Nothing Special   »   [go: up one dir, main page]

JP7537376B2 - Hot-pressed member, its manufacturing method, and hot-pressed steel plate - Google Patents

Hot-pressed member, its manufacturing method, and hot-pressed steel plate Download PDF

Info

Publication number
JP7537376B2
JP7537376B2 JP2021101402A JP2021101402A JP7537376B2 JP 7537376 B2 JP7537376 B2 JP 7537376B2 JP 2021101402 A JP2021101402 A JP 2021101402A JP 2021101402 A JP2021101402 A JP 2021101402A JP 7537376 B2 JP7537376 B2 JP 7537376B2
Authority
JP
Japan
Prior art keywords
hot
plating
steel sheet
steel plate
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021101402A
Other languages
Japanese (ja)
Other versions
JP2023000523A (en
Inventor
修平 小川
大輔 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021101402A priority Critical patent/JP7537376B2/en
Publication of JP2023000523A publication Critical patent/JP2023000523A/en
Application granted granted Critical
Publication of JP7537376B2 publication Critical patent/JP7537376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、熱間プレス部材、その製造方法および熱間プレス用鋼板に関する。特に、溶接LME特性及び塗装後耐食性に優れた熱間プレス部材、その製造方法および熱間プレス用鋼板に関する。 The present invention relates to a hot-pressed member, its manufacturing method, and a steel plate for hot pressing. In particular, the present invention relates to a hot-pressed member having excellent weld LME properties and corrosion resistance after painting, its manufacturing method, and a steel plate for hot pressing.

近年、自動車の分野では素材鋼板の高性能化と共に軽量化が促進されており、防錆性を有する高強度溶融亜鉛めっき鋼板または電気亜鉛めっき鋼板の使用が増加している。しかし、多くの場合、鋼板の高強度化に伴ってそのプレス成形性が低下するため、複雑な部品形状を得ることは困難になる。例えば自動車用途で、防錆性が必要であり、かつ難成形部品としてはシャシーなどの足回り部材やBピラーなどの骨格用構造部材が挙げられる。 In recent years, the automotive industry has seen a promotion of weight reduction while improving the performance of steel sheets, leading to increased use of rust-resistant high-strength hot-dip galvanized steel sheets or electrolytic galvanized steel sheets. However, in many cases, as the strength of steel sheets increases, their press formability decreases, making it difficult to obtain complex part shapes. For example, in automotive applications, parts that require rust resistance and are difficult to form include chassis and other undercarriage components and frame structural components such as B-pillars.

このような背景から、近年では冷間プレスに比べてプレス成形性と高強度化の両立が容易である熱間プレスによる自動車用部品の製造が急速に増加しており、熱間プレス技術の諸課題を解決する様々な技術が開示されている。 Against this background, the manufacture of automotive parts using hot pressing, which is easier to achieve both press formability and high strength compared to cold pressing, has rapidly increased in recent years, and various technologies have been disclosed to solve the various issues with hot pressing technology.

熱間プレス用めっき鋼板としては、例えば、めっき層の融点が高く腐食初期に赤錆を生じないZn-Niといった、Zn系めっきが存在しており、この鋼板を用いた種々の熱間プレス部材およびその製造方法が提案されている。 As plated steel sheets for hot pressing, for example, Zn-based plating, such as Zn-Ni, exists, which has a high melting point for the plating layer and does not produce red rust in the early stages of corrosion, and various hot pressing members using this steel sheet and methods for manufacturing them have been proposed.

例えば、特許文献1には、α-Fe(Zn、Ni)混晶と、Zn、NiおよびFeの金属間化合物と、Mnを含む層とを有する熱間プレス部材が開示されている。 For example, Patent Document 1 discloses a hot-pressed member having an α-Fe (Zn, Ni) mixed crystal, an intermetallic compound of Zn, Ni and Fe, and a layer containing Mn.

また、特許文献2には、Ni拡散領域と、Zn-Ni合金のγ相に相当する金属間化合物層と、ZnO層とを有する熱間プレス部材が開示されている。特許文献1および特許文献2に開示される熱間プレス部材は、いずれもZn-Ni合金めっき鋼板を加熱して製造された熱間プレス部材であり、無塗装での耐食性や、リン酸亜鉛系化成処理を施した後に電着塗装を行った部材の塗装後耐食性にも優れることが記載されている。 Patent Document 2 discloses a hot-pressed member having a Ni diffusion region, an intermetallic compound layer equivalent to the gamma phase of a Zn-Ni alloy, and a ZnO layer. The hot-pressed members disclosed in Patent Documents 1 and 2 are both hot-pressed members manufactured by heating a Zn-Ni alloy-plated steel sheet, and are described as having excellent corrosion resistance in an unpainted state and excellent corrosion resistance after painting for members that have been subjected to a zinc phosphate-based conversion treatment and then electrocoated.

特表2013―503254号公報Special table 2013-503254 publication 特開2011-246801号公報JP 2011-246801 A

しかし自動車産業において、Zn系めっきは、Znを含まない他成分系めっきより、部材のスポット溶接時にLME(Liquid Metal Embrittlement:液体金属脆化)が起こり易いという欠点が存在する。特に熱間プレス部材用途でのZn系めっきは、熱間プレスと溶接の2度にわたり入熱を受けるため、冷延鋼板のZn系めっきよりも鋼中へのZnの拡散が進み、LMEに対してより不利となる。 However, in the automotive industry, Zn-based plating has the disadvantage that it is more susceptible to LME (Liquid Metal Embrittlement) when spot welding parts than other component platings that do not contain Zn. In particular, Zn-based plating used for hot press parts is subjected to heat input twice, during hot pressing and welding, so Zn diffuses into the steel more than with Zn-based plating on cold-rolled steel sheets, making it more disadvantageous to LME.

これら問題の対策として、Al-Si系めっきの使用が考えられるが、Al-Siめっきは腐食初期から赤錆を生じるため意匠性に劣るため、自動車車体使用時には赤錆抑制のための追加工程が必要となり、コスト・生産性の面で不利である。 One solution to these problems is the use of Al-Si-based plating, but since Al-Si plating produces red rust from the early stages of corrosion, it is less aesthetically pleasing, and when used on automobile bodies, an additional process is required to prevent red rust, which is disadvantageous in terms of cost and productivity.

本発明は、上記課題に鑑みてなされたものであり、熱間プレス後の溶接時の耐LME性に優れ、且つ耐食性に優れる熱間プレス部材およびその製造方法を提供することを目的とする。また、上記熱間プレス部材およびその製造方法を実現するための熱間プレス用鋼板を提供することを目的とする。 The present invention has been made in consideration of the above problems, and aims to provide a hot-pressed member that has excellent LME resistance during welding after hot pressing and excellent corrosion resistance, and a manufacturing method thereof. It also aims to provide a hot-press steel plate for realizing the above hot-pressed member and manufacturing method thereof.

本発明者らは、上記課題を達成するために、鋭意研究を行い、以下の知見を得た。
(1)耐LME性の良い熱間プレス部材を得るためには、熱間プレス用部材表面に、Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相を、所定の元素濃度、融点となる条件で形成させたうえで、Znの含有量を所定量で規定する事が有効である。金属間化合物相が高融点であり、さらに所定の金属間化合物相を付与することにより、酸化物層と鋼板の界面の凹凸を小さくすることができて、その結果、LMEによる亀裂の進展が抑制され、さらに、凹凸構造が少ないことに起因して応力集中が起こらず、LME発生の頻度も低下することができる。
(2)上記特性を持つ熱間プレス部材は、鋼板表面から近い順に、Cu、Ni及びZrの内1種または2種以上の元素と不可避的不純物を含み、所定の含有量となるプレめっき層を施したZn系めっき鋼板を用いることで得られる。
In order to achieve the above object, the present inventors have conducted extensive research and obtained the following findings.
(1) In order to obtain a hot-pressed member with good resistance to LME, it is effective to form an intermetallic compound phase containing one or more elements selected from Cu, Ni, and Zr and Zn on the surface of the hot-pressed member under conditions that result in a predetermined element concentration and melting point, and then specify the content of Zn at a predetermined amount. By providing an intermetallic compound phase with a high melting point and a predetermined intermetallic compound phase, the unevenness of the interface between the oxide layer and the steel sheet can be reduced, and as a result, the progression of cracks due to LME is suppressed, and further, stress concentration does not occur due to the small uneven structure, and the frequency of LME occurrence can be reduced.
(2) A hot-pressed member having the above-mentioned characteristics can be obtained by using a Zn-based plated steel sheet to which a pre-plated layer is applied, the pre-plated layer containing, in order from the surface of the steel sheet, one or more elements selected from Cu, Ni and Zr and unavoidable impurities in a predetermined content.

本発明は上記知見に基づくものであり、その特徴は以下の通りである。
[1]鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、
Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相と、Znを含む酸化物層と、を備える熱間プレス部材であって、
前記金属間化合物相中でCu、Ni及びZrの内1種または2種以上の元素の合計濃度が40~70質量%であり、前記金属間化合物相の融点が800℃以上であり、
前記金属間化合物相中に含まれるZn含有量と前記酸化物層に含まれるZn含有量との合計が10~120g/mであることを特徴とする
熱間プレス部材。
[2]鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、
Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/mであるプレめっき層と、
Zn含有量が10~120g/mのZn系めっき層と、を備える鋼板を、
Ac変態点~1000℃の温度範囲に加熱後熱間プレスすることを特徴とする
[1]に記載の熱間プレス部材の製造方法。
[3]鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、
Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/mであるプレめっき層と、
Zn含有量が10~120g/mのZn系めっき層と、を備えることを特徴とする
熱間プレス用鋼板。
The present invention is based on the above findings and has the following features.
[1] For at least one surface of the steel plate, in order of proximity to the steel plate surface,
A hot-pressed member comprising an intermetallic compound phase containing Zn and one or more elements selected from Cu, Ni, and Zr, and an oxide layer containing Zn,
The total concentration of one or more elements selected from Cu, Ni, and Zr in the intermetallic compound phase is 40 to 70 mass%, and the melting point of the intermetallic compound phase is 800° C. or higher,
A hot-pressed member, characterized in that the sum of the Zn content contained in the intermetallic compound phase and the Zn content contained in the oxide layer is 10 to 120 g/ m2 .
[2] For at least one surface of the steel plate, in order of proximity to the steel plate surface,
A pre-plating layer containing one or more elements selected from Cu, Ni, and Zr, the total content of said elements being 10 to 70 g/ m2 ;
A steel sheet having a Zn-based plating layer having a Zn content of 10 to 120 g/ m2 ,
The method for producing a hot-pressed member according to [1], characterized in that the steel sheet is heated to a temperature range of from the Ac3 transformation point to 1000 ° C. and then hot-pressed.
[3] For at least one surface of the steel plate, in order of proximity to the steel plate surface,
A pre-plating layer containing one or more elements selected from Cu, Ni, and Zr, the total content of said elements being 10 to 70 g/ m2 ;
A steel sheet for hot press use, comprising: a Zn-based plating layer having a Zn content of 10 to 120 g/ m2 .

本発明によれば、耐食性に優れ、かつ熱間プレス後の溶接時の耐LME性に優れる熱間プレス部材を得ることができ、産業上の貢献が極めて顕著である。 The present invention makes it possible to obtain hot-pressed components that have excellent corrosion resistance and excellent LME resistance during welding after hot pressing, making a significant contribution to industry.

図1は、熱間プレス用鋼板の断面を示す模式図である。FIG. 1 is a schematic diagram showing a cross section of a steel sheet for hot press use. 図2は、熱間プレス部材の断面を示す模式図である。FIG. 2 is a schematic diagram showing a cross section of a hot-pressed member.

以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の好適な一実施態様を示すものであり、以下の説明によって何ら限定されるものではない。また、鋼成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。下記で記載の熱間プレス用鋼板に対して、下記で記載の方法にて熱間プレスを行うことで、下記で記載の熱間プレス部材が得られるため、以下では、熱間プレス用鋼板、熱間プレス部材、熱間プレス部材の製造方法の順に説明する。 The following describes an embodiment of the present invention. Note that the following description shows one preferred embodiment of the present invention, and is not intended to be limiting in any way. The content of each element in the steel composition is expressed in units of "mass %", and hereinafter, unless otherwise specified, will be expressed simply as "%". The hot press member described below can be obtained by hot pressing the hot press steel plate described below using the method described below, so the following describes the hot press steel plate, the hot press member, and the manufacturing method of the hot press member in that order.

1)熱間プレス用鋼板
本発明の熱間プレス用鋼板とは、熱間プレス工程を経る前の鋼板であり、図1に示す断面を有しており、鋼板12の少なくとも一方の表面に対し、鋼板表面に近い順に、Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/mであるプレめっき層14と、Zn含有量が10~120g/mのZn系めっき層16と、を備えることを特徴とする熱間プレス用鋼板である。
The steel sheet for hot press of the present invention is a steel sheet before undergoing a hot press process, and has a cross section as shown in FIG. 1. The steel sheet for hot press is characterized in that it is provided with a pre-plated layer 14 containing one or more elements of Cu, Ni and Zr, in that order from the side closest to the steel sheet surface, in a total content of the elements of 10 to 70 g/ m2 , and a Zn-based plated layer 16 having a Zn content of 10 to 120 g/ m2 , on at least one surface of the steel sheet 12.

Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/mであるプレめっき層
プレめっき層とは、熱間プレス前に、鋼板表面とZn系めっき層との間に施されためっき層である。成分は主にCu、Ni及びZrの内1種または2種以上の元素であるが、他の共存元素や不可避的な不純物を含んでもよい。このプレめっきは厚すぎるとコスト的に不利になるだけでなく、熱間プレス後、所望の金属間化合物相を得ることができなくなるため、前記元素の合計含有量は70g/m以下とする。逆に薄すぎると熱間プレス時にZnの拡散を抑制する効果が低下し、LMEが発生しやすくなる。このため10g/m以上とする。好ましくは30g/m以上である。なお、ここで説明している前記元素の合計含有量とは、プレめっきの工程で付着された前記元素の合計量のことである。
A pre-plating layer containing one or more elements of Cu, Ni, and Zr, and having a total content of the elements of 10 to 70 g/m 2 The pre-plating layer is a plating layer applied between the steel sheet surface and the Zn-based plating layer before hot pressing. The components are mainly one or more elements of Cu, Ni, and Zr, but may contain other coexisting elements and unavoidable impurities. If this pre-plating is too thick, not only will it be disadvantageous in terms of cost, but it will also be impossible to obtain the desired intermetallic compound phase after hot pressing, so the total content of the elements is set to 70 g/m 2 or less. Conversely, if it is too thin, the effect of suppressing the diffusion of Zn during hot pressing will decrease, and LME will be more likely to occur. For this reason, it is set to 10 g/m 2 or more. It is preferably 30 g/m 2 or more. The total content of the elements described here refers to the total amount of the elements attached in the pre-plating process.

Zn系めっき層のZn含有量が10~120g/m
Zn系めっき層とは、プレめっきの上に形成するZnを主としためっき層である。鋼板表面に犠牲防食効果のあるZnを供給する事で、耐食性を向上させる働きがある。このZn系めっき層は薄すぎると耐食性が低下するため、Zn系めっき層のZn含有量は10g/m以上とする。逆にZnめっき層が厚すぎると表面平滑性やプレス時の成形性が低下する。このためZn系めっき層のZn含有量は120g/m以下とする。
Znとは、鋼板上に施されるめっきの主成分として供給される元素である。めっき方法は溶融めっき、電気めっき、無電解めっき、スパッタリングが挙げられ、またEGやGIといった純Znめっきの他、Zn-Ni、Zn-Al、Zn-Al-Mg、Zn-Sn、GAのようなZn合金としてめっきされてもよい。なお、ここで説明しているZn含有量とは、めっきの工程で付着されたZn量のことである。
The Zn content of the Zn-based plating layer is 10 to 120 g/ m2.
The Zn-based plating layer is a plating layer mainly composed of Zn formed on the pre-plating. It works to improve corrosion resistance by supplying Zn, which has a sacrificial anticorrosive effect, to the steel sheet surface. If this Zn-based plating layer is too thin, the corrosion resistance decreases, so the Zn content of the Zn-based plating layer is set to 10 g/ m2 or more. Conversely, if the Zn-plating layer is too thick, the surface smoothness and formability during pressing decrease. For this reason, the Zn content of the Zn-based plating layer is set to 120 g/ m2 or less.
Zn is an element supplied as the main component of the plating applied to the steel sheet. The plating method includes hot-dip plating, electroplating, electroless plating, and sputtering. In addition to pure Zn plating such as EG and GI, Zn alloy plating such as Zn-Ni, Zn-Al, Zn-Al-Mg, Zn-Sn, and GA may be used. The Zn content described here refers to the amount of Zn attached in the plating process.

なお、熱間プレス用鋼板としては、熱間プレス後引張強さがTS1.5GPa以上の熱間プレス部材を得るために、例えば、質量%で、C:0.20%~0.35%、Si:0.1%~0.5%、Mn:1.0%~3.0%、P:0.02%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下、Nb:0.05%以下、Ti:0.05%以下、B:0.0002%~0.005%、Cr:0.1%~0.3%、Sb:0.003%~0.03%を含有し、残部が不可避的不純物からなる成分組成を有する鋼板を用いることができる。 In addition, as the hot press steel sheet, in order to obtain a hot press part having a tensile strength after hot pressing of TS1.5GPa or more, it is possible to use a steel sheet having a composition containing, in mass%, for example, C: 0.20% to 0.35%, Si: 0.1% to 0.5%, Mn: 1.0% to 3.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.01% or less, Nb: 0.05% or less, Ti: 0.05% or less, B: 0.0002% to 0.005%, Cr: 0.1% to 0.3%, Sb: 0.003% to 0.03%, with the balance being unavoidable impurities.

熱間プレス用鋼板の製造方法は、以下の通りである。例えば、鋼素材を1150℃で加熱した後、熱間圧延を行い、前記熱間圧延の終了温度を840℃とし、650℃で巻取り後、酸洗し、冷間圧延を行い、30g/mのCuのプレめっきと上述した電気めっきのZnめっきを行って製造している。 The manufacturing method of the hot press steel sheet is as follows: For example, the steel material is heated at 1150°C, then hot rolled, the end temperature of the hot rolling is set to 840°C, the steel is coiled at 650°C, pickled, cold rolled, pre-plated with 30 g/ m2 Cu, and electroplated with the above-mentioned Zn.

2)熱間プレス部材
本発明の熱間プレス部材は、図2に示す断面を有しており、鋼板12の少なくとも一方の表面に対し、鋼板表面に近い順に、Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相22と、Znを含む酸化物層24と、を備える熱間プレス部材であって、前記金属間化合物相中でCu、Ni及びZrの内1種または2種以上の元素の合計濃度が40~70質量%であり、前記金属化合物相の融点が800℃以上であり、前記金属間化合物相中に含まれるZn含有量と前記酸化物層に含まれるZn含有量との合計が10~120g/mであることを特徴とする熱間プレス部材である。
2) Hot-pressed member The hot-pressed member of the present invention has a cross section as shown in FIG. 2, and is a hot-pressed member having, on at least one surface of a steel plate 12, an intermetallic compound phase 22 containing one or more elements selected from Cu, Ni, and Zr and Zn, and an oxide layer 24 containing Zn, in that order from the side closest to the steel plate surface, wherein the total concentration of one or more elements selected from Cu, Ni, and Zr in the intermetallic compound phase is 40 to 70 mass%, the melting point of the metallic compound phase is 800° C. or higher, and the sum of the Zn content contained in the intermetallic compound phase and the Zn content contained in the oxide layer is 10 to 120 g/m 2 .

鋼板表面に近い順に、Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相と、Znを含む酸化物層と、を鋼板の少なくとも一方の表面に設ける必要があるが、鋼板の両面にこれらを設けてもよい。以下では、鋼板の一方の表面に設けたものについて述べる。 In order of decreasing proximity to the steel sheet surface, an intermetallic compound phase containing Zn and one or more elements selected from Cu, Ni, and Zr, and an oxide layer containing Zn must be provided on at least one surface of the steel sheet, but they may also be provided on both sides of the steel sheet. The following describes the provision of these on one surface of the steel sheet.

Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相中の、Cu、Ni及びZrの内1種または2種以上の元素の合計濃度が40~70質量%
金属間化合物相とは、プレめっきとして供給されるCu、Ni及びZrの内1種または2種以上の元素と、めっきとして供給されるZnが、熱間プレスにより金属間化合物を形成した相である。鋼板と酸化物層の間に形成され、主にめっき成分であるZnを保持し鋼板の耐食性向上に寄与する。金属間化合物相は単一組成である必要はなく、複数の金属間化合物相がラメラ状又は海島状の様に混ざり合っていてよい。また固溶体相や金属単体の相を含んでもよい。主な金属間化合物相の組成としては、CuZn、NiZn、ZrZn等が挙げられる。
The total concentration of one or more elements selected from Cu, Ni, and Zr in an intermetallic compound phase containing Zn and one or more elements selected from Cu, Ni, and Zr is 40 to 70 mass%.
The intermetallic compound phase is a phase in which one or more elements of Cu, Ni, and Zr supplied as pre-plating and Zn supplied as plating form an intermetallic compound by hot pressing. It is formed between the steel sheet and the oxide layer, and mainly holds Zn, which is a plating component, and contributes to improving the corrosion resistance of the steel sheet. The intermetallic compound phase does not need to be of a single composition, and multiple intermetallic compound phases may be mixed in a lamellar or sea-island shape. It may also contain a solid solution phase or a phase of a single metal. The main compositions of the intermetallic compound phase include CuZn, NiZn, ZrZn, etc.

鋼板の表面に通常のZn系めっき層を付与したものでは、熱間プレス時に鋼板へのZnの拡散や、融点の低いZnが液化してFe粒界に侵入するという現象が生じる。これにより熱間プレス部材のめっきと鋼板の界面は凹凸状の構造で、且つZnリッチな粒界を持つFe拡散相が形成される。この部材が溶接されると、入熱によりFe拡散相でZnがより深く侵入する事となり、Znを伝って発生するLMEの亀裂深さが深くなるほか、電極コンタクト時またはオープン時に生じる応力がFe拡散相の凹部に集中する事で、LMEの頻度も増加する。しかしながら本発明は、熱間プレス用鋼板上にCu、Ni及びZrの内1種または2種以上の元素を含むプレめっき層と、Zn系めっき層とを所定量形成後、Ac変態点~1000℃の温度範囲で熱間プレスする事で達成できるものである。 In the case of a steel sheet having a normal Zn-based plating layer on its surface, the phenomenon occurs in which Zn diffuses into the steel sheet during hot pressing, and Zn, which has a low melting point, liquefies and penetrates into the Fe grain boundaries. As a result, the interface between the plating of the hot press member and the steel sheet has an uneven structure, and an Fe-diffusion phase with Zn-rich grain boundaries is formed. When this member is welded, Zn penetrates deeper into the Fe-diffusion phase due to heat input, and the crack depth of the LME that occurs along the Zn becomes deeper. In addition, the stress generated when the electrodes are contacted or opened is concentrated in the recesses of the Fe-diffusion phase, so that the frequency of LME increases. However, the present invention can be achieved by forming a pre-plating layer containing one or more elements selected from Cu, Ni, and Zr, and a Zn-based plating layer in a predetermined amount on the steel sheet for hot pressing, and then hot pressing in a temperature range of Ac3 transformation point to 1000°C.

金属間化合物相にCu、Ni、Zrを含有させる理由として、何れの元素も熱間プレス後の耐LME性を向上させる働きを有する元素であることが挙げられる。プレめっきの構成成分であるCu、Ni及びZrは、鋼板の主成分であるFeに対する固溶量が少なく、また単体での融点が高いため、熱間プレス時にある程度高温まで層構造を維持していると考えられる。するとプレめっきの層構造がZnに対し物理的な障壁として作用するためZnの鋼板側への拡散を抑制する事となり、Znを多量に含み且つ凹凸を有するようなFe拡散相が形成され難くなる。その結果、この部材を溶接しても、Fe拡散相やその粒界に存在するZnが少ないためLMEによる亀裂の進展が抑制されるほか、凹凸構造が少ないため応力集中が起こらず、LME発生の頻度も低下すると考えられる。更にZnとCu、Ni及びZrが熱間プレス途中に金属間化合物を形成した場合においても、化合物の融点を800℃以上で規定する事により、プレめっき無しよりも溶接時にめっき部が液化するまでの時間を長く取る事ができ、結果Znの拡散に伴うLMEの進展を抑制できると考える。なお、Cu、Ni及びZrの中で最も上記の効果が優れるものは、Zrで、Ni、Cuの順に優れる。 The reason for including Cu, Ni, and Zr in the intermetallic compound phase is that all of these elements have the function of improving LME resistance after hot pressing. Cu, Ni, and Zr, which are components of the pre-plating, have a small amount of solid solution in Fe, the main component of the steel sheet, and have a high melting point by themselves, so it is thought that they maintain their layer structure up to a certain degree of high temperature during hot pressing. Then, the layer structure of the pre-plating acts as a physical barrier against Zn, suppressing the diffusion of Zn to the steel sheet side, making it difficult to form an Fe diffusion phase that contains a large amount of Zn and has unevenness. As a result, even if this member is welded, the development of cracks due to LME is suppressed because there is little Zn in the Fe diffusion phase and its grain boundaries, and the uneven structure is small, so stress concentration does not occur, and the frequency of LME occurrence is also thought to be reduced. Furthermore, even if Zn, Cu, Ni, and Zr form an intermetallic compound during hot pressing, by specifying the melting point of the compound at 800°C or higher, it is possible to take a longer time for the plated area to liquefy during welding than without pre-plating, and as a result, it is believed that the progression of LME associated with the diffusion of Zn can be suppressed. Among Cu, Ni, and Zr, Zr has the best effect as described above, followed by Ni and Cu.

Cu、Ni及びZrの内1種または2種以上の元素の合計濃度は、40~70質量%である。ここで、合計濃度とは、金属間化合物中のCu、Ni及びZrの質量%濃度を合計した値である。合計濃度が70%を超えると金属化合物中のZnの割合が減少し、耐食性が低下するため、合計濃度は70%以下とする。合計濃度は、好ましくは60%以下とする。一方、合計濃度が40%未満では、熱間プレス時のLME抑制効果が低下するため、合計濃度は40%以上とする。合計濃度は、好ましくは50%以上とする。 The total concentration of one or more of Cu, Ni, and Zr is 40 to 70 mass%. Here, the total concentration is the sum of the mass% concentrations of Cu, Ni, and Zr in the intermetallic compound. If the total concentration exceeds 70%, the proportion of Zn in the metal compound decreases and corrosion resistance decreases, so the total concentration is set to 70% or less. The total concentration is preferably set to 60% or less. On the other hand, if the total concentration is less than 40%, the effect of suppressing LME during hot pressing decreases, so the total concentration is set to 40% or more. The total concentration is preferably set to 50% or more.

金属間化合物相の融点が800℃以上
融点とは、金属間化合物が融解を開始する際の温度である。融点が低い場合はZnが鋼板側へ拡散しやすくなり、LMEが発生し易くなる。金属間化合物相の融点が800℃未満では、Znの鋼板側への拡散を抑制することが難しい。このため金属間化合物相の融点が800℃以上とする。
The melting point of the intermetallic compound phase is 800°C or higher. The melting point is the temperature at which the intermetallic compound starts to melt. If the melting point is low, Zn is more likely to diffuse into the steel sheet, making LME more likely to occur. If the melting point of the intermetallic compound phase is less than 800°C, it is difficult to suppress the diffusion of Zn into the steel sheet. For this reason, the melting point of the intermetallic compound phase is set to 800°C or higher.

金属間化合物相中に含まれるZnと酸化物層に含まれるZnの合計Zn含有量が10~120g/m
合計Zn含有量とは、熱間プレス前の鋼板上にめっきとして付与されたZnの総量である。熱間プレスを行っても、Znは蒸発することはないため、熱間プレス前の鋼板上にめっきとして付与されたZnの総量は、そのまま、熱間プレス部材における、金属間化合物相中に含まれるZnと酸化物層に含まれるZnの合計Zn含有量に相当する。合計Zn含有量が10g/m未満では、耐食性が低下するため、合計Zn含有量が10g/m以上とする。合計Zn含有量が120g/mを超えるとコスト的に不利になるため、合計Zn含有量が120g/m以下とする。なお、Zn含有量は化学溶解した溶液のICP発光分析にて測定する。
酸化物層とは、めっきとして供給されるZnが、熱間プレス時の酸素との反応により、酸化物を形成した層である。主成分はZnOであるが、酸化物の価数が変化する、又はZn以外の元素を含むなどしてもよい。
The total Zn content of the Zn contained in the intermetallic compound phase and the Zn contained in the oxide layer is 10 to 120 g/m 2
The total Zn content is the total amount of Zn applied as plating on the steel sheet before hot pressing. Since Zn does not evaporate even when hot pressing is performed, the total amount of Zn applied as plating on the steel sheet before hot pressing corresponds to the total Zn content of the Zn contained in the intermetallic compound phase and the Zn contained in the oxide layer in the hot pressed member. If the total Zn content is less than 10 g/m 2 , the corrosion resistance decreases, so the total Zn content is set to 10 g/m 2 or more. If the total Zn content exceeds 120 g/m 2 , it is disadvantageous in terms of cost, so the total Zn content is set to 120 g/m 2 or less. The Zn content is measured by ICP emission analysis of a chemically dissolved solution.
The oxide layer is a layer in which Zn supplied as plating reacts with oxygen during hot pressing to form an oxide. The main component is ZnO, but the valence of the oxide may change or an element other than Zn may be included.

熱間プレス部材とは、熱間プレスを施された鋼板である。熱間プレス条件は後述の条件を満たして入れば、任意に設定することができる。
3)熱間プレス部材の製造方法
本発明の熱間プレス部材の製造方法は、鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/mであるプレめっき層と、Zn含有量が10~120g/mのZn系めっき層と、を備える鋼板を、Ac変態点~1000℃の温度範囲に加熱後熱間プレスするものである。
The hot-pressed member is a steel plate that has been subjected to hot pressing. The hot pressing conditions can be set arbitrarily as long as the conditions described below are satisfied.
3) Manufacturing method of hot-pressed member The manufacturing method of the hot-pressed member of the present invention involves heating a steel sheet having a pre-plated layer containing one or more elements of Cu, Ni, and Zr, in order of proximity to the steel sheet surface, in a total content of 10 to 70 g/ m2 , and a Zn-based plated layer having a Zn content of 10 to 120 g/ m2 , on at least one surface of the steel sheet, to a temperature range of from the Ac3 transformation point to 1000°C, and then hot pressing the steel sheet.

Ac変態点~1000℃の温度範囲に加熱後熱間プレスする
加熱温度がAc変態点より低いと、熱間プレス部材として必要な強度を得ることができない場合があるため、加熱温度がAc変態点以上とすることが好ましい。逆に加熱温度が1000℃を超えると、金属間化合物相が消失してしまう場合があるため、加熱温度が1000℃以下とすることが好ましい。なお、加熱時間はコストの観点から、950℃以下が好ましく、加熱後の冷却方法は金型冷却や油冷等の方法で実施することができる。冷却速度は、400℃までは15℃/秒以上で行うことが好ましい。
Heat to a temperature range of Ac3 transformation point to 1000 ° C and then hot press. If the heating temperature is lower than the Ac3 transformation point, the strength required for the hot press member may not be obtained, so the heating temperature is preferably the Ac3 transformation point or higher. Conversely, if the heating temperature exceeds 1000 ° C, the intermetallic compound phase may disappear, so the heating temperature is preferably 1000 ° C or lower. From the viewpoint of cost, the heating time is preferably 950 ° C or lower, and the cooling method after heating can be performed by a method such as mold cooling or oil cooling. The cooling rate is preferably 15 ° C / sec or more up to 400 ° C.

以下、本発明を実施例に基づいて具体的に説明する。下記の実施例は本発明を限定するものではなく、要旨構成の範囲内で適宜変更することは、本発明の範囲に含まれるものとする。 The present invention will be specifically described below based on examples. The following examples do not limit the present invention, and appropriate modifications within the scope of the gist and configuration are considered to be included in the scope of the present invention.

下地鋼板として、質量%で、C:0.33%、Si:0.25%、Mn:1.9%、P:0.005%、S:0.001%、Al:0.03%、N:0.004%、Nb:0.02%、Ti:0.02%、B:0.002%、Cr:0.2%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、板厚1.4mmの冷延鋼板を用いた(Ac=730℃)。なお、本発明において、Ac点は、熱力学計算ソフトThermo-Calcで求めた。 The base steel sheet used was a cold-rolled steel sheet having a thickness of 1.4 mm and containing, in mass%, C: 0.33%, Si: 0.25%, Mn: 1.9%, P: 0.005%, S: 0.001%, Al: 0.03%, N: 0.004%, Nb: 0.02%, Ti: 0.02%, B: 0.002%, Cr: 0.2%, Sb: 0.008%, with the balance being Fe and unavoidable impurities (Ac 3 = 730°C). In the present invention, the Ac 3 point was determined using thermodynamic calculation software Thermo-Calc.

上記の下地鋼板に、電気めっきによりCu、Ni及びZrプレめっき層のいずれかを形成した後、純Znめっき、Zn-Niめっき、GAめっき、Zn-Alめっきのいずれかを形成した。めっきの形成は純Zn、Zn-Niめっきを電気めっきで、GAめっき、Zn-Alめっきを溶融めっきで行った。めっきの含有量は化学溶解した溶液をICP発光分析により定量することで求めた。ICP発光分析とは、濃既知濃度のCu、Ni、Zr、Znを含む溶液を測定し、濃度と発光強度の相関からえられた検量線により含有量を算出した。 After forming a Cu, Ni or Zr pre-plating layer on the above-mentioned base steel sheet by electroplating, a pure Zn plating, a Zn-Ni plating, a GA plating or a Zn-Al plating was formed. Pure Zn and Zn-Ni plating were formed by electroplating, while GA plating and Zn-Al plating were formed by hot-dip plating. The plating content was determined by quantifying the chemically dissolved solution using ICP emission spectrometry. ICP emission spectrometry involves measuring a solution containing known concentrations of Cu, Ni, Zr and Zn, and calculating the content using a calibration curve obtained from the correlation between concentration and emission intensity.

電気めっきによるめっき及びプレめっきは流動槽を用いて実施した。プレめっき時の浴条件は、浴組成が硫酸銅5水和物、硫酸ニッケル6水和物、硫酸ジルコニウム4水和物の何れか1種を225g/L及び硫酸50g/L、温度が40℃、流速が1m/s、電流密度が10A/dmとした。まためっき時の浴条件は、純Znめっきでは浴組成が硫酸亜鉛7水和物440g/L、pHが1.9、温度が50℃、流速が1m/s、電流密度が25A/dmとし、Zn-Niめっきでは浴組成が硫酸亜鉛7水和物1150g/L、硫酸ニッケル6水和物2450g/L、及び硫酸ナトリウム530g/Lとし、pHが1.5、温度が50℃、流速が1m/s、電流密度が50A/dmとした。 Plating and pre-plating by electroplating were carried out using a fluidized bath. The bath conditions during pre-plating were as follows: bath composition was 225 g/L of any one of copper sulfate pentahydrate, nickel sulfate hexahydrate, and zirconium sulfate tetrahydrate, and 50 g/L of sulfuric acid, temperature was 40°C, flow rate was 1 m/s, and current density was 10 A/ dm2 . The bath conditions during plating were as follows: for pure Zn plating, bath composition was 440 g/L of zinc sulfate heptahydrate, pH was 1.9, temperature was 50°C, flow rate was 1 m/s, and current density was 25 A/ dm2 ; for Zn-Ni plating, bath composition was 1150 g/L of zinc sulfate heptahydrate, 2450 g/L of nickel sulfate hexahydrate, and 530 g/L of sodium sulfate, pH was 1.5, temperature was 50°C, flow rate was 1 m/s, and current density was 50 A/ dm2 .

溶融めっきによるめっきはラボスケールの溶融めっき槽を用いて実施した。上記の条件でプレめっきを施した後、GAめっきでは、浴組成が亜鉛99.87重量%、及びアルミニウム0.13重量%、浴温が460℃でめっきを行い、その後510℃で合金化処理を行った。またZn-Alめっきでは、浴組成が亜鉛95.0重量%、アルミニウム4.5重量%及びマグネシウム0.5重量%、浴温が450℃として、めっきを行った。 Hot-dip plating was carried out using a laboratory-scale hot-dip plating tank. After pre-plating under the above conditions, GA plating was carried out with a bath composition of 99.87% zinc and 0.13% aluminum by weight at a bath temperature of 460°C, and then alloying treatment was carried out at 510°C. Zn-Al plating was carried out with a bath composition of 95.0% zinc, 4.5% aluminum and 0.5% magnesium by weight at a bath temperature of 450°C.

めっき後、鋼板をラボスケールのマッフル炉で2分30秒の時間でMAX900℃になるまで加熱し、金型で300℃まで冷却し、その後常温まで空冷する事で熱間プレス部材を模擬したサンプルを作製した。表1-1および表1-2にサンプルの水準を示す。サンプルの金属間化合物及び酸化物組成はXRDで同定し、付着量及び金属間化合物相中のZn以外の成分の割合はICP発光分析により確認した。XRDの測定は、サンプルを30mm×30mmに剪断後、CuKα線またはMoKα線により得られたスペクトルを分析する事で実施した。また金属化合物相の融点は熱力学計算ソフトThermo-Calcにより求めた。 After plating, the steel sheet was heated to a maximum of 900°C in a laboratory-scale muffle furnace for 2 minutes and 30 seconds, cooled to 300°C in a mold, and then air-cooled to room temperature to create a sample simulating a hot-pressed part. The sample standards are shown in Tables 1-1 and 1-2. The intermetallic compound and oxide composition of the sample were identified by XRD, and the deposition amount and the proportion of components other than Zn in the intermetallic compound phase were confirmed by ICP emission spectrometry. XRD measurements were performed by shearing the sample to 30 mm x 30 mm and analyzing the spectrum obtained with CuKα or MoKα radiation. The melting point of the metallic compound phase was also determined using thermodynamic calculation software Thermo-Calc.

<溶接時のLME評価>
得られたサンプルを100mm×35mmに剪断後、同一サイズの980GA材と重ね、打角5度、加圧力3.5kN、6.0kA、初期加圧時間600ms、通電時間21cyc、ホールド時間1cycの条件でスポット溶接を実施した。その後ナゲット近傍の断面を研磨し、光学顕微鏡を用いて×100の倍率でナゲット近傍を観察した。評価は発生した各LMEの最大長さを測定して以下の基準で判定を行い、◎又は〇を合格とした。評価結果を表1-1および表1-2に示す。
◎:LME未発生
〇:LME長さ<5μm
×:5μm≦LME長さ
<LME evaluation during welding>
The obtained sample was sheared to 100 mm x 35 mm, and then stacked with a 980GA material of the same size, and spot welding was performed under the conditions of an impact angle of 5 degrees, a pressure of 3.5 kN, 6.0 kA, an initial pressure time of 600 ms, a current time of 21 cyc, and a hold time of 1 cyc. The cross section near the nugget was then polished, and the vicinity of the nugget was observed at a magnification of x100 using an optical microscope. The evaluation was performed by measuring the maximum length of each LME that occurred and judging according to the following criteria, with ◎ or ◯ being passed. The evaluation results are shown in Tables 1-1 and 1-2.
◎: No LME occurred ◯: LME length < 5 μm
×: 5 μm≦LME length

<塗装後耐食性>
得られたサンプルを100mm×100mmに剪断後、ジルコニウム系化成処理および電着塗装を施した。ジルコニウム系化成処理は、日本パーカライジング社製PLM2100を用いて標準条件で行った。また電着塗装は関西ペイント社製GT100Vを用いて塗装膜厚が10μmとなるように電着後、焼付けを170℃で20分間保持して行った。次いで、ジルコニウム系化成処理および電着塗装を施したサンプルにクロスカットを付与した後、腐食試験(SAE-J2334)に供し、30サイクル後の腐食状況の評価を行った。
<Corrosion resistance after painting>
The obtained sample was sheared to 100 mm x 100 mm, and then subjected to a zirconium-based chemical conversion treatment and electrodeposition coating. The zirconium-based chemical conversion treatment was performed under standard conditions using a PLM2100 manufactured by Nihon Parkerizing Co., Ltd. The electrodeposition coating was performed using a GT100V manufactured by Kansai Paint Co., Ltd., where the coating film thickness was 10 μm, followed by baking at 170° C. for 20 minutes. Next, the sample subjected to the zirconium-based chemical conversion treatment and electrodeposition coating was cross-cut, and then subjected to a corrosion test (SAE-J2334), and the corrosion state after 30 cycles was evaluated.

評価はクロスカットからの片側最大膨れ幅を測定して以下の基準で判定を行い、◎又は〇を合格とした。評価結果を表1-1および表1-2に示す。
◎:片側最大膨れ幅<2.0mm
〇:2.0mm≦片側最大膨れ幅<4.0mm
×:4.0mm≦片側最大膨れ幅
The evaluation was performed by measuring the maximum bulge width on one side from the cross cut and judging according to the following criteria, with ⊚ or ◯ being deemed to be acceptable. The evaluation results are shown in Tables 1-1 and 1-2.
◎: Maximum bulge width on one side < 2.0 mm
◯: 2.0 mm≦maximum bulge width on one side<4.0 mm
×: 4.0 mm or less maximum bulge width on one side

Figure 0007537376000001
Figure 0007537376000001

Figure 0007537376000002
Figure 0007537376000002

表1-1および表1-2の結果から、本発明の熱間プレス部材は、耐食性に優れ、かつ耐LME性に優れる。また、本発明の熱間プレス用鋼板に熱間プレス用部材の製造方法を適用することにより、塗装後耐食性を担保しつつ耐LME性に優れる本発明の熱間プレス部材を得ることができる。 The results of Tables 1-1 and 1-2 show that the hot-pressed members of the present invention have excellent corrosion resistance and excellent LME resistance. In addition, by applying the manufacturing method for hot-pressed members to the hot-pressed steel plate of the present invention, it is possible to obtain hot-pressed members of the present invention that have excellent LME resistance while ensuring corrosion resistance after painting.

10 熱間プレス用鋼板
12 鋼板
14 プレめっき層
16 Zn系めっき層
20 熱間プレス部材
22 金属間化合物相
24 酸化物層
REFERENCE SIGNS LIST 10: Steel plate for hot pressing 12: Steel plate 14: Pre-plating layer 16: Zn-based plating layer 20: Hot pressing member 22: Intermetallic compound phase 24: Oxide layer

Claims (3)

鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、
Cu及びZrの内1種または2種の元素とZnを含む金属間化合物相と、Znを含む酸化物層と、を備える熱間プレス部材であって、
前記金属間化合物相中でCu及びZrの内1種または2種の元素の合計濃度が40~70質量%であり、前記金属間化合物相の融点が800℃以上であり、
前記金属間化合物相中に含まれるZn含有量と前記酸化物層に含まれるZn含有量との合計が10~120g/mであることを特徴とする
熱間プレス部材。
For at least one surface of the steel plate, in the order of proximity to the steel plate surface,
A hot-pressed member comprising an intermetallic compound phase containing Zn and one or more elements selected from Cu and Zr, and an oxide layer containing Zn,
A total concentration of one or two elements selected from Cu and Zr in the intermetallic compound phase is 40 to 70 mass %, and the melting point of the intermetallic compound phase is 800° C. or higher,
A hot-pressed member, characterized in that the sum of the Zn content contained in the intermetallic compound phase and the Zn content contained in the oxide layer is 10 to 120 g/ m2 .
鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、
Cu及びZrの内1種または2種の元素を含み、前記元素の合計含有量が10~70g/mであるプレめっき層と、
Zn含有量が10~120g/mのZn系めっき層と、を備える鋼板を、
Ac変態点~1000℃の温度範囲に加熱後熱間プレスすることを特徴とする
請求項1に記載の熱間プレス部材の製造方法。
For at least one surface of the steel plate, in the order of proximity to the steel plate surface,
A pre-plating layer containing one or two elements of Cu and Zr, the total content of said elements being 10 to 70 g/ m2 ;
A steel sheet having a Zn-based plating layer having a Zn content of 10 to 120 g/ m2 ,
The method for producing a hot-pressed member according to claim 1, characterized in that the hot-pressing is carried out after heating to a temperature range of from the Ac3 transformation point to 1000°C.
請求項1に記載の熱間プレス部材に用いられる熱間プレス用鋼板であって、
鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、
Cu及びZrの内1種または2種の元素を含み、前記元素の合計含有量が10~70g/mであるプレめっき層と、
Zn含有量が10~120g/mのZn系めっき層と、を備えることを特徴とする
熱間プレス用鋼板。
A hot press steel sheet used for the hot press member according to claim 1,
For at least one surface of the steel plate, in the order of proximity to the steel plate surface,
A pre-plating layer containing one or two elements of Cu and Zr, the total content of said elements being 10 to 70 g/ m2 ;
A steel sheet for hot press use, comprising: a Zn-based plating layer having a Zn content of 10 to 120 g/ m2 .
JP2021101402A 2021-06-18 2021-06-18 Hot-pressed member, its manufacturing method, and hot-pressed steel plate Active JP7537376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021101402A JP7537376B2 (en) 2021-06-18 2021-06-18 Hot-pressed member, its manufacturing method, and hot-pressed steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021101402A JP7537376B2 (en) 2021-06-18 2021-06-18 Hot-pressed member, its manufacturing method, and hot-pressed steel plate

Publications (2)

Publication Number Publication Date
JP2023000523A JP2023000523A (en) 2023-01-04
JP7537376B2 true JP7537376B2 (en) 2024-08-21

Family

ID=84687040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021101402A Active JP7537376B2 (en) 2021-06-18 2021-06-18 Hot-pressed member, its manufacturing method, and hot-pressed steel plate

Country Status (1)

Country Link
JP (1) JP7537376B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007266A (en) 2013-06-25 2015-01-15 Jfeスチール株式会社 Hot pressing steel sheet
JP2015168881A (en) 2014-03-11 2015-09-28 Jfeスチール株式会社 Hot pressing steel sheet
JP2016089274A (en) 2014-11-04 2016-05-23 株式会社神戸製鋼所 Plating steel sheet for hot stamp
JP2016539249A (en) 2013-09-13 2016-12-15 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Steel part with anticorrosion coating and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007266A (en) 2013-06-25 2015-01-15 Jfeスチール株式会社 Hot pressing steel sheet
JP2016539249A (en) 2013-09-13 2016-12-15 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag Steel part with anticorrosion coating and method for producing the same
JP2015168881A (en) 2014-03-11 2015-09-28 Jfeスチール株式会社 Hot pressing steel sheet
JP2016089274A (en) 2014-11-04 2016-05-23 株式会社神戸製鋼所 Plating steel sheet for hot stamp

Also Published As

Publication number Publication date
JP2023000523A (en) 2023-01-04

Similar Documents

Publication Publication Date Title
CN100540718C (en) Surface treated steel plate and manufacture method thereof
US10253386B2 (en) Steel sheet for hot press-forming, method for manufacturing the same, and method for producing hot press-formed parts using the same
JP6428975B1 (en) Plated steel sheet
WO2018169085A1 (en) Plated steel sheet
CN113557318A (en) Coated steel sheet
JP6160793B1 (en) Plated steel sheet
EP2940177B1 (en) Hot-dip galvanized steel sheet
EP4023790A1 (en) Hot-stamped article
WO2014091724A1 (en) Hot-dip-galvanized steel sheet
JP6779862B2 (en) Surface-finished steel sheets and their manufacturing methods
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
JP7537376B2 (en) Hot-pressed member, its manufacturing method, and hot-pressed steel plate
JP2020041175A (en) Steel plate for hot pressing
JP7173368B2 (en) HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER
JP2004002931A (en) Aluminum plated steel sheet having excellent resistance weldability and worked parts obtained by using the same
JP6939825B2 (en) Al-based galvanized steel sheet and its manufacturing method
JP7301233B2 (en) Aluminum-based alloy plated steel sheet and method for producing the same
JP6939824B2 (en) Al-based galvanized steel sheet and its manufacturing method
JP7338606B2 (en) HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER
JP2003193187A (en) High strength aluminum based plated steel sheet having excellent workability and corrosion resistance in worked part and high strength automotive parts
JP6089895B2 (en) Alloyed hot-dip galvanized steel sheet with excellent chipping resistance
JP2938449B1 (en) Hot-dip Sn-Zn plated steel sheet
JP6939826B2 (en) Al-based galvanized steel sheet and its manufacturing method
JP4690848B2 (en) High-tensile hot-dip Zn-plated steel material excellent in appearance, workability, and weldability, and its manufacturing method
JP2011208247A (en) HIGH-STRENGTH STEEL SHEET HAVING TENSILE STRENGTH 1,180 MPa OR MORE EXCELLENT IN DELAYED FRACTURE RESISTANCE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240722

R150 Certificate of patent or registration of utility model

Ref document number: 7537376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150