JPH04111339A - Stage for semiconductor wafer - Google Patents
Stage for semiconductor waferInfo
- Publication number
- JPH04111339A JPH04111339A JP2231127A JP23112790A JPH04111339A JP H04111339 A JPH04111339 A JP H04111339A JP 2231127 A JP2231127 A JP 2231127A JP 23112790 A JP23112790 A JP 23112790A JP H04111339 A JPH04111339 A JP H04111339A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- stage
- semiconductor wafer
- main body
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- 239000013307 optical fiber Substances 0.000 abstract description 13
- 238000005259 measurement Methods 0.000 abstract description 5
- 239000000835 fiber Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体ウェハをウェハ載置面上に吸着させて
保持する半導体ウェハ用ステージに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor wafer stage that attracts and holds a semiconductor wafer on a wafer mounting surface.
従来、ウェハ露光装置等の半導体製造装置では、半導体
ウェハをステージ上に載置させて露光等が行われている
。この種の従来のステージを第5図および第6図によっ
て説明する。2. Description of the Related Art Conventionally, in a semiconductor manufacturing apparatus such as a wafer exposure apparatus, a semiconductor wafer is placed on a stage and exposed to light. A conventional stage of this type will be explained with reference to FIGS. 5 and 6.
第5図は従来の半導体ウェハ用ステージの一部を示す断
面図で、同図においては半導体ウェハが吸着された状態
を示す。第6図は従来の半導体ウェハ用ステージにウェ
ハを吸着させた状態の平面図である。これらの図におい
て、1は半導体ウェハ(以下、単にウェハという)、2
はこのウェハ1が吸着されるステージである。このステ
ージ2は、ウェハ1が載置されるステージ本体3と、真
空吸着装置(図示せず)に連結されるボス部4とを備え
、ステージ本体3の上面には平坦なウェハ載置面3aが
形成されている。このウェハ載置面3aは、ウェハ1が
載置された際にウェハ1の平坦度が低下することがない
ように高精度に形成されている。また、このステージ2
には、真空吸着装置に連通される真空吸引孔5が前記ボ
ス部4およびステージ本体3を貫通して穿設されている
。FIG. 5 is a cross-sectional view showing a part of a conventional semiconductor wafer stage, in which a semiconductor wafer is attracted. FIG. 6 is a plan view of a conventional semiconductor wafer stage in which a wafer is attracted. In these figures, 1 is a semiconductor wafer (hereinafter simply referred to as a wafer), 2 is
is a stage on which this wafer 1 is attracted. The stage 2 includes a stage body 3 on which the wafer 1 is placed, and a boss portion 4 connected to a vacuum suction device (not shown). is formed. This wafer mounting surface 3a is formed with high precision so that the flatness of the wafer 1 will not decrease when the wafer 1 is mounted. Also, this stage 2
A vacuum suction hole 5 communicating with a vacuum suction device is bored through the boss portion 4 and the stage body 3.
この真空吸引孔5は、ウェハ載置面3aに開口した吸着
溝6に連通されており、真空吸着装置が真空吸引孔5か
ら空気を吸引することによってウェハ1をウェハ載置面
3aに真空吸着することができるように構成されている
。なお、7はウェハ1に形成された半導体ショットチッ
プを示す。The vacuum suction hole 5 communicates with a suction groove 6 opened in the wafer placement surface 3a, and the vacuum suction device suctions air from the vacuum suction hole 5 to vacuum suction the wafer 1 onto the wafer placement surface 3a. It is configured so that it can be Note that 7 indicates a semiconductor shot chip formed on the wafer 1.
このように構成された従来のステージ2では、ステージ
本体3のウェハ載置面3a上にウェハ1を真空吸着させ
、この状態でウェハ1への露光が行なわれる。In the conventional stage 2 configured in this manner, the wafer 1 is vacuum-adsorbed onto the wafer mounting surface 3a of the stage main body 3, and the wafer 1 is exposed in this state.
しかるに、従来のステージ2では、ウェハ1を真空吸着
させる時にウェハ載置面3a上に異物が付着していると
、第5図に示すようにウェハ1が異物によって歪み、吸
着状態での平坦度が低下してしまう。なお、第5図にお
いて8はウェハ載置面3a上に付着した異物を示し、A
は異物8がウェハ載置面3aとウェハ1との間に挟み込
まれることに起因して生じるウェハ1の歪み寸法を示す
。However, in the conventional stage 2, if foreign matter adheres to the wafer mounting surface 3a when vacuum suctioning the wafer 1, the wafer 1 is distorted by the foreign matter as shown in FIG. 5, and the flatness in the suction state is affected. will decrease. In addition, in FIG. 5, 8 indicates a foreign substance attached to the wafer mounting surface 3a, and A
indicates the distortion dimension of the wafer 1 caused by the foreign matter 8 being sandwiched between the wafer mounting surface 3a and the wafer 1.
このようにウェハ1が歪むと、ステッパ等、線幅測定、
パターン重ね合わせ等の測定時にフォーカスぼけとなり
、このフォーカスぼけが生じる部分に形成された半導体
チップは不良となってしまう。When the wafer 1 is distorted in this way, a stepper or the like is used to measure the line width.
Defocus occurs during measurement of pattern overlay, etc., and semiconductor chips formed in areas where this defocus occurs will be defective.
このフォーカスぼけとなる範囲を第6図ウニ点鎖vAB
で示す。The range of this out-of-focus area is shown in Figure 6.
Indicated by
本発明に係る半導体ウェハ用ステージは、ステージ本体
に、半導体ウェハ載置面に開口する透孔を多数穿設し、
これらの透孔に、ステージ本体上の半導体ウェハの裏面
に光を反射させて前記裏面までの寸法を測定する光反射
式距離測定器を装着したものである。The semiconductor wafer stage according to the present invention has a stage main body with a large number of through holes opening to the semiconductor wafer mounting surface,
These through holes are equipped with light reflection type distance measuring devices that measure the dimensions to the back surface of the semiconductor wafer on the stage body by reflecting light onto the back surface of the semiconductor wafer.
半導体ウェハの裏面と光反射式距離測定器との間隔が設
定値より大きくなることによって、半導体ウェハが歪ん
でいることが検出される。It is detected that the semiconductor wafer is distorted when the distance between the back surface of the semiconductor wafer and the light reflection type distance measuring device becomes larger than a set value.
以下、本発明の一実施例を第1図ないし第4図によって
詳細に説明する。Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4.
第1図は本発明に係る半導体ウェハ用ステージの要部を
拡大して示す断面図、第2図は本発明に係る半導体ウェ
ハ用ステージの平面図、第3図は本発明の半導体ウェハ
用ステージに使用する光反射式距離測定器のセンサーを
拡大して示す断面図、第4図は光反射式距離測定器を使
用した場合の反射光量とギャップ距離との関係を示すグ
ラフである。これらの図において前記第5図および第6
図で説明したものと同一もしくは同等部材については、
同一符号を付し詳細な説明は省略する。これらの図にお
いて、11は光反射式距離測定器本体、12はこの光反
射式距離測定器本体のセンサーとしての光ファイバで、
この光反射式距離測定器本体11と光ファイバ12とに
よって光反射式距離測定器が構成されている。前記光フ
ァイバ12はステージ本体3に穿設された貫通孔13内
に装着されている。この貫通孔13は、ウェハ載置面3
aに開口するようにステージ本体3を上下に貫通して穿
設されており、ステージ本体3に多数、ウェハ載置面3
aの全面にわたって設けられている。FIG. 1 is a sectional view showing an enlarged main part of a semiconductor wafer stage according to the present invention, FIG. 2 is a plan view of the semiconductor wafer stage according to the present invention, and FIG. 3 is a semiconductor wafer stage according to the present invention. FIG. 4 is a cross-sectional view showing an enlarged view of the sensor of a light reflection type distance measuring device used in the present invention, and FIG. 4 is a graph showing the relationship between the amount of reflected light and the gap distance when the light reflection type distance measuring device is used. In these figures, the above-mentioned figures 5 and 6
For parts that are the same or equivalent to those explained in the figures,
The same reference numerals are given and detailed explanation is omitted. In these figures, 11 is the main body of the light reflection type distance measuring device, 12 is an optical fiber as a sensor of the main body of the light reflection type distance measuring device,
The light reflection distance measuring device main body 11 and the optical fiber 12 constitute a light reflecting distance measuring device. The optical fiber 12 is installed in a through hole 13 formed in the stage body 3. This through hole 13 is located on the wafer mounting surface 3.
A hole is formed vertically through the stage main body 3 so as to open at the wafer mounting surface 3.
It is provided over the entire surface of a.
この貫通孔13の形成位置としては、本実施例では第2
図に示すように、ウェハ載置面3aに仮想線で描かれた
折目と対応するように設定されており、各貫通孔13は
等間隔おいて並設されている。In this embodiment, the through hole 13 is formed at the second position.
As shown in the figure, the through holes 13 are set to correspond to the folds drawn by imaginary lines on the wafer mounting surface 3a, and the through holes 13 are arranged in parallel at equal intervals.
この間隔としては、5〜10mとされる。また、本実施
例ではこの貫通孔13は真空吸着装置に連通され、貫通
孔13がら空気を吸引することによってウェハ1がウェ
ハ載置面3aに真空吸着されるように構成されている。This interval is set to 5 to 10 m. Further, in this embodiment, the through hole 13 is communicated with a vacuum suction device, and the wafer 1 is vacuum suctioned onto the wafer mounting surface 3a by suctioning air through the through hole 13.
前記光ファイバ12は、第3図に示すように、径方向中
央部にウェハ1の裏面へ光を照射する発光部14が設け
られると共に、この発光部14の外側に、前記ウェハ1
の裏面で反射した光が入射される受光部15が設けられ
ている。また、この光ファイバ12は、先端をウェハ載
置面3aから0.1〜0.3μm程度離間させて前記貫
通孔13内に装着されており、光反射式距離測定器本体
11に接続されている。なお、第3図中16はウェハ1
の裏面で反射した反射光を示す。As shown in FIG. 3, the optical fiber 12 is provided with a light emitting section 14 that radiates light onto the back surface of the wafer 1 at the center in the radial direction, and a light emitting section 14 that irradiates light onto the back surface of the wafer 1 on the outside of the light emitting section 14.
A light receiving section 15 is provided into which light reflected from the back surface of the light receiving section 15 is incident. The optical fiber 12 is installed in the through hole 13 with its tip separated from the wafer placement surface 3a by about 0.1 to 0.3 μm, and is connected to the light reflection distance measuring device main body 11. There is. Note that 16 in FIG. 3 indicates wafer 1.
Shows the reflected light reflected from the back surface of
前記光反射式距離測定器本体11は、受光部15での受
光強度(ウェハ1の裏面で反射した光の量)によりウェ
ハ1の裏面から光ファイバ12の先端までの距離(ギャ
ップ距離)を測定し、この距離が、ウェハ1の歪みを許
容する規格値(例えば0.5μm)を超えた場合にアラ
ームを発するように構成されている。すなわち、受光部
15に入射される反射光は、第4図に示すように、ギャ
ップ距離に比例してその光量が増大されるため、ウェハ
1における光ファイバ12と対向する部分に歪みが生し
ていたりしてギャップ距離が長くなれば、前記反射光の
光量がその分だけ増大される。The light reflection distance measuring device main body 11 measures the distance (gap distance) from the back surface of the wafer 1 to the tip of the optical fiber 12 based on the intensity of light received by the light receiving section 15 (the amount of light reflected on the back surface of the wafer 1). However, if this distance exceeds a standard value (for example, 0.5 μm) that allows distortion of the wafer 1, an alarm is generated. That is, as shown in FIG. 4, the amount of reflected light incident on the light receiving section 15 increases in proportion to the gap distance, so that distortion occurs in the portion of the wafer 1 facing the optical fiber 12. If the gap distance becomes longer due to a change in the distance, the amount of the reflected light increases by that amount.
光反射式距離測定器本体11は、この反射光の光量から
ギャップ距離を測定する構造である。なお、第4図中り
は、歪みの無いウェハ1をステージ2に吸着させた時の
ギャップ距離(例えば0.3μm)を示す。The light reflection distance measuring device main body 11 has a structure that measures the gap distance from the amount of reflected light. Note that the middle part of FIG. 4 shows the gap distance (for example, 0.3 μm) when the wafer 1 without distortion is attracted to the stage 2.
このように光ファイバ12が装着されたステージ2では
、第1図に示すようにウェハ1がウェハ載置面3aとの
間に異物8を挟んだ状態でステージ本体3に吸着されて
歪むと、この歪み部分と対向する光ファイバ12におい
ては、受光部15へ入射される反射光の光量が増えるこ
とになる。これを光反射式距離測定器本体11が検出し
、ギャップ距離が規定値より大きい場合にアラームを鳴
らす。In the stage 2 on which the optical fiber 12 is attached in this way, when the wafer 1 is attracted to the stage main body 3 and distorted with the foreign object 8 sandwiched between it and the wafer mounting surface 3a, as shown in FIG. In the optical fiber 12 facing this distorted portion, the amount of reflected light incident on the light receiving section 15 increases. The light reflection type distance measuring instrument body 11 detects this and sounds an alarm if the gap distance is larger than a specified value.
したがって、このステージ2によれば、ウェハ1の裏面
と光ファイバ12との間隔が設定値より大きくなったこ
とを検出してウェハ1の歪みを検出することができるか
ら、ウェハ1に露光処理等を施す前に異物8を除去する
ことができる。Therefore, according to this stage 2, it is possible to detect the distortion of the wafer 1 by detecting that the distance between the back surface of the wafer 1 and the optical fiber 12 has become larger than a set value. The foreign matter 8 can be removed before applying.
なお、本発明は検査装置のみならずコーターデベロッパ
ー等のウェハチャフキング、マスクホルダー等にも適用
することができるということはいうまでもない。It goes without saying that the present invention can be applied not only to inspection equipment but also to wafer chaffing, mask holders, etc. of coater developers, etc.
以上説明したように本発明に係る半導体ウェハ用ステー
ジは、ステージ本体に、半導体ウェハ載置面に開口する
透孔を多数穿設し、これらの透孔に、ステージ本体上の
半導体ウェハの裏面に光を反射させて前記裏面までの寸
法を測定する光反射式距離測定器を装着したため、半導
体ウェハの裏面と光反射式距離測定器との間隔が設定値
より太き(なることによって、半導体ウェハが歪んでい
ることが検出される。したがって、半導体ウェハの歪み
に起因してデフォーカス、計測誤差が生じるのを確実に
防ぐことができる。また、半導体ウェハをステージ本体
に吸着させた直後にエラーを検出でき、直ちに吸着させ
直せるから、装置の稼動率を向上させることができると
いう効果もある。As explained above, the semiconductor wafer stage according to the present invention has a stage body with a large number of through holes that open to the semiconductor wafer mounting surface, and these through holes are provided with holes on the back side of the semiconductor wafer on the stage body. Since a light reflective distance measuring device that measures the dimension to the back surface by reflecting light is installed, the distance between the back surface of the semiconductor wafer and the light reflective distance measuring device is wider than the set value (by which the semiconductor wafer It is detected that the semiconductor wafer is distorted.Therefore, it is possible to reliably prevent defocus and measurement errors caused by distortion of the semiconductor wafer.Also, it is possible to prevent errors immediately after the semiconductor wafer is attracted to the stage body. This has the effect of improving the operating rate of the device because it can be detected and re-adsorbed immediately.
【図面の簡単な説明】
第1図は本発明に係る半導体ウェハ用ステージの要部を
拡大して示す断面図、第2図は本発明に係る半導体ウェ
ハ用ステージの平面図、第3図は本発明の半導体ウェハ
用ステージに使用する光反射式距離測定器のセンサーを
拡大して示す断面図、第4図は光反射式距離測定器を使
用した場合の反射光量とギャップ距離との関係を示すグ
ラフである。第5図は従来の半導体ウェハ用ステージの
一部を示す断面図、第6図は従来の半導体ウェハ用ステ
ージにウェハを吸着させた状態の平面図である。
1・・・・ウェハ、2・・・・ステージ、3・・・・ス
テージ本体、3a・・・・ウェハ載置面、11・・・・
光反射式距離測定器本体、12・・・・光ファイバ、1
3・・・・貫通孔。[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing an enlarged main part of the semiconductor wafer stage according to the present invention, FIG. 2 is a plan view of the semiconductor wafer stage according to the present invention, and FIG. FIG. 4 is a cross-sectional view showing an enlarged view of the sensor of the light reflection type distance measurement device used in the semiconductor wafer stage of the present invention, and FIG. 4 shows the relationship between the amount of reflected light and the gap distance when the light reflection type distance measurement device is used. This is a graph showing. FIG. 5 is a sectional view showing a part of a conventional semiconductor wafer stage, and FIG. 6 is a plan view of the conventional semiconductor wafer stage with a wafer attached thereto. 1...Wafer, 2...Stage, 3...Stage body, 3a...Wafer mounting surface, 11...
Light reflection type distance measuring device body, 12... Optical fiber, 1
3...Through hole.
Claims (1)
る半導体ウェハ用ステージにおいて、前記ステージ本体
に、半導体ウェハ載置面に開口する透孔を多数穿設し、
これらの透孔に、ステージ本体上の半導体ウェハの裏面
に光を反射させて前記裏面までの寸法を測定する光反射
式距離測定器を装着したことを特徴とする半導体ウェハ
用ステージ。In a semiconductor wafer stage in which a semiconductor wafer is attracted to a wafer placement surface of a stage body, the stage body is provided with a number of through holes that open to the semiconductor wafer placement surface;
A semiconductor wafer stage characterized in that these through holes are equipped with a light reflection type distance measuring device that measures the dimension to the back surface of the semiconductor wafer on the stage main body by reflecting light onto the back surface of the semiconductor wafer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2231127A JPH04111339A (en) | 1990-08-30 | 1990-08-30 | Stage for semiconductor wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2231127A JPH04111339A (en) | 1990-08-30 | 1990-08-30 | Stage for semiconductor wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04111339A true JPH04111339A (en) | 1992-04-13 |
Family
ID=16918710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2231127A Pending JPH04111339A (en) | 1990-08-30 | 1990-08-30 | Stage for semiconductor wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04111339A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014033057A (en) * | 2012-08-02 | 2014-02-20 | Murata Mfg Co Ltd | Substrate sucking device |
JP2020521321A (en) * | 2017-08-29 | 2020-07-16 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Electrostatic chuck substrate support with chuck force control |
-
1990
- 1990-08-30 JP JP2231127A patent/JPH04111339A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014033057A (en) * | 2012-08-02 | 2014-02-20 | Murata Mfg Co Ltd | Substrate sucking device |
JP2020521321A (en) * | 2017-08-29 | 2020-07-16 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Electrostatic chuck substrate support with chuck force control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3253177B2 (en) | Surface condition inspection device | |
US6376329B1 (en) | Semiconductor wafer alignment using backside illumination | |
JPH10172897A (en) | Substrate adaptor, substrate holder and method for holding substrate | |
JPH0815169A (en) | Foreign matter inspection apparatus and manufacture of semiconductor device using the same | |
US20110149062A1 (en) | Apparatus and Method for Aligning a Wafer's Backside to a Wafer's Frontside | |
JPH04111339A (en) | Stage for semiconductor wafer | |
KR100206594B1 (en) | Checking method of semiconductor process defect | |
JP3428974B2 (en) | Projection exposure method and projection exposure apparatus having the same | |
JP2000042472A (en) | Apparatus for membrane coating having coating abnormality detection means, exposure device, and membrane coating | |
JPS6311776B2 (en) | ||
JP3428973B2 (en) | Surface position detection method and projection exposure apparatus using the same | |
JPS63103951A (en) | Dust inspection device | |
JPH0462457A (en) | Surface state inspecting device | |
JP2002039745A (en) | Method and device for inspecting wafer shape | |
KR100552834B1 (en) | Photo mask for manufacturing semiconductor | |
JPH06236837A (en) | Surface position detecting method and projection-exposure device using thereof | |
JPH04142546A (en) | Projection exposure device | |
JPH1070066A (en) | X-ray mask structure, x-ray exposure using the structure, x-ray aligner using the structure, and manufacture of semiconductor device using the structure | |
JPS63193041A (en) | Apparatus for inspecting foreign matter | |
JPH0687474B2 (en) | Parallel tester | |
JPH01143904A (en) | Thin film inspecting device | |
JPH04196514A (en) | Projection aligner | |
JPS6232612A (en) | Alignment mark | |
JPS63293917A (en) | Aligner | |
JPH1194523A (en) | Method and device for measuring pattern of x-ray mask |