Nothing Special   »   [go: up one dir, main page]

JPS6411207B2 - - Google Patents

Info

Publication number
JPS6411207B2
JPS6411207B2 JP10932984A JP10932984A JPS6411207B2 JP S6411207 B2 JPS6411207 B2 JP S6411207B2 JP 10932984 A JP10932984 A JP 10932984A JP 10932984 A JP10932984 A JP 10932984A JP S6411207 B2 JPS6411207 B2 JP S6411207B2
Authority
JP
Japan
Prior art keywords
isothianaphthene
polymer
polymerization
poly
dihydroisothianaphthene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10932984A
Other languages
Japanese (ja)
Other versions
JPS6117581A (en
Inventor
Masao Kobayashi
Udoru Furetsudo
Jee Hiigaa Aran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNIBAASHITEI OBU KARIFUORUNIA
Original Assignee
YUNIBAASHITEI OBU KARIFUORUNIA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNIBAASHITEI OBU KARIFUORUNIA filed Critical YUNIBAASHITEI OBU KARIFUORUNIA
Priority to JP10932984A priority Critical patent/JPS6117581A/en
Priority to US06/736,984 priority patent/US4640748A/en
Priority to CA000482753A priority patent/CA1248690A/en
Priority to DE8585303864T priority patent/DE3577860D1/en
Priority to AT85303864T priority patent/ATE53046T1/en
Priority to EP85303864A priority patent/EP0164974B1/en
Publication of JPS6117581A publication Critical patent/JPS6117581A/en
Publication of JPS6411207B2 publication Critical patent/JPS6411207B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は極めて安定でドーピングにより極めて
高い電導性を示す新規な電導性重合体に関し、更
に詳しくは一般式
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel conductive polymer that is extremely stable and exhibits extremely high conductivity through doping.

【式】及び/又は[Formula] and/or

【式】 (式中、R1及びR2はそれぞれ独立に水素又は炭
素数1〜5の炭化水素基を表わし、X-は電解質
イオンを表わし、yはモノマー1モル当りの陰イ
オンの割合を表わす0.01〜1の数であり、nは重
合度を表わす5〜500の数である)で表わされる
イソチアナフテン構造を有する重合体に関する。 この重合体は、電気・電子工業の分野において
電極、エレクトロクロミツク表示素子、太陽電池
の製造、電気的接続、電磁線の固定・変換装置お
よび可逆的な酸化還元系として用いることができ
る。 従来の技術 近年、電気・電子機器の軽量化、薄形化或いは
小型化の進歩は著しく、それらに用いられる各種
電導性材料素子等についても軽量化、薄形化或い
は小型化への要望は強いものがあるのみならず、
より優れた新規材料の出現に強い期待が持たれて
いる。 これらの要望或いは期待を満たすべく、新しい
電導性高分子の開発が盛んに行われている。例え
ばポリアセチレンはヨウ素或いは五弗化ヒ素など
をドーピングすることにより102〜103s/cmもの
高い電導度を示す(例えばシンセテイツクメタル
ズ(Synthetic Metals)第1巻2号101頁
(1979/1980年参照)こと、充放電特性が優れて
いることから二次電池の電極材料として検討され
ているばかりでなく、光の吸収特性が太陽光のそ
れに近いことから太陽電池材料としても検討され
ている。しかしながら、ポリアセチレンはそれ自
体酸化され易く、またドーピングしたポリアセチ
レンは湿気に対しても極めて敏感であるという欠
点を持つている。 一方、ポリチオフエンはその共役構造がシス型
ポリアセチレンに類似し、硫黄原子を含むという
その特異的な電子構造の故に、電導性材料として
或いは電池電極材料として検討されているのみな
らず、ドーピング状態での変色を利用したエレク
トロクロミツク材料としても検討されている。例
えば、エー・エム・ドルイ(A.M.Druy)等は
2,2′―ビチニルを電気化学的に重合すると、重
合体が酸化状態〜還元状態において、青色〜赤色
と変色し、これが可逆的であることを用いて、エ
レクトロクロミツク材料として有用であると報告
している(ジヤーナル・ド・フイジーク(J.de
Physique)第44巻6号、C3―595頁(1983年))。 発明の目的 本発明者らは上記諸点に鑑み鋭意検討した結
果、イソチアナフテン構造を有する重合体が空気
中においても極めて安定な化合物であること、繰
返し使用が十分可能な程安定に酸化又は還元状態
で可逆的に変色し得るものであり、通常のドーピ
ング剤により容易に10-2s/cmより高い電導度を
有する新規な重合体であることを見出して本発明
を達成した。 発明の構成及び作用 即ち本発明に係る重合体は一般式
[Formula] (In the formula, R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 5 carbon atoms, X - represents an electrolyte ion, and y represents the proportion of anions per mole of monomer. n is a number from 0.01 to 1 representing the degree of polymerization, and n is a number from 5 to 500 representing the degree of polymerization). The polymers can be used in the electrical and electronic industry as electrodes, electrochromic display elements, solar cell production, electrical connections, electromagnetic radiation fixing and converting devices and reversible redox systems. Conventional Technology In recent years, there has been remarkable progress in reducing the weight, thickness, and size of electrical and electronic equipment, and there is a strong desire to make the various conductive material elements used in these devices lighter, thinner, and smaller. Not only are there things;
There are strong expectations for the emergence of new and better materials. In order to meet these demands or expectations, new conductive polymers are being actively developed. For example, polyacetylene exhibits a high electrical conductivity of 10 2 to 10 3 s/cm by doping with iodine or arsenic pentafluoride (for example, Synthetic Metals, Vol. 1, No. 2, p. 101 (1979/1980 It is not only being considered as an electrode material for secondary batteries due to its excellent charging and discharging characteristics (see 2010), but also as a material for solar cells because its light absorption characteristics are similar to those of sunlight. However, polyacetylene itself has the disadvantage of being easily oxidized, and doped polyacetylene is extremely sensitive to moisture.On the other hand, polythiophene has a conjugated structure similar to cis-type polyacetylene, and has a sulfur atom. Because of its unique electronic structure, it is being considered not only as a conductive material or a battery electrode material, but also as an electrochromic material that utilizes discoloration in a doped state. - AMDruy et al. used the fact that when 2,2'-bitinyl is electrochemically polymerized, the polymer changes color from blue to red in the oxidized state to the reduced state, and that this is reversible. It has been reported that it is useful as an electrochromic material (J. de Physics).
Physique) Vol. 44, No. 6, p. C3-595 (1983)). Purpose of the Invention As a result of intensive studies in view of the above points, the present inventors found that a polymer having an isothianaphthene structure is an extremely stable compound even in the air, and that it can be oxidized or reduced sufficiently stably to enable repeated use. The present invention has been achieved by discovering that the polymer is a novel polymer that can reversibly change color under certain conditions and has an electrical conductivity higher than 10 -2 s/cm that can easily be used with conventional doping agents. Structure and operation of the invention That is, the polymer according to the present invention has the general formula

【式】及び/又は[Formula] and/or

【式】 (式中、R1及びR2はそれぞれ独立に水素又は炭
素数1〜5の炭化水素基を表わし、X-は電解質
の陰イオンを表わし、yはモノマー1モル当りの
陰イオンの割合を表わす0.01〜1の数であり、n
は重合度を表わす5〜500の数である)で表わさ
れるイソチアナフテン構造単位を、好ましくは
0.1〜100モル%含有する重合体である。 本発明に係る重合体は種々の重合方法によつて
容易に合成することができる。 例えば、下記一般式 で表わされる1,3―ジヒドロイソチアナフテン
―2―オキシドもしくはその誘導体を濃硫酸のご
とき、脱水及び酸化作用をもつ溶媒中で反応させ
ることによつて所望の重合体を得ることができ
る。 さらには例えば一般式aで表わされる化合物
をアルミナ上で脱水昇華させて得られる一般式 で表わされるイソチアナフテンもしくはその誘導
体を(1)電解質の存在下、非プロトン性溶媒中で電
気化学的に重合させる、(2)一般式bで表わされ
る化合物を溶媒の存在下もしくは不在下にカチオ
ン重合させ、得られるジヒドロ型ポリマーを酸化
剤に作用させることにより、脱水素する、(3)一般
式bで表わされる化合物を酸化重合する等の方
法によつて所望の重合体を得ることができる。こ
れらの両者を共重合させる際には任意の割合(例
えば0.1〜99.9モル%)で含む重合体を得ること
ができる。 前記単量体の重合に際し用いられる溶媒はそれ
ぞれの重合方法によつて適当に選定することがで
き、特に限定はない。一般的に言えば、一般式
bで示されるイソチアナフテンもしくはその誘導
体を電解質の存在下に電気化学的に重合する場合
には非プロトン性溶媒、例えばアセトニトリル、
ベンゾニトリル、プロピオニトリル、ジオキサ
ン、テトラヒドロフラン、スルホラン、プロピレ
ンカーボネートなどをあげることができる。ま
た、一般式bで示されるイソチアナフテンもし
くはその誘導体をカチオン重合する場合にはジク
ロルメタン、クロロホルム、四塩化炭素、ジクロ
ルエタン、テトラフロルエタン、ニトロメタン、
ニトロエタン、ニトロベンゼン、二硫化炭素など
のごとき溶媒をあげることができる。更に一般式
aで示されるジヒドロイソチアナフテン―2―
オキシドもしくはその誘導体を脱水重合する場合
には濃硫酸、ポリリン酸などの溶媒を使用するこ
とができる。また一般式bで示されるイソチア
ナフテンもしくはその誘導体を酸化付加重合する
場合にはカチオン重合で用いる溶媒とフリーデル
クラフツ型触媒とを組合せて用いればよい。 また前記単量体の重合に際し用いられる重合温
度は、それぞれの重合方法によつて定められるも
のであり特に定めないが一般には−80℃〜+200
℃の温度範囲で重合するのが望ましい。重合時間
は重合方法及び重合温度、単量体の構造等によつ
て定められるものであるが通常0.25時間〜200時
間で重合するのが望ましい。 前記一般式a及びbで表わされる単量体化
合物は公知方法で合成することができ、例えばエ
ム・ピー・キヤバ(M.P.Cava)等のジヤーナ
ル・オブ・アメリカン・ケミカル・ソサエテイー
(J.Am.Chem.Soc.)第81巻4266頁(1959年)及
び同じくエム・ピー・キヤバ等のジヤーナル・オ
ブ・オーガニツク・ケミストリー(J.Org.
Chem.)第36巻25号3932頁(1971年)に報告され
ている方法で合成することができる。更に、中間
体の1,3―ジヒドロイソチアナフテンの収率を
上げるため、リチウムトリエチルボロンハイドラ
イドと硫黄を反応させて得られる可溶化硫化リチ
ウムを用いる方法がジエー・エー・グラデイス
(J.A.Gradysz)等のテトラヒドロンレターズ
(Tetrahadron.Lett.)第35巻2329頁(1979年)に
提案されている。 発明の効果 このようにして得られた本発明に係る重合体は
全く新規な構造を有するものであり、ドーピング
により極めて高い電導度を示すばかりでなく、電
気化学的にも繰返し酸化還元を行うことが可能で
且つそれぞれの状態において固有の色を有する。
本発明のポリ(イソチアナフテン)は更に十分な
酸化状態においてすら透明性を失わないという極
めて興味のある重合体である。従つて、本発明に
係るイソチアナフテン構造を有する重合体は、電
気・電子工業の分野において電極、エレクトロク
ロミツク表示素子、太陽電池、電気的接続、電磁
線の固定・変換装置、ならびに可逆的な酸化還元
系として極めて有用なものである。 実施例 以下に実施例により本発明を更に詳しく説明す
るが、本発明の技術的範囲をこれらの実施例によ
つて限定するものでないことはいうまでもない。
なお、以下の例において、NMRスペクトルは
TMSを内部標準としてヴアリアン社EM―360A
スペクトロメーターを用いて 1H―NMRを測定
し、赤外吸収スペクトルはパーキンエルマー社製
モデル281型装置を用いて測定した。 実施例 1 1,3―ジヒドロイソチアナフテン―2―オキ
シドを濃硫酸中で処理することによるポリイソ
チアナフテンの製造 (a) 1,3―ジヒドロイソチアナフテン―2―オ
キシドの合成 リチウムトリエチルボロンハイドライドの1
モル/溶液200mlに室温でシユレンクフラス
コに入れた粉末硫黄3.21g(0.1モル)を窒素気
流下で加えた。反応が直ちに起り、硫黄粉末が
溶解し、黄色の懸濁液が得られた。この溶液は
微量の空気に触れると淡黄色の透明な溶液とな
つた。 一方、別に滴下ロート、撹拌機、温度計及び
窒素導入口を付した2四ツ口フラスコに窒素
雰囲気下でo―キシリレンジブロミド26.4g
(0.1モル)を無水のテトラヒドロフラン1に
溶解しておき、これに撹拌しながら上記硫化リ
チウムのテトラヒドロフラン溶液を室温で1.5
時間かけて滴下した。その後、テトラヒドロフ
ランを減圧で留去した後、更に残留物を蒸留し
て74〜76℃/3mmHgの無色の1,3―ジヒド
ロイソチアナフテン10.9g(収率80%)を得た。
このものの赤外吸収スペクトルは3060、3026、
1582、1485cm-1にフエニル基に基づく吸収、
2910、2840、1450cm-1にメチレン基に基づく吸
収、1195cm-1に1,2―置換フエニルの面内変
角吸収、760cm-1にo―置換フエニルの吸収、
740cm-1にサルフアイドの吸収を示した。また
TMSを内部標準とした重水素化クロロホルム
中の核磁気共鳴スペクトル( 1H―NMR)分
析結果は以下の通りであつた。 4.22(S、4H)、7.20(m、4H) この化合物は非常に不安定であり、遮光・密
栓保存しても黄色から黒色に変化した。 次いで得られた1,3―ジヒドロイソチアナ
フテンを予め用意したメタヨウ素酸ナトリウム
18.6g(0.086モル)を溶解した450mlの50%メタ
ノール水溶液に加え、室温で12時間撹拌した。
生成した沈殿をろ別し、50mlのメタノールで残
査を洗浄し母液に合した。ろ液を減圧下濃縮
し、生成した黄白色固体を酢酸エチル/シクロ
ヘキサンから再結晶して僅かに黄色がかつた結
晶を得た。この結晶の融点は87〜89℃であつ
た。 得られた結晶を更に酢酸エチル/シクロヘキ
サンから再結晶したところ、90〜91℃の融点を
示した。この結晶の赤外吸収スペクトルはイソ
チアナフテンの吸収の他に1035cm-1にスルホキ
サイドの強い吸収が認められ、740cm-1のサル
フアイドの吸収は消滅した。またTMSを部標
準とした重水素化クロロホルム中での 1H―
NMRスペクトルは以下の通りであつた。 4.11(d、2H)、4.30(d、2H)、7.20(m、
4H) 上記結晶の元素分析結果は次の通りであつ
た。 実測値 C:63.08% H:5.15% S:20.87% 計算値(C8H8SOとして) C:63.16% H:5.26% S:21.05% (b) 1,3―ジヒドロイソチアナフテン―2―オ
キシド(前記式aでR1=R2=H)からのポ
リイソチアナフテンの合成 1,3―ジヒドロイソチアナフテン―2―オ
キシド500mg(3.29ミリモル)を1mlの濃硫酸
に加えたところ反応系は直ちに暗赤色となつ
た。室温で70時間放置し、殆んど固化した系を
400mlのメタノール中に注ぎ、生成した褐色の
沈殿を遠心分離し、次いでよく水で洗浄し、60
℃で1夜真空乾燥した。重合体をソツクスレー
抽出器に入れ塩化メチレン、次いでクロルベン
ゼンで、それぞれ、12時間ソツクスレー抽出
し、203mgのクロルベンゼン不溶部を得た。こ
の重合体の赤外吸収スペクトルは第1図に示す
通りであつた。 元素分析結果はC:67.26%、H:3.12%、
S:23.95%であり、繰返し単位を下記構造式 と推定した時の計算値(C:67.19%、H:
3.32%、S:23.54%)とよく一致した。 この重合体の室温における電導度(σRT)を
4端子式の電導度測定器を用いて測定したとこ
ろσRT=2×10-2s/cmであつた。 実施例 2 イソチアナフテンをカチオン重合して得られる
ポリジヒドロイソチアナフテンを酸化剤を用い
て酸化することによるポリイソチアナフテンの
製造 (a) イソチアナフテン(一般式bでR1=R2
H)の合成 実施例1(a)に基づき合成した1,3―ジヒド
ロイソチアナフテン―2―オキシド300mg
(1.97ミリモル)、中性アルミナ450mg(4.41ミ
リモル)を乳鉢中でよく粉砕混合した後、昇華
器に入れ、油浴上で減圧で加熱した。110℃/
20mmHgで昇華器冷却部底部にイソチアナフテ
ンの白色針状結晶250mg(1.87ミリモル)が得
られた。 (b) ポリジヒドロイソチアナフテンの製造 このモノマーを直ちに精製脱気した5mlの塩
化メチレンに溶解し、室温にてトリフルオロ酢
酸10mgを加え、1夜放置した。反応液を50mlの
メタノール中に注ぐと、白色沈殿が得られた。
この重合体はクロロホルム、クロルベンゼン、
テトラヒドロフラン、N,N―ジメチルホルム
アミドに可溶であつた。重合体の赤外吸収スペ
クトルは第2図に、そして 1H―NMRスペク
トルは第3図に示した通りであつた。 更にこの重合体のテトラヒドロフラン溶液の
ゲルパーミエーシヨンクロマトグラフ
(Varian5000)から分子量はポリスチレン換算
で2000であることが確かめられた。 実施例1と同様にして、室温における電導度
を測定したところσRT=10-8s/cm以下であつ
た。また元素分析結果は次の通りであつた。 実測値 C:71.27% H:4.54% S:23.96% 計算値((C8H6S)nとして) C:71.64% H:4.48% S:23.88% 上記方法において、トリフルオロ酢酸の代わり
にメタンスルホン酸を重合開始剤として用いた場
合も同様に重合体が得られ、その赤外吸収スペク
トルは第2図のものと完全に一致した。 これらの重合体を5mlのクロルベンゼンに溶解
し、2倍モルのクロラニルで処理したところ黒色
沈殿が生成した。この重合体の室温における電導
度σRTは9×10-2s/cmであり、ヨウ素をドープし
たものの電導度はσRT9×10-1s/cmであつた。こ
のものの赤外吸収スペクトルは第4図に示した通
りであつた。ドープ後の重合体は室温下空気中に
1週間放置しても、その電導度に変化はなかつ
た。 クロラニルの代わりに1.1倍量のN―クロルコ
ハク酸イミドを用い、5mlのクロロホルムを用い
た場合に得られた重合体も第4図と全く同じ赤外
吸収スペクトルを示す黒色沈殿が得られた。この
重合体の電導度σRTは2.6×10-1s/cmであつた。 実施例 3 イソチアナフテンを酸化重合することによるポ
リイソチアナフテンの一段重合 上記実施例2(a)で記載した方法でイソチアナフ
テンを合成した。イソチアナフテン250mg、無水
塩化メチレン5ml、無水塩化アルミニウム134mg
及び無水塩化第二銅134mgを温度35〜37℃で1時
間反応させたところ、黒色沈殿が生成した。これ
を12時間この温度に保持した後、沈殿物を塩酸酸
性メタノール溶液で処理した後、十分水洗し、乾
燥した。乾燥重合体を熱メタノール、熱塩化メチ
レン、次いで熱クロルベンゼンで油出し、205mg
の黒色重合体を得た。その赤外吸収スペクトルは
第4図に完全に一致した。また電導度σRTは2.8×
10-2s/cmであつた。 実施例 4 イソチアナフテンの電気化学的重合によるポリ
イソチアナフテンの重合 下記表1に示した電解質及びイソチアナフテン
を所定濃度で極性溶媒に溶解したものを電解液と
し、白金板を試料極、Al板を対極、Li/Li+を参
照極とし、0.75mA/cm2の定電流密度で所定時間
室温で電気化学的に重合させたところ、正極の白
金板上にポリイソチアナフテンのフイルムが生成
した。尚、前記溶液は少くとも30分間乾燥アルゴ
ンでバブリングすることにより脱酸素処理をした
ものを用いた。重合中の最大電圧は4.5V(vsLi/
Li+)であつた。 生成したフイルムをアセトニトリル次いで塩化
メチレンで十分洗浄した後、真空乾燥して電気的
性能を測定した。得られた結果は以下の表1に示
す通りであつた。
[Formula] (In the formula, R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 5 carbon atoms, X - represents an anion of the electrolyte, and y represents the amount of anion per mole of monomer. It is a number from 0.01 to 1 that represents the ratio, and n
is a number from 5 to 500 representing the degree of polymerization), preferably an isothianaphthene structural unit represented by
It is a polymer containing 0.1 to 100 mol%. The polymer according to the present invention can be easily synthesized by various polymerization methods. For example, the following general formula The desired polymer can be obtained by reacting 1,3-dihydroisothianaphthene-2-oxide represented by the formula or its derivative in a solvent having dehydrating and oxidizing effects, such as concentrated sulfuric acid. Furthermore, for example, the general formula obtained by dehydrating and sublimating a compound represented by general formula a on alumina (1) Electrochemically polymerizing isothianaphthene or its derivative represented by (1) in the presence of an electrolyte in an aprotic solvent; (2) polymerizing a compound represented by general formula b in the presence or absence of a solvent; The desired polymer can be obtained by cationic polymerization and dehydrogenation by exposing the resulting dihydro polymer to an oxidizing agent, or (3) oxidative polymerization of a compound represented by general formula b. can. When copolymerizing both of these, a polymer containing any proportion (for example, 0.1 to 99.9 mol%) can be obtained. The solvent used in the polymerization of the monomers can be appropriately selected depending on the respective polymerization method, and is not particularly limited. Generally speaking, when the isothianaphthene represented by the general formula b or its derivative is electrochemically polymerized in the presence of an electrolyte, an aprotic solvent such as acetonitrile,
Examples include benzonitrile, propionitrile, dioxane, tetrahydrofuran, sulfolane, and propylene carbonate. In addition, in the case of cationic polymerization of isothianaphthene or its derivative represented by general formula b, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, tetrafluorethane, nitromethane,
Solvents such as nitroethane, nitrobenzene, carbon disulfide, etc. may be mentioned. Furthermore, dihydroisothianaphthene-2- represented by general formula a
When dehydrating and polymerizing oxides or derivatives thereof, solvents such as concentrated sulfuric acid and polyphosphoric acid can be used. Further, when carrying out oxidative addition polymerization of the isothianaphthene represented by the general formula b or its derivative, a combination of a solvent used in cationic polymerization and a Friedel-Crafts type catalyst may be used. Furthermore, the polymerization temperature used in polymerizing the monomers is determined by each polymerization method and is not particularly determined, but is generally between -80℃ and +200℃.
Preferably, the polymerization is carried out in the temperature range of .degree. The polymerization time is determined by the polymerization method, polymerization temperature, monomer structure, etc., but it is usually desirable to polymerize for 0.25 to 200 hours. The monomer compounds represented by the above general formulas a and b can be synthesized by known methods, for example, by the Journal of American Chemical Society (J.Am.Chem. Soc.) Vol. 81, p. 4266 (1959) and Journal of Organic Chemistry (J.Org.), also published by M.P. Kyaba et al.
Chem.) Vol. 36, No. 25, p. 3932 (1971). Furthermore, in order to increase the yield of the intermediate 1,3-dihydroisothianaphthene, a method using solubilized lithium sulfide obtained by reacting lithium triethyl boron hydride with sulfur has been proposed by JA Gradysz and others. It is proposed in Tetrahadron Letters, Vol. 35, p. 2329 (1979). Effects of the Invention The thus obtained polymer according to the present invention has a completely new structure, and not only exhibits extremely high conductivity through doping, but also undergoes repeated oxidation-reduction electrochemically. and has a unique color in each state.
The poly(isothianaphthenes) of the present invention are also very interesting polymers in that they do not lose their transparency even under fully oxidized conditions. Therefore, the polymer having an isothianaphthene structure according to the present invention can be used in the electrical and electronic industries as electrodes, electrochromic display elements, solar cells, electrical connections, electromagnetic radiation fixing and converting devices, and reversible It is extremely useful as a redox system. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but it goes without saying that the technical scope of the present invention is not limited by these Examples.
In addition, in the following example, the NMR spectrum is
Varian EM-360A with TMS as internal standard
1 H-NMR was measured using a spectrometer, and infrared absorption spectra were measured using a model 281 device manufactured by PerkinElmer. Example 1 Production of polyisothianaphthene by treating 1,3-dihydroisothianaphthene-2-oxide in concentrated sulfuric acid (a) Synthesis of 1,3-dihydroisothianaphthene-2-oxide Lithium triethylboron Hydride 1
3.21 g (0.1 mol) of powdered sulfur in a Schulenk flask at room temperature was added to 200 ml of the mol/solution under a nitrogen stream. A reaction occurred immediately, the sulfur powder dissolved and a yellow suspension was obtained. When this solution was exposed to a small amount of air, it turned into a pale yellow transparent solution. Separately, 26.4 g of o-xylylene dibromide was placed in a 2-four-necked flask equipped with a dropping funnel, stirrer, thermometer, and nitrogen inlet under a nitrogen atmosphere.
(0.1 mol) was dissolved in 1 mol of anhydrous tetrahydrofuran, and while stirring, 1.5 mol of the above tetrahydrofuran solution of lithium sulfide was added at room temperature.
It dripped over time. Thereafter, tetrahydrofuran was distilled off under reduced pressure, and the residue was further distilled to obtain 10.9 g (yield: 80%) of colorless 1,3-dihydroisothianaphthene having a temperature of 74 to 76°C/3 mmHg.
The infrared absorption spectrum of this product is 3060, 3026,
Absorption based on phenyl group at 1582, 1485 cm -1 ,
Absorption based on methylene group at 2910, 2840, and 1450 cm -1 , in-plane bending absorption of 1,2-substituted phenyl at 1195 cm -1 , absorption of o-substituted phenyl at 760 cm -1 ,
Absorption of sulfide was observed at 740 cm -1 . Also
The results of nuclear magnetic resonance spectrum ( 1 H-NMR) analysis in deuterated chloroform using TMS as an internal standard were as follows. 4.22 (S, 4H), 7.20 (m, 4H) This compound was extremely unstable and changed from yellow to black even when stored in a tightly closed container protected from light. Next, the obtained 1,3-dihydroisothianaphthene was mixed with sodium metaiodate prepared in advance.
It was added to 450 ml of 50% methanol aqueous solution in which 18.6 g (0.086 mol) was dissolved, and stirred at room temperature for 12 hours.
The generated precipitate was filtered off, and the residue was washed with 50 ml of methanol and combined with the mother liquor. The filtrate was concentrated under reduced pressure, and the resulting yellow-white solid was recrystallized from ethyl acetate/cyclohexane to obtain slightly yellowish crystals. The melting point of this crystal was 87-89°C. When the obtained crystals were further recrystallized from ethyl acetate/cyclohexane, they showed a melting point of 90-91°C. In the infrared absorption spectrum of this crystal, in addition to the absorption of isothianaphthene, strong absorption of sulfoxide was observed at 1035 cm -1 , and the absorption of sulfoxide at 740 cm -1 disappeared. In addition, 1 H− in deuterated chloroform with TMS as standard.
The NMR spectrum was as follows. 4.11 (d, 2H), 4.30 (d, 2H), 7.20 (m,
4H) The results of elemental analysis of the above crystal were as follows. Actual value C: 63.08% H: 5.15% S: 20.87% Calculated value (as C 8 H 8 SO) C: 63.16% H: 5.26% S: 21.05% (b) 1,3-dihydroisothianaphthene-2- Synthesis of polyisothianaphthene from oxide (R 1 = R 2 = H in formula a above) When 500 mg (3.29 mmol) of 1,3-dihydroisothianaphthene-2-oxide was added to 1 ml of concentrated sulfuric acid, a reaction system was formed. immediately turned dark red. Leave the almost solidified system at room temperature for 70 hours.
Pour into 400 ml of methanol, centrifuge the resulting brown precipitate, then wash well with water and incubate for 60 ml.
It was vacuum dried at ℃ overnight. The polymer was placed in a Soxhlet extractor and Soxhlet extracted with methylene chloride and then with chlorobenzene for 12 hours to obtain 203 mg of chlorobenzene insoluble portion. The infrared absorption spectrum of this polymer was as shown in FIG. Elemental analysis results are C: 67.26%, H: 3.12%,
S: 23.95%, and the repeating unit has the following structural formula The calculated value when estimated (C: 67.19%, H:
3.32%, S: 23.54%). The electrical conductivity (σ RT ) of this polymer at room temperature was measured using a 4-terminal conductivity meter and found to be σ RT =2×10 −2 s/cm. Example 2 Production of polyisothianaphthene by oxidizing polydihydroisothianaphthene obtained by cationic polymerization of isothianaphthene using an oxidizing agent (a) Isothianaphthene (R 1 = R 2 in general formula b) =
Synthesis of H) 300 mg of 1,3-dihydroisothianaphthene-2-oxide synthesized based on Example 1(a)
(1.97 mmol) and 450 mg (4.41 mmol) of neutral alumina were thoroughly ground and mixed in a mortar, placed in a sublimator, and heated under reduced pressure on an oil bath. 110℃/
At 20 mmHg, 250 mg (1.87 mmol) of white needle-like crystals of isothianaphthene were obtained at the bottom of the sublimator cooling section. (b) Production of polydihydroisothianaphthene This monomer was immediately dissolved in 5 ml of purified and degassed methylene chloride, 10 mg of trifluoroacetic acid was added at room temperature, and the mixture was left overnight. When the reaction solution was poured into 50 ml of methanol, a white precipitate was obtained.
This polymer contains chloroform, chlorobenzene,
It was soluble in tetrahydrofuran and N,N-dimethylformamide. The infrared absorption spectrum of the polymer is shown in Figure 2, and the 1 H-NMR spectrum is shown in Figure 3. Furthermore, gel permeation chromatography (Varian 5000) of a solution of this polymer in tetrahydrofuran confirmed that the molecular weight was 2000 in terms of polystyrene. When the conductivity at room temperature was measured in the same manner as in Example 1, it was found to be σ RT =10 −8 s/cm or less. The results of elemental analysis were as follows. Actual value C: 71.27% H: 4.54% S: 23.96% Calculated value ((C 8 H 6 S) n) C: 71.64% H: 4.48% S: 23.88% In the above method, methane was used instead of trifluoroacetic acid. A polymer was similarly obtained when sulfonic acid was used as a polymerization initiator, and its infrared absorption spectrum completely matched that shown in FIG. When these polymers were dissolved in 5 ml of chlorobenzene and treated with twice the molar amount of chloranil, a black precipitate was formed. The conductivity σ RT of this polymer at room temperature was 9×10 −2 s/cm, and the conductivity of the polymer doped with iodine was σ RT 9×10 −1 s/cm. The infrared absorption spectrum of this product was as shown in FIG. Even when the doped polymer was left in the air at room temperature for one week, there was no change in its electrical conductivity. When 1.1 times the amount of N-chlorosuccinimide was used instead of chloranil and 5 ml of chloroform was used, a black precipitate was obtained that showed exactly the same infrared absorption spectrum as shown in FIG. 4. The electrical conductivity σ RT of this polymer was 2.6×10 −1 s/cm. Example 3 One-step polymerization of polyisothianaphthene by oxidative polymerization of isothianaphthene Isothianaphthene was synthesized by the method described in Example 2(a) above. Isothianaphthene 250mg, anhydrous methylene chloride 5ml, anhydrous aluminum chloride 134mg
When 134 mg of anhydrous cupric chloride were reacted at a temperature of 35 to 37° C. for 1 hour, a black precipitate was generated. After maintaining this temperature for 12 hours, the precipitate was treated with an acidic methanol solution of hydrochloric acid, thoroughly washed with water, and dried. The dried polymer was extracted with hot methanol, hot methylene chloride, and then hot chlorobenzene to give 205 mg.
A black polymer was obtained. Its infrared absorption spectrum completely matched that shown in FIG. Also, the conductivity σ RT is 2.8×
It was 10 -2 s/cm. Example 4 Polymerization of polyisothianaphthene by electrochemical polymerization of isothianaphthene The electrolyte shown in Table 1 below and isothianaphthene dissolved in a polar solvent at predetermined concentrations were used as the electrolyte, and the platinum plate was used as the sample electrode. Using an Al plate as a counter electrode and Li/Li + as a reference electrode, electrochemical polymerization was performed at room temperature for a predetermined time at a constant current density of 0.75 mA/cm 2 , and a polyisothianaphthene film was formed on the platinum plate as the positive electrode. generated. The solution used had been deoxidized by bubbling with dry argon for at least 30 minutes. The maximum voltage during polymerization was 4.5V (vsLi/
Li + ). The produced film was thoroughly washed with acetonitrile and then methylene chloride, dried in vacuum, and its electrical performance was measured. The results obtained were as shown in Table 1 below.

〔エレクトロクロミツク材料実験〕[Electrochromic material experiment]

実施例4―2で白金板の代わりに正極として酸
化インジウムを蒸着させた導電ガラスを用いて、
電気化学的に導電ガラス上に重合体を析出させ
た。この重合体で被覆された導電ガラスを負極
に、白金線を正極に、参照電極として標準カロメ
ル電極を用い、室温でテトラブチルアンモニウム
パークロレートの292ミリモル/のアセトニト
リル溶液中でポーラログラフイツクアナライザー
(EG&G社Model 174A型)によりサイクリツク
ボルタムを測定した。加電圧掃引速度は20mV/
sec、掃引範囲は+1.0V〜−0.7V(対標準カロメ
ル電極)とした。得られた結果は第5図に示した
通りであつた。 第5図に示すように酸化ピークは+0.58V、還
元ピークは−0.5Vで、また−0.7V〜+0.6Vの範
囲は濃青色であり+0.6〜+1.0Vの範囲は、極め
て透明な薄い緑色に変色した。このことは濃青色
の状態は重合体が中性の状態であり、酸化ドーピ
ングの状態で透明性の高い緑色であることを示し
ている。 〔電池実験〕 実施例4―1で得たフイルムを巾1cm長さ3cm
に切り、一端を導電性接着剤を用い白金線に接着
したものを同寸法のリチウム箔の両面に1mm厚の
多孔質ポリプロピレン製隔膜を介して電解液を十
分含浸出来るようにして配置し、0.5モル/の
リチウムパークロレートのプロピレンカーボネー
ト溶液に深さ2cmに浸漬した。このようにして作
製したポリ(イソチアナフテン)を正極、リチウ
ム箔を負極とする電池を用い、アルゴン雰囲気
下、2.0mA/cm2で30分間充電を行つた。充電終了
後直ちに2.0mA/cm2で放電を行ない、電池電圧が
1Vになつたところで再度前記と同じ条件で充電
を行う。充電―放電の繰返し試験を行つたとこ
ろ、充・放電効率が50%に低下するまでの充放電
の繰り返し回数は590回を記録した。また繰返し
回数5回目の充・放電効率は99%であつた。さら
に充電したままでの48時間後の自己放電率は3.2
%であつた。 実施例 6 電気化学的重合によるポリ(ジヒドロイソチア
ナフテン)「テトラヘドロン(Tetrahedron)」
1979年35巻2239頁、ジエー・エー・グラデイスツ
(J.A.Gladysz)等;「ジヤーナル オブ アメリ
カン ケミカル ソサイアテイ(J.Amer.Chem.
Soe.)」1959年81巻4266頁、エム・ピー・カーバ
(M.P.Cava)等;「ジヤーナル オブ オーガニ
ツク ケミストリー(J.Org.Chem.)」1971年36
巻3932頁、エム・ピー・カーバ等の文献に記載さ
れている手順によつてイソチアナフテン単量体を
作り、すぐに使用した。この単量体を二電極、隔
室電解槽において電気化学的に酸化してポリ(ジ
ヒドロイソチアナフテン)重合体を得た。白金板
を陽極として用い、酸化黒鉛を陰極として用い
た。重合に用いた溶液は無色透明で、アセトニト
リル中にイソチアナフテン0.23Mを電解質である
Bu4NPF6 0.30Mと共に含有するものであつた。
アセトニトリル(マリンクロツト
(Mallinckrodt)より購入)は更に精製せずに直
接使用した。直列の1.5V電池を電源として用い
た。 全ての実験を乾燥N2下で行つた。この電解槽
に4.5Vを接続するとすぐに、陽極の付近に多量
の白色粉末が現れた。10分後に電池を切つてとめ
た。ポリ(ジヒドロイソチアナフテン)であるこ
の白色粉末を吸引ろ過により分離し、アセトニト
リル及びジエチルエーテルで洗浄し、真空下で乾
燥させた。生成した固体をテトラヒドロフラン―
H2Oから再沈させて精製し、元素分析を行つた。 新に調製したイソチアナフテンの試料を、
Bu4NClO4又はBu4NBF4を支持電解質としてか
つ酸化スズ被覆ガラス(TOG)を陽極として用
いたH型電解槽の陽極室で電気分解したところ、
陽極室は多量の白色沈殿(WP)で一杯になつ
た。注意深く観察したところ、陽極は初めに(瞬
間的に)非常に薄い青色フイルムでおおわれ、す
ぐ後にWPの生成が始まることがわかつた。WP
の外観は電極材料、溶媒又は温度に関係しなかつ
た。単離、特性決定(赤外、元素分析)及び化学
操作(下記参照)によりWPがポリ(ジヒドロイ
ソチアナフテン)であることが証明された。チオ
フエンは上記の条件下で部分酸化した(ドーピン
グした)重合体フイルムとなり、一方、イソチア
ナフテンは、極めて薄い青色フイルム(ドープし
たポリ(イソチアナフテン)と思われる)を付着
した後に、ポリ(ジヒドロイソチアナフテン)に
変換されることに注目すべきである。この驚くべ
き観察に対する唯一の合理的な説明はポリ(イソ
チアナフテン)がイソチアナフテンのカチオン重
合の開始剤として働くというものであつた。この
仮定を調べるために、新に調製したイソチアナフ
テンの溶液を通常のカチオン開始用触媒(ブレン
ステツド及びルイス酸)に露呈し、かつ全てがイ
ソチアナフテンを種々の程度に重合させることを
見出した。しかし、かけ離れて最も興味のある結
果は塩化メチレン中の硫酸の場合であつた。これ
らの条件下でイソチアナフテンは水和硫酸をドー
プした暗青色粉末状のポリ(イソチアナフテン)
に転化された。酸が触媒としてのみならず酸化剤
としても働いたことは明らかである。上記の仮定
について強固にする「収斂性の」試験は、クロラ
ニル脱水素の生成物がポリ(ジヒドロイソチアナ
フテン)であり、かつH2SO4重合の生成物が同
じ赤外スペクトルを示したことであつた。この観
察に対する唯一の合理的な説明は、ドープしたポ
リ(イソチアナフテン)の赤外スペクトルが伝導
電子による吸収によつて支配され、かつ分子内振
動による吸収がスペクトルの弱い特徴になるとい
うことである。追加の対照実験の無い場合に、こ
の電解質効果を説明するための詳細な機構の推測
をすることは困難である。 H2SO4がジヒドロイソチアナフテン―S―オ
キシドを直接ポリ(イソチアナフテン)・
(H2SO4)x・(H2O)yに転化し得ることを考
え出した。固体のジヒドロイソチアナフテン一S
―オキシドを98%H2SO4に加えて、事実、所望
の部分ドーピングしたポリ(イソチアナフテン)
を生成した(下記の図解を参照のこと)。 加えて、7,7,8,8―テトラシアノキノジ
メタンはカチオン重合用触媒として使用すること
ができる。しかし、生成物はドーピングしたその
他のポリ(イソチアナフテン)化合物のいずれよ
りも高い電導度を示さなかつた。このことは、お
そらく、受容体が固体の導電率に含まれていない
ことを示す。その観察に対して2つの理由を挙げ
ることができ、受容体分子は、おそらく、小さな
結晶領域内に組み込まれておらず及び/又は完全
な電荷移動があるものと思われる。 上記の結果はポリ(ジヒドロイソチアナフテ
ン)の生成方法の性質を説明し、かつポリ(イソ
チアナフテン)を化学合成する正しい手順を見つ
けることを可能にするが、まだ、イソチアナフテ
ンの電気化学的重合に入り込むものではない。こ
れは、「発生期の」ドーピングしたポリ(イソチ
アナフテン)によるポリ(ジヒドロイソチアナフ
テン)生成の触媒作用を妨げる方法を見出すこと
を必要とした。反応媒質がイソチアナフテンより
も求核性の種を含有する場合には、生長段階が妨
げられることがわかつた。電気分解する前に陽極
室にヨウ化物を加えた試験実験は、ヨウ化物が電
気分解条件下で簡単に酸化されることから効果を
上げなかつた。しかし、LiBr、Bu4NBr又は好ま
しくはPh4AsClによる電気分解では白金又は
TOG上に優れたフイルムを生成した。この観察
に対する唯一の合理的な説明は、ドーピングした
ポリ(イソチアナフテン)の赤外スペクトルが伝
導電子による吸収によつて支配され、かつ分子内
振動による吸収がスペクトルの弱い特徴になると
いうことである。追加の対照実験の無い場合に、
この電解質効果を説明するための詳細な機構の推
測をすることは困難である。 分析、(C8H6S)として 計算:C、71.60;H、4.51;S、23.89 実測:C、71.27;H、4.54;S、23.96 この反応の場合、LiBF4及びBu4NClO4を電解
質として用いることができる。 本発明によれば、少くとも3つの異る手順によ
つて準安定なイソチアナフテンを重合させてよい
特性を表わす導電性の高い重合体にすることがで
きる;これらの内の1つは求核性アニオンの存在
においてイソチアナフテンを重合させるポリ(ジ
ヒドロイソチアナフテン)の電気化学的製法を包
含する。更にポリ(イソチアナフテン)がポリチ
オフエンよりも良好な導体であることもわかつ
た。 実施例 7 化学カチオン重合によるポリ(ジヒドロイソチ
アナフテン) 予めP2O5で乾燥させた塩化メチレン10ml中に
イソチアナフテン単量体(396mg、2.96ミリモル)
を溶解した。この溶液にメタンスルホン酸の1滴
を加えると、反応混合物は直ちに無色から赤色に
変化した。この色は90分後にバイオレツト色にな
つた。蒸発によつて塩化メチレンを除いた後に、
残留物をテトラヒドロフランに溶解した。そし
て、この溶液をメタノール中に注入すると、ポリ
(ジヒドロイソチアナフテン)重合体が溶液から
沈殿した。これを遠心分離によつて分離し、真空
下で乾燥させた。赤外スペクトルは上記のポリ
(ジヒドロイソチアナフテン)重合体のものと同
じであつた。 以下の実施例は本発明の好結果の実施について
示すもので発明を制限するつもりではない。 実施例 8 電気化学的重合によるドーピングしたポリ(イ
ソチアナフテン) 重合手順は先にポリ(ジヒドロイソチアナフテ
ン)重合体について実施例6で説明した手順と本
質的に同じであつた。最も重要な点は電解質であ
つた。臭化リチウムを電解質として用いた場合
に、1.5V電池に接続するとすぐにドーピングし
たポリ(イソチアナフテン)重合体の青色フイル
ムを陽極(導電性ガラス)上に生成した。また、
Bu4NBr及びPh4AsClをこの反応用の電解質とし
て使用することもできる。 実施例 9 硫酸を用いた化学的カチオン酸化重合によるド
ーピングしたポリ(イソチアナフテン) 硫酸(5ml)をイソチアナフテン単量体(396
mg、2.96ミリモル)に加えた。単量体の色は、直
ちに、白色から赤色がかつた黒色に変化した。反
応混合物をメタノール400ml中に注入し夜通し撹
拌した後に、ドーピングしたポリ(イソチアナフ
テン)重合体である褐色粉末がこの溶液から沈殿
した。これを遠心分離によつて分離し、かつソツ
クスレー抽出器を用いて塩化メチレン及びクロル
ベンゼンで抽出した後に真空下で乾燥させた。こ
の反応は、また、塩化メチレン中の硫酸の懸濁液
によつても実施することができる。 実施例 10 TCNQ(7,7,8,8―テトラシアノキノジ
メタン)を用いた化学的カチオン酸化重合によ
るドーピングしたポリ(イソチアナフテン) イソチアナフテン単量体(238mg、1.77ミリモ
ル)を塩化メチレン5mlに溶解した。この溶液に
TCNQ数mgを加えた後に、溶液の色は極めてゆ
つくり赤色に変化した。夜通し撹拌した後に、こ
の色は青色がかつた黒色になつた。次に、この溶
液に、更にイソチアナフテン単量体のモル量の2
倍量のTCNQを加えた。これを110℃にまで加熱
し、かつ1時間この温度を保つた。この反応混合
物をメタノール中に注入すると、この溶液から緑
色がかつた黒色の粉末が沈殿した。これをソツク
スレー抽出器を用いてメタノール及びクロルベン
ゼンで洗浄した後に真空下で乾燥させた。 実施例 11 ポリ(ジヒドロイソチアナフテン)からのポリ
(イソチアナフテン) ポリ(ジヒドロイソチアナフテン)重合体を電
気化学的重合によつて作り、熱クロルベンゼンに
溶解した。これは淡褐色の溶液であつた。この溶
液にテトラ―クロロ―p―ベンゾキノン(クロラ
ニル)を加えた。溶液の色は、すぐに、暗緑色に
変化した。この溶液を冷却すると粉末が沈殿し
た。これを吸引ろ過によつて分離し、メタノール
で洗浄し、かつ真空下で乾燥させた。実施例7〜
11に記述した全ての物質は同じ赤外スペクトルを
示した。 以上より、本発明はポリ(イソチアナフテン)
への3つの別経路を提供する: 1 求核性アニオンの存在におけるイソチアナフ
テンの電気化学的重合; 2 カチオン重合触媒の存在におけるイソチアナ
フテン又はジヒドロイソチアナフテン―S―オ
キシドの化学的重合; 3 ポリ(ジヒドロイソチアナフテン)の脱水
素。 電導度測定の予測結果を表にまとめる。ポリ
(イソチアナフテン)のバンド端は、(低いドーピ
ングレベルにおいて薄いフイルムを通る透過率か
ら)〜1eV(1.1μ)であると推定された。これは、
ポリチオフエンのバンド端(〜2eV,620nm)よ
りも1eV程低い。
In Example 4-2, a conductive glass on which indium oxide was vapor-deposited was used as the positive electrode instead of the platinum plate.
The polymer was electrochemically deposited on conductive glass. Using a conductive glass coated with this polymer as a negative electrode, a platinum wire as a positive electrode, and a standard calomel electrode as a reference electrode, a polarographic analyzer (EG&G Co., Ltd.) was used in an acetonitrile solution containing 292 mmol of tetrabutylammonium perchlorate at room temperature. Cyclic voltam was measured using Model 174A). Applied voltage sweep speed is 20mV/
sec, the sweep range was +1.0V to -0.7V (vs. standard calomel electrode). The results obtained were as shown in FIG. As shown in Figure 5, the oxidation peak is +0.58V, the reduction peak is -0.5V, and the range from -0.7V to +0.6V is dark blue, and the range from +0.6 to +1.0V is extremely transparent. It turned a light green color. This shows that the deep blue state is the neutral state of the polymer, and the highly transparent green state in the oxidized doped state. [Battery experiment] The film obtained in Example 4-1 was 1 cm wide and 3 cm long.
One end was glued to a platinum wire using a conductive adhesive, and placed on both sides of a lithium foil of the same size through a 1 mm thick porous polypropylene diaphragm so that the electrolyte could be sufficiently impregnated. It was immersed to a depth of 2 cm in a propylene carbonate solution of mol/l lithium perchlorate. Using the thus prepared battery with poly(isothianaphthene) as the positive electrode and lithium foil as the negative electrode, charging was performed at 2.0 mA/cm 2 for 30 minutes in an argon atmosphere. Immediately after charging, discharge at 2.0mA/cm 2 until the battery voltage reaches
When the voltage reaches 1V, charge again under the same conditions as above. When we conducted a repeated charge-discharge test, we found that the number of charge-discharge cycles required for the charge-discharge efficiency to drop to 50% was 590. Furthermore, the charging/discharging efficiency after the fifth repetition was 99%. Furthermore, the self-discharge rate after 48 hours while remaining charged is 3.2
It was %. Example 6 Poly(dihydroisothianaphthene) “Tetrahedron” by electrochemical polymerization
1979, Vol. 35, p. 2239, J.A. Gladysz et al.; Journal of American Chemical Society (J.Amer.Chem.
MPCava et al.; Journal of Organic Chemistry (J.Org.Chem.) 1971, 36
The isothianaphthene monomer was prepared by the procedure described in M.P. Carba et al., Vol. 3932, and used immediately. This monomer was electrochemically oxidized in a two-electrode, compartment electrolytic cell to yield a poly(dihydroisothianaphthene) polymer. A platinum plate was used as an anode and graphite oxide was used as a cathode. The solution used for polymerization is colorless and transparent, and contains 0.23M isothianaphthene in acetonitrile as an electrolyte.
It was contained together with Bu 4 NPF 6 0.30M.
Acetonitrile (purchased from Mallinckrodt) was used directly without further purification. A series 1.5V battery was used as the power source. All experiments were performed under dry N2 . As soon as 4.5V was connected to this electrolytic cell, a large amount of white powder appeared near the anode. I turned off the battery after 10 minutes. The white powder, poly(dihydroisothianaphthene), was isolated by suction filtration, washed with acetonitrile and diethyl ether, and dried under vacuum. The generated solid is diluted with tetrahydrofuran.
It was purified by reprecipitation from H 2 O and subjected to elemental analysis. A freshly prepared sample of isothianaphthene was
When electrolyzed in the anode chamber of an H-type electrolytic cell using Bu 4 NClO 4 or Bu 4 NBF 4 as the supporting electrolyte and tin oxide coated glass (TOG) as the anode,
The anode chamber was filled with a large amount of white precipitate (WP). Careful observation revealed that the anode was first coated (momentarily) with a very thin blue film, and shortly after that WP formation began. W.P.
The appearance was not related to electrode material, solvent or temperature. Isolation, characterization (infrared, elemental analysis) and chemical manipulation (see below) demonstrated that WP is a poly(dihydroisothianaphthene). Thiophene becomes a partially oxidized (doped) polymer film under the above conditions, while isothianaphthene forms a poly( It should be noted that it is converted to dihydroisothianaphthene). The only rational explanation for this surprising observation was that poly(isothianaphthene) acts as an initiator for the cationic polymerization of isothianaphthene. To test this hypothesis, we exposed freshly prepared solutions of isothianaphthenes to common cationic initiation catalysts (Brensted and Lewis acids) and found that all polymerized the isothianaphthenes to varying degrees. . However, by far the most interesting result was for sulfuric acid in methylene chloride. Under these conditions, isothianaphthene forms a dark blue powder of poly(isothianaphthene) doped with hydrated sulfuric acid.
was converted into. It is clear that the acid acted not only as a catalyst but also as an oxidizing agent. A "convergent" test solidifying about the above assumption showed that the product of chloranil dehydrogenation was poly(dihydroisothianaphthene) and that the product of H 2 SO 4 polymerization showed the same infrared spectrum. It was hot. The only reasonable explanation for this observation is that the infrared spectrum of doped poly(isothianaphthene) is dominated by absorption by conduction electrons, and absorption by intramolecular vibrations becomes a weak feature in the spectrum. be. Without additional control experiments, it is difficult to make detailed mechanistic inferences to explain this electrolyte effect. H 2 SO 4 directly converts dihydroisothianaphthene-S-oxide into poly(isothianaphthene).
It was discovered that (H 2 SO 4 ) can be converted to (H 2 O)y. Solid dihydroisothianaphthene-S
- Oxide added to 98% H 2 SO 4 , in fact the desired partially doped poly(isothianaphthene)
(see illustration below). Additionally, 7,7,8,8-tetracyanoquinodimethane can be used as a catalyst for cationic polymerization. However, the product did not exhibit higher conductivity than any of the other doped poly(isothianaphthene) compounds. This probably indicates that the receptor is not included in the conductivity of the solid. Two reasons can be given for that observation: the acceptor molecules are probably not integrated into small crystalline regions and/or there is complete charge transfer. Although the above results explain the nature of the production method of poly(dihydroisothianaphthenes) and make it possible to find the correct procedure to chemically synthesize poly(isothianaphthenes), the electrochemistry of isothianaphthenes is still unclear. It does not interfere with the polymerization. This required finding a way to prevent the catalysis of poly(dihydroisothianaphthene) formation by "nascent" doped poly(isothianaphthenes). It has been found that if the reaction medium contains species that are more nucleophilic than the isothianaphthenes, the growth step is hindered. Test experiments in which iodide was added to the anode chamber prior to electrolysis were ineffective as iodide was easily oxidized under electrolysis conditions. However, in electrolysis with LiBr, Bu 4 NBr or preferably Ph 4 AsCl, platinum or
Produced excellent film on TOG. The only reasonable explanation for this observation is that the infrared spectrum of doped poly(isothianaphthene) is dominated by absorption by conduction electrons, and absorption by intramolecular vibrations is a weak feature in the spectrum. be. In the absence of additional control experiments,
It is difficult to speculate on a detailed mechanism to explain this electrolyte effect. Analysis, as (C 8 H 6 S) Calculated: C, 71.60; H, 4.51; S, 23.89 Actual: C, 71.27; H, 4.54; S, 23.96 For this reaction, LiBF 4 and Bu 4 NClO 4 are used as electrolytes. It can be used as According to the present invention, metastable isothianaphthenes can be polymerized into highly conductive polymers exhibiting favorable properties by at least three different procedures; one of these Includes an electrochemical process for the polymerization of isothianaphthenes in the presence of nuclear anions. It has also been found that poly(isothianaphthene) is a better conductor than polythiophene. Example 7 Poly(dihydroisothianaphthene) by chemical cationic polymerization Isothianaphthene monomer (396 mg , 2.96 mmol) in 10 ml of methylene chloride previously dried with P2O5
was dissolved. One drop of methanesulfonic acid was added to this solution and the reaction mixture immediately changed from colorless to red. The color turned violet after 90 minutes. After removing the methylene chloride by evaporation,
The residue was dissolved in tetrahydrofuran. This solution was then poured into methanol, and the poly(dihydroisothianaphthene) polymer precipitated from the solution. This was separated by centrifugation and dried under vacuum. The infrared spectrum was the same as that of the poly(dihydroisothianaphthene) polymer described above. The following examples illustrate successful implementation of the invention and are not intended to limit the invention. Example 8 Doped Poly(isothianaphthene) by Electrochemical Polymerization The polymerization procedure was essentially the same as that previously described in Example 6 for poly(dihydroisothianaphthene) polymer. The most important point was electrolytes. When lithium bromide was used as the electrolyte, a blue film of doped poly(isothianaphthene) polymer was formed on the anode (conductive glass) upon connection to a 1.5V battery. Also,
Bu 4 NBr and Ph 4 AsCl can also be used as electrolytes for this reaction. Example 9 Doped poly(isothianaphthene) by chemical cationic oxidative polymerization using sulfuric acid.
mg, 2.96 mmol). The color of the monomer immediately changed from white to black with a hint of red. After pouring the reaction mixture into 400 ml of methanol and stirring overnight, a brown powder, the doped poly(isothianaphthene) polymer, precipitated from the solution. This was separated by centrifugation and extracted with methylene chloride and chlorobenzene using a Soxhlet extractor and then dried under vacuum. This reaction can also be carried out with a suspension of sulfuric acid in methylene chloride. Example 10 Doped poly(isothianaphthene) by chemical cationic oxidative polymerization using TCNQ (7,7,8,8-tetracyanoquinodimethane) Isothianaphthene monomer (238 mg, 1.77 mmol) was chlorinated Dissolved in 5 ml of methylene. In this solution
After adding a few mg of TCNQ, the color of the solution changed very slowly to red. After stirring overnight, the color turned blue-black. Next, 2 molar amounts of isothianaphthene monomer are added to this solution.
Double amount of TCNQ was added. This was heated to 110°C and held at this temperature for 1 hour. The reaction mixture was poured into methanol, and a greenish-black powder precipitated from the solution. This was washed with methanol and chlorobenzene using a Soxhlet extractor and then dried under vacuum. Example 11 Poly(isothianaphthene) from poly(dihydroisothianaphthene) Poly(dihydroisothianaphthene) polymer was made by electrochemical polymerization and dissolved in hot chlorobenzene. This was a light brown solution. Tetra-chloro-p-benzoquinone (chloranil) was added to this solution. The color of the solution quickly changed to dark green. When the solution was cooled, a powder precipitated. This was separated off by suction filtration, washed with methanol and dried under vacuum. Example 7~
All the substances described in 11 showed the same infrared spectra. From the above, the present invention provides poly(isothianaphthene)
provides three alternative routes to: 1. Electrochemical polymerization of isothianaphthenes in the presence of nucleophilic anions; 2. Chemical polymerization of isothianaphthenes or dihydroisothianaphthene-S-oxides in the presence of cationic polymerization catalysts. ;3 Dehydrogenation of poly(dihydroisothianaphthene). The predicted results of conductivity measurements are summarized in the table. The band edge of poly(isothianaphthene) was estimated to be ~1 eV (1.1 μ) (from the transmission through thin films at low doping levels). this is,
It is about 1 eV lower than the band edge of polythiophene (~2 eV, 620 nm).

【表】【table】

【表】 実施例 11 a 2―プルーブ圧縮測定 第6図はポリ(イソチアナフテン)の可逆電
気化学的ドーピングを示す。これより、アルミ
ニウムを(標準カロメル参照電極の場合)一方
の電極として用い、ポリ(イソチアナフテン)
を他方の電極として用い、かつフルオロホウ酸
リチウムの炭酸プロピレン溶液を電解質として
用いれば、本発明の重合体が電池電極として有
用であることが理解できる。 第6図の実験は、更に、本発明の新規重合体
のエレクトロクロミツク特性をも示す。
Table Example 11a 2-probe compression measurements Figure 6 shows reversible electrochemical doping of poly(isothianaphthene). From this, aluminum is used as one electrode (in the case of the standard calomel reference electrode) and poly(isothianaphthene)
It can be seen that the polymer of the present invention is useful as a battery electrode by using lithium fluoroborate as the other electrode and a propylene carbonate solution of lithium fluoroborate as the electrolyte. The experiment of FIG. 6 further demonstrates the electrochromic properties of the novel polymers of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で製造した重合体の赤外吸収
スペクトル図である。第2図は実施例2で製造し
た重合体の赤外吸収スペクトル図であり、第3図
は実施例2で製造した重合体のNMRスペクトル
図である。第4図は実施例2で製造した第一の重
合体をクロラニルで処理した後の重合体の赤外吸
収スペクトル図である。第5図は実施例5のエレ
クトロクロミツク材料試験で得られた重合体のポ
ーラログラフ分析結果を示すチヤート図である。
第6図は標準カロメル電極(SCE)に対して記録
したポリ(イソチアナフテン)フイルムの電気化
学的可逆性を示す図である:+0.6V=黄色、透
明;−0.4V=暗青色不透明;電解質:炭酸プロ
ピレン中のLi+BF4 -。本例における酸化重合体
はドーピング剤としてBF4を含有する。
FIG. 1 is an infrared absorption spectrum diagram of the polymer produced in Example 1. FIG. 2 is an infrared absorption spectrum diagram of the polymer produced in Example 2, and FIG. 3 is an NMR spectrum diagram of the polymer produced in Example 2. FIG. 4 is an infrared absorption spectrum diagram of the first polymer produced in Example 2 after being treated with chloranil. FIG. 5 is a chart showing the results of polarographic analysis of the polymer obtained in the electrochromic material test of Example 5.
Figure 6 shows the electrochemical reversibility of poly(isothianaphthene) films recorded against a standard calomel electrode (SCE): +0.6V = yellow, transparent; -0.4V = dark blue, opaque; Electrolyte: Li + BF 4 - in propylene carbonate. The oxidized polymer in this example contains BF 4 as a doping agent.

Claims (1)

【特許請求の範囲】 1 一般式 【式】及び/又は 【式】 (式中、R1及びR2はそれぞれ独立に水素又は炭
素数1〜5の炭化水素基を表わし、X-は電解質
の陰イオンを表わし、yはモノマー1モル当りの
陰イオンの割合を示す0.01〜1の数であり、nは
重合度を示す5〜500の数である)で表わされる
イソチアナフテン構造を有する重合体。 2 前記一般式(b)で表わされるイソチアナ
フテン構造の電解質陰イオンX-がCl-、Br-、I-
ClO4、BF4 -、PF6 -、AsFb6 -、SbF6 -、AlCl4 -
AlBr3Cl-、FeCl4 -、SnCl3 -及びCF3SO3 -から選
ばれるものである特許請求の範囲第1項に記載の
重合体。
[Claims] 1 General formula [Formula] and/or [Formula] (In the formula, R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 5 carbon atoms, and X - represents the electrolyte. (represents an anion, y is a number from 0.01 to 1 indicating the proportion of anion per mole of monomer, and n is a number from 5 to 500 indicating the degree of polymerization). Combined. 2 The electrolyte anion X - of the isothianaphthene structure represented by the general formula (b) is Cl - , Br - , I - ,
ClO 4 , BF 4 - , PF 6 - , AsFb 6 - , SbF 6 - , AlCl 4 - ,
A polymer according to claim 1, which is selected from AlBr 3 Cl , FeCl 4 , SnCl 3 and CF 3 SO 3 .
JP10932984A 1984-05-31 1984-05-31 Polymer containing isothianaphthene structure Granted JPS6117581A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10932984A JPS6117581A (en) 1984-05-31 1984-05-31 Polymer containing isothianaphthene structure
US06/736,984 US4640748A (en) 1984-05-31 1985-05-22 Polyisothianaphtene, a new conducting polymer
CA000482753A CA1248690A (en) 1984-05-31 1985-05-30 Polyisothianaphthene, a new conducting polymer
DE8585303864T DE3577860D1 (en) 1984-05-31 1985-05-31 POLYMERS WITH ISOTHIANAPHTHE STRUCTURE AND ELECTROCHROMIC DISPLAY DEVICE.
AT85303864T ATE53046T1 (en) 1984-05-31 1985-05-31 POLYMERS WITH ISOTHIANAPTHENE STRUCTURE AND ELECTROCHROMIC INDICATOR.
EP85303864A EP0164974B1 (en) 1984-05-31 1985-05-31 Polymer having isothianaphthene structure and electrochromic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10932984A JPS6117581A (en) 1984-05-31 1984-05-31 Polymer containing isothianaphthene structure

Publications (2)

Publication Number Publication Date
JPS6117581A JPS6117581A (en) 1986-01-25
JPS6411207B2 true JPS6411207B2 (en) 1989-02-23

Family

ID=14507462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10932984A Granted JPS6117581A (en) 1984-05-31 1984-05-31 Polymer containing isothianaphthene structure

Country Status (1)

Country Link
JP (1) JPS6117581A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739477B2 (en) * 1986-11-06 1995-05-01 昭和電工株式会社 Process for producing polymer having isothianaphthene structure
JPH0273826A (en) * 1988-09-09 1990-03-13 Toyobo Co Ltd Production of electrically conductive polymer
JPH0275625A (en) * 1988-09-13 1990-03-15 Toyobo Co Ltd Electrically conductive polymer
WO2018123177A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Method for producing polyisothianaphthene electroconductive polymer

Also Published As

Publication number Publication date
JPS6117581A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
Wudl et al. Poly (isothianaphthene)
JP2777440B2 (en) Substituted thiophenes, conductive polymers derived from these thiophenes, methods for their preparation and devices containing these polymers
JP4124487B2 (en) Five-membered ring anion salts or tetraazapentalene derivatives and their use as ion-conducting substances
US4640748A (en) Polyisothianaphtene, a new conducting polymer
US5268448A (en) Conducting polymers derived from fluorinated thiophenes
US4740436A (en) Secondary battery
EP0273643B1 (en) Conducting substituted polyisothianophthenes
US9890230B2 (en) Tetracyanoanthraquinodimethane polymers and use thereof
US10263280B2 (en) 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers and use thereof
JPS63500105A (en) conductive polymer
JP3234638B2 (en) Fluorinated thiophenes, polymers derived from these thiophenes and conductive polymers containing these polymers
US4772940A (en) Polymer having isothianaphthene structure and electrochromic display
JP2892784B2 (en) Fluorinated thiophenes, conductive polymers derived from these thiophenes, methods for their preparation and devices containing these polymers
JPH0138808B2 (en)
EP0164974B1 (en) Polymer having isothianaphthene structure and electrochromic display
WO1987003607A1 (en) Polymers having isoindole structure and process for their preparation
JPS6411207B2 (en)
JPH05314979A (en) Reversible electrode
CN1023527C (en) Process for preparation of polymer having isothianaphthene structure and electrochromic display
JPH0794538B2 (en) Novel polymer and method for producing the same
JP2536865B2 (en) Battery active material
JPH0211614B2 (en)
JPH038271A (en) Secondary battery
JP2862244B2 (en) Pyrrole derivatives and polymers thereof
JPS63196622A (en) Production of polymer having isothianaphthene structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term