or a magnesium orthosilicate mineral and at least one of boron nitride or manganese sulfide are dispersed. A sintered alloy for a valve seat.
【請求項3】メタ珪酸マグネシウム系鉱物粉はエンスタ
タイト粉,クリノエンスタタイト粉,エンステナイト
粉,ハイパーステン粉の少なくとも1種であり、オルト
珪酸マグネシウム系鉱物粉はフォルステライト粉,クリ
ソライト粉の少なくとも1種、であることを特徴とする
請求項1または2の記載の弁座用焼結合金。
3. The magnesium metasilicate mineral powder is at least one of enstatite powder, clinoenstatite powder, ensteinite powder and hyperstain powder, and the magnesium orthosilicate mineral powder is forsterite powder and chrysolite powder. The sintered alloy for a valve seat according to claim 1, wherein the sintered alloy is at least one kind.
JP2280217A 1990-10-18 1990-10-18 Sintered alloy for valve seat Expired - Fee Related JP2763826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280217A JP2763826B2 (en) 1990-10-18 1990-10-18 Sintered alloy for valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280217A JP2763826B2 (en) 1990-10-18 1990-10-18 Sintered alloy for valve seat

Publications (2)

Publication Number Publication Date
JPH04157138A JPH04157138A (en) 1992-05-29
JP2763826B2 true JP2763826B2 (en) 1998-06-11

Family

ID=17621947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280217A Expired - Fee Related JP2763826B2 (en) 1990-10-18 1990-10-18 Sintered alloy for valve seat

Country Status (1)

Country Link
JP (1) JP2763826B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144440B2 (en) 2002-11-06 2006-12-05 Toyota Jidosha Kabushiki Kaisha Hard particle, wear-resistant iron-base sintered alloy, method of manufacturing the same, and a valve seat

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469435B2 (en) * 1997-06-27 2003-11-25 日本ピストンリング株式会社 Valve seat for internal combustion engine
JP3596751B2 (en) 1999-12-17 2004-12-02 トヨタ自動車株式会社 Hard particle for blending sintered alloy, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat
US7575619B2 (en) 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
JP5310074B2 (en) * 2009-02-20 2013-10-09 Jfeスチール株式会社 Iron-based powder mixture for high-strength sintered parts of automobiles
CA2916153C (en) 2013-07-18 2018-02-06 Jfe Steel Corporation Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sintered body
JP6077499B2 (en) 2014-08-22 2017-02-08 トヨタ自動車株式会社 Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
EP3292281B1 (en) * 2015-05-06 2020-02-12 Volvo Truck Corporation Valve seat insert
DE102015211623A1 (en) * 2015-06-23 2016-12-29 Mahle International Gmbh Method for producing a valve seat ring

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210244A (en) * 1985-07-08 1987-01-19 Hitachi Powdered Metals Co Ltd Sintered alloy excellent in wear resistance at high temperature
EP0266936B1 (en) * 1986-10-29 1992-05-13 Eaton Corporation Powdered metal part
JPH0711007B2 (en) * 1988-04-05 1995-02-08 川崎製鉄株式会社 Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144440B2 (en) 2002-11-06 2006-12-05 Toyota Jidosha Kabushiki Kaisha Hard particle, wear-resistant iron-base sintered alloy, method of manufacturing the same, and a valve seat

Also Published As

Publication number Publication date
JPH04157138A (en) 1992-05-29

Similar Documents

Publication Publication Date Title
JP3952344B2 (en) Wear-resistant iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
KR101194079B1 (en) Sintered valve guide and method for manufacturing the same
JP4624600B2 (en) Sintered alloy, manufacturing method thereof and valve seat
JP2713658B2 (en) Sintered wear-resistant sliding member
US4919719A (en) High temperature wear resistant sintered alloy
JP6142987B2 (en) Iron-based sintered sliding member
JP2763826B2 (en) Sintered alloy for valve seat
AU696267B2 (en) Wear-resistant sintered ferrous alloy for valve seat
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JPH0472027A (en) Valve seat material for outboard motor and its production
JPH0555593B2 (en)
JP2706561B2 (en) Valve seat material for internal combustion engine and method of manufacturing the same
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JP2002069597A (en) Valve guide material
EP0277239A1 (en) Abrasion-resistant sintered alloy and process for its production
JP2002069598A (en) Valve guide material
JPS58224154A (en) Sintered fe alloy for valve seat of internal combustion engine
JP2705376B2 (en) Valve seat made of Fe-based sintered alloy with high strength and toughness
JPH06158217A (en) Valve guide member made of fe-based sintered alloy excellent in wear resistance
JP3763605B2 (en) Sintered alloy material for valve seats
JPH0215624B2 (en)
JPH01178712A (en) Valve seat made of iron-based sintered alloy
JP2017089012A (en) Manufacturing method of iron-based sinter slide member
JPH06158218A (en) Valve guide member made of fe-based sintered alloy excellent in wear resistance
JP2002069599A (en) Valve guide material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees