Nothing Special   »   [go: up one dir, main page]

JP7538483B2 - Support glass substrate and laminated substrate using same - Google Patents

Support glass substrate and laminated substrate using same Download PDF

Info

Publication number
JP7538483B2
JP7538483B2 JP2023044528A JP2023044528A JP7538483B2 JP 7538483 B2 JP7538483 B2 JP 7538483B2 JP 2023044528 A JP2023044528 A JP 2023044528A JP 2023044528 A JP2023044528 A JP 2023044528A JP 7538483 B2 JP7538483 B2 JP 7538483B2
Authority
JP
Japan
Prior art keywords
substrate
glass substrate
supporting glass
supporting
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023044528A
Other languages
Japanese (ja)
Other versions
JP2023076509A (en
Inventor
哲哉 村田
美紅 藤井
良太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of JP2023076509A publication Critical patent/JP2023076509A/en
Priority to JP2024133742A priority Critical patent/JP2024153929A/en
Application granted granted Critical
Publication of JP7538483B2 publication Critical patent/JP7538483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

本発明は、支持ガラス基板及びこれを用いた積層基板に関し、具体的には、半導体パッケージの製造工程で半導体チップが樹脂にモールドされた加工基板の支持に用いる支持ガラス基板及びこれを用いた積層基板に関する。 The present invention relates to a supporting glass substrate and a laminated substrate using the same, and more specifically, to a supporting glass substrate used to support a processed substrate on which a semiconductor chip is molded in resin during the semiconductor package manufacturing process, and a laminated substrate using the same.

携帯電話、ノート型パーソナルコンピュータ、PDA(Personal Data Assistance)等の携帯型電子機器には、小型化及び軽量化が要求されている。これに伴い、これらの電子機器に用いられる半導体チップの実装スペースも厳しく制限されており、半導体チップの高密度な実装が課題になっている。そこで、近年では、三次元実装技術、すなわち半導体チップ同士を積層し、各半導体チップ間を配線接続することにより、半導体パッケージの高密度実装を図っている。 There is a demand for smaller and lighter portable electronic devices such as mobile phones, notebook personal computers, and PDAs (Personal Data Assistance). As a result, the mounting space for the semiconductor chips used in these electronic devices is severely limited, making high-density mounting of semiconductor chips an issue. In recent years, therefore, high-density mounting of semiconductor packages has been attempted using three-dimensional mounting technology, i.e., stacking semiconductor chips on top of each other and connecting each semiconductor chip with wiring.

また、従来のウエハレベルパッケージ(WLP)は、バンプをウエハの状態で形成した後、ダイシングで個片化することにより作製されている。しかし、従来のWLPは、ピン数を増加させ難いことに加えて、半導体チップの裏面が露出した状態で実装されるため、半導体チップの欠け等が発生し易いという問題があった。 In addition, conventional wafer-level packages (WLPs) are produced by forming bumps on a wafer and then dicing the wafer into individual pieces. However, conventional WLPs have the problem that it is difficult to increase the number of pins, and because the back surface of the semiconductor chip is exposed when it is mounted, it is prone to chipping of the semiconductor chip.

そこで、新たなWLPとして、fan out型のWLPが提案されている。fan out型のWLPは、ピン数を増加させることが可能であり、また半導体チップの端部を保護することにより、半導体チップの欠け等を防止することができる。 As a result, fan-out type WLP has been proposed as a new type of WLP. Fan-out type WLP makes it possible to increase the number of pins, and by protecting the edges of the semiconductor chip, it is possible to prevent chipping of the semiconductor chip.

fan out型のWLPには、チップファースト型とチップラスト型の製造方法がある。チップファースト型では、例えば、複数の半導体チップを樹脂の封止材でモールドして、加工基板を形成した後に、加工基板の一方の表面に配線する工程、半田バンプを形成する工程等を有する。チップラスト型では、例えば、支持基板上に配線層を設置した上で、複数の半導体チップを配列し、樹脂の封止材でモールドして加工基板を形成した後に、半田バンプを形成する工程等を有する。 There are two manufacturing methods for fan-out WLP: chip-first and chip-last. The chip-first method, for example, includes a process of molding multiple semiconductor chips with a resin encapsulant to form a processed substrate, wiring one surface of the processed substrate, and forming solder bumps. The chip-last method, for example, includes a process of placing a wiring layer on a support substrate, arranging multiple semiconductor chips, molding the substrate with a resin encapsulant to form a processed substrate, and forming solder bumps.

更に、最近では、パネルレベルパッケージ(PLP)と呼ばれる半導体パッケージも検討されている。PLPでは、支持基板1枚当たりの半導体パッケージの取れ数を増加させつつ、製造コストを低下させるために、ウエハ状ではなく矩形状の支持基板が使用される。 More recently, a semiconductor package called panel level packaging (PLP) has also been considered. In PLP, a rectangular support substrate rather than a wafer-shaped one is used to increase the number of semiconductor packages that can be produced from one support substrate while reducing manufacturing costs.

これらの半導体パッケージの製造工程では、約200℃の熱処理を伴うため、封止材が変形して、加工基板に反りが発生する虞がある。加工基板に反りが発生すると、加工基板の一方の表面に対して、高密度に配線することが困難になり、また半田バンプを正確に形成することも困難になる。 The manufacturing process for these semiconductor packages involves heat treatment at approximately 200°C, which can cause the encapsulant to deform and lead to warping of the processed substrate. If warping occurs in the processed substrate, it becomes difficult to achieve high-density wiring on one surface of the processed substrate, and it also becomes difficult to accurately form solder bumps.

このような事情から、加工基板の反りを抑制するために、加工基板を支持するガラス基板を用いることが検討されている(特許文献1参照)。 In light of these circumstances, the use of a glass substrate to support the processed substrate has been considered in order to suppress warping of the processed substrate (see Patent Document 1).

ガラス基板は、表面を平滑化し易く、且つ剛性を有する。よって、支持基板としてガラス基板を用いると、加工基板を強固、且つ正確に支持することが可能になる。またガラス基板は、紫外光、赤外光等の光を透過し易い。よって、支持基板としてガラス基板を用いると、紫外線硬化型接着剤等の接着層等を設けることにより、加工基板を容易に固定することができる。更に赤外線を吸収する剥離層等を設けることにより、加工基板を容易に分離することもできる。別の方式として紫外線硬化型テープ等により接着層等を設けることにより、加工基板を容易に固定、分離することもできる。 The surface of a glass substrate is easy to smooth and has rigidity. Therefore, when a glass substrate is used as a support substrate, it is possible to firmly and accurately support the processed substrate. Furthermore, glass substrates are easily transparent to ultraviolet light, infrared light, and other light. Therefore, when a glass substrate is used as a support substrate, the processed substrate can be easily fixed by providing an adhesive layer such as an ultraviolet curing adhesive. Furthermore, the processed substrate can be easily separated by providing a peeling layer that absorbs infrared light. As another method, the processed substrate can be easily fixed and separated by providing an adhesive layer using an ultraviolet curing tape, etc.

特開2015-78113号公報JP 2015-78113 A

fan out型のWLPとPLPでは、複数の半導体チップを樹脂の封止材でモールドして、加工基板を形成した後に、加工基板の一方の表面に配線する工程、半田バンプを形成する工程等を有する。 In fan-out WLP and PLP, multiple semiconductor chips are molded in a resin encapsulant to form a processed substrate, after which there are processes such as wiring one surface of the processed substrate and forming solder bumps.

これらの工程は、約200~300℃の熱処理を伴うため、封止材が変形して、加工基板が寸法変化する虞がある。加工基板が寸法変化すると、加工基板の一方の表面に対して、高密度に配線することが困難になり、また半田バンプを正確に形成することも困難になる。 These processes involve heat treatment at approximately 200 to 300°C, which may cause the encapsulant to deform and the dimensions of the processed substrate to change. If the dimensions of the processed substrate change, it will be difficult to form high-density wiring on one surface of the processed substrate, and it will also be difficult to form solder bumps accurately.

加工基板の寸法変化を抑制するために、支持基板としてガラス基板を用いることが有効である。しかし、ガラス基板を用いた場合であっても、加工基板の寸法変化が生じる場合があった。 To suppress dimensional changes in the processed substrate, it is effective to use a glass substrate as the support substrate. However, even when a glass substrate is used, dimensional changes in the processed substrate can occur.

本発明は、上記事情に鑑みなされたものであり、その技術的課題は、加工基板の寸法変化を生じさせ難い支持ガラス基板を創案することにより、半導体パッケージの高密度実装に寄与することである。 The present invention was developed in consideration of the above circumstances, and its technical objective is to contribute to high-density mounting of semiconductor packages by inventing a supporting glass substrate that is less likely to cause dimensional changes in the processed substrate.

本発明者は、種々の実験を繰り返した結果、支持ガラス基板の熱膨張係数を厳密に規制すると共に、支持ガラス基板のヤング率を高めることにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明の支持ガラス基板は、30~380℃の温度範囲における平均線熱膨張係数が30×10-7/℃以上であり、且つ55×10-7/℃以下であり、ヤング率が80GPa以上であることを特徴とする。ここで、「30~380℃の温度範囲における平均線熱膨張係数」は、ディラトメーターで測定可能である。「ヤング率」は、周知の共振法で測定可能である。 As a result of repeated various experiments, the present inventors have found that the above technical problems can be solved by strictly regulating the thermal expansion coefficient of the supporting glass substrate and increasing the Young's modulus of the supporting glass substrate, and propose this as the present invention. That is, the supporting glass substrate of the present invention is characterized in that the average linear thermal expansion coefficient in the temperature range of 30 to 380° C. is 30×10 −7 /° C. or more and 55×10 −7 /° C. or less, and the Young's modulus is 80 GPa or more. Here, the "average linear thermal expansion coefficient in the temperature range of 30 to 380° C." can be measured with a dilatometer. The "Young's modulus" can be measured by a well-known resonance method.

本発明の支持ガラス基板では、30~380℃の温度範囲における平均線熱膨張係数が30×10-7/℃以上であり、且つ55×10-7/℃以下に規制されている。このようにすれば、加工基板と支持ガラス基板の熱膨張係数を整合させ易くなる。そして、両者の熱膨張係数が整合すると、加工処理時に加工基板の寸法変化(特に、反り変形)を抑制し易くなる。結果として、加工基板の一方の表面に対して、高密度に配線することが可能になり、また半田バンプを正確に形成することも可能になる。 In the supporting glass substrate of the present invention, the average linear thermal expansion coefficient in the temperature range of 30 to 380° C. is regulated to 30×10 −7 /° C. or more and 55×10 −7 /° C. or less. In this way, it becomes easier to match the thermal expansion coefficients of the processing substrate and the supporting glass substrate. When the thermal expansion coefficients of both are matched, it becomes easier to suppress dimensional changes (particularly warpage deformation) of the processing substrate during processing. As a result, it becomes possible to perform high-density wiring on one surface of the processing substrate, and it also becomes possible to accurately form solder bumps.

更に、本発明の支持ガラス基板では、ヤング率が80GPa以上に規制されている。このようにすれば、積層基板の剛性が向上するため、加工基板の寸法変化(特に、反り変形)を抑制し易くなり、加工基板を強固、且つ正確に支持することが可能になる。 Furthermore, the Young's modulus of the supporting glass substrate of the present invention is restricted to 80 GPa or more. This improves the rigidity of the laminated substrate, making it easier to suppress dimensional changes (especially warpage) in the processed substrate, and makes it possible to firmly and accurately support the processed substrate.

また、本発明の支持ガラス基板は、全体板厚偏差(TTV)が2.0μm未満であることが好ましい。このようにすれば、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。更に支持ガラス基板の再利用回数を増やすことができる。ここで、「全体板厚偏差(TTV)」は、全体の最大板厚と最小板厚の差であり、例えばコベルコ科研社製のSBW-331ML/dにより測定可能である。 The supporting glass substrate of the present invention preferably has a total thickness deviation (TTV) of less than 2.0 μm. This makes it easier to improve the accuracy of processing. In particular, wiring accuracy can be improved, enabling high-density wiring. Furthermore, the number of times the supporting glass substrate can be reused can be increased. Here, "total thickness deviation (TTV)" is the difference between the overall maximum thickness and the minimum thickness, and can be measured, for example, using SBW-331ML/d manufactured by Kobelco Research Institute, Ltd.

また、本発明の支持ガラス基板は、ガラス組成として、質量%で、SiO 50~66%、Al 7~34%、B 0~8%、MgO 0~22%、CaO 1~15%、Y+La+ZrO 0~20%を含有することが好ましい。ここで、「Y+La+ZrO」は、Y、La及びZrOの合量を指す。 The supporting glass substrate of the present invention preferably contains, in mass %, as a glass composition, 50-66% SiO 2 , 7-34% Al 2 O 3 , 0-8% B 2 O 3 , 0-22% MgO, 1-15% CaO, and 0-20% Y 2 O 3 + La 2 O 3 + ZrO 2 . Here, "Y 2 O 3 + La 2 O 3 + ZrO 2 " refers to the total amount of Y 2 O 3 , La 2 O 3 and ZrO 2 .

また、本発明の支持ガラス基板は、半導体パッケージの製造工程で、半導体チップが樹脂にモールドされた加工基板の支持に用いることが好ましい。 The supporting glass substrate of the present invention is preferably used to support a processed substrate on which a semiconductor chip is molded in resin during the manufacturing process of a semiconductor package.

また、本発明の積層基板は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層基板であって、支持ガラス基板が上記の支持ガラス基板であることが好ましい。 The laminated substrate of the present invention is a laminated substrate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, and it is preferable that the supporting glass substrate is the above-mentioned supporting glass substrate.

また、本発明の積層基板は、加工基板が、半導体チップが樹脂にモールドされた加工基板であることが好ましい。 In addition, it is preferable that the processed substrate of the laminated substrate of the present invention is a processed substrate in which a semiconductor chip is molded in resin.

また、本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層基板を用意する工程と、加工基板に対して、加工処理を行う工程と、を有すると共に、支持ガラス基板が上記の支持ガラス基板であることが好ましい。 The method for manufacturing a semiconductor package of the present invention also includes a step of preparing a laminated substrate including at least a processing substrate and a supporting glass substrate for supporting the processing substrate, and a step of performing a processing process on the processing substrate, and it is preferable that the supporting glass substrate is the above-mentioned supporting glass substrate.

また、本発明の半導体パッケージの製造方法は、加工処理が、加工基板の一方の表面に配線する工程を含むことが好ましい。 In addition, in the manufacturing method of the semiconductor package of the present invention, it is preferable that the processing step includes a step of wiring one surface of the processing substrate.

また、本発明の半導体パッケージの製造方法は、加工処理が、加工基板の一方の表面に半田バンプを形成する工程を含むことが好ましい。 In addition, in the manufacturing method of the semiconductor package of the present invention, the processing step preferably includes a step of forming solder bumps on one surface of the processing substrate.

本発明の積層基板の一例を示す概念斜視図である。1 is a conceptual perspective view showing an example of a laminated substrate of the present invention. fan out型のWLPのチップファースト型の製造工程を示す概念断面図である。1A to 1C are conceptual cross-sectional views showing the manufacturing process of a chip-first type of fan-out type WLP. 支持ガラス基板をバックグラインド基板に用いて、加工基板を薄型化する工程を示す概念断面図である。10A to 10C are conceptual cross-sectional views showing a process of thinning a processed substrate by using a supporting glass substrate as a back-grinding substrate.

本発明の支持ガラス基板において、30~380℃の温度範囲における平均線熱膨張係数は30×10-7/℃以上であり、且つ55×10-7/℃以下であり、好ましくは32×10-7/℃以上、且つ52×10-7/℃以下、好ましくは33×10-7/℃以上、且つ49×10-7/℃以下、特に好ましくは34×10-7/℃以上、且つ44×10-7/℃以下である。30~380℃の温度範囲における平均線熱膨張係数が上記範囲外になると、加工基板と支持ガラス基板の熱膨張係数が整合し難くなる。そして、両者の熱膨張係数が不整合になると、加工処理時に加工基板の寸法変化(特に、反り変形)が生じ易くなる。 In the supporting glass substrate of the present invention, the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. is 30 × 10 -7 / ° C. or more and 55 × 10 -7 / ° C. or less, preferably 32 × 10 -7 / ° C. or more and 52 × 10 -7 / ° C. or less, preferably 33 × 10 -7 / ° C. or more and 49 × 10 -7 / ° C. or less, particularly preferably 34 × 10 -7 / ° C. or more and 44 × 10 -7 / ° C. or less. If the average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. is outside the above range, it becomes difficult to match the thermal expansion coefficients of the processing substrate and the supporting glass substrate. And, if the thermal expansion coefficients of both are inconsistent, the dimensional change (particularly warpage deformation) of the processing substrate during processing is likely to occur.

本発明の支持ガラス基板において、ヤング率は、好ましくは80GPa以上、85GPa以上、90GPa以上、95GPa以上、特に96~130GPaである。ヤング率が低過ぎると、積層体の剛性を維持し難くなり、加工基板の寸法変化(特に反り変形)が発生し易くなる。 In the supporting glass substrate of the present invention, the Young's modulus is preferably 80 GPa or more, 85 GPa or more, 90 GPa or more, 95 GPa or more, and particularly 96 to 130 GPa. If the Young's modulus is too low, it becomes difficult to maintain the rigidity of the laminate, and dimensional changes (particularly warpage) of the processed substrate are likely to occur.

本発明の支持ガラス基板において、全体板厚偏差(TTV)は、好ましくは2.0μm未満、1.5μm以下、1.0μm以下、特に0.1~1.0μm未満である。全体板厚偏差(TTV)が大き過ぎると、加工処理の精度が低下し易くなる。更に支持ガラス基板を再利用し難くなる。 In the supporting glass substrate of the present invention, the total thickness deviation (TTV) is preferably less than 2.0 μm, 1.5 μm or less, 1.0 μm or less, and particularly 0.1 to 1.0 μm or less. If the total thickness deviation (TTV) is too large, the accuracy of the processing is likely to decrease. Furthermore, it becomes difficult to reuse the supporting glass substrate.

本発明の支持ガラス基板は、表面全体が研磨面であることが好ましい。このようにすれば、全体板厚偏差(TTV)を2.0μm未満、1.5μm以下、1.0μm以下、特に1.0μm未満に規制し易くなる。研磨処理の方法としては、種々の方法を採用することができるが、ガラス基板の両面を一対の研磨パッドで挟み込み、ガラス基板と一対の研磨パッドを共に回転させながら、ガラス基板を研磨処理する方法が好ましい。更に一対の研磨パッドは外径が異なることが好ましく、研磨の際に間欠的にガラス基板の一部が研磨パッドから食み出すように研磨処理することが好ましい。これにより、全体板厚偏差(TTV)を低減し易くなり、また反り量も低減し易くなる。なお、研磨処理において、研磨深さは特に限定されないが、研磨深さは、好ましくは50μm以下、30μm以下、20μm以下、特に10μm以下である。研磨深さが小さい程、支持ガラス基板の生産性が向上する。 The entire surface of the support glass substrate of the present invention is preferably a polished surface. In this way, it is easy to regulate the total thickness deviation (TTV) to less than 2.0 μm, 1.5 μm or less, 1.0 μm or less, and particularly less than 1.0 μm. Various methods can be adopted as the polishing method, but a method in which both sides of the glass substrate are sandwiched between a pair of polishing pads and the glass substrate and the pair of polishing pads are rotated together while polishing the glass substrate is preferably performed. Furthermore, it is preferable that the pair of polishing pads have different outer diameters, and it is preferable to perform the polishing process so that a part of the glass substrate intermittently protrudes from the polishing pad during polishing. This makes it easier to reduce the total thickness deviation (TTV) and the amount of warping. In the polishing process, the polishing depth is not particularly limited, but the polishing depth is preferably 50 μm or less, 30 μm or less, 20 μm or less, and particularly 10 μm or less. The smaller the polishing depth, the higher the productivity of the support glass substrate.

本発明の支持ガラス基板は、ガラス組成として、質量%で、SiO 50~66%、Al 7~34%、B 0~8%、MgO 0~22%、CaO 1~15%、Y+La+ZrO 0~20%を含有することが更に好ましい。上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、質量%を表す。 The supporting glass substrate of the present invention more preferably contains, in mass %, SiO 2 50-66%, Al 2 O 3 7-34%, B 2 O 3 0-8%, MgO 0-22%, CaO 1-15%, Y 2 O 3 +La 2 O 3 +ZrO 2 0-20% as a glass composition. The reasons for limiting the content of each component as described above are as follows. In the description of the content of each component, % denotes mass % unless otherwise specified.

SiOは、ガラスのネットワークを形成する成分である。SiOの含有量は、好ましくは50~66%、51~65%、52~64%、53~63%、54~62.5%、56~62%、特に58~61%である。SiOの含有量が少な過ぎると、ガラス化し難くなり、また耐候性が低下し易くなる。更に熱膨張係数が高くなり過ぎる。一方、SiOの含有量が多過ぎると、溶融性や成形性が低下し易くなり、また熱膨張係数が低くなり過ぎる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 50-66%, 51-65%, 52-64%, 53-63%, 54-62.5%, 56-62%, particularly 58-61%. If the content of SiO 2 is too low, vitrification becomes difficult and weather resistance tends to decrease. Furthermore, the thermal expansion coefficient becomes too high. On the other hand, if the content of SiO 2 is too high, meltability and moldability tend to decrease, and the thermal expansion coefficient becomes too low.

Alは、ヤング率や耐候性を高める成分である。Alの含有量は、好ましくは7~34%、8~26%、9~24%、11~23%、12~22%、14~21%、特に16~21%である。Alの含有量が少な過ぎると、ヤング率や耐候性が低下し易くなる。一方、Alの含有量が多過ぎると、溶融性、成形性及び耐失透性が低下し易くなる。 Al 2 O 3 is a component that enhances Young's modulus and weather resistance. The content of Al 2 O 3 is preferably 7 to 34%, 8 to 26%, 9 to 24%, 11 to 23%, 12 to 22%, 14 to 21%, and particularly 16 to 21%. If the content of Al 2 O 3 is too low, Young's modulus and weather resistance are likely to decrease. On the other hand, if the content of Al 2 O 3 is too high, meltability, moldability, and devitrification resistance are likely to decrease.

は、ガラスのネットワークを形成する成分であるが、ヤング率や耐候性を低下させる成分である。よって、Bの含有量は、好ましくは0~8%、0.1~7%、1~6%、特に3~5%である。 B 2 O 3 is a component that forms a glass network, but is also a component that reduces the Young's modulus and weather resistance. Therefore, the content of B 2 O 3 is preferably 0 to 8%, 0.1 to 7%, 1 to 6%, particularly preferably 3 to 5%.

MgOは、ヤング率を大幅に高める成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。MgOの含有量は、好ましくは0~22%、0.5~21%、1~20.5%、2~20%、4~19.5%、5~19%、7~19%、8~18%、8.5~16%、9~16%、9~14%、特に9~12%である。MgOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、MgOの含有量が多過ぎると、耐失透性が低下し易くなる。 MgO is a component that significantly increases Young's modulus and also reduces high-temperature viscosity, improving meltability and moldability. The MgO content is preferably 0-22%, 0.5-21%, 1-20.5%, 2-20%, 4-19.5%, 5-19%, 7-19%, 8-18%, 8.5-16%, 9-16%, 9-14%, and particularly 9-12%. If the MgO content is too low, it becomes difficult to achieve the above effects. On the other hand, if the MgO content is too high, devitrification resistance is easily reduced.

CaOは、高温粘度を低下させて、溶融性及び成形性を高める成分である。CaOの含有量は、好ましくは1~15%、2~12%、3~10%、特に5~8%である。CaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、CaOの含有量が多過ぎると、耐失透性が低下し易くなる。 CaO is a component that reduces high-temperature viscosity and improves meltability and moldability. The CaO content is preferably 1-15%, 2-12%, 3-10%, and particularly 5-8%. If the CaO content is too low, it becomes difficult to obtain the above effects. On the other hand, if the CaO content is too high, devitrification resistance is easily reduced.

ヤング率を高める観点から、モル比MgO/(MgO+CaO+SrO+BaO)は、好ましくは0以上、0.1以上、0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、特に0.7以上である。なお、「MgO/(MgO+CaO+SrO+BaO)」は、MgOの含有量をMgO、CaO、SrO及びBaOの合量で割った値である。 From the viewpoint of increasing the Young's modulus, the molar ratio MgO/(MgO+CaO+SrO+BaO) is preferably 0 or more, 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, and particularly 0.7 or more. Note that "MgO/(MgO+CaO+SrO+BaO)" is the value obtained by dividing the MgO content by the combined amount of MgO, CaO, SrO, and BaO.

、La及びZrOは、ヤング率を高める成分である。Y、La及びZrOの合量は、好ましくは0~20%、0.1~18%、0.5~16%、1~15%、1~14%、1~12%、1.2~10%、1.3~8%、特に1.5~5%である。Y、La及びZrOの合量が多過ぎると、耐失透性が低下し易くなる。Yの含有量は、好ましくは0~15%、0.1~14%、0.5~13%、0.5~12%、0.5~10%、0.5~8%、0.5~6%、特に1~4%である。Laの含有量は、好ましくは0~6%、0~4%、特に0~2%である。ZrOの含有量は、好ましくは0~10%、0.1~6%、0.5~4%、特に1~3%である。Yの含有量が多過ぎると、耐失透性が低下し易くなり、また原料コストが高騰し易くなる。Laの含有量が多過ぎると、耐失透性が低下し易くなり、また原料コストが高騰し易くなる。ZrOの含有量が多過ぎると、耐失透性が低下し易くなる。 Y 2 O 3 , La 2 O 3 and ZrO 2 are components that increase the Young's modulus. The total amount of Y 2 O 3 , La 2 O 3 and ZrO 2 is preferably 0-20%, 0.1-18%, 0.5-16%, 1-15%, 1-14%, 1-12%, 1.2-10%, 1.3-8%, particularly 1.5-5%. If the total amount of Y 2 O 3 , La 2 O 3 and ZrO 2 is too large, the devitrification resistance is likely to decrease. The content of Y 2 O 3 is preferably 0-15%, 0.1-14%, 0.5-13%, 0.5-12%, 0.5-10%, 0.5-8%, 0.5-6%, particularly 1-4%. The content of La 2 O 3 is preferably 0-6%, 0-4%, particularly 0-2%. The content of ZrO 2 is preferably 0-10%, 0.1-6%, 0.5-4%, particularly 1-3%. If the content of Y 2 O 3 is too high, the devitrification resistance is likely to decrease and the raw material cost is likely to increase. If the content of La 2 O 3 is too high, the devitrification resistance is likely to decrease and the raw material cost is likely to increase. If the content of ZrO 2 is too high, the devitrification resistance is likely to decrease.

上記成分以外にも、例えば以下の成分を添加してもよい。 In addition to the above ingredients, the following ingredients may also be added:

SrO及びBaOは、高温粘度を低下させて、溶融性及び成形性を高める成分である。SrO及びBaOは、それぞれ0~15%、0.1~12%、特に0.5~10%である。 SrO and BaO are components that reduce high-temperature viscosity and improve meltability and moldability. The amounts of SrO and BaO are 0-15%, 0.1-12%, and especially 0.5-10%, respectively.

ZnOは、高温粘性を下げて、溶融性を顕著に高める成分である。ZnOの含有量は、好ましくは0~7%、0.1~5%、特に0.5~3%である。ZnOの含有量が少な過ぎると、上記効果を享受し難くなる。なお、ZnOの含有量が多過ぎると、ガラスが失透し易くなる。 ZnO is a component that reduces high-temperature viscosity and significantly increases melting properties. The ZnO content is preferably 0-7%, 0.1-5%, and particularly 0.5-3%. If the ZnO content is too low, it becomes difficult to obtain the above effects. If the ZnO content is too high, the glass becomes more susceptible to devitrification.

LiO、NaO及びKOは、高温粘度を低下させて、溶融性及び成形性を高める成分であるが、熱膨張係数を上昇させる成分である。高温粘度を低下させて、溶融性及び成形性を高めると共に、熱膨張係数を上昇させるには、LiO、NaO及びKOの合量は、好ましくは0~15%、0.01~10%、0.05~8%、特に0.1~5%である。LiO、NaO及びKOのそれぞれの含有量は、好ましくは0~10%、0.01~5%、0.05~4%、特に0.1~3%未満である。熱膨張係数を低下させるためには、LiO、NaO及びKOの合量は、好ましくは0~15%、0~10%、0~5%、0~1%、0~0.1%、0~0.05%、特に0~0.01%未満である。LiO、NaO及びKOのそれぞれの含有量は、好ましくは0~15%、0~10%、0~5%、0~1%、0~0.1%、0~0.05%、特に0~0.01%未満である。 Li 2 O, Na 2 O and K 2 O are components that lower the high-temperature viscosity and improve the meltability and moldability, but also increase the thermal expansion coefficient. In order to lower the high-temperature viscosity and improve the meltability and moldability while also increasing the thermal expansion coefficient, the total content of Li 2 O, Na 2 O and K 2 O is preferably 0 to 15%, 0.01 to 10%, 0.05 to 8%, particularly 0.1 to 5%. The respective contents of Li 2 O, Na 2 O and K 2 O are preferably 0 to 10%, 0.01 to 5%, 0.05 to 4%, particularly less than 0.1 to 3%. In order to reduce the thermal expansion coefficient, the total content of Li 2 O, Na 2 O and K 2 O is preferably 0 to 15%, 0 to 10%, 0 to 5%, 0 to 1%, 0 to 0.1%, 0 to 0.05%, particularly preferably 0 to less than 0.01%. The respective contents of Li 2 O, Na 2 O and K 2 O are preferably 0 to 15%, 0 to 10%, 0 to 5%, 0 to 1%, 0 to 0.1%, 0 to 0.05%, particularly preferably 0 to less than 0.01%.

TiOは、耐候性を高める成分であるが、ガラスを着色させる成分である。よって、TiOの含有量は、好ましくは0~0.5%、特に0~0.1%未満である。 TiO2 is a component that enhances weather resistance, but also colors the glass. Therefore, the content of TiO2 is preferably 0 to 0.5%, and particularly preferably 0 to less than 0.1%.

清澄剤として、SnO、Cl、SO、CeOの群(好ましくはSnO、SOの群)から選択された一種又は二種以上を0.05~0.5%添加してもよい。 As a fining agent, one or more selected from the group consisting of SnO 2 , Cl, SO 3 and CeO 2 (preferably SnO 2 and SO 3 ) may be added in an amount of 0.05 to 0.5%.

Feは、ガラス原料に不純物として不可避的に混入する成分であり、着色成分である。よって、Feの含有量は、好ましくは0.5%以下、0.001~0.1%、0.005~0.07%、0.008~0.03%、特に0.01~0.025%である。 Fe 2 O 3 is a component that is inevitably mixed as an impurity in glass raw materials and is a coloring component. Therefore, the content of Fe 2 O 3 is preferably 0.5% or less, 0.001 to 0.1%, 0.005 to 0.07%, 0.008 to 0.03%, particularly 0.01 to 0.025%.

、Cr、CoO及びNiOは、着色成分である。よって、V、Cr、CoO及びNiOのそれぞれの含有量は、好ましくは0.1%以下、特に0.01%未満である。 V2O5 , Cr2O3 , CoO3 and NiO are coloring components . Therefore, the content of each of V2O5 , Cr2O3 , CoO3 and NiO is preferably 0.1 % or less, particularly preferably less than 0.01%.

環境的配慮から、ガラス組成として、実質的にAs、Sb、PbO、Bi及びFを含有しないことが好ましい。ここで、「実質的に~を含有しない」とは、ガラス成分として積極的に明示の成分を添加しないものの、不純物として混入する場合を許容する趣旨であり、具体的には、明示の成分の含有量が0.05%未満であることを指す。 From an environmental perspective, it is preferable that the glass composition does not substantially contain As 2 O 3 , Sb 2 O 3 , PbO, Bi 2 O 3 and F. Here, "substantially does not contain ..." means that the specified components are not actively added as glass components, but are allowed to be mixed in as impurities, and specifically means that the content of the specified components is less than 0.05%.

本発明の支持ガラス基板は、以下の特性を有することが好ましい。 The supporting glass substrate of the present invention preferably has the following characteristics:

歪点は、好ましくは580℃以上、620℃以上、650℃以上、680℃以上、特に700~850℃である。歪点が高い程、半導体パッケージの製造工程において支持ガラス基板の熱収縮を低減し易くなる。結果として、加工処理の精度を高め易くなる。なお、「歪点」は、ASTM C336の方法に基づいて測定した値を指す。 The strain point is preferably 580°C or higher, 620°C or higher, 650°C or higher, or 680°C or higher, and particularly 700 to 850°C. The higher the strain point, the easier it is to reduce the thermal shrinkage of the supporting glass substrate during the semiconductor package manufacturing process. As a result, it becomes easier to increase the precision of the processing. Note that "strain point" refers to a value measured based on the method of ASTM C336.

液相温度は、好ましくは1300℃以下、1280℃以下、1250℃以下、1160℃以下、1130℃以下、特に1100℃以下である。このようにすれば、板状に成形し易くなるため、表面を研磨しなくても、或いは少量の研磨によって、全体板厚偏差(TTV)を2.0μm未満、特に1.0μm未満まで低減することができ、結果として、支持ガラス基板の製造コストを低廉化することができる。更に、成形時に失透結晶が発生する事態を防止し易くなる。ここで、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶が析出する温度を測定することにより算出可能である。 The liquidus temperature is preferably 1300°C or less, 1280°C or less, 1250°C or less, 1160°C or less, 1130°C or less, and particularly 1100°C or less. In this way, it becomes easier to form into a plate shape, so that the total thickness deviation (TTV) can be reduced to less than 2.0 μm, particularly less than 1.0 μm, without polishing the surface or with a small amount of polishing, and as a result, the manufacturing cost of the support glass substrate can be reduced. Furthermore, it becomes easier to prevent the occurrence of devitrification crystals during forming. Here, the "liquidus temperature" can be calculated by placing the glass powder that passes through a standard sieve 30 mesh (500 μm) and remains on the 50 mesh (300 μm) in a platinum boat, holding it in a temperature gradient furnace for 24 hours, and measuring the temperature at which crystals precipitate.

液相粘度は、好ましくは103.8dPa・s以上、104.0dPa・s以上、104.2dPa・s以上、104.4dPa・s以上、特に104.6dPa・s以上である。このようにすれば、板状に成形し易くなるため、表面を研磨しなくても、或いは少量の研磨によって、全体板厚偏差(TTV)を2.0μm未満、特に1.0μm未満まで低減することができ、結果として、支持ガラス基板の製造コストを低廉化することができる。ここで、「液相粘度」は、白金球引き上げ法で測定可能である。 The liquidus viscosity is preferably 10 3.8 dPa·s or more, 10 4.0 dPa·s or more, 10 4.2 dPa·s or more, 10 4.4 dPa·s or more, particularly 10 4.6 dPa·s or more. In this way, it becomes easy to form into a plate shape, so that the total thickness deviation (TTV) can be reduced to less than 2.0 μm, particularly less than 1.0 μm, without polishing the surface or with a small amount of polishing, and as a result, the manufacturing cost of the supporting glass substrate can be reduced. Here, the "liquidus viscosity" can be measured by a platinum ball pulling method.

102.5dPa・sにおける温度は、好ましくは1550℃以下、1500℃以下、1480℃以下、1450℃以下、特に1200~1400℃以下である。102.5dPa・sにおける温度が高くなると、溶融性が低下して、支持ガラス基板の製造コストが高騰する。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 The temperature at 10 2.5 dPa·s is preferably 1550° C. or less, 1500° C. or less, 1480° C. or less, 1450° C. or less, particularly 1200 to 1400° C. or less. If the temperature at 10 2.5 dPa·s is high, the melting property decreases, and the manufacturing cost of the supporting glass substrate increases. Here, the "temperature at 10 2.5 dPa·s" can be measured by a platinum sphere pulling method.

板厚は、好ましくは1.5mm以下、1.2mm以下、1.0mm以下、特に0.9mm以下である。一方、板厚が薄過ぎると、支持ガラス基板自体の強度が低下して、支持基板としての機能を果たし難くなる。よって、支持ガラス基板の板厚は、好ましくは0.5mm以上、0.6mm以上、特に0.7mm超である。 The plate thickness is preferably 1.5 mm or less, 1.2 mm or less, 1.0 mm or less, and particularly 0.9 mm or less. On the other hand, if the plate thickness is too thin, the strength of the supporting glass substrate itself decreases, making it difficult for the supporting substrate to function. Therefore, the plate thickness of the supporting glass substrate is preferably 0.5 mm or more, 0.6 mm or more, and particularly more than 0.7 mm.

反り量は、好ましくは60μm以下、55μm以下、50μm以下、1~45μm、特に5~40μmである。反り量が小さい程、加工処理の精度を高め易くなる。特に配線精度を高めることができるため、高密度の配線が可能になる。なお、反り量を低減するためには、複数のガラス基板を積層させて熱処理を行うことが好ましい。なお、「反り量」は、支持ガラス基板全体における最高位点と最小二乗焦点面との間の最大距離の絶対値と、最低位点と最小二乗焦点面との絶対値との合計を指し、例えばコベルコ科研社製のSBW-331ML/dにより測定可能である。 The amount of warping is preferably 60 μm or less, 55 μm or less, 50 μm or less, 1 to 45 μm, and particularly 5 to 40 μm. The smaller the amount of warping, the easier it is to improve the processing accuracy. In particular, wiring accuracy can be improved, making high-density wiring possible. In order to reduce the amount of warping, it is preferable to stack multiple glass substrates and perform heat treatment. The "amount of warping" refers to the sum of the absolute value of the maximum distance between the highest point and the least squares focal plane on the entire supporting glass substrate, and the absolute value of the minimum point and the least squares focal plane, and can be measured, for example, using SBW-331ML/d manufactured by Kobelco Research Institute, Ltd.

本発明の支持ガラス基板は、ウエハ状(略真円状)が好ましく、その直径は100mm以上500mm以下、特に150mm以上450mm以下が好ましく、その真円度(但し、ノッチ部を除く)は1mm以下、0.1mm以下、0.05mm以下、特に0.03mm以下が好ましい。このようにすれば、半導体パッケージの製造工程に適用し易くなる。なお、「真円度」は、ウエハの外形の最大値から最小値を減じた値である。 The supporting glass substrate of the present invention is preferably in the form of a wafer (approximately circular), with a diameter of 100 mm to 500 mm, and particularly preferably 150 mm to 450 mm, and a circularity (excluding the notch) of 1 mm or less, 0.1 mm or less, 0.05 mm or less, and particularly preferably 0.03 mm or less. This makes it easier to apply to the manufacturing process of semiconductor packages. Note that "circularity" is the value obtained by subtracting the minimum value from the maximum value of the outer shape of the wafer.

本発明の支持ガラス基板は、ノッチ部(ノッチ形状の位置合わせ部)を有することが好ましく、ノッチ部の深部は平面視で略円形状又は略V溝形状であることがより好ましい。これにより、支持ガラス基板のノッチ部に位置決めピン等の位置決め部材を当接させて、支持ガラス基板の位置を固定し易くなる。結果として、支持ガラス基板と加工基板の位置合わせが容易になる。特に、加工基板にもノッチ部を形成して、位置決め部材を当接させると、積層体全体の位置合わせが容易になる。 The supporting glass substrate of the present invention preferably has a notch portion (notch-shaped alignment portion), and more preferably the deep portion of the notch portion is substantially circular or substantially V-groove-shaped in plan view. This makes it easier to fix the position of the supporting glass substrate by abutting a positioning member such as a positioning pin against the notch portion of the supporting glass substrate. As a result, it becomes easier to align the supporting glass substrate with the processing substrate. In particular, forming a notch portion in the processing substrate and abutting a positioning member thereon makes it easier to align the entire laminate.

一方、支持ガラス基板のノッチ部に位置決め部材を当接すると、ノッチ部に応力が集中し易くなり、ノッチ部を起点にして、支持ガラス基板が破損し易くなる。特に、支持ガラス基板が外力により湾曲した時に、その傾向が顕著になる。よって、ノッチ部の表面と端面とが交差する端縁領域の全部又は一部が面取りされていることが好ましい。これにより、ノッチ部を起点にした破損を有効に回避することができる。 On the other hand, when a positioning member is brought into contact with the notch portion of the supporting glass substrate, stress tends to concentrate in the notch portion, and the supporting glass substrate tends to break starting from the notch portion. This tendency is particularly pronounced when the supporting glass substrate is curved by an external force. Therefore, it is preferable that all or part of the edge region where the surface of the notch portion intersects with the end face is chamfered. This makes it possible to effectively avoid breakage starting from the notch portion.

ノッチ部の表面と端面とが交差する端縁領域の50%以上が面取りされていることが更に好ましく、ノッチ部の表面と端面とが交差する端縁領域の90%以上が面取りされていることが特に好ましく、ノッチ部の表面と端面とが交差する端縁領域の全部が面取りされていることが最も好ましい。ノッチ部において面取りされている領域が大きい程、ノッチ部を起点にした破損の確率を低減することができる。 It is more preferable that 50% or more of the edge area where the surface of the notch portion and the end face intersect is chamfered, it is particularly preferable that 90% or more of the edge area where the surface of the notch portion and the end face intersect is chamfered, and it is most preferable that the entire edge area where the surface of the notch portion and the end face intersect is chamfered. The larger the area that is chamfered in the notch portion, the more likely it is that breakage originating from the notch portion will be reduced.

ノッチ部のおもて面方向の面取り幅(裏面方向の面取り幅も同様)は、好ましくは50~900μm、200~800μm、300~700μm、400~650μm、特に500~600μmである。ノッチ部の表面方向の面取り幅が小さ過ぎると、ノッチ部を起点にして、支持ガラス基板が破損し易くなる。一方、ノッチ部のおもて面方向の面取り幅が大き過ぎると、面取り効率が低下して、支持ガラス基板の製造コストが高騰し易くなる。 The chamfer width of the notch in the front surface direction (similarly the chamfer width in the back surface direction) is preferably 50 to 900 μm, 200 to 800 μm, 300 to 700 μm, 400 to 650 μm, and particularly 500 to 600 μm. If the chamfer width of the notch in the front surface direction is too small, the supporting glass substrate is likely to be damaged starting from the notch. On the other hand, if the chamfer width of the notch in the front surface direction is too large, the chamfering efficiency decreases, and the manufacturing costs of the supporting glass substrate are likely to rise.

ノッチ部の板厚方向の面取り幅(おもて面と裏面の面取り幅の合計)は、好ましくは板厚の5~80%、20~75%、30~70%、35~65%、特に40~60%である。ノッチ部の板厚方向の面取り幅が小さ過ぎると、ノッチ部を起点にして、支持ガラス基板が破損し易くなる。一方、ノッチ部の板厚方向の面取り幅が大き過ぎると、外力がノッチ部の端面に集中し易くなり、ノッチ部の端面を起点にして、支持ガラス基板が破損し易くなる。 The chamfer width of the notch portion in the plate thickness direction (total chamfer widths on the front and back surfaces) is preferably 5-80%, 20-75%, 30-70%, 35-65%, and particularly 40-60% of the plate thickness. If the chamfer width of the notch portion in the plate thickness direction is too small, the supported glass substrate is more likely to break starting from the notch portion. On the other hand, if the chamfer width of the notch portion in the plate thickness direction is too large, external forces are more likely to concentrate on the edge face of the notch portion, and the supported glass substrate is more likely to break starting from the edge face of the notch portion.

本発明の支持ガラス基板は、全体板厚偏差(TTV)を低減する観点から、化学強化処理がなされていないことが好ましい。つまり表面に圧縮応力層を有しないことが好ましい。 From the viewpoint of reducing the total thickness variation (TTV), it is preferable that the supporting glass substrate of the present invention has not been subjected to a chemical strengthening treatment. In other words, it is preferable that the surface does not have a compressive stress layer.

支持ガラス基板の成形方法として、種々の方法を採択することができる。例えば、スロットダウン法、ロールアウト法、リドロー法、フロート法、インゴット成型法等を採択することができる。 Various methods can be used to form the supporting glass substrate. For example, the slot-down method, roll-out method, redraw method, float method, ingot molding method, etc. can be used.

本発明の積層基板は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層基板であって、支持ガラス基板が上記の支持ガラス基板であることを特徴とする。ここで、本発明の積層基板の技術的特徴(好適な構成、効果)は、本発明の支持ガラス基板の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The laminated substrate of the present invention is a laminated substrate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate, characterized in that the supporting glass substrate is the supporting glass substrate described above. Here, the technical features (preferable configurations and effects) of the laminated substrate of the present invention overlap with the technical features of the supporting glass substrate of the present invention. Therefore, in this specification, detailed description of the overlapping parts is omitted.

本発明の積層基板は、加工基板と支持ガラス基板の間に、接着層を有することが好ましい。接着層は、樹脂であることが好ましく、例えば、熱硬化性樹脂、光硬化性樹脂(特に紫外線硬化樹脂)等が好ましい。また半導体パッケージの製造工程における熱処理に耐える耐熱性を有するものが好ましい。これにより、半導体パッケージの製造工程で接着層が融解し難くなり、加工処理の精度を高めることができる。 The laminated substrate of the present invention preferably has an adhesive layer between the processing substrate and the supporting glass substrate. The adhesive layer is preferably a resin, such as a thermosetting resin or a photocurable resin (particularly an ultraviolet-curable resin). It is also preferable that the adhesive layer has heat resistance sufficient to withstand the heat treatment in the semiconductor package manufacturing process. This makes it difficult for the adhesive layer to melt during the semiconductor package manufacturing process, and allows for increased processing accuracy.

本発明の積層基板は、更に加工基板と支持ガラス基板の間に、より具体的には加工基板と接着層の間に、剥離層を有すること、或いは支持ガラス基板と接着層の間に、剥離層を有することが好ましい。このようにすれば、加工基板に対して、所定の加工処理を行った後に、加工基板を支持ガラス基板から剥離し易くなる。加工基板の剥離は、生産性の観点から、レーザー光等の照射光により行うことが好ましい。 The laminated substrate of the present invention preferably further has a release layer between the processed substrate and the supporting glass substrate, more specifically between the processed substrate and the adhesive layer, or between the supporting glass substrate and the adhesive layer. In this way, after the processed substrate is subjected to a predetermined processing treatment, it becomes easier to peel the processed substrate from the supporting glass substrate. From the viewpoint of productivity, peeling of the processed substrate is preferably performed by irradiating light such as laser light.

剥離層は、レーザー光等の照射光により「層内剥離」又は「界面剥離」が生じる材料で構成される。つまり一定の強度の光を照射すると、原子又は分子における原子間又は分子間の結合力が消失又は減少して、アブレーション(ablation)等を生じ、剥離を生じさせる材料で構成される。なお、照射光の照射により、剥離層に含まれる成分が気体となって放出されて分離に至る場合と、剥離層が光を吸収して気体になり、その蒸気が放出されて分離に至る場合とがある。 The peeling layer is composed of a material that undergoes "intralayer peeling" or "interfacial peeling" when irradiated with light such as laser light. In other words, when irradiated with light of a certain intensity, the interatomic or intermolecular bonding forces in atoms or molecules disappear or decrease, causing ablation or the like, resulting in peeling. In addition, when irradiated with light, the components contained in the peeling layer may turn into gas and be released, leading to separation, or the peeling layer may absorb light, turn into gas, and release the vapor, leading to separation.

本発明の積層基板において、支持ガラス基板は、加工基板よりも大きいことが好ましい。これにより、加工基板と支持ガラス基板を支持する際に、両者の中心位置が僅かに離間した場合でも、支持ガラス基板から加工基板の縁部が食み出し難くなる。 In the laminated substrate of the present invention, it is preferable that the supporting glass substrate is larger than the processing substrate. This makes it difficult for the edge of the processing substrate to protrude from the supporting glass substrate even if the central positions of the processing substrate and the supporting glass substrate are slightly separated when they are supported.

本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層基板を用意する工程と、加工基板に対して、加工処理を行う工程と、を有すると共に、支持ガラス基板が上記の支持ガラス基板であることを特徴とする。ここで、本発明の半導体パッケージの製造方法の技術的特徴(好適な構成、効果)は、本発明の支持ガラス基板及び積層基板の技術的特徴と重複する。よって、本明細書では、その重複部分について、詳細な記載を省略する。 The method for manufacturing a semiconductor package of the present invention includes a step of preparing a laminated substrate including at least a processing substrate and a supporting glass substrate for supporting the processing substrate, and a step of performing a processing process on the processing substrate, and is characterized in that the supporting glass substrate is the above-mentioned supporting glass substrate. Here, the technical features (preferable configurations and effects) of the method for manufacturing a semiconductor package of the present invention overlap with the technical features of the supporting glass substrate and the laminated substrate of the present invention. Therefore, in this specification, detailed description of the overlapping parts is omitted.

本発明の半導体パッケージの製造方法は、少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層基板を用意する工程を有する。少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層基板は、上記の材料構成を有している。なお、ガラス基板の成形方法として、上記成形方法を採択することができる。 The method for manufacturing a semiconductor package of the present invention includes a step of preparing a laminated substrate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate. The laminated substrate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate has the above-mentioned material configuration. The above-mentioned molding method can be adopted as the molding method for the glass substrate.

本発明の半導体パッケージの製造方法は、更に積層基板を搬送する工程を有することが好ましい。これにより、加工処理の処理効率を高めることができる。なお、「積層基板を搬送する工程」と「加工基板に対して、加工処理を行う工程」とは、別途に行う必要はなく、同時であってもよい。 The semiconductor package manufacturing method of the present invention preferably further includes a step of transporting the laminated substrate. This can improve the processing efficiency of the processing. Note that the "step of transporting the laminated substrate" and the "step of performing processing on the processed substrate" do not need to be performed separately, and may be performed simultaneously.

本発明の半導体パッケージの製造方法において、加工処理は、加工基板の一方の表面に配線する処理、或いは加工基板の一方の表面に半田バンプを形成する処理が好ましい。本発明の半導体パッケージの製造方法では、これらの処理時に加工基板が寸法変化し難いため、これらの工程を適正に行うことができる。 In the semiconductor package manufacturing method of the present invention, the processing is preferably a process for wiring one surface of the processed substrate, or a process for forming solder bumps on one surface of the processed substrate. In the semiconductor package manufacturing method of the present invention, the processed substrate is unlikely to change in dimensions during these processes, so these steps can be carried out appropriately.

加工処理として、上記以外にも、加工基板の一方の表面(通常、支持ガラス基板とは反対側の表面)を機械的に研磨する処理、加工基板の一方の表面(通常、支持ガラス基板とは反対側の表面)をドライエッチングする処理、加工基板の一方の表面(通常、支持ガラス基板とは反対側の表面)をウェットエッチングする処理の何れかであってもよい。なお、本発明の半導体パッケージの製造方法では、加工基板に反りが発生し難いと共に、積層基板の剛性を維持することができる。結果として、上記加工処理を適正に行うことができる。 In addition to the above, the processing may be any of the following: mechanical polishing of one surface of the processing substrate (usually the surface opposite the supporting glass substrate), dry etching of one surface of the processing substrate (usually the surface opposite the supporting glass substrate), and wet etching of one surface of the processing substrate (usually the surface opposite the supporting glass substrate). In addition, in the manufacturing method of the semiconductor package of the present invention, warping is unlikely to occur in the processing substrate, and the rigidity of the laminated substrate can be maintained. As a result, the above processing can be performed appropriately.

図面を参酌しながら、本発明を更に説明する。 The present invention will be further explained with reference to the drawings.

図1は、本発明の積層基板1の一例を示す概念斜視図である。図1では、積層基板1は、支持ガラス基板10と加工基板11とを備えている。支持ガラス基板10は、加工基板11の寸法変化を防止するために、加工基板11に貼着されている。そして、支持ガラス基板10は、30~380℃の温度範囲における平均線熱膨張係数が32×10-7/℃以上であり、且つ55×10-7/℃以下であり、ヤング率が80GPa以上である。また、支持ガラス基板10と加工基板11との間には、剥離層12と接着層13が配置されている。剥離層12は、支持ガラス基板10と接触しており、接着層13は、加工基板11と接触している。 FIG. 1 is a conceptual perspective view showing an example of a laminated substrate 1 of the present invention. In FIG. 1, the laminated substrate 1 includes a supporting glass substrate 10 and a processed substrate 11. The supporting glass substrate 10 is attached to the processed substrate 11 in order to prevent dimensional changes in the processed substrate 11. The supporting glass substrate 10 has an average linear thermal expansion coefficient of 32×10 −7 /° C. or more and 55×10 −7 /° C. or less in a temperature range of 30 to 380° C., and a Young's modulus of 80 GPa or more. In addition, a peeling layer 12 and an adhesive layer 13 are disposed between the supporting glass substrate 10 and the processed substrate 11. The peeling layer 12 is in contact with the supporting glass substrate 10, and the adhesive layer 13 is in contact with the processed substrate 11.

図1から分かるように、積層基板1は、支持ガラス基板10、剥離層12、接着層13、加工基板11の順に積層配置されている。支持ガラス基板10の形状は、加工基板11に応じて決定されるが、図1では、支持ガラス基板10及び加工基板11の形状は、何れもウエハ形状である。剥離層12は、非晶質シリコン(a-Si)以外にも、酸化ケイ素、ケイ酸化合物、窒化ケイ素、窒化アルミ、窒化チタン等が用いられる。剥離層12は、プラズマCVD、ゾル-ゲル法によるスピンコート等により形成される。接着層13は、樹脂で構成されており、例えば、各種印刷法、インクジェット法、スピンコート法、ロールコート法等により塗布形成される。接着層13は、剥離層12により加工基板11から支持ガラス基板10が剥離された後、溶剤等により溶解除去される。 As can be seen from FIG. 1, the laminated substrate 1 is formed by stacking the supporting glass substrate 10, the peeling layer 12, the adhesive layer 13, and the processed substrate 11 in this order. The shape of the supporting glass substrate 10 is determined according to the processed substrate 11, but in FIG. 1, the shapes of the supporting glass substrate 10 and the processed substrate 11 are both wafer-shaped. In addition to amorphous silicon (a-Si), silicon oxide, silicate compounds, silicon nitride, aluminum nitride, titanium nitride, and the like are used for the peeling layer 12. The peeling layer 12 is formed by plasma CVD, spin coating using the sol-gel method, and the like. The adhesive layer 13 is made of resin, and is applied and formed by, for example, various printing methods, inkjet methods, spin coating methods, roll coating methods, and the like. After the supporting glass substrate 10 is peeled off from the processed substrate 11 by the peeling layer 12, the adhesive layer 13 is dissolved and removed by a solvent or the like.

図2は、fan out型のWLPのチップファースト型の製造工程を示す概念断面図である。図2(a)は、支持部材20の一方の表面上に接着層21を形成した状態を示している。必要に応じて、支持部材20と接着層21の間に剥離層を形成してもよい。次に、図2(b)に示すように、接着層21の上に複数の半導体チップ22を貼付する。その際、半導体チップ22のアクティブ側の面を接着層21に接触させる。次に、図2(c)に示すように、半導体チップ22を樹脂の封止材23でモールドする。封止材23は、圧縮成形後の寸法変化、配線を成形する際の寸法変化が少ない材料が使用される。続いて、図2(d)、(e)に示すように、支持部材20から半導体チップ22がモールドされた加工基板24を分離した後、接着層25を介して、支持ガラス基板26と接着固定させる。その際、加工基板24の表面の内、半導体チップ22が埋め込まれた側の表面とは反対側の表面が支持ガラス基板26側に配置される。このようにして、積層基板27を得ることができる。なお、必要に応じて、接着層25と支持ガラス基板26の間に剥離層を形成してもよい。更に、得られた積層基板27を搬送した後に、図2(f)に示すように、加工基板24の半導体チップ22が埋め込まれた側の表面に配線28を形成した後、複数の半田バンプ29を形成する。最後に、支持ガラス基板26から加工基板24を分離した後に、加工基板24を半導体チップ22毎に切断し、後のパッケージング工程に供される(図2(g))。 2 is a conceptual cross-sectional view showing the manufacturing process of the chip-first type of fan-out type WLP. FIG. 2(a) shows a state in which an adhesive layer 21 is formed on one surface of a support member 20. If necessary, a peeling layer may be formed between the support member 20 and the adhesive layer 21. Next, as shown in FIG. 2(b), a plurality of semiconductor chips 22 are attached on the adhesive layer 21. At that time, the active side surface of the semiconductor chip 22 is brought into contact with the adhesive layer 21. Next, as shown in FIG. 2(c), the semiconductor chip 22 is molded with a resin sealant 23. The sealant 23 is made of a material that has little dimensional change after compression molding and little dimensional change when forming wiring. Next, as shown in FIG. 2(d) and (e), after separating the processing substrate 24 on which the semiconductor chip 22 is molded from the support member 20, it is bonded and fixed to the supporting glass substrate 26 via the adhesive layer 25. At that time, the surface of the processing substrate 24 opposite to the surface on which the semiconductor chip 22 is embedded is arranged on the supporting glass substrate 26 side. In this way, the laminated substrate 27 can be obtained. If necessary, a peeling layer may be formed between the adhesive layer 25 and the supporting glass substrate 26. Furthermore, after the obtained laminated substrate 27 is transported, as shown in FIG. 2(f), wiring 28 is formed on the surface of the processed substrate 24 on the side where the semiconductor chip 22 is embedded, and then a plurality of solder bumps 29 are formed. Finally, after the processed substrate 24 is separated from the supporting glass substrate 26, the processed substrate 24 is cut into individual semiconductor chips 22, and is subjected to the subsequent packaging process (FIG. 2(g)).

図3は、支持ガラス基板をバックグラインド基板に用いて、加工基板を薄型化する工程を示す概念断面図である。図3(a)は、積層基板30を示している。積層基板30は、支持ガラス基板31、剥離層32、接着層33、加工基板(シリコンウェハ)34の順に積層配置されている。加工基板の接着層33に接する側の表面には、半導体チップ35がフォトリソグラフィー法等により複数形成されている。図3(b)は、加工基板34を研磨装置36により薄型化する工程を示している。この工程により、加工基板34は、機械的に研磨されて、例えば数十μmまで薄型化される。図3(c)は、支持ガラス基板31を通して、剥離層32に紫外光37を照射する工程を示している。この工程を経ると、図3(d)に示す通り、支持ガラス基板31を分離することが可能になる。分離された支持ガラス基板31は、必要に応じて、再利用される。図3(e)は、加工基板34から接着層33を取り除く工程を示している。この工程を経ると、薄型化した加工基板34を採取することができる。 3 is a conceptual cross-sectional view showing a process of thinning a processed substrate using a supporting glass substrate as a back-grinding substrate. FIG. 3(a) shows a laminated substrate 30. The laminated substrate 30 is arranged by stacking a supporting glass substrate 31, a peeling layer 32, an adhesive layer 33, and a processed substrate (silicon wafer) 34 in this order. A plurality of semiconductor chips 35 are formed on the surface of the processed substrate that contacts the adhesive layer 33 by a photolithography method or the like. FIG. 3(b) shows a process of thinning the processed substrate 34 by a polishing device 36. In this process, the processed substrate 34 is mechanically polished and thinned to, for example, several tens of μm. FIG. 3(c) shows a process of irradiating the peeling layer 32 with ultraviolet light 37 through the supporting glass substrate 31. After this process, it becomes possible to separate the supporting glass substrate 31 as shown in FIG. 3(d). The separated supporting glass substrate 31 is reused as necessary. FIG. 3(e) shows a process of removing the adhesive layer 33 from the processed substrate 34. After this process, a thin processed substrate 34 can be obtained.

以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 The present invention will be described below based on examples. Note that the following examples are merely illustrative. The present invention is not limited to the following examples in any way.

表1~9は、本発明の実施例(試料No.1~86)及び比較例(試料No.87)を示している。 Tables 1 to 9 show examples of the present invention (samples No. 1 to 86) and a comparative example (sample No. 87).

まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れた後、1500~1700℃で24時間溶融、清澄、均質化を行った。ガラスバッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出して、板状に成形した後、徐冷点付近の温度で30分間徐冷した。得られた各ガラス基板について、密度、30~380℃の温度範囲における平均線熱膨張係数CTE30~380℃、ヤング率、歪点Ps、徐冷点Ta、軟化点Ts、高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度、高温粘度102.5dPa・sにおける温度を評価した。なお、表中の「N.A.」は、未測定を表している。 First, a glass batch prepared by mixing glass raw materials to obtain the glass composition shown in the table was placed in a platinum crucible, and then melted, clarified, and homogenized at 1500 to 1700 ° C. for 24 hours. When melting the glass batch, a platinum stirrer was used to stir and homogenize the glass. Next, the molten glass was poured onto a carbon plate, formed into a plate shape, and then slowly cooled for 30 minutes at a temperature near the annealing point. For each of the obtained glass substrates, the density, the average linear thermal expansion coefficient CTE in the temperature range of 30 to 380 ° C. (30 to 380 ° C. ), Young's modulus, strain point Ps, annealing point Ta, softening point Ts, temperature at high temperature viscosity of 10 4.0 dPa s, temperature at high temperature viscosity of 10 3.0 dPa s, and temperature at high temperature viscosity of 10 2.5 dPa s were evaluated. In addition, "N.A." in the table indicates not measured.

密度は、アルキメデス法によって測定した値である。 Density is measured using Archimedes' method.

30~380℃の温度範囲における平均線熱膨張係数CTE30~380℃は、ディラトメーターで測定した値である。 The average coefficient of linear thermal expansion in the temperature range of 30 to 380° C., CTE 30-380° C. , is a value measured with a dilatometer.

ヤング率は、共振法により測定した値を指す。 Young's modulus refers to the value measured using the resonance method.

歪点Ps、徐冷点Ta、軟化点Tsは、ASTM C336及びC338の方法に基づいて測定した値である。 The strain point Ps, annealing point Ta, and softening point Ts are values measured based on the methods of ASTM C336 and C338.

高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperatures at high temperature viscosities of 10 4.0 dPa·s, 10 3.0 dPa·s, and 10 2.5 dPa·s are values measured by the platinum ball pull-up method.

表1~9から明らかなように、試料No.1~86は、30~380℃の温度範囲における平均線熱膨張係数CTE30~380℃が33.2×10-7/℃~48.0×10-7/℃、ヤング率が80.0~101.2GPaであるため、支持ガラス基板として好適であると考えられる。一方、試料No.87は、30~380℃の温度範囲における平均線熱膨張係数CTE30~380℃が35×10-7/℃であるが、ヤング率が76GPaであるため、支持ガラス基板として好適ではないと考えられる。 As is clear from Tables 1 to 9, Samples Nos. 1 to 86 have an average linear thermal expansion coefficient CTE 30-380°C in the temperature range of 30 to 380 °C of 33.2 x 10 -7 / °C to 48.0 x 10 -7 /°C and a Young's modulus of 80.0 to 101.2 GPa, and are therefore considered to be suitable as supporting glass substrates. On the other hand, Sample No. 87 has an average linear thermal expansion coefficient CTE 30-380°C in the temperature range of 30 to 380°C of 35 x 10 -7 /°C, but a Young's modulus of 76 GPa, and is therefore considered to be unsuitable as a supporting glass substrate.

続いて、試料No.1~86に係るガラス基板をφ300mm×0.8mm厚に加工した後、その両表面を研磨装置により研磨処理した。具体的には、ガラス基板の両表面を外径が相違する一対の研磨パットで挟み込み、ガラス基板と一対の研磨パッドを共に回転させながらガラス基板の両表面を研磨処理した。研磨処理の際、時折、ガラス基板の一部が研磨パッドから食み出すように制御した。なお、研磨パッドはウレタン製、研磨処理の際に使用した研磨スラリーの平均粒径は2.5μm、研磨速度は15m/分であった。得られた各研磨処理済みガラス基板について、コベルコ科研社製のSBW-331ML/dにより全体板厚偏差(TTV)と反り量を測定した。その結果、全体板厚偏差(TTV)がそれぞれ0.45μmであり、反り量がそれぞれ35μmであった。 Next, the glass substrates of Samples No. 1 to 86 were processed to a diameter of 300 mm and a thickness of 0.8 mm, and both surfaces were polished by a polishing device. Specifically, both surfaces of the glass substrate were sandwiched between a pair of polishing pads with different outer diameters, and both surfaces of the glass substrate were polished while rotating the glass substrate and the pair of polishing pads. During the polishing process, the glass substrate was controlled so that a part of the glass substrate occasionally protruded from the polishing pad. The polishing pads were made of urethane, the average particle size of the polishing slurry used during the polishing process was 2.5 μm, and the polishing speed was 15 m/min. The total thickness deviation (TTV) and the amount of warping of each of the polished glass substrates obtained were measured using SBW-331ML/d manufactured by Kobelco Research Institute Co., Ltd. As a result, the total thickness deviation (TTV) was 0.45 μm, and the amount of warping was 35 μm.

1、27、30 積層基板
10、26、31 支持ガラス基板
11、24、34 加工基板
12、32 剥離層
13、21、25、33 接着層
20 支持部材
22、35 半導体チップ
23 封止材
28 配線
29 半田バンプ
36 研磨装置
37 紫外光
REFERENCE SIGNS LIST 1, 27, 30 Laminated substrate 10, 26, 31 Support glass substrate 11, 24, 34 Processed substrate 12, 32 Peel layer 13, 21, 25, 33 Adhesive layer 20 Support member 22, 35 Semiconductor chip 23 Sealing material 28 Wiring 29 Solder bump 36 Polishing device 37 Ultraviolet light

Claims (9)

半導体チップが樹脂にモールドされた加工基板の支持に用いる支持ガラス基板であって、前記支持ガラス基板は、ガラス組成として、質量%で、SiO 50~66%、Al 7~34%、B 0~8%、MgO 0~22%、CaO 1~15%、Y +La +ZrO 1~20%を含有し、30~380℃の温度範囲における平均線熱膨張係数が30×10-7/℃以上であり、且つ55×10-7/℃以下であり、ヤング率が80GPa以上であることを特徴とする支持ガラス基板。 A supporting glass substrate used for supporting a processed substrate having a semiconductor chip molded in a resin, the supporting glass substrate containing, in mass %, 50-66% SiO 2 , 7-34% Al 2 O 3 , 0-8% B 2 O 3 , 0-22% MgO, 1-15% CaO, and 1-20 % Y 2 O 3 +La 2 O 3 +ZrO 2 , an average linear thermal expansion coefficient in a temperature range of 30 to 380°C of 30×10 -7 /°C or more and 55×10 -7 /°C or less, and a Young's modulus of 80 GPa or more. 全体板厚偏差(TTV)が2.0μm未満であることを特徴とする請求項1に記載の支持ガラス基板。 The supporting glass substrate according to claim 1, characterized in that the total thickness variation (TTV) is less than 2.0 μm. ガラス組成として、質量%で、SiO 50~66%、Al 7~34%、B 0~8%、MgO 0~22%、CaO 1~15%、Y 15%を含有することを特徴とする請求項1又は2に記載の支持ガラス基板。 The supporting glass substrate according to claim 1 or 2, characterized in that the glass composition contains, in mass %, 50 to 66% SiO 2 , 7 to 34% Al 2 O 3 , 0 to 8% B 2 O 3 , 0 to 22% MgO, 1 to 15% CaO, and 1 to 15 % Y 2 O 3 . 半導体パッケージの製造工程で用いることを特徴とする請求項1~3の何れかに記載の支持ガラス基板。 4. The supporting glass substrate according to claim 1, which is used in a manufacturing process of a semiconductor package. 少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層基板であって、支持ガラス基板が請求項1~4の何れかに記載の支持ガラス基板であることを特徴とする積層基板。 A laminated substrate comprising at least a processed substrate and a supporting glass substrate for supporting the processed substrate, the supporting glass substrate being the supporting glass substrate according to any one of claims 1 to 4. 加工基板が、半導体チップが樹脂にモールドされた加工基板であることを特徴とする請求項5に記載の積層基板。 The laminated substrate according to claim 5, characterized in that the processed substrate is a processed substrate in which a semiconductor chip is molded in resin. 少なくとも加工基板と加工基板を支持するための支持ガラス基板とを備える積層基板を用意する工程と、
加工基板に対して、加工処理を行う工程と、を有すると共に、支持ガラス基板が請求項1~4の何れかに記載の支持ガラス基板であることを特徴とする半導体パッケージの製造方法。
A step of preparing a laminated substrate including at least a processed substrate and a supporting glass substrate for supporting the processed substrate;
A method for manufacturing a semiconductor package, comprising: a step of performing a processing treatment on a processing substrate, and wherein the supporting glass substrate is the supporting glass substrate according to any one of claims 1 to 4.
加工処理が、加工基板の一方の表面に配線する工程を含むことを特徴とする請求項7に記載の半導体パッケージの製造方法。 The method for manufacturing a semiconductor package according to claim 7, characterized in that the processing step includes a step of wiring one surface of the processing substrate. 加工処理が、加工基板の一方の表面に半田バンプを形成する工程を含むことを特徴とする請求項7又は8に記載の半導体パッケージの製造方法。 The method for manufacturing a semiconductor package according to claim 7 or 8, characterized in that the processing step includes a step of forming solder bumps on one surface of the processing substrate.
JP2023044528A 2017-07-26 2023-03-20 Support glass substrate and laminated substrate using same Active JP7538483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024133742A JP2024153929A (en) 2017-07-26 2024-08-09 Support glass substrate and laminated substrate using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017144217 2017-07-26
JP2017144217 2017-07-26
JP2017238390 2017-12-13
JP2017238390 2017-12-13
JP2019532431A JP7265224B2 (en) 2017-07-26 2018-06-15 SUPPORTING GLASS SUBSTRATE AND LAMINATED SUBSTRATE USING THE SAME
PCT/JP2018/022828 WO2019021672A1 (en) 2017-07-26 2018-06-15 Support glass substrate and laminated substrate using same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019532431A Division JP7265224B2 (en) 2017-07-26 2018-06-15 SUPPORTING GLASS SUBSTRATE AND LAMINATED SUBSTRATE USING THE SAME

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024133742A Division JP2024153929A (en) 2017-07-26 2024-08-09 Support glass substrate and laminated substrate using same

Publications (2)

Publication Number Publication Date
JP2023076509A JP2023076509A (en) 2023-06-01
JP7538483B2 true JP7538483B2 (en) 2024-08-22

Family

ID=65040127

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019532431A Active JP7265224B2 (en) 2017-07-26 2018-06-15 SUPPORTING GLASS SUBSTRATE AND LAMINATED SUBSTRATE USING THE SAME
JP2023044528A Active JP7538483B2 (en) 2017-07-26 2023-03-20 Support glass substrate and laminated substrate using same
JP2024133742A Pending JP2024153929A (en) 2017-07-26 2024-08-09 Support glass substrate and laminated substrate using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019532431A Active JP7265224B2 (en) 2017-07-26 2018-06-15 SUPPORTING GLASS SUBSTRATE AND LAMINATED SUBSTRATE USING THE SAME

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024133742A Pending JP2024153929A (en) 2017-07-26 2024-08-09 Support glass substrate and laminated substrate using same

Country Status (4)

Country Link
JP (3) JP7265224B2 (en)
CN (3) CN110831908A (en)
TW (2) TWI787283B (en)
WO (1) WO2019021672A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021241312A1 (en) * 2020-05-28 2021-12-02
WO2024219379A1 (en) * 2023-04-17 2024-10-24 Agc株式会社 Glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348247A (en) 2000-05-31 2001-12-18 Asahi Glass Co Ltd Alkaline-free glass
JP2005247602A (en) 2004-03-01 2005-09-15 Matsushita Electric Ind Co Ltd Glass composition and magnetic head
JP2010064921A (en) 2008-09-10 2010-03-25 Ohara Inc Glass
JP2011522767A (en) 2008-05-13 2011-08-04 コーニング インコーポレイテッド Rare earth-containing glass material and substrate, and apparatus including these substrates
JP2016169141A (en) 2015-03-10 2016-09-23 日本電気硝子株式会社 Support glass substrate and laminate using the same
WO2016190303A1 (en) 2015-05-28 2016-12-01 旭硝子株式会社 Glass substrate and laminated substrate
WO2017104514A1 (en) 2015-12-16 2017-06-22 日本電気硝子株式会社 Crystallized glass support substrate and laminate body using same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207086A (en) * 1996-09-04 1999-02-03 保谷株式会社 Glass for information recording medium substrate and glass substrate
JP2000044278A (en) * 1998-05-20 2000-02-15 Nippon Electric Glass Co Ltd Glass substrate for display
CN1294093A (en) * 1999-11-02 2001-05-09 彭波 Glass as substrate of information recording device
DE10114581C2 (en) * 2001-03-24 2003-03-27 Schott Glas Alkali-free aluminoborosilicate glass and uses
JP4165703B2 (en) * 2003-09-01 2008-10-15 Hoya株式会社 Precision press molding preform manufacturing method and optical element manufacturing method
JP4559523B2 (en) * 2009-02-24 2010-10-06 株式会社オハラ Glass substrate for information recording medium and manufacturing method thereof
CN103201228B (en) * 2010-11-08 2015-11-25 日本电气硝子株式会社 Non-alkali glass
JP5831838B2 (en) * 2011-03-08 2015-12-09 日本電気硝子株式会社 Alkali-free glass
WO2015156075A1 (en) * 2014-04-07 2015-10-15 日本電気硝子株式会社 Supporting glass substrate and laminate using same
JP2016028000A (en) * 2014-07-10 2016-02-25 日本電気硝子株式会社 Tempered glass and method for producing the same
JP6741214B2 (en) * 2014-09-03 2020-08-19 日本電気硝子株式会社 Support glass substrate and laminate using the same
JP6802966B2 (en) * 2014-12-17 2020-12-23 日本電気硝子株式会社 Support glass substrate and laminate using this
WO2017006801A1 (en) * 2015-07-03 2017-01-12 旭硝子株式会社 Carrier substrate, laminate, and method for manufacturing electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348247A (en) 2000-05-31 2001-12-18 Asahi Glass Co Ltd Alkaline-free glass
JP2005247602A (en) 2004-03-01 2005-09-15 Matsushita Electric Ind Co Ltd Glass composition and magnetic head
JP2011522767A (en) 2008-05-13 2011-08-04 コーニング インコーポレイテッド Rare earth-containing glass material and substrate, and apparatus including these substrates
JP2010064921A (en) 2008-09-10 2010-03-25 Ohara Inc Glass
JP2016169141A (en) 2015-03-10 2016-09-23 日本電気硝子株式会社 Support glass substrate and laminate using the same
WO2016190303A1 (en) 2015-05-28 2016-12-01 旭硝子株式会社 Glass substrate and laminated substrate
WO2017104514A1 (en) 2015-12-16 2017-06-22 日本電気硝子株式会社 Crystallized glass support substrate and laminate body using same

Also Published As

Publication number Publication date
CN116462405A (en) 2023-07-21
TW202311186A (en) 2023-03-16
JPWO2019021672A1 (en) 2020-05-28
JP2023076509A (en) 2023-06-01
JP7265224B2 (en) 2023-04-26
TWI787283B (en) 2022-12-21
CN116462406A (en) 2023-07-21
TW201910285A (en) 2019-03-16
CN110831908A (en) 2020-02-21
JP2024153929A (en) 2024-10-29
WO2019021672A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
JP6611079B2 (en) Glass plate
JP6593669B2 (en) Support glass substrate and carrier using the same
JP6963219B2 (en) Support glass substrate and laminate using this
JP6802966B2 (en) Support glass substrate and laminate using this
WO2015156075A1 (en) Supporting glass substrate and laminate using same
JP7538483B2 (en) Support glass substrate and laminated substrate using same
JP6443668B2 (en) Support glass substrate and laminate using the same
JP6593676B2 (en) Laminated body and semiconductor package manufacturing method
JPWO2016047210A1 (en) Support glass substrate and laminate using the same
JP2016155736A (en) Support glass substrate and laminate using the same
WO2016111158A1 (en) Glass plate and manufacturing method therefor
JP6955320B2 (en) Manufacturing method of laminate and semiconductor package
JP2018095514A (en) Glass support substrate and laminate using same
TWI755449B (en) Support glass substrate and laminate using the same, semiconductor package, method for producing the same, and electronic device
JP6813813B2 (en) Glass plate
JP2018095544A (en) Glass support substrate and laminate using same
WO2016098499A1 (en) Support glass substrate and laminate using same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240723

R150 Certificate of patent or registration of utility model

Ref document number: 7538483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150