JP2005247602A - Glass composition and magnetic head - Google Patents
Glass composition and magnetic head Download PDFInfo
- Publication number
- JP2005247602A JP2005247602A JP2004056745A JP2004056745A JP2005247602A JP 2005247602 A JP2005247602 A JP 2005247602A JP 2004056745 A JP2004056745 A JP 2004056745A JP 2004056745 A JP2004056745 A JP 2004056745A JP 2005247602 A JP2005247602 A JP 2005247602A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- magnetic
- magnetic head
- glass composition
- sealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 138
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 82
- 239000000203 mixture Substances 0.000 title claims abstract description 55
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 5
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 13
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 7
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 25
- 238000007789 sealing Methods 0.000 abstract description 22
- 238000000034 method Methods 0.000 abstract description 11
- 230000008569 process Effects 0.000 abstract description 9
- 229910052708 sodium Inorganic materials 0.000 abstract description 6
- 229910052797 bismuth Inorganic materials 0.000 abstract description 2
- 239000000696 magnetic material Substances 0.000 description 42
- 239000000463 material Substances 0.000 description 24
- 239000000126 substance Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 15
- 229910000859 α-Fe Inorganic materials 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 230000009257 reactivity Effects 0.000 description 7
- 239000005394 sealing glass Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000003566 sealing material Substances 0.000 description 5
- 230000000087 stabilizing effect Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- -1 terminals Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/07—Glass compositions containing silica with less than 40% silica by weight containing lead
- C03C3/072—Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
- C03C3/074—Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/07—Glass compositions containing silica with less than 40% silica by weight containing lead
- C03C3/072—Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
- C03C3/074—Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
- C03C3/0745—Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc containing more than 50% lead oxide, by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Magnetic Heads (AREA)
Abstract
Description
本発明は、磁気ヘッドを構成する磁気ヘッド用ガラス等に使用可能なガラス組成物、及び磁気記録媒体に対する磁気情報の記録・再生に適した磁気ヘッドに関する。 The present invention relates to a glass composition that can be used for glass for a magnetic head constituting a magnetic head, and a magnetic head suitable for recording / reproducing magnetic information on / from a magnetic recording medium.
一般に、磁気ヘッドはコイルを巻いたリング状の磁性材料に非常に狭い隙間(磁気ギャップ)を設けたものである。磁気ヘッドの磁気ギャップ部分は、間隙を有する磁性材料と、この間隙に充填された非磁性材料とで構成されている。ビデオテープレコーダー用、フロッピィーディスク用の磁気ヘッドでは、磁性材料として、磁気特性、耐摩耗性、機械加工性等に優れるMn−Znフェライト等の酸化物材料が主に用いられる。また、磁気ヘッドの高性能化のため、センダスト合金やCo系アモルファス合金等の金属強磁性膜を磁気ギャップ部に配した材料も使われている。 In general, a magnetic head is obtained by providing a very narrow gap (magnetic gap) in a ring-shaped magnetic material wound with a coil. The magnetic gap part of the magnetic head is composed of a magnetic material having a gap and a nonmagnetic material filled in the gap. In a magnetic head for a video tape recorder and a floppy disk, an oxide material such as Mn—Zn ferrite having excellent magnetic properties, wear resistance, machinability and the like is mainly used as a magnetic material. In order to improve the performance of the magnetic head, a material in which a metal ferromagnetic film such as Sendust alloy or Co-based amorphous alloy is arranged in the magnetic gap portion is also used.
磁気ギャップ形成の一方法として、磁性材料表面に、非磁性ギャップ材をスパッタまたは、蒸着法で薄膜状に形成して、一対の磁気コア半体とし、さらに、前記一対の磁気コア半体を、ギャップ材を介してつき合わせてガラスで封着成型する方法がある。この封着に用いられるガラスは、次の特性を満足する必要がある。ガラスと磁性材料の加熱接着により磁性材料に生じるひずみが、磁気ヘッドの電磁変換特性と密接な関係にあるため、ガラスの熱膨張係数が、磁性材料の熱膨張係数に近い材料であること。磁性材料と反応しないこと。ガラスが安定で熱処理工程においてガラスが結晶化しないこと。ヘッド製造工程で使用する、水、研磨液、洗浄液に侵されない化学的耐候性に優れていること。 As a method of forming a magnetic gap, a nonmagnetic gap material is formed on the surface of a magnetic material in a thin film by sputtering or vapor deposition to form a pair of magnetic core halves, and the pair of magnetic core halves, There is a method in which a gap material is used for sealing and sealing with glass. The glass used for this sealing needs to satisfy the following characteristics. Since the strain generated in the magnetic material due to heat bonding between the glass and the magnetic material is closely related to the electromagnetic conversion characteristics of the magnetic head, the thermal expansion coefficient of the glass is close to that of the magnetic material. Do not react with magnetic materials. The glass is stable and does not crystallize in the heat treatment process. Excellent chemical weather resistance that is not affected by water, polishing liquid or cleaning liquid used in the head manufacturing process.
これらの要求に対してPbO−SiO2−ZnO系、PbO−B2O3系、PbO−SiO2−R2O系(R2OはLi2O、Na2O、K2O)等が使われてきた(例えば、特許文献1参照。)。 In response to these requirements, PbO—SiO 2 —ZnO, PbO—B 2 O 3 , PbO—SiO 2 —R 2 O (R 2 O is Li 2 O, Na 2 O, K 2 O), etc. It has been used (for example, see Patent Document 1).
しかしながら、近年、PbO含有ガラスに対して環境上の問題が指摘されており、この問題を解決するために、PbOを含まないBi2O3−B2O3−RO系の低融点ガラスが開発された(例えば特許文献2参照) However, in recent years, environmental problems have been pointed out with respect to PbO-containing glass, and in order to solve this problem, a Bi 2 O 3 —B 2 O 3 —RO-based low melting point glass not containing PbO has been developed. (See, for example, Patent Document 2)
しかし、このようなBi2O3系低融点ガラスは、磁気ヘッドの封着時の熱処理により、磁性材料とガラスが反応したり、ガラスが結晶化し易くなっていた。このように、封着時にガラスが磁性材料と反応すると、磁性材料の磁気的特性が変化し、結晶化すると、ガラスと磁性材料の加熱接着により磁性材料に生じるひずみが変化し、磁気ヘッドの電磁変換特性が劣化する。したがって、上記Bi2O3系低融点ガラスは、磁気ヘッドの封着ガラスとして使用できないという問題点があった。また、特許文献2では任意性分ではあるがBaOを多量に含むことができ、有害な水溶性BaOが溶出するという問題があった。
However, such Bi 2 O 3 -based low-melting-point glass tends to react with the magnetic material or to be crystallized by heat treatment during sealing of the magnetic head. Thus, when the glass reacts with the magnetic material during sealing, the magnetic properties of the magnetic material change, and when crystallized, the strain generated in the magnetic material changes due to the heat-bonding between the glass and the magnetic material, and the magnetic head electromagnetic Conversion characteristics deteriorate. Therefore, the Bi 2 O 3 low melting point glass has a problem that it cannot be used as a sealing glass for a magnetic head. Further,
そこで、本発明は磁気ヘッド用封着ガラスに関し、封着時の熱処理工程においても磁性材料と反応しにくく、且つ、結晶化しにくく、BaOの溶出がないガラス組成物及び磁気ヘッドを提供することを目的とする。 Accordingly, the present invention relates to a sealing glass for a magnetic head, and provides a glass composition and a magnetic head that are less likely to react with a magnetic material even in a heat treatment step during sealing, are less likely to crystallize, and have no BaO elution. Objective.
上記課題を解決するために、本発明者はBi2O3、ZnO、SiO2、B2O3等の酸化物に着目し、鋭意研究の結果、従来のガラスより熱処理工程において、磁性材料と反応しにくく、且つ、結晶化しにくい、しかも他の特性は同等なガラス組成を見出した。他の特性とは、熱膨張係数、化学的耐候性である。 In order to solve the above problems, the present inventor has paid attention to oxides such as Bi 2 O 3 , ZnO, SiO 2 , B 2 O 3, etc. It has been found that the glass composition is less likely to react and less crystallize, and has other characteristics. Other properties are the coefficient of thermal expansion and chemical weather resistance.
本発明の請求項1に対応する本発明のガラス組成物は、酸化物基準の質量%表示でBi2O3:20〜70%、B2O3:5〜25%、SiO2:1〜23%、ZnO:0.5〜20%、Al2O3:0.1〜10%、SrO:0〜30%、CaO:0〜35%、TiO2:0〜5%、La2O3:0〜5%、Y2O3:0〜5%、Fe2O3:0〜5%、MnO:0〜5%、R2O:0〜5%(R2O:Li2O、Na2O、K2O、Cs2Oから選ばれる少なくとも一種)の組成を有することを特徴とする。 The glass composition of the present invention corresponding to claim 1 of the present invention is expressed in terms of mass% based on oxide, Bi 2 O 3 : 20 to 70%, B 2 O 3 : 5 to 25%, SiO 2 : 1 to 1. 23%, ZnO: 0.5~20%, Al 2 O 3: 0.1~10%, SrO: 0~30%, CaO: 0~35%, TiO 2: 0~5%, La 2 O 3 : 0~5%, Y 2 O 3 : 0~5%, Fe 2 O 3: 0~5%, MnO: 0~5%, R 2 O: 0~5% (R 2 O: Li 2 O, It has a composition of at least one selected from Na 2 O, K 2 O, and Cs 2 O).
請求項2に対応する本発明のガラス組成物は、酸化物基準の質量%表示でBi2O3:40〜55%、B2O3:10〜20%、SiO2:1〜10%、ZnO:5〜18%、Al2O3:0.5〜5%、SrO:10〜20%、CaO:0〜10%、TiO2:0〜2%、La2O3:0〜2%、Y2O3:0〜2%、Fe2O3:0〜2%、MnO:0〜2%、R2O:0〜3%(R2O:Li2O、Na2O、K2O、Cs2Oから選ばれる少なくとも一種)の組成を有することを特徴とする。
The glass composition of the present invention corresponding to
請求項3に対応する発明は、請求項1または2に対応するガラス組成物において、熱膨張係数が85〜140×10−7/℃であるものとした。
The invention corresponding to
請求項4に対応する本発明の磁気ヘッドは、一対の磁気コア半体の少なくとも一方に巻線溝を設け、前記一対の磁気コアがギャップ部を有して接合された磁気ヘッドであって、前記一対の磁気コア半体が請求項1〜3のいずれかに記載のガラス組成物で接合されていることを特徴とする。
The magnetic head of the present invention corresponding to
以上のように本発明のガラス組成物は、PbOを主成分としないホウケイ酸ビスマスガラスであり、熱膨張係数が85〜140×10−7/℃であり、550℃〜750℃の熱処理で封着が可能であり、鉛ガラス組成物と同等の化学的耐候性を有しながら、封着時の熱処理工程においても結晶化しにくく、磁性材料とも反応しにくいという効果を奏するものである。 As described above, the glass composition of the present invention is bismuth borosilicate glass that does not contain PbO as a main component, has a thermal expansion coefficient of 85 to 140 × 10 −7 / ° C., and is sealed by heat treatment at 550 ° C. to 750 ° C. It has the chemical weather resistance equivalent to that of the lead glass composition, and has the effect of being hardly crystallized and hardly reacting with the magnetic material in the heat treatment process at the time of sealing.
また、本発明の磁気ヘッドは、製造時の熱処理工程においても結晶化しにくく、加熱による残留応力が一定であるため、電磁変換特性に優れた磁気ヘッドを提供するという効果を奏するものである。 In addition, the magnetic head of the present invention has an effect of providing a magnetic head excellent in electromagnetic conversion characteristics because it is difficult to crystallize even in a heat treatment process during manufacturing and the residual stress due to heating is constant.
以下、本発明の実施例のガラス組成物(請求項1〜3に係るガラス組成物の例)を説明する。表1に、本発明の実施例1〜11のガラス組成物及び比較例1,2のガラス組成物の各組成、溶融条件、ガラス転移点の温度、ガラスの軟化点の温度、熱膨張係数、化学的耐候性、ガラス安定性、フェライトとの反応性を記載する。実施例1〜11のガラス組成物及び比較例1,2のガラス組成物は、磁気ヘッド用ガラス組成物である。化学的耐候性、ガラス安定性、フェライトとの反応性欄において、磁気ヘッド用材料として良好な場合に○、磁気ヘッド用材料として使用できない場合に×、それほど良好ではないが使用可能な場合に△を表示する。比較例2のガラス組成物は、フェライトとの反応性欄が×であった。 Hereinafter, the glass composition (example of the glass composition which concerns on Claims 1-3) of the Example of this invention is demonstrated. In Table 1, each composition of the glass compositions of Examples 1 to 11 of the present invention and the glass compositions of Comparative Examples 1 and 2, melting conditions, glass transition temperature, glass softening temperature, thermal expansion coefficient, Describes chemical weather resistance, glass stability, and reactivity with ferrite. The glass compositions of Examples 1 to 11 and the glass compositions of Comparative Examples 1 and 2 are glass compositions for magnetic heads. In the chemical weather resistance, glass stability, and ferrite reactivity columns, ○ when the magnetic head material is good, x when the magnetic head material cannot be used, and △ when it is not so good but usable. Is displayed. As for the glass composition of the comparative example 2, the reactivity column with a ferrite was x.
本発明の磁気ヘッド用ガラス組成物は、酸化物基準の質量%表示で、Bi2O3:20〜70%、B2O3:5〜25%、SiO2:1〜23%、ZnO:0.5〜20%、Al2O3:0.1〜10%、SrO:0〜30%、CaO:0〜35%、TiO2:0〜5%、La2O3:0〜5%、Y2O3:0〜5%、Fe2O3:0〜5%、MnO:0〜5%、R2O:0〜5%(R2O:Li2O、Na2O、K2O、Cs2Oから選ばれる少なくとも一種)の組成を有するものである。 The glass composition for a magnetic head of the present invention is expressed in terms of mass% based on oxide, Bi 2 O 3 : 20 to 70%, B 2 O 3 : 5 to 25%, SiO 2 : 1 to 23%, ZnO: 0.5~20%, Al 2 O 3: 0.1~10%, SrO: 0~30%, CaO: 0~35%, TiO 2: 0~5%, La 2 O 3: 0~5% , Y 2 O 3 : 0 to 5%, Fe 2 O 3 : 0 to 5%, MnO: 0 to 5%, R 2 O: 0 to 5% (R 2 O: Li 2 O, Na 2 O, K 2 O and at least one selected from Cs 2 O).
さらに、ガラスの粘性や熱膨張係数の調整のために、0〜5%の範囲でMgO、BaO、ZrO2、NiO、Nb2O5、MoO3、WO3、TeO2、Ag2O、等を添加することが可能である。そして、上記組成となるように、原料を調合してバッチ原料として、このバッチ原料を白金ルツボに入れ、1100〜1400℃の電気炉中で、1〜3時間加熱して溶融させた後、鉄板上に流し出してガラスブロックを得た。このガラスブロックを除冷した後、切断研磨して所定形状のガラスロッドや角棒に成形する、または除冷後のガラスブロックを切断した後、リドロー加工して所定形状のガラスロッドや角棒に成形する。
Furthermore, in order to adjust the viscosity and thermal expansion coefficient of the glass, MgO in a range of 0~5%, BaO, ZrO 2, NiO, Nb 2
上述のように(表1)は、本発明の請求項1、2及び3に記載のガラス組成物の一例を示すものである。それぞれの成分の含有量の範囲を上記のように限定した理由は、実施例において詳細に説明する。
As described above, (Table 1) shows an example of the glass composition according to
なお、以上のガラス組成物における構成成分以外の成分については、本発明の効果を損なわない範囲で、ある種の改質のために添加させることができる。 In addition, about components other than the structural component in the above glass composition, it can add for a certain kind of modification | change in the range which does not impair the effect of this invention.
以下、本発明のガラス組成物の実施の形態について説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, although embodiment of the glass composition of this invention is described, this invention is not limited by these.
表1の実施例1に記載してあるように、Bi2O3:46%、B2O3:14%、SiO2:5%、ZnO:13%、Al2O3:2%、SrO:14%、CaO:4%、TiO2:1.5%、Na2O:0.5%となるように、原料を調合してバッチ原料とする。このバッチ原料を白金ルツボに入れ1250℃の電気炉中で2時間加熱溶融させた後、鉄板上に流し出してガラスブロックを成形し、一晩かけて除冷した。 As described in Example 1 of Table 1, Bi 2 O 3 : 46%, B 2 O 3 : 14%, SiO 2 : 5%, ZnO: 13%, Al 2 O 3 : 2%, SrO : 14%, CaO: 4%, TiO 2 : 1.5%, Na 2 O: 0.5%. The batch raw material was put in a platinum crucible and heated and melted in an electric furnace at 1250 ° C. for 2 hours, and then poured onto an iron plate to form a glass block, which was then cooled overnight.
このようにして得られたガラスの特性を以下に示すようにして測定した。ガラス転移点及び軟化点…ガラスブロックの一部を切り出し、このガラス塊を100メッシュ以下の粉末とした。そして、示差熱分析装置を用いて、昇温速度10℃/minでそれぞれの温度を測定したところ、転移点471℃、軟化点544℃であった。軟化点が544℃であるので、実際の封着時の熱処理温度が654℃程度となることから、磁性材料の磁気特性を劣化させることなく封着を行うことができる。 The properties of the glass thus obtained were measured as follows. Glass transition point and softening point: A part of the glass block was cut out, and this glass lump was made into powder of 100 mesh or less. And when each temperature was measured with the temperature increase rate of 10 degree-C / min using the differential thermal analyzer, they were the transition point 471 degreeC and the softening point 544 degreeC. Since the softening point is 544 ° C., the heat treatment temperature at the time of actual sealing is about 654 ° C., so that the sealing can be performed without deteriorating the magnetic properties of the magnetic material.
熱膨張係…ガラスブロックから切り出したものを、5φ×20mmのサイズに加工し、示差膨張計を用いて昇温速度10℃/minで、30〜300までの平均熱膨張係数を測定したところ、95×10−7/℃であった。したがって、このガラスは熱膨張係数が90〜100×10−7/℃までの磁性材料の封着に用いることができる。 Thermal expansion factor: When the glass block was cut out to a size of 5φ × 20 mm, the average thermal expansion coefficient from 30 to 300 was measured at a heating rate of 10 ° C./min using a differential dilatometer. It was 95 × 10 −7 / ° C. Therefore, this glass can be used for sealing a magnetic material having a thermal expansion coefficient of 90 to 100 × 10 −7 / ° C.
化学的耐候性…ガラスブロックから切り出したものを、10×10×10mmのサイズに加工し、全表面を鏡面仕上げした。そして、95℃の蒸留水中に1時間浸漬した後、ガラス表面の変色の有無を肉眼で判定した。その結果、ガラス表面に変色は見られず、優れた化学的耐久性を備えたものであった。したがって、磁性材料を封着後、研磨等の工程を得てもガラス部分が侵食されないので、ヘッドの摺動部に段差が生じたり、溶出析出物がヘッドに付着したりしてヘッドの機能を損なわせることがない。 Chemical weather resistance: The one cut out from the glass block was processed into a size of 10 × 10 × 10 mm, and the entire surface was mirror-finished. And after immersing in 95 degreeC distilled water for 1 hour, the presence or absence of the discoloration of the glass surface was determined with the naked eye. As a result, no discoloration was observed on the glass surface, and it had excellent chemical durability. Therefore, after sealing the magnetic material, the glass part is not eroded even if a process such as polishing is performed, so that there is a step in the sliding part of the head, or elution deposits adhere to the head, thereby functioning the head. There is no damage.
ガラス安定性…ガラスブロックから切り出したものを、0.5×0.5×30mmのガラスロッドに成形し、アルミナ基板上に載置した状態で750℃・1時間熱処理し、室温まで冷却した後、50倍の光学顕微鏡でガラス表面を観察した。その結果、結晶の析出は見られなかった。したがって、結晶析出による封着強度の低下ならびに、熱膨張係数の変化を防ぐことができる。このガラス自体は、上記したように、650℃程度の熱処理で十分封着することはできるが、本評価では、磁性材料の磁気特性の劣化が生じない限度の高温で評価した。 Glass stability: Cut out from glass block, molded into 0.5 × 0.5 × 30 mm glass rod, heat-treated at 750 ° C. for 1 hour while placed on alumina substrate, and cooled to room temperature The glass surface was observed with a 50 × optical microscope. As a result, no precipitation of crystals was observed. Therefore, it is possible to prevent a decrease in sealing strength due to crystal precipitation and a change in the thermal expansion coefficient. As described above, the glass itself can be sufficiently sealed by heat treatment at about 650 ° C., but in this evaluation, the glass was evaluated at a high temperature that does not cause deterioration of the magnetic properties of the magnetic material.
フェライトとの反応性…ガラスブロックから切り出したものを、3×3×10mmのサイズに加工し、これを鏡面状態に仕上げた単結晶フェライト上に載置した状態で、軟化点+100℃で1時間の熱処理をした。その後、室温まで冷却してから、ガラスとフェライトとの断面を研磨仕上げし、その界面を500倍の光学顕微鏡で観察した。その結果、フェライト面にガラスとの反応による侵食は生じていなかった。したがって、このガラスを用いて封着を行っても磁性材料の磁気特性の劣化は生じないものである。 Reactivity with ferrite: Cut out from glass block, processed to 3 × 3 × 10 mm size, and placed on single-crystal ferrite finished in mirror surface, softening point + 100 ° C. for 1 hour The heat treatment was performed. Then, after cooling to room temperature, the cross section of glass and ferrite was polished and the interface was observed with a 500 times optical microscope. As a result, no corrosion occurred on the ferrite surface due to the reaction with glass. Therefore, even if sealing is performed using this glass, the magnetic properties of the magnetic material do not deteriorate.
表1の実施例2〜11に記載してあるように、原料を調合してバッチ原料としたものを白金ルツボで、表1に記載した溶融条件で溶融した後、実施例1と同様に、鉄板上に流し出してガラスブロックを成形後、一晩かけて除冷した。 As described in Examples 2 to 11 in Table 1, the raw materials were mixed to form a batch raw material with a platinum crucible and melted under the melting conditions described in Table 1, and then, as in Example 1, After casting on an iron plate to form a glass block, it was cooled overnight.
そして、このガラスブロックから特性評価用のサンプルを上記実施例1と同様に作成し、評価したところ、ガラス転移点は420〜546℃となっており、軟化点は510〜616℃となった。したがって、熱処理温度は610〜716℃程度となり、磁性材料の磁気特性を劣化させることなく封着を行うことができる。 And when the sample for characteristic evaluation was created from this glass block similarly to the said Example 1, and it evaluated, the glass transition point was 420-546 degreeC and the softening point became 510-616 degreeC. Accordingly, the heat treatment temperature is about 610 to 716 ° C., and sealing can be performed without deteriorating the magnetic properties of the magnetic material.
熱膨張係数は85〜137×10−7/℃となり、熱膨張係数が80〜142×10−7/℃までの磁性材料の封着に用いることができる。 The thermal expansion coefficient is 85 to 137 × 10 −7 / ° C., and can be used for sealing magnetic materials having a thermal expansion coefficient of 80 to 142 × 10 −7 / ° C.
化学的耐候性の評価では、すべてのサンプルでガラス表面に変色が表れたものはなく、実施例1と同様にこれらのガラスを用いて磁性材料を封着してもヘッドの機能を損なわせることがない。 In the evaluation of chemical weather resistance, none of the samples showed any discoloration on the glass surface, and the function of the head was impaired even if these glasses were used to seal the magnetic material as in Example 1. There is no.
ガラス安定性の評価では、すべてのサンプルを50倍の光学顕微鏡で観察したが、結晶の析出しているものはなかった。したがって、これらガラスを用いて磁性材料を封着しても封着強度の低下させたり、ヘッドの機能を損なわせたりすることがない。 In the evaluation of the glass stability, all samples were observed with a 50 × optical microscope, but no crystals were precipitated. Therefore, even if the magnetic material is sealed using these glasses, the sealing strength is not lowered and the function of the head is not impaired.
フェライトとの反応性の評価では、すべてのサンプルのガラスとフェライトとの界面を500倍の光学顕微鏡で観察したが、フェライト面にガラスとの反応による侵食は生じていなかった。したがって、これらガラスを用いて磁性材料を封着しても磁気特性を劣化させるものではない。 In the evaluation of reactivity with ferrite, the interface between the glass and ferrite of all the samples was observed with a 500-fold optical microscope, but no erosion due to reaction with the glass occurred on the ferrite surface. Therefore, even if a magnetic material is sealed using these glasses, the magnetic properties are not deteriorated.
比較例1はPbO−SiO2−ZnO系ガラスの例である。比較例2はBi2O3−B2O3−R2O系ガラスでアルカリ金属酸化物の総含有量を6%と大量に含ませたものである。この比較例からもわかるように、磁気ヘッド用ガラス組成物でアルカリ金属酸化物を大量に含有させると、ガラスの安定性の評価では、ガラス表面に結晶が析出しており、磁気ヘッド用には使用できない状態となっていた。 Comparative Example 1 is an example of PbO—SiO 2 —ZnO-based glass. Comparative Example 2 is a Bi 2 O 3 —B 2 O 3 —R 2 O-based glass and contains a total content of alkali metal oxides as large as 6%. As can be seen from this comparative example, when a large amount of alkali metal oxide is contained in the glass composition for a magnetic head, in the evaluation of the stability of the glass, crystals are precipitated on the glass surface. It was in an unusable state.
ここで、本発明を構成する各成分の限定理由を以下に示す。Bi2O3はガラス組成物の主要成分であり軟化点を下げる効果がある。その含有量は20〜70%(以下「%」とは特に断りのない限り「質量%」を意味する)、好ましくは40〜55%である。Bi2O3の含有量が70%を超えると熱処理時に結晶化し易くなり安定したガラスが得られなく、20%未満では軟化温度が高くなり所定の作業温度での焼成が困難となる。 Here, the reason for limitation of each component which comprises this invention is shown below. Bi 2 O 3 is a main component of the glass composition and has an effect of lowering the softening point. The content is 20 to 70% (hereinafter, “%” means “% by mass” unless otherwise specified), preferably 40 to 55%. If the content of Bi 2 O 3 exceeds 70%, it becomes easy to crystallize during heat treatment and a stable glass cannot be obtained, and if it is less than 20%, the softening temperature becomes high and firing at a predetermined working temperature becomes difficult.
B2O3は、ガラス形成成分としてガラス組成物の必須成分であり、その含有量は5〜25%、好ましくは10〜20%である。B2O3の含有量が25%を超えるとガラスの軟化温度が高くなり所定の温度での焼成が困難となり、さらに化学的耐候性が悪くなる。一方、5%未満ではガラスが不安定になって失透し易くなる。 B 2 O 3 is an essential component of the glass composition as a glass forming component, and its content is 5 to 25%, preferably 10 to 20%. When the content of B 2 O 3 exceeds 25%, the softening temperature of the glass becomes high, and baking at a predetermined temperature becomes difficult, and further, the chemical weather resistance becomes worse. On the other hand, if it is less than 5%, the glass becomes unstable and tends to devitrify.
SiO2は、磁性材料との反応を抑える効果と、ガラスの化学耐久性の向上に効化がある。その含有量は1〜23%、好ましくは、1〜10%である。その含有量が23%を超えると軟化温度が高くなり所定の温度での焼成が困難となる。1%未満では磁性材料との反応を抑える効果と、ガラスの化学耐久性の向上に効化がなくなる。ガラスが不安定になって結晶化し易くなる。 SiO 2 has an effect of suppressing the reaction with the magnetic material and an improvement in the chemical durability of the glass. Its content is 1 to 23%, preferably 1 to 10%. When the content exceeds 23%, the softening temperature becomes high, and firing at a predetermined temperature becomes difficult. If it is less than 1%, the effect of suppressing the reaction with the magnetic material and the improvement of the chemical durability of the glass are lost. Glass becomes unstable and easily crystallizes.
ZnOは、ガラスの安定化に効果があり、その含有量は0.5〜20%まで、好ましくは5〜18%まで添加することができる。ZnOの含有量が20%を超えると結晶化し易くなり安定したガラスが得られなくなる。0.5%未満ではガラスの安定化に効果がない。 ZnO is effective in stabilizing the glass, and its content can be added to 0.5 to 20%, preferably 5 to 18%. If the ZnO content exceeds 20%, crystallization is likely to occur and a stable glass cannot be obtained. If it is less than 0.5%, there is no effect in stabilizing the glass.
Al2O3は、ガラスの化学耐久性の向上と、安定化に効果があり、その含有量は0.1〜10%、好ましくは0.5〜5%まで添加することができる。但し10%を超えると軟化温度が高くなり550〜750℃の温度での焼成が困難となる。0.1%未満ではガラスの化学耐久性の向上と、安定化に効果がない。 Al 2 O 3 is effective for improving and stabilizing the chemical durability of the glass, and its content can be added to 0.1 to 10%, preferably 0.5 to 5%. However, if it exceeds 10%, the softening temperature becomes high and firing at a temperature of 550 to 750 ° C. becomes difficult. If it is less than 0.1%, there is no effect in improving and stabilizing the chemical durability of the glass.
SrOは、必須成分ではないが、ガラスを安定化させるのに効果があり、その含有量は30%まで、好ましくは10〜20%である。SrOの含有量が30%を超えると結晶化し易くなり安定したガラスが得られなくなる。 Although SrO is not an essential component, it is effective for stabilizing the glass, and its content is up to 30%, preferably 10 to 20%. If the SrO content exceeds 30%, crystallization is likely to occur and a stable glass cannot be obtained.
CaOは、必須成分ではないが、ガラスの化学的耐候性を向上させる効果があり、その含有量は35%まで、好ましくは10%までである。CaOの含有量が35%を超えると結晶化し易くなり安定したガラスが得られなくなる。 CaO is not an essential component but has an effect of improving the chemical weather resistance of the glass, and its content is up to 35%, preferably up to 10%. When the content of CaO exceeds 35%, crystallization is facilitated and a stable glass cannot be obtained.
TiO2は、必須成分ではないが、ガラスの化学的耐候性を向上させる効果があり、その含有量は5%まで、好ましくは2%までである。TiO2の含有量が5%を超えると結晶化し易くなり安定したガラスが得られなくなる。 TiO 2 is not an essential component, but has an effect of improving the chemical weather resistance of the glass, and its content is up to 5%, preferably up to 2%. If the content of TiO 2 exceeds 5%, crystallization tends to occur and stable glass cannot be obtained.
La2O3は、必須成分ではないが、ガラスの化学的耐候性を向上させる効果があり、その含有量は5%まで、好ましくは2%までである。TiO2の含有量が5%を超えると結晶化し易くなり安定したガラスが得られなくなる。 La 2 O 3 is not an essential component, but has an effect of improving the chemical weather resistance of the glass, and its content is up to 5%, preferably up to 2%. If the content of TiO 2 exceeds 5%, crystallization tends to occur and stable glass cannot be obtained.
Y2O3は、必須成分ではないが、ガラスの化学的耐候性を向上させる効果があり、その含有量は5%まで、好ましくは2%までである。TiO2の含有量が5%を超えると結晶化し易くなり安定したガラスが得られなくなる。 Y 2 O 3 is not an essential component, but has an effect of improving the chemical weather resistance of the glass, and its content is up to 5%, preferably up to 2%. If the content of TiO 2 exceeds 5%, crystallization tends to occur and stable glass cannot be obtained.
Fe2O3は、必須成分ではないが、磁性材料との反応性を抑える効果があり、その含有量は5%まで、好ましくは2%までである。Fe2O3の含有量が5%を超えると、熱処理時に結晶化し易くなり安定したガラスが得られなくなる。 Fe 2 O 3 is not an essential component, but has an effect of suppressing reactivity with the magnetic material, and its content is up to 5%, preferably up to 2%. If the content of Fe 2 O 3 exceeds 5%, crystallization becomes easier during heat treatment and a stable glass cannot be obtained.
MnOは、必須成分ではないが、磁性材料との反応性を抑える効果があり、その含有量は5%まで、好ましくは2%までである。MnOの含有量が5%を超えると、熱処理時に結晶化し易くなり安定したガラスが得られなくなる。 MnO is not an essential component, but has an effect of suppressing reactivity with the magnetic material, and its content is up to 5%, preferably up to 2%. When the content of MnO exceeds 5%, crystallization becomes easy during heat treatment, and a stable glass cannot be obtained.
R2O、すなわちLi2O、Na2O、K2O、Cs2Oから選ばれる1又は複数種のアルカリ金属酸化物は必須成分ではないが、ガラスの軟化温度を下げる効果がある。その含有量はR2O全体で5%まで、好ましくは3%まで添加することができる。R2Oの含有量が5%を超えると、熱処理時の結晶化傾向が著しく上がり、安定したガラスが得られなくなる。 R 2 O, that is, one or a plurality of alkali metal oxides selected from Li 2 O, Na 2 O, K 2 O, and Cs 2 O are not essential components, but have an effect of lowering the glass softening temperature. The total content of R 2 O can be added up to 5%, preferably up to 3%. When the content of R 2 O exceeds 5%, the tendency to crystallize during heat treatment is significantly increased, and a stable glass cannot be obtained.
なお上記成分以外にも、ガラスの粘性や熱膨張係数の調整等のために、0〜5%の範囲でMgO、BaO、ZrO2、NiO、Nb2O5、MoO3、WO3、TeO2、Ag2O、等を添加することが可能である。 In addition to the above components, MgO, BaO, ZrO 2 , NiO, Nb 2 O 5 , MoO 3 , WO 3 , TeO 2 are used in the range of 0 to 5% in order to adjust the viscosity and thermal expansion coefficient of the glass. , Ag 2 O, etc. can be added.
MgO、ZrO2、Nb2O、Ag2Oなどは5%を超えて含有すると熱処理時に結晶化を起こしやすなる。BaOが5%を超えて含有すると耐水性が悪くなり有害な水溶性BaOが溶出し易くなり好ましくない。NiO、MoO3、WO3等の着色する成分は5%を超えて含有すると、ガラスの着色が強くなり、光学顕微鏡等を利用してのギャップ深さの測定が難しくなるため好ましくない。 If MgO, ZrO 2 , Nb 2 O, Ag 2 O, etc. are contained in excess of 5%, crystallization is likely to occur during heat treatment. If the BaO content exceeds 5%, the water resistance is deteriorated and harmful water-soluble BaO is easily eluted, which is not preferable. If the component to be colored such as NiO, MoO 3 , WO 3 or the like exceeds 5%, the glass is strongly colored, which makes it difficult to measure the gap depth using an optical microscope or the like.
本発明のガラス組成物は、磁気ヘッド用の封着ガラスであるので、磁気ヘッドに用いられる磁性材料との熱膨張係数がマッチングしていなければ、ガラスと磁性材料の加熱接着により磁性材料に生じるひずみが変化し、磁気ヘッドの電磁変換特性が劣化する。また、熱処理工程、研磨工程、洗浄工程などで、ガラスにクラックが入ったり剥がれたりする。この磁性材料には主にフェライト系のものが使用されており、このフェライト系磁性材料では、Fe2O3含有量により熱膨張係数が変化し、現在使用されているものでは、熱膨張係数が90〜135×10−7/℃のものがそのほとんどである。したがって、本発明のガラス組成物の熱膨張係数は、その磁性材料とのマッチングを考え、85〜140×10−7/℃が好ましい。 Since the glass composition of the present invention is a sealing glass for a magnetic head, if the thermal expansion coefficient of the magnetic material used in the magnetic head does not match, the glass and the magnetic material are heated and bonded to the magnetic material. The distortion changes and the electromagnetic conversion characteristics of the magnetic head deteriorate. In addition, the glass is cracked or peeled off during the heat treatment process, polishing process, cleaning process, and the like. Ferrite-based materials are mainly used for this magnetic material. In this ferrite-based magnetic material, the thermal expansion coefficient changes depending on the Fe 2 O 3 content. Most of them are from 90 to 135 × 10 −7 / ° C. Therefore, the thermal expansion coefficient of the glass composition of the present invention is preferably 85 to 140 × 10 −7 / ° C. in consideration of matching with the magnetic material.
磁性材料は750℃を超える温度になると、磁気特性が劣化するため、低温で熱処理を行うことが必要である。 本発明のガラス組成物を磁気ヘッド用磁性材料との封着に使用する場合、550〜750℃の熱処理で封着が可能である。熱処理温度とガラスの軟化点には相関があり、本発明のガラス組成物の軟化点は650℃以下が好ましい。650℃を超えると750℃の熱処理で封着ができない。 When the temperature of the magnetic material exceeds 750 ° C., the magnetic properties deteriorate, so it is necessary to perform heat treatment at a low temperature. When the glass composition of the present invention is used for sealing with a magnetic material for a magnetic head, sealing can be performed by heat treatment at 550 to 750 ° C. There is a correlation between the heat treatment temperature and the softening point of the glass, and the softening point of the glass composition of the present invention is preferably 650 ° C. or lower. If it exceeds 650 ° C., sealing cannot be performed by heat treatment at 750 ° C.
本発明のガラス組成物の熱膨張係数は、磁性材料の熱膨張係数に近く、水、研磨液、洗浄液に侵されない化学的耐候性に優れて、磁性材料と反応しなくさらにガラスが安定で熱処理工程においてガラスが結晶化しない。したがって、このガラス組成物を、例えば、所定の形状、大きさのガラスロッドまたは角棒に成型し、550℃〜750℃の熱処理を行えば、磁気ヘッド用の磁性材料の封着に用いることができる。 The thermal expansion coefficient of the glass composition of the present invention is close to the thermal expansion coefficient of the magnetic material, is excellent in chemical weather resistance not affected by water, polishing liquid, and cleaning liquid, does not react with the magnetic material, and the glass is stable and heat treated. Glass does not crystallize in the process. Therefore, if this glass composition is formed into a glass rod or square bar having a predetermined shape and size and subjected to heat treatment at 550 ° C. to 750 ° C., it can be used for sealing a magnetic material for a magnetic head. it can.
なお、以上の磁気ヘッド用ガラス組成物は、バルク、粉末、ファイバーまたは薄膜などの形状にして磁気ヘッドの製造に用いることができる。その他の形状にしてもよい。さらに、これらの磁気ヘッド用ガラス組成物は、ガラス組成物単独からなる材料、またはガラス組成物と他の材料との複合材料として使用することができる。 The above glass composition for a magnetic head can be used for manufacturing a magnetic head in the form of bulk, powder, fiber, thin film or the like. Other shapes may be used. Furthermore, these glass compositions for magnetic heads can be used as a material composed of the glass composition alone or as a composite material of the glass composition and other materials.
また、これらの磁気ヘッド用ガラス組成物は、他の材料との複合材料として使用することによって、85×10−7〜140×10−7/℃の範囲を超えた熱膨張係数を有する材料として使用することができる。 Moreover, these glass compositions for magnetic heads are used as a material having a thermal expansion coefficient exceeding the range of 85 × 10 −7 to 140 × 10 −7 / ° C. when used as a composite material with other materials. Can be used.
図1は、本発明の請求項4に記載の磁気ヘッドの一例を示すものであり、少なくとも一方に巻線溝を設けた一対の磁気コア半体1、2を、磁気ギャップ部3を介して突き合わせ、接合した構造を有する磁気ヘッドであって、一対の磁気コア半体1、2が、封着ガラス4で接合されているものである。図1の封着ガラス4は、実施例1〜11のいずれかのガラス組成物(請求項1、請求項2及び請求項3に示すガラス組成物)である。
FIG. 1 shows an example of a magnetic head according to a fourth aspect of the present invention. A pair of magnetic core halves 1 and 2 having a winding groove at least on one side are interposed via a
以下、本発明の磁気ヘッドの実施の形態について説明するが、本発明はこれらによって制限されるものではない。 Hereinafter, embodiments of the magnetic head of the present invention will be described, but the present invention is not limited thereto.
まず、所定形状に成形したMn−Zn単結晶フェライト磁性材料に前記封着ガラスを660℃でモールドし、表面を研磨した後、磁気ギャップ材料としてSiO2をスパッタリングし、磁気コア半体1、2を作成した。次に、磁気コア半体1,2を互いに突き合わせ、治具で保持した後、650℃で封着する。さらに、外形を所定の寸法、形状に加工した後ヘッドチップに切断する。 First, the sealing glass is molded at 660 ° C. on a Mn—Zn single crystal ferrite magnetic material molded into a predetermined shape, the surface is polished, and then SiO 2 is sputtered as a magnetic gap material, and the magnetic core halves 1, 2 It was created. Next, the magnetic core halves 1 and 2 are brought into contact with each other, held by a jig, and then sealed at 650 ° C. Further, the outer shape is processed into predetermined dimensions and shapes, and then cut into head chips.
次に作成したヘッドチップ5を用いて磁気ヘッドを作成した。ヘッドチップ5をヘッドベース6に装着し、導線7をヘッドチップ5に巻回した後、導線7の両端を前述のヘッドベース6上にある配線盤にはんだ付けし、図2に示すヘッドを完成した。
Next, a magnetic head was produced using the produced
以上のような本実施の形態の磁気ヘッドは、いずれも封着時の熱処理工程において結晶化しにくく、ガラス安定性に優れた本発明の磁気ヘッド用ガラス組成物を使用しているので、電磁変換特性に優れた磁気ヘッドとして供給することができる。 Since the magnetic head of the present embodiment as described above is not easily crystallized in the heat treatment process at the time of sealing and uses the glass composition for a magnetic head of the present invention having excellent glass stability, electromagnetic conversion It can be supplied as a magnetic head having excellent characteristics.
なお、以上の磁気ヘッドにおける、磁性材料及び磁気ギャップ材料には、基本的に従来から用いられてきた材料を用いることができる。また、本発明における磁気ヘッド用ガラス組成物は、以上の磁気ヘッド以外の構造を有する磁気ヘッドにも使用することができる。 In addition, the materials conventionally used can be basically used for the magnetic material and the magnetic gap material in the above magnetic head. The glass composition for a magnetic head in the present invention can also be used for a magnetic head having a structure other than the above magnetic head.
本発明のガラス組成物は、磁気ヘッド用ガラス組成物としての利用に特に適している。しかし、これに限定されるものではなく、本発明のガラス組成物は、セラミック、ガラス及び金属などの各種材料の接着材料、封着材料、被覆材料、または種々の機能を有するペースト材料として、電子機器用の各種部品をはじめ、あらゆる用途において従来使用されていたガラス材料に代えて使用することができる。例えば、各種LCR部品、半導体パッケージ、その他の電子部品、CRT、蛍光表示管、プラズマディスプレイパネルなどの表示デバイスの被覆材料、封止材料、端子等の固定用材料、封着材料、接着材料として使用することができる。さらに照明用の管球製品、ホーロー製品及び陶磁器製品などにおいても封止材料、端子等の固定用材料、封着材料、接着材料として使用することができる。 The glass composition of the present invention is particularly suitable for use as a glass composition for a magnetic head. However, the present invention is not limited to this, and the glass composition of the present invention can be used as an adhesive material, a sealing material, a coating material, or a paste material having various functions such as ceramics, glass and metal. It can be used in place of glass materials conventionally used in various applications including various parts for equipment. For example, various LCR parts, semiconductor packages, other electronic parts, CRTs, fluorescent display tubes, display devices such as plasma display panels, coating materials, sealing materials, fixing materials such as terminals, sealing materials, adhesive materials can do. Furthermore, it can also be used as a sealing material, a fixing material such as a terminal, a sealing material, and an adhesive material in lighting tube products, enamel products, and ceramic products.
1 磁気コア半体
2 磁気コア半体
3 磁気ギャップ
4 封着ガラス
5 磁気ヘッドチップ
6 ヘッドベース
7 導線
DESCRIPTION OF SYMBOLS 1 Magnetic
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004056745A JP4537092B2 (en) | 2004-03-01 | 2004-03-01 | Glass composition and magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004056745A JP4537092B2 (en) | 2004-03-01 | 2004-03-01 | Glass composition and magnetic head |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005247602A true JP2005247602A (en) | 2005-09-15 |
JP2005247602A5 JP2005247602A5 (en) | 2006-12-14 |
JP4537092B2 JP4537092B2 (en) | 2010-09-01 |
Family
ID=35028464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004056745A Expired - Lifetime JP4537092B2 (en) | 2004-03-01 | 2004-03-01 | Glass composition and magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4537092B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007176726A (en) * | 2005-12-27 | 2007-07-12 | Nihon Yamamura Glass Co Ltd | Bismuth-based lead-free glass |
JP2007246311A (en) * | 2006-03-14 | 2007-09-27 | Ohara Inc | Glass composition |
WO2008013028A1 (en) * | 2006-07-24 | 2008-01-31 | Nihon Yamamura Glass Co., Ltd. | Lead-free glass composition for sealing metallic vacuum double container |
JP2008303076A (en) * | 2007-06-05 | 2008-12-18 | Central Glass Co Ltd | Lead-free insulating coating material |
WO2009097264A1 (en) * | 2008-01-30 | 2009-08-06 | Basf Catalysts Llc | Glass frits |
JP2011525887A (en) * | 2008-06-26 | 2011-09-29 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Glass composition for use in photovoltaic cell conductors |
JP2012085752A (en) * | 2010-10-18 | 2012-05-10 | Nippon Glass Sangyo Kk | Ampoule with color marking |
US8308993B2 (en) | 2008-01-30 | 2012-11-13 | Basf Se | Conductive inks |
US8383011B2 (en) | 2008-01-30 | 2013-02-26 | Basf Se | Conductive inks with metallo-organic modifiers |
TWI458692B (en) * | 2012-10-17 | 2014-11-01 | Univ Nat Taipei Technology | Composite packaging materials |
US9722102B2 (en) | 2014-02-26 | 2017-08-01 | Heraeus Precious Metals North America Conshohocken Llc | Glass comprising molybdenum and lead in a solar cell paste |
JP2019214480A (en) * | 2018-06-11 | 2019-12-19 | 日本電気硝子株式会社 | Bismuth glass and sintered body including the same |
JP7538483B2 (en) | 2017-07-26 | 2024-08-22 | 日本電気硝子株式会社 | Support glass substrate and laminated substrate using same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648767A (en) * | 1992-07-06 | 1994-02-22 | Okaya Electric Ind Co Ltd | Varistor, surge absorbing element, formation of protective film and bismuth borosilicate-based glass composition |
JPH0920530A (en) * | 1995-07-04 | 1997-01-21 | Hoya Corp | Composition for optical glass |
JPH09278483A (en) * | 1996-04-05 | 1997-10-28 | Nippon Electric Glass Co Ltd | Bismuth based glass composition |
JPH1125865A (en) * | 1997-06-27 | 1999-01-29 | Matsushita Electric Ind Co Ltd | Plasma display panel |
JP2000173010A (en) * | 1998-12-10 | 2000-06-23 | Matsushita Electric Ind Co Ltd | Sealing glass for magnetic head, magnetic head and manufacture of the same |
JP2000211942A (en) * | 1998-12-04 | 2000-08-02 | Dmc 2 Degussa Metals Catalysts Cerdec Ag | Lead-free glass composition not containing alkali metal |
WO2001085631A1 (en) * | 2000-05-11 | 2001-11-15 | Matsushita Electric Industrial Co., Ltd. | Glass composition, sealing glass for magnetic head and magnetic head |
JP2003128430A (en) * | 2001-10-22 | 2003-05-08 | Asahi Techno Glass Corp | Lead-free glass composition |
JP2003192430A (en) * | 2001-12-26 | 2003-07-09 | Nihon Yamamura Glass Co Ltd | Composition for high dielectric constant material |
JP2004155597A (en) * | 2002-11-01 | 2004-06-03 | Nippon Electric Glass Co Ltd | Low-melting glass for magnetic recording head |
-
2004
- 2004-03-01 JP JP2004056745A patent/JP4537092B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648767A (en) * | 1992-07-06 | 1994-02-22 | Okaya Electric Ind Co Ltd | Varistor, surge absorbing element, formation of protective film and bismuth borosilicate-based glass composition |
JPH0920530A (en) * | 1995-07-04 | 1997-01-21 | Hoya Corp | Composition for optical glass |
JPH09278483A (en) * | 1996-04-05 | 1997-10-28 | Nippon Electric Glass Co Ltd | Bismuth based glass composition |
JPH1125865A (en) * | 1997-06-27 | 1999-01-29 | Matsushita Electric Ind Co Ltd | Plasma display panel |
JP2000211942A (en) * | 1998-12-04 | 2000-08-02 | Dmc 2 Degussa Metals Catalysts Cerdec Ag | Lead-free glass composition not containing alkali metal |
JP2000173010A (en) * | 1998-12-10 | 2000-06-23 | Matsushita Electric Ind Co Ltd | Sealing glass for magnetic head, magnetic head and manufacture of the same |
WO2001085631A1 (en) * | 2000-05-11 | 2001-11-15 | Matsushita Electric Industrial Co., Ltd. | Glass composition, sealing glass for magnetic head and magnetic head |
JP2003128430A (en) * | 2001-10-22 | 2003-05-08 | Asahi Techno Glass Corp | Lead-free glass composition |
JP2003192430A (en) * | 2001-12-26 | 2003-07-09 | Nihon Yamamura Glass Co Ltd | Composition for high dielectric constant material |
JP2004155597A (en) * | 2002-11-01 | 2004-06-03 | Nippon Electric Glass Co Ltd | Low-melting glass for magnetic recording head |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007176726A (en) * | 2005-12-27 | 2007-07-12 | Nihon Yamamura Glass Co Ltd | Bismuth-based lead-free glass |
JP2007246311A (en) * | 2006-03-14 | 2007-09-27 | Ohara Inc | Glass composition |
WO2008013028A1 (en) * | 2006-07-24 | 2008-01-31 | Nihon Yamamura Glass Co., Ltd. | Lead-free glass composition for sealing metallic vacuum double container |
JP2008303076A (en) * | 2007-06-05 | 2008-12-18 | Central Glass Co Ltd | Lead-free insulating coating material |
US8383011B2 (en) | 2008-01-30 | 2013-02-26 | Basf Se | Conductive inks with metallo-organic modifiers |
WO2009097264A1 (en) * | 2008-01-30 | 2009-08-06 | Basf Catalysts Llc | Glass frits |
US7736546B2 (en) | 2008-01-30 | 2010-06-15 | Basf Se | Glass frits |
US7935279B2 (en) | 2008-01-30 | 2011-05-03 | Basf Se | Glass frits |
US8308993B2 (en) | 2008-01-30 | 2012-11-13 | Basf Se | Conductive inks |
JP2011525887A (en) * | 2008-06-26 | 2011-09-29 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Glass composition for use in photovoltaic cell conductors |
JP2012085752A (en) * | 2010-10-18 | 2012-05-10 | Nippon Glass Sangyo Kk | Ampoule with color marking |
TWI458692B (en) * | 2012-10-17 | 2014-11-01 | Univ Nat Taipei Technology | Composite packaging materials |
US8901018B2 (en) * | 2012-10-17 | 2014-12-02 | National Taipei University Of Technology | Composite encapsulating material |
US9722102B2 (en) | 2014-02-26 | 2017-08-01 | Heraeus Precious Metals North America Conshohocken Llc | Glass comprising molybdenum and lead in a solar cell paste |
JP7538483B2 (en) | 2017-07-26 | 2024-08-22 | 日本電気硝子株式会社 | Support glass substrate and laminated substrate using same |
JP2019214480A (en) * | 2018-06-11 | 2019-12-19 | 日本電気硝子株式会社 | Bismuth glass and sintered body including the same |
JP7138844B2 (en) | 2018-06-11 | 2022-09-20 | 日本電気硝子株式会社 | Sintered body using bismuth-based glass |
Also Published As
Publication number | Publication date |
---|---|
JP4537092B2 (en) | 2010-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6778355B2 (en) | Glass composition, sealing glass for magnetic head and magnetic head using the same | |
EP0180405B1 (en) | Glass composition for binding and filling ceramic parts | |
JP4537092B2 (en) | Glass composition and magnetic head | |
WO2003087001A1 (en) | Bismuth glass composition, and magnetic head and plasma display panel including the same as sealing member | |
JP4415535B2 (en) | Gap bonding glass for magnetic head and magnetic head | |
JPS63156034A (en) | Sealing glass | |
JPH0629152B2 (en) | Method for producing crystallized glass for substrate | |
JP4273620B2 (en) | Substrate glass | |
JP4276129B2 (en) | Glass composition for magnetic head and magnetic head | |
JP2007161524A (en) | Bismuth-based glass composition | |
JPH01252549A (en) | Glass for sealing | |
JP3190961B2 (en) | Low temperature fusing glass composition | |
JP2821182B2 (en) | Electronic component manufacturing method | |
JPS6325246A (en) | Glass for sealing | |
JP2740697B2 (en) | Moisture resistant low melting glass composition for magnetic head and magnetic head | |
JPH08277144A (en) | Solder glass | |
EP0435002A1 (en) | Sealing glass and magnetic head comprising the same | |
JPH0761836A (en) | Glass for adhering ferrite | |
JP2022041894A (en) | Inorganic composition of high thermal expansion coefficient | |
JPH07129909A (en) | Glass for magnetic head and magnetic head | |
JPH11228168A (en) | Low melting point glass for magnetic head | |
KR100390281B1 (en) | Bonding glass for fixing magnetic head | |
JPS60186437A (en) | Glass composition for ferrite adhesion | |
JPH04321536A (en) | Glass composition for fusion-bonding magnetic head | |
JPH0483734A (en) | Glass for adhesion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060928 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060928 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060928 |
|
RD12 | Notification of acceptance of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7432 Effective date: 20060928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060928 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20081027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081113 |
|
RD14 | Notification of resignation of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7434 Effective date: 20081113 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20081114 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20081117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100608 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100617 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4537092 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |