Nothing Special   »   [go: up one dir, main page]

JPH0413718A - Electrochromic material - Google Patents

Electrochromic material

Info

Publication number
JPH0413718A
JPH0413718A JP11587290A JP11587290A JPH0413718A JP H0413718 A JPH0413718 A JP H0413718A JP 11587290 A JP11587290 A JP 11587290A JP 11587290 A JP11587290 A JP 11587290A JP H0413718 A JPH0413718 A JP H0413718A
Authority
JP
Japan
Prior art keywords
triphenylamine
raw material
formula
electrolytic
material monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11587290A
Other languages
Japanese (ja)
Inventor
Yasuhiko Osawa
康彦 大澤
Katsunori Aoki
克徳 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11587290A priority Critical patent/JPH0413718A/en
Publication of JPH0413718A publication Critical patent/JPH0413718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain the title material capable of being made into a large area and readily processed into an arbitrary shape, having excellent oxidation- reduction stability and durability, containing a triphenylamine site, by subjecting a specific compound as a raw material monomer to electrolytic oxidation polymerization. CONSTITUTION:A compound shown by the formula (X is H, alkyl, alkoxy or halogen at ortho-, meta- or para-position), wherein a thiophene site is directly bonded to triphenylamine, as a raw material monomer is subjected to electrolytic oxidation polymerization preferably at 1.3-2.0V potential to give the objective material.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、次式 (式中のXは水素原子、あるいはオルト、メタ、パラ位
のアルキル基、アルコキシ基、ハロゲン原子のうちから
選ばれた置換基を示す)で表わされるトリフェニルアミ
ンにチオフェン部位が直接結合した原料上ツマ−の電解
酸化重合によって製造されたエレクトロクロミック材料
に関する。
Detailed Description of the Invention (Industrial Application Field) This invention is based on the following formula (where X is selected from a hydrogen atom, an alkyl group, an alkoxy group, and a halogen atom at ortho, meta, and para positions). The present invention relates to an electrochromic material produced by electrolytic oxidation polymerization of a raw material, in which a thiophene moiety is directly bonded to triphenylamine (representing a substituent).

(従来の技術) トリフェニルアミン構造単位を含む実用的エレクトロク
ロミック薄膜としては、本出願人が既に提案しているポ
リ(4,4’−トリフェニルアミン)の薄膜がある(特
開昭61−28524号公報)。薄膜の作製は次のよう
に行なう。かかるポリマーをクロロホルム等の溶媒に溶
かし、スピンコード法によってITO(インジウムドー
プ酸化錫)等の透明導電ガラスの上に製膜した後、加熱
して沃素ドーピングを行い架橋して不溶性としてエレク
トロクロミック(EC)m膜とする。このようにして作
製したエレクトロクロミック薄膜は酸化還元の安定性、
耐久性に優れ、前述の様に成形加工性もいいので、きわ
めて実用性の高いものである。
(Prior Art) As a practical electrochromic thin film containing a triphenylamine structural unit, there is a poly(4,4'-triphenylamine) thin film already proposed by the present applicant (Japanese Patent Application Laid-Open No. 1983-1999). 28524). The thin film is prepared as follows. Such a polymer is dissolved in a solvent such as chloroform, and a film is formed on a transparent conductive glass such as ITO (indium-doped tin oxide) by a spin-coding method, and then heated to dope iodine and crosslink to make it insoluble and form an electrochromic (EC) film. )m film. The electrochromic thin film prepared in this way has excellent redox stability and
It has excellent durability and, as mentioned above, good moldability, making it extremely practical.

(発明が解決しようとする課題) しかしながら、本出願人の提案したポリ (4,4’ト
リフエニルアミン)TiI膜は、大面積のEC素子を構
成する場合には均一なECff膜を作製することが難し
く、また文字等の複雑なパターンを含むEC素子を構成
する場合には、製膜後不要部分を正確に除去できる簡便
で適当な加工法がなく問題であった。
(Problems to be Solved by the Invention) However, the poly(4,4'triphenylamine)TiI film proposed by the present applicant has difficulty in producing a uniform ECff film when configuring a large-area EC element. Moreover, when constructing an EC element that includes a complicated pattern such as letters, there is a problem in that there is no simple and suitable processing method that can accurately remove unnecessary portions after film formation.

(課題を解決するための手段) この発明はこのような従来の問題点に着目し、よく知ら
れているように電解重合製膜法のメリットが大面積のも
の、及び複雑形状のものを容易に作製できることを考慮
してなされたもので、トリフェニルアミン構造単位を含
むEC薄膜を次式(式中のXは水素原子、あるいはオル
ト、メタ、バラ位のアルキル基、アルコキシ基、ハロゲ
ン原子のうちから選ばれた置換基を示す)で表わされる
トリフェニルアミンにチオフェン部位が直接結合した原
料モノマーの電解酸化重合によって製造する事によって
前述の問題点を解決したものである。
(Means for Solving the Problems) This invention focuses on these conventional problems, and as is well known, the advantages of electrolytic polymerization film forming method are that it is easy to form large areas and complex shapes. The EC thin film containing the triphenylamine structural unit was created with the following formula (in the formula, The above-mentioned problems are solved by producing the compound by electrolytic oxidation polymerization of a raw material monomer in which a thiophene moiety is directly bonded to triphenylamine represented by (indicates a substituent selected from among).

一般的に電解酸化重合が起こる条件として、定電流また
は定電圧で行う。本発明の場合には、ポルタモグラムで
第2波めにかかる電位で酸化が生じることが必要条件で
ある。電解酸化重合が生じる電位として、1.3v〜2
.0M程度であり、あまり高すぎると膜の不活性化をま
ねく。
Generally, the conditions for electrolytic oxidative polymerization are constant current or constant voltage. In the case of the present invention, it is a necessary condition that oxidation occurs at the potential applied to the second wave in the portamogram. The potential at which electrolytic oxidative polymerization occurs is 1.3v to 2.
.. It is about 0M, and if it is too high, it will lead to inactivation of the membrane.

ポリチオフェンについての一連の結果(例えばG、To
urillon  in  T、A、  Skothe
im、(Ed)、Handbookof Conduc
ting Po1y+ners、vol、1.Dekk
er、NewYork、 1986. p、 293.
)から、チオフェンは酸化によってチオフェン骨格の硫
黄の隣の炭素上(チオフェンの2位と5位)のプロトン
がはずれ、その同じ種類の炭素同士が結合してポリマー
となることがよく知られている。したがって、本発明で
は原料モノマーの酸化によりチエニル基の空いている5
位置士で結合して次式 (式中のXは前記のものと同じものを示す)で表わされ
るような構造のポリマーが生成すると考えられる。後に
示すFT−JR(フーリエ変換赤外分光法)の結果もこ
れに矛盾しない。従って、ポリマー上でパイ電子のネッ
トワークが続いているのでかなり高い電導度を示すこと
が期待され、ECfli膜とした場合も応答性がよいこ
とが期待できる。また、EC素子を構成した場合にはポ
リチオフェン類と異なり非常に安定なトリフェニルアミ
ン部位の酸化過程が区別でき安定に使用できる電位の検
討もしやすく、製膜性以外にも利点が多いと考えられる
A series of results for polythiophenes (e.g. G, To
urillon in T, A, Skothe
im, (Ed), Handbook of Conduc
ting Poly+ners, vol, 1. Dekk
er, New York, 1986. p, 293.
), it is well known that when thiophene is oxidized, the protons on the carbons next to sulfur in the thiophene skeleton (2nd and 5th positions of thiophene) are removed, and the carbons of the same type bond together to form a polymer. . Therefore, in the present invention, 5
It is thought that a polymer having a structure represented by the following formula (in the formula, X represents the same as above) is produced by bonding at a positional position. The results of FT-JR (Fourier transform infrared spectroscopy) shown later do not contradict this. Therefore, since the pi-electron network continues on the polymer, it is expected to exhibit considerably high conductivity, and even when used as an ECfli film, it can be expected to have good responsiveness. In addition, when an EC device is constructed, the oxidation process of the triphenylamine moiety, which is extremely stable unlike polythiophenes, can be distinguished, making it easy to consider the potential that can be used stably, and it is thought to have many advantages in addition to film-forming properties. .

(実施例) 以下本発明を実施例および比較例により具体的に説明す
る。
(Examples) The present invention will be specifically explained below using Examples and Comparative Examples.

、比較1日− トリフェニルアミンの直接電解重合。, Comparison 1 day - Direct electrolytic polymerization of triphenylamine.

吉野等によりベンゼン等の縮合系炭化水素の電解酸化重
合により導電性高分子薄膜が出来ることが示されている
ので[J、 Elkectroanal、 Chew、
Yoshino et al. have shown that conductive polymer thin films can be produced by electrolytic oxidative polymerization of condensed hydrocarbons such as benzene [J, Elketroanal, Chew,
.

195 (1985) 203.とJ、 CheIll
、 Soc、 Che+n、 Comn+um、、 (
1986) 550. ) 、この方法を用いてトリフ
ェニルアミンの電解酸化重合を以下のように試みた。
195 (1985) 203. and J. CheIll.
, Soc, Che+n, Comn+um,, (
1986) 550. ), electrolytic oxidative polymerization of triphenylamine was attempted using this method as follows.

電解液は、0.3M)リフェニルアミン、0.1MCu
C1g 、0.I M LiAsF、のニトロベンゼン
溶液を用いた、動作電極にネサガラスを、対極に白金線
を用いて動作電極を対極に対して10 Vに保って電解
した。トリフェニルアミンの代わりにベンゼンを加えた
ときは黒い膜が出来たが、この場合、溶液は赤褐色にな
ったがネサガラス上にはいくら電解しても薄膜はできな
かった。恐らくこれは、無置換のトリフェニルアミンは
酸化されてすぐにダイマーになるが、トリフェニルアミ
ンのダイマーの・カチオンカ安定で、さらにシカチオン
もある程度安定な為電解重合がそれ以上には進まないの
で膜が出来ないものと考えられる。
The electrolyte is 0.3M) liphenylamine, 0.1MCu
C1g, 0. Electrolysis was carried out using a nitrobenzene solution of I M LiAsF, using Nesa glass as the working electrode and a platinum wire as the counter electrode, keeping the working electrode at 10 V with respect to the counter electrode. When benzene was added instead of triphenylamine, a black film was formed, but in this case, the solution turned reddish brown, but a thin film could not be formed on Nesaglass no matter how much electrolysis was carried out. This is probably because unsubstituted triphenylamine is oxidized and becomes a dimer immediately, but the cation of the dimer of triphenylamine is stable, and the cation is also stable to a certain extent, so electrolytic polymerization does not proceed any further. It is considered that this is not possible.

ス1」1− ベンゾニトリル中での電解重合。1"1- Electropolymerization in benzonitrile.

原料のモノマーは新規な化合物であり、この目的のため
に文献[Makromol、 Chem、 189巻、
1755ページ、1988年]を一部参考にして次のよ
うに合成した。300ydの30丸底フラスコ中に4.
0g(0,167モル)のグリニヤール試薬用の金属マ
グネシウムを加え、磁気回転子を入れ、真空脱気後、金
属ナトリウムを用いて脱水したジエチルエーテルを約1
10d真空蒸留して加え、このフラスコに冷却器を取り
付は窒素雰囲気下でこの溶液中に25g (0,153
モル)の2−ブロモチオフェンを滴下してグリニヤール
試薬を調製した。別の3001dの30丸底フラスコに
5 g (0,015モル)の4.4′ジクロロトリフ
エニルアミン(アニリンとp−ヨードクロロベンゼンか
ら一種のウルマン反応によって合成した)と触媒量(0
,087g)のジクロロ(1,3−(ジフェニルホスフ
ィノ)プロパン〕ニッケル(II)を加えて、磁気回転
子を入れ、真空脱気後、約100mの乾燥ジエチルエー
テルを真空蒸留して加え、アイスバスで冷却したあと窒
素下で前記グリニヤール試薬溶液の約90dを加えて、
オイルバス上で3日間リフラックスして合成した。
The raw material monomer is a new compound, and for this purpose, the literature [Makromol, Chem, vol. 189,
1755, 1988] was synthesized as follows. 4. In a 300yd 30 round bottom flask.
Add 0 g (0,167 mol) of metallic magnesium for Grignard reagent, insert a magnetic rotor, and after vacuum degassing, add about 1 mol of diethyl ether dehydrated using metallic sodium.
Add 10 d of vacuum distillation and add 25 g (0,153
A Grignard reagent was prepared by dropping mol) of 2-bromothiophene. In a separate 3001d 30 round bottom flask were added 5 g (0,015 mol) of 4,4' dichlorotriphenylamine (synthesized from aniline and p-iodochlorobenzene by a type of Ullmann reaction) and a catalyst amount (0
, 087 g) of dichloro(1,3-(diphenylphosphino)propane)nickel(II) was added, a magnetic rotor was placed, and after vacuum degassing, about 100 m of dry diethyl ether was added by vacuum distillation, and the ice After cooling in a bath, add about 90 d of the Grignard reagent solution under nitrogen,
Synthesis was performed by refluxing on an oil bath for 3 days.

反応終了後アイスバスで冷却して様子をみながら2モル
/リットルの塩酸水溶液を約70IIi加え、400d
のジエチルエーテルで抽出した。オレンジ色のエーテル
相を飽和の炭酸ナトリウム水溶液で洗浄して、塩化カル
シウム上で一晩乾燥して、エーテル相をろ過した後エバ
ボレートして、さらに副産物のチオフェンを除くために
ロータリーポンプにて真空引きした。粗生成物をカラム
クロマトグラフィーで分離精製(シリカゲル/ベンゼン
:へキサン(体積比1:4))して、エタノールからさ
らに再結晶して目的のXが水素原子である式1の原料モ
ノマーを得た。原料モノマーの色は極うすい黄色であっ
た。融点は182°Cであった。後に示すFT−I R
の結果も矛盾がなかった。元素分析の結果は次のようで
あり目的物質と確認された。
After the reaction was completed, cool it in an ice bath, and add about 70IIi of 2 mol/liter aqueous hydrochloric acid solution while checking the condition.
Extracted with diethyl ether. The orange ether phase was washed with saturated aqueous sodium carbonate, dried over calcium chloride overnight, filtered and evaporated, and vacuumed with a rotary pump to remove the by-product thiophene. did. The crude product was separated and purified by column chromatography (silica gel/benzene:hexane (volume ratio 1:4)) and further recrystallized from ethanol to obtain the desired raw material monomer of formula 1 where X is a hydrogen atom. Ta. The color of the raw material monomer was very pale yellow. The melting point was 182°C. FT-I R shown later
There were no contradictions in the results. The results of elemental analysis were as follows, and it was confirmed to be the target substance.

理論値:炭素76.3%、水素4.60%、窒素3.4
0%、硫黄15.7% 実験値:炭素76.6%、水素4.65%、窒素3.3
5%、硫黄15.9% 得られた七ツマ−の電解重合を以下の条件で行なった。
Theoretical values: carbon 76.3%, hydrogen 4.60%, nitrogen 3.4
0%, sulfur 15.7% Experimental values: carbon 76.6%, hydrogen 4.65%, nitrogen 3.3
5%, sulfur 15.9% Electrolytic polymerization of the obtained sulfur was carried out under the following conditions.

溶媒としては、水素化カルシウムにより脱水した後、真
空蒸留したベンゾニトリルを用い、支持電解質としては
0.1モル/リットルのノルマルテトラブチルアンモニ
ウムへキサフルオロフォスフェートを用いて、参照電極
としてはプロピレンカーボネート中の銀/塩化銀電極を
2枚のガラスフィルターで隔てて用いた。原料モノマー
の濃度は5ミリモル/リットルとした。動作電極にはI
TOガラス(表面抵抗10オ一ム/口)を用いた。
As a solvent, benzonitrile that was vacuum distilled after dehydration with calcium hydride was used, as a supporting electrolyte 0.1 mol/liter normal tetrabutylammonium hexafluorophosphate was used, and as a reference electrode propylene carbonate was used. The silver/silver chloride electrode inside was separated by two glass filters. The concentration of the raw material monomer was 5 mmol/liter. I on the working electrode
TO glass (surface resistance 10 ohms/mouth) was used.

対極は白金線を用いた。電解重合は3室式の電解セルを
用い乾燥窒素雰囲気のグローブボックス内で行なった。
A platinum wire was used as the counter electrode. Electrolytic polymerization was carried out in a glove box with a dry nitrogen atmosphere using a three-compartment electrolytic cell.

セルの中央の部屋にITO電極を置き、ガラスフィルタ
ーを隔てた片方の部屋に対極を置き、もう一方の部屋に
ガラスフィルターを隔てて参照電極を置いた。電解は一
〇、5vと2.OvO間で間隔1秒の矩形波の繰り返し
にて合計1〜3分間行なった。得られた不溶性の薄膜は
黄色であった。同様な薄膜はOvから1.9Vの範囲の
繰り返しの電位掃引によっても得られた。
An ITO electrode was placed in the central chamber of the cell, a counter electrode was placed in one chamber separated by a glass filter, and a reference electrode was placed in the other chamber separated by a glass filter. Electrolysis is 10, 5v and 2. The rectangular wave was repeated at intervals of 1 second between OvO for a total of 1 to 3 minutes. The resulting insoluble thin film was yellow in color. Similar thin films were also obtained by repeated potential sweeps ranging from Ov to 1.9V.

得られた薄膜のFT−IRスペクトルを第1図に示し、
原料モノマーのスペクトルを第2図に示す。電解重合膜
のスペクトルはITO上の膜をかきとってKBr法にて
測定した。モノマー、ポリマーの両方にトリフェニルア
ミン部位に特有の1270゜1310、1480.15
90cm−’付近の強い吸収が見られ、トリフェニルア
ミン部位が含まれていることがわかる。ポリマーでは、
2.5−二置換チオフェンに特徴的にみられる790C
1−’の吸収がふえ、モノマーに含まれる2−一置換チ
オフエンに特徴的な690C1m−’の吸収が減ってい
ることからも前記式2で示したポリマーの構造が支持さ
れる。
The FT-IR spectrum of the obtained thin film is shown in Figure 1.
Figure 2 shows the spectrum of the raw material monomer. The spectrum of the electrolytically polymerized film was measured by scraping off the film on ITO using the KBr method. 1270° 1310, 1480.15 specific to the triphenylamine moiety in both monomer and polymer
Strong absorption near 90 cm-' is observed, indicating that a triphenylamine moiety is included. In polymers,
790C characteristically found in 2.5-disubstituted thiophenes
The structure of the polymer shown in Formula 2 is also supported because the absorption of 1-' increases and the absorption of 690C1m-', which is characteristic of 2-monosubstituted thiophene contained in the monomer, decreases.

得られた薄膜のエレクトロクロミック特性を、より実用
的な溶媒であるプロピレンカーボネート中で評価した。
The electrochromic properties of the resulting thin films were evaluated in propylene carbonate, a more practical solvent.

1.0モル/リットルの過塩素酸リチウムを含むプロピ
レンカーボネート溶液中でのITO上のポリマーのサイ
クリックポルタモグラムを第3図に示す。薄膜の面積は
約0.5CI+1”であった。酸化第−波にて百回以上
の酸化還元を繰り返したが波形の変化は見られず非常に
安定であった。吸収スペクトル測定用電気化学セルを構
成して、酸化還元にともなう可視〜近赤外吸収スペクト
ルの変化を第4図に示した。第−波での酸化にともなっ
て薄膜の色は目視では黄色から黒に可逆に変化した。
The cyclic portammogram of the polymer on ITO in a propylene carbonate solution containing 1.0 mol/liter lithium perchlorate is shown in FIG. The area of the thin film was approximately 0.5CI+1". Redox was repeated more than 100 times in the oxidation wave, but the waveform did not change and was very stable. Electrochemical cell for absorption spectrum measurement Figure 4 shows the changes in the visible to near-infrared absorption spectrum due to redox.The color of the thin film reversibly changed from yellow to black when oxidized at the second wave.

実施1− 混合溶媒中での電解重合。Implementation 1- Electropolymerization in mixed solvents.

実施例1において電解重合膜作製時の溶媒をベンゾニト
リルからア七ト二トリルとベンゾニトリルの(体積比2
:1)混合溶媒に変え、試料の濃度を4ミリモル/リッ
トルに変えた以外は同様にして電解重合を行なったとこ
ろ実施例1と同様黄色の薄膜が得られた。白金線動作電
極を用いたそのポルタモグラムを第5図に示す。これは
実施例1と比べ多少ピークが鋭い様に見えたが、同様に
安定なEC特性を示した。電解重合用溶液のサイクリッ
クボルタメトリーから、電解重合の電気量効率は実施例
1のときより多少改善されたように思われた。
In Example 1, the solvent for producing the electropolymerized membrane was changed from benzonitrile to acetonitrile and benzonitrile (volume ratio 2).
:1) Electrolytic polymerization was carried out in the same manner as in Example 1, except that a mixed solvent was used and the concentration of the sample was changed to 4 mmol/liter, and a yellow thin film was obtained as in Example 1. The portammogram using a platinum wire working electrode is shown in FIG. This sample seemed to have a somewhat sharper peak compared to Example 1, but similarly showed stable EC characteristics. From the cyclic voltammetry of the electrolytic polymerization solution, it appeared that the electrical efficiency of the electrolytic polymerization was somewhat improved compared to Example 1.

この発明で使用される電解重合時の溶媒および支持電解
質はニトリル系溶媒及びノルマルテトラブチルアンモニ
ウムへキサフルオロフォスフェートに限られるものでは
なく、電解重合する電位で酸化分解されないものなら通
常の非水溶液の電気化学で用いられる溶媒及び電解質が
使用可能である。作製したエレクトロクロミック薄膜の
駆動用溶媒も同様に過塩素酸リチウムのプロピレンカー
ボネート溶液に限定されるものではない。
The solvent and supporting electrolyte used in the electropolymerization used in this invention are not limited to nitrile solvents and n-tetrabutylammonium hexafluorophosphate, but can be ordinary non-aqueous solutions as long as they are not oxidized and decomposed at the electropolymerization potential. Solvents and electrolytes used in electrochemistry can be used. Similarly, the driving solvent for the produced electrochromic thin film is not limited to a propylene carbonate solution of lithium perchlorate.

(発明の効果) 以上説明してきたように、この発明によればトリフェニ
ルアミン部位を含み酸化還元安定性がよく、耐久性に優
れ大面積化が可能であり1.シかも容易に任意の形状に
できるECI膜を得ることができる。
(Effects of the Invention) As explained above, according to the present invention, it contains a triphenylamine moiety, has good redox stability, is excellent in durability, and can be made into a large area.1. Moreover, it is possible to easily obtain an ECI membrane that can be formed into any desired shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られた電解重合ポリマーのFT−
JRスペクトル線図、 第2図は原料モノマーのFT−IRスペクトル線図、 第3図は、実施例1で得られた電解重合膜のサイクリッ
クポルタモグラム線図、 第4図は上記電解重合膜の酸化に伴う吸収スペクトルの
変化を示す線図、 第5図は実施例2で得られた電解重合膜のサイクリック
ポルタモグラム線図である。
Figure 1 shows the FT-
JR spectrum diagram, Figure 2 is an FT-IR spectrum diagram of the raw material monomer, Figure 3 is a cyclic portamogram diagram of the electrolytically polymerized membrane obtained in Example 1, and Figure 4 is the electrolytically polymerized membrane described above. A diagram showing changes in the absorption spectrum due to oxidation of the membrane. FIG. 5 is a cyclic portammogram diagram of the electrolytically polymerized membrane obtained in Example 2.

Claims (1)

【特許請求の範囲】 1、次式 ▲数式、化学式、表等があります▼・・・・(1) (式中のXは水素原子、あるいはオルト、メタ、パラ位
のアルキル基、アルコキシ基、ハロゲン原子のうちから
選ばれた置換基を示す)で表わされる化合物を原料モノ
マーとして電解酸化重合によって作製されたことを特徴
とするエレクトロクロミック材料。
[Claims] 1. The following formula ▲ Numerical formula, chemical formula, table, etc. ▼ (1) (X in the formula is a hydrogen atom, or an alkyl group at the ortho, meta, or para position, an alkoxy group, 1. An electrochromic material produced by electrolytic oxidative polymerization using a compound represented by (indicates a substituent selected from halogen atoms) as a raw material monomer.
JP11587290A 1990-05-07 1990-05-07 Electrochromic material Pending JPH0413718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11587290A JPH0413718A (en) 1990-05-07 1990-05-07 Electrochromic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11587290A JPH0413718A (en) 1990-05-07 1990-05-07 Electrochromic material

Publications (1)

Publication Number Publication Date
JPH0413718A true JPH0413718A (en) 1992-01-17

Family

ID=14673250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11587290A Pending JPH0413718A (en) 1990-05-07 1990-05-07 Electrochromic material

Country Status (1)

Country Link
JP (1) JPH0413718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111958A (en) * 2001-10-25 2012-06-14 Cambridge Display Technology Ltd Triarylamine-containing monomer for optoelectronic device
CN104086754A (en) * 2014-06-27 2014-10-08 黑龙江大学 A kind of polybisthiophenepyrrole and its preparation method and polybisthiophenepyrrole/arrayed TiO2 nanotube prepared by using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111958A (en) * 2001-10-25 2012-06-14 Cambridge Display Technology Ltd Triarylamine-containing monomer for optoelectronic device
CN104086754A (en) * 2014-06-27 2014-10-08 黑龙江大学 A kind of polybisthiophenepyrrole and its preparation method and polybisthiophenepyrrole/arrayed TiO2 nanotube prepared by using it

Similar Documents

Publication Publication Date Title
Zagórska et al. Chemical synthesis and characterization of soluble poly (4, 4′-dialkyl-2, 2′-bithiophenes)
Guerrero et al. Preparation and characterization of poly (3-arylthiophene) s
EP2306562B1 (en) Accumulator material and accumulator device
JPS6366221A (en) Soluble conductive polymer, its production method and its uses
CA2014656A1 (en) 3-substituted polypyrrole
JPS63500105A (en) conductive polymer
JPH07215932A (en) Derivative of polyether and pentacyclic heterocycle, their polymer, and its use especially in complexing metal ion
JP2011517701A (en) Selenophene and selenophene polymers, their preparation, and uses thereof
Belloncle et al. Electrochemical behaviour of different binaphthalene crown ethers. New electroformed polymer films as potential macromolecular hosts
Sannicolò et al. An effective multipurpose building block for 3D electropolymerisation: 2, 2′-Bis (2, 2′-bithiophene-5-yl)-3, 3′-bithianaphthene
JPS62169820A (en) Hetero5-membered cyclic compound polymer
JPH0413718A (en) Electrochromic material
JP2803040B2 (en) Thiophene compounds and conductive polymers
JPH09302073A (en) Multibranched polymer and method for producing the same
EP0376689A2 (en) Polymeric films of metalloporphyrins as conductive materials for electrocatalysis
JPH0433918A (en) Electrochromic material produced by electrolytic polymenrization
JPH05262993A (en) Polymer conductor and method for producing the same
JP3830677B2 (en) Optically active polythiophene derivative and method for producing the same
JPH04359922A (en) Production of electrochromic material
Kurtay et al. Synthesis and electrochemical characterization of a new benzodioxocine-fused poly (N-methylpyrrole) derivative: a joint experimental and DFT study
JP2003040856A (en) Meta-fluorobenzenesulfonic acid derivative and dopant
JPH0211614B2 (en)
Grabulosa et al. Metallopolymers from ruthenium and iron pyrrole-containing π-extended complexes as model components for solid state solar cells
JPS6411207B2 (en)
JPS6411209B2 (en)