JP2023000523A - Hot press member, production method thereof, and steel plate for hot press - Google Patents
Hot press member, production method thereof, and steel plate for hot press Download PDFInfo
- Publication number
- JP2023000523A JP2023000523A JP2021101402A JP2021101402A JP2023000523A JP 2023000523 A JP2023000523 A JP 2023000523A JP 2021101402 A JP2021101402 A JP 2021101402A JP 2021101402 A JP2021101402 A JP 2021101402A JP 2023000523 A JP2023000523 A JP 2023000523A
- Authority
- JP
- Japan
- Prior art keywords
- hot press
- steel plate
- plating
- intermetallic compound
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 68
- 239000010959 steel Substances 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 40
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 34
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 33
- 229910052802 copper Inorganic materials 0.000 claims abstract description 31
- 238000002844 melting Methods 0.000 claims abstract description 16
- 230000008018 melting Effects 0.000 claims abstract description 16
- 238000007747 plating Methods 0.000 claims description 75
- 238000007731 hot pressing Methods 0.000 claims description 29
- 229910052725 zinc Inorganic materials 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 abstract description 18
- 230000007797 corrosion Effects 0.000 abstract description 17
- 238000003466 welding Methods 0.000 abstract description 7
- 239000011701 zinc Substances 0.000 description 88
- 239000010410 layer Substances 0.000 description 41
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 30
- 239000010949 copper Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 9
- 229910007567 Zn-Ni Inorganic materials 0.000 description 5
- 229910007614 Zn—Ni Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 2
- 229940116202 nickel sulfate hexahydrate Drugs 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 2
- YFVXLROHJBSEDW-UHFFFAOYSA-N 4-[(4-nitrophenyl)diazenyl]-n-phenylaniline Chemical compound C1=CC([N+](=O)[O-])=CC=C1N=NC(C=C1)=CC=C1NC1=CC=CC=C1 YFVXLROHJBSEDW-UHFFFAOYSA-N 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910002535 CuZn Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910003962 NiZn Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 229910007610 Zn—Sn Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本発明は、熱間プレス部材、その製造方法および熱間プレス用鋼板に関する。特に、溶接LME特性及び塗装後耐食性に優れた熱間プレス部材、その製造方法および熱間プレス用鋼板に関する。 TECHNICAL FIELD The present invention relates to a hot press member, a method for manufacturing the same, and a steel plate for hot press. In particular, the present invention relates to a hot press member excellent in weld LME properties and post-coating corrosion resistance, a method for producing the same, and a steel plate for hot press.
近年、自動車の分野では素材鋼板の高性能化と共に軽量化が促進されており、防錆性を有する高強度溶融亜鉛めっき鋼板または電気亜鉛めっき鋼板の使用が増加している。しかし、多くの場合、鋼板の高強度化に伴ってそのプレス成形性が低下するため、複雑な部品形状を得ることは困難になる。例えば自動車用途で、防錆性が必要であり、かつ難成形部品としてはシャシーなどの足回り部材やBピラーなどの骨格用構造部材が挙げられる。 In recent years, in the field of automobiles, material steel sheets have been promoted to have higher performance and lighter weight, and the use of high-strength hot-dip galvanized steel sheets or electro-galvanized steel sheets having antirust properties is increasing. However, in many cases, as the strength of the steel sheet increases, its press formability decreases, making it difficult to obtain a complicated part shape. For example, in automobile applications, parts that require rust resistance and are difficult to form include underbody members such as chassis and structural members for frames such as B-pillars.
このような背景から、近年では冷間プレスに比べてプレス成形性と高強度化の両立が容易である熱間プレスによる自動車用部品の製造が急速に増加しており、熱間プレス技術の諸課題を解決する様々な技術が開示されている。 Against this background, in recent years, there has been a rapid increase in the production of automobile parts by hot pressing, which is easier to achieve both press formability and higher strength than cold pressing. Various techniques for solving the problems have been disclosed.
熱間プレス用めっき鋼板としては、例えば、めっき層の融点が高く腐食初期に赤錆を生じないZn-Niといった、Zn系めっきが存在しており、この鋼板を用いた種々の熱間プレス部材およびその製造方法が提案されている。 As a plated steel sheet for hot press, for example, there is a Zn-based plating such as Zn-Ni, which has a high melting point of the plating layer and does not cause red rust in the initial stage of corrosion. A manufacturing method thereof has been proposed.
例えば、特許文献1には、α-Fe(Zn、Ni)混晶と、Zn、NiおよびFeの金属間化合物と、Mnを含む層とを有する熱間プレス部材が開示されている。 For example, Patent Document 1 discloses a hot pressed member having an α-Fe (Zn, Ni) mixed crystal, an intermetallic compound of Zn, Ni and Fe, and a layer containing Mn.
また、特許文献2には、Ni拡散領域と、Zn-Ni合金のγ相に相当する金属間化合物層と、ZnO層とを有する熱間プレス部材が開示されている。特許文献1および特許文献2に開示される熱間プレス部材は、いずれもZn-Ni合金めっき鋼板を加熱して製造された熱間プレス部材であり、無塗装での耐食性や、リン酸亜鉛系化成処理を施した後に電着塗装を行った部材の塗装後耐食性にも優れることが記載されている。 Patent document 2 discloses a hot press member having a Ni diffusion region, an intermetallic compound layer corresponding to the γ phase of a Zn—Ni alloy, and a ZnO layer. The hot pressed members disclosed in Patent Document 1 and Patent Document 2 are both hot pressed members manufactured by heating a Zn—Ni alloy plated steel sheet, and have corrosion resistance without coating, zinc phosphate-based It is also described that the post-coating corrosion resistance of a member subjected to electrodeposition coating after chemical conversion treatment is excellent.
しかし自動車産業において、Zn系めっきは、Znを含まない他成分系めっきより、部材のスポット溶接時にLME(Liquid Metal Embrittlement:液体金属脆化)が起こり易いという欠点が存在する。特に熱間プレス部材用途でのZn系めっきは、熱間プレスと溶接の2度にわたり入熱を受けるため、冷延鋼板のZn系めっきよりも鋼中へのZnの拡散が進み、LMEに対してより不利となる。 However, in the automotive industry, Zn-based plating has the disadvantage that LME (Liquid Metal Embrittlement) is more likely to occur during spot welding of members than multi-component plating that does not contain Zn. In particular, Zn-based plating for hot pressed parts receives heat input twice during hot pressing and welding. more disadvantageous.
これら問題の対策として、Al-Si系めっきの使用が考えられるが、Al-Siめっきは腐食初期から赤錆を生じるため意匠性に劣るため、自動車車体使用時には赤錆抑制のための追加工程が必要となり、コスト・生産性の面で不利である。 As a countermeasure for these problems, the use of Al-Si plating can be considered. , is disadvantageous in terms of cost and productivity.
本発明は、上記課題に鑑みてなされたものであり、熱間プレス後の溶接時の耐LME性に優れ、且つ耐食性に優れる熱間プレス部材およびその製造方法を提供することを目的とする。また、上記熱間プレス部材およびその製造方法を実現するための熱間プレス用鋼板を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a hot pressed member having excellent LME resistance and excellent corrosion resistance during welding after hot pressing, and a method for manufacturing the same. Another object of the present invention is to provide a steel sheet for hot pressing for realizing the hot pressing member and the manufacturing method thereof.
本発明者らは、上記課題を達成するために、鋭意研究を行い、以下の知見を得た。
(1)耐LME性の良い熱間プレス部材を得るためには、熱間プレス用部材表面に、Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相を、所定の元素濃度、融点となる条件で形成させたうえで、Znの含有量を所定量で規定する事が有効である。金属間化合物相が高融点であり、さらに所定の金属間化合物相を付与することにより、酸化物層と鋼板の界面の凹凸を小さくすることができて、その結果、LMEによる亀裂の進展が抑制され、さらに、凹凸構造が少ないことに起因して応力集中が起こらず、LME発生の頻度も低下することができる。
(2)上記特性を持つ熱間プレス部材は、鋼板表面から近い順に、Cu、Ni及びZrの内1種または2種以上の元素と不可避的不純物を含み、所定の含有量となるプレめっき層を施したZn系めっき鋼板を用いることで得られる。
In order to achieve the above object, the present inventors have conducted intensive research and obtained the following findings.
(1) In order to obtain a hot press member having good LME resistance, an intermetallic compound phase containing one or more of Cu, Ni and Zr and Zn is formed on the surface of the hot press member. , it is effective to define the content of Zn at a predetermined amount after forming under the conditions of a predetermined element concentration and melting point. The intermetallic compound phase has a high melting point, and by further adding a predetermined intermetallic compound phase, it is possible to reduce the unevenness of the interface between the oxide layer and the steel sheet, and as a result, the propagation of cracks due to LME is suppressed. Furthermore, since the uneven structure is small, stress concentration does not occur, and the frequency of occurrence of LME can be reduced.
(2) The hot press member having the above characteristics contains one or more elements of Cu, Ni and Zr and unavoidable impurities in order from the steel sheet surface, and has a predetermined content Pre-plating layer. obtained by using a Zn-based plated steel sheet.
本発明は上記知見に基づくものであり、その特徴は以下の通りである。
[1]鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、
Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相と、Znを含む酸化物層と、を備える熱間プレス部材であって、
前記金属間化合物相中でCu、Ni及びZrの内1種または2種以上の元素の合計濃度が40~70質量%であり、前記金属間化合物相の融点が800℃以上であり、
前記金属間化合物相中に含まれるZn含有量と前記酸化物層に含まれるZn含有量との合計が10~120g/m2であることを特徴とする
熱間プレス部材。
[2]鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、
Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/m2であるプレめっき層と、
Zn含有量が10~120g/m2のZn系めっき層と、を備える鋼板を、
Ac3変態点~1000℃の温度範囲に加熱後熱間プレスすることを特徴とする
[1]に記載の熱間プレス部材の製造方法。
[3]鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、
Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/m2であるプレめっき層と、
Zn含有量が10~120g/m2のZn系めっき層と、を備えることを特徴とする
熱間プレス用鋼板。
The present invention is based on the above findings, and has the following features.
[1] For at least one surface of the steel plate, in order closer to the steel plate surface,
A hot press member comprising an intermetallic compound phase containing one or more elements selected from Cu, Ni, and Zr and Zn, and an oxide layer containing Zn,
The total concentration of one or more elements of Cu, Ni and Zr in the intermetallic compound phase is 40 to 70% by mass, and the intermetallic compound phase has a melting point of 800 ° C. or higher,
A hot press member, wherein the sum of the Zn content in the intermetallic compound phase and the Zn content in the oxide layer is 10 to 120 g/m 2 .
[2] For at least one surface of the steel plate, in order closer to the steel plate surface,
a pre-plating layer containing one or more elements selected from Cu, Ni, and Zr, and having a total content of the elements of 10 to 70 g/m 2 ;
A steel plate comprising a Zn-based plating layer having a Zn content of 10 to 120 g/m 2 ,
The method for producing a hot pressed member according to [1], wherein the hot pressing is performed after heating to a temperature range of Ac 3 transformation point to 1000°C.
[3] For at least one surface of the steel plate, in order closer to the steel plate surface,
a pre-plating layer containing one or more elements selected from Cu, Ni, and Zr, and having a total content of the elements of 10 to 70 g/m 2 ;
A steel sheet for hot pressing, comprising: a Zn-based plating layer having a Zn content of 10 to 120 g/m 2 .
本発明によれば、耐食性に優れ、かつ熱間プレス後の溶接時の耐LME性に優れる熱間プレス部材を得ることができ、産業上の貢献が極めて顕著である。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain a hot-pressed member having excellent corrosion resistance and excellent LME resistance during welding after hot-pressing.
以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の好適な一実施態様を示すものであり、以下の説明によって何ら限定されるものではない。また、鋼成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。下記で記載の熱間プレス用鋼板に対して、下記で記載の方法にて熱間プレスを行うことで、下記で記載の熱間プレス部材が得られるため、以下では、熱間プレス用鋼板、熱間プレス部材、熱間プレス部材の製造方法の順に説明する。 Embodiments of the present invention will be described below. The following description shows a preferred embodiment of the present invention, and the present invention is not limited by the following description. In addition, the unit of content of each element in the steel component composition is "% by mass", and hereinafter, unless otherwise specified, it is simply indicated by "%". By subjecting the steel plate for hot press described below to hot pressing by the method described below, the hot press member described below is obtained. The hot pressed member and the method for manufacturing the hot pressed member will be described in this order.
1)熱間プレス用鋼板
本発明の熱間プレス用鋼板とは、熱間プレス工程を経る前の鋼板であり、図1に示す断面を有しており、鋼板12の少なくとも一方の表面に対し、鋼板表面に近い順に、Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/m2であるプレめっき層14と、Zn含有量が10~120g/m2のZn系めっき層16と、を備えることを特徴とする熱間プレス用鋼板である。
1) Steel plate for hot press The steel plate for hot press of the present invention is a steel plate before undergoing a hot press process, having a cross section shown in FIG. , a
Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/m2であるプレめっき層
プレめっき層とは、熱間プレス前に、鋼板表面とZn系めっき層との間に施されためっき層である。成分は主にCu、Ni及びZrの内1種または2種以上の元素であるが、他の共存元素や不可避的な不純物を含んでもよい。このプレめっきは厚すぎるとコスト的に不利になるだけでなく、熱間プレス後、所望の金属間化合物相を得ることができなくなるため、前記元素の合計含有量は70g/m2以下とする。逆に薄すぎると熱間プレス時にZnの拡散を抑制する効果が低下し、LMEが発生しやすくなる。このため10g/m2以上とする。好ましくは30g/m2以上である。なお、ここで説明している前記元素の合計含有量とは、プレめっきの工程で付着された前記元素の合計量のことである。
A pre-plating layer containing one or more elements of Cu, Ni and Zr and having a total content of the elements of 10 to 70 g/m 2 and the Zn-based plating layer. The components are mainly one or more of Cu, Ni and Zr, but may contain other coexisting elements and unavoidable impurities. If this pre - plating is too thick, not only is it disadvantageous in terms of cost, but it also becomes impossible to obtain the desired intermetallic compound phase after hot pressing. . Conversely, if the thickness is too thin, the effect of suppressing the diffusion of Zn during hot pressing is reduced, and LME is likely to occur. For this reason, it should be 10 g/m 2 or more. It is preferably 30 g/m 2 or more. The total content of the elements described here means the total amount of the elements deposited in the pre-plating process.
Zn系めっき層のZn含有量が10~120g/m2
Zn系めっき層とは、プレめっきの上に形成するZnを主としためっき層である。鋼板表面に犠牲防食効果のあるZnを供給する事で、耐食性を向上させる働きがある。このZn系めっき層は薄すぎると耐食性が低下するため、Zn系めっき層のZn含有量は10g/m2以上とする。逆にZnめっき層が厚すぎると表面平滑性やプレス時の成形性が低下する。このためZn系めっき層のZn含有量は120g/m2以下とする。
Znとは、鋼板上に施されるめっきの主成分として供給される元素である。めっき方法は溶融めっき、電気めっき、無電解めっき、スパッタリングが挙げられ、またEGやGIといった純Znめっきの他、Zn-Ni、Zn-Al、Zn-Al-Mg、Zn-Sn、GAのようなZn合金としてめっきされてもよい。なお、ここで説明しているZn含有量とは、めっきの工程で付着されたZn量のことである。
The Zn content of the Zn-based plating layer is 10 to 120 g/m 2
The Zn-based plating layer is a plating layer mainly composed of Zn formed on the pre-plating. By supplying Zn, which has a sacrificial anti-corrosion effect, to the surface of the steel sheet, it works to improve corrosion resistance. If the Zn-based plating layer is too thin, the corrosion resistance is lowered, so the Zn content of the Zn-based plating layer is set to 10 g/m 2 or more. Conversely, if the Zn-plated layer is too thick, the surface smoothness and formability during pressing deteriorate. Therefore, the Zn content of the Zn-based plating layer is set to 120 g/m 2 or less.
Zn is an element supplied as a main component of plating applied on a steel sheet. Plating methods include hot dip plating, electroplating, electroless plating, and sputtering. In addition to pure Zn plating such as EG and GI, Zn—Ni, Zn—Al, Zn—Al—Mg, Zn—Sn, GA, etc. may be plated as a Zn alloy. The Zn content described here means the amount of Zn adhered in the plating process.
なお、熱間プレス用鋼板としては、熱間プレス後引張強さがTS1.5GPa以上の熱間プレス部材を得るために、例えば、質量%で、C:0.20%~0.35%、Si:0.1%~0.5%、Mn:1.0%~3.0%、P:0.02%以下、S:0.01%以下、Al:0.1%以下、N:0.01%以下、Nb:0.05%以下、Ti:0.05%以下、B:0.0002%~0.005%、Cr:0.1%~0.3%、Sb:0.003%~0.03%を含有し、残部が不可避的不純物からなる成分組成を有する鋼板を用いることができる。 In addition, as a steel sheet for hot press, in order to obtain a hot press member having a tensile strength after hot press of 1.5 GPa or more, for example, C: 0.20% to 0.35% in terms of mass%, Si: 0.1% to 0.5%, Mn: 1.0% to 3.0%, P: 0.02% or less, S: 0.01% or less, Al: 0.1% or less, N: 0.01% or less, Nb: 0.05% or less, Ti: 0.05% or less, B: 0.0002% to 0.005%, Cr: 0.1% to 0.3%, Sb: 0.05% 003% to 0.03%, the balance being unavoidable impurities.
熱間プレス用鋼板の製造方法は、以下の通りである。例えば、鋼素材を1150℃で加熱した後、熱間圧延を行い、前記熱間圧延の終了温度を840℃とし、650℃で巻取り後、酸洗し、冷間圧延を行い、30g/m2のCuのプレめっきと上述した電気めっきのZnめっきを行って製造している。 The manufacturing method of the steel sheet for hot press is as follows. For example, after heating the steel material at 1150 ° C., hot rolling is performed, the end temperature of the hot rolling is set to 840 ° C., coiling is performed at 650 ° C., pickling is performed, cold rolling is performed, and 30 g / m 2 and the Zn plating of the electroplating described above.
2)熱間プレス部材
本発明の熱間プレス部材は、図2に示す断面を有しており、鋼板12の少なくとも一方の表面に対し、鋼板表面に近い順に、Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相22と、Znを含む酸化物層24と、を備える熱間プレス部材であって、前記金属間化合物相中でCu、Ni及びZrの内1種または2種以上の元素の合計濃度が40~70質量%であり、前記金属化合物相の融点が800℃以上であり、前記金属間化合物相中に含まれるZn含有量と前記酸化物層に含まれるZn含有量との合計が10~120g/m2であることを特徴とする熱間プレス部材である。
2) Hot pressed member The hot pressed member of the present invention has a cross section shown in FIG. A hot press member comprising an
鋼板表面に近い順に、Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相と、Znを含む酸化物層と、を鋼板の少なくとも一方の表面に設ける必要があるが、鋼板の両面にこれらを設けてもよい。以下では、鋼板の一方の表面に設けたものについて述べる。 It is necessary to provide an intermetallic compound phase containing one or more elements of Cu, Ni and Zr and Zn, and an oxide layer containing Zn on at least one surface of the steel sheet in order from the surface of the steel sheet. However, they may be provided on both sides of the steel plate. Below, what was provided in one surface of a steel plate is described.
Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相中の、Cu、Ni及びZrの内1種または2種以上の元素の合計濃度が40~70質量%
金属間化合物相とは、プレめっきとして供給されるCu、Ni及びZrの内1種または2種以上の元素と、めっきとして供給されるZnが、熱間プレスにより金属間化合物を形成した相である。鋼板と酸化物層の間に形成され、主にめっき成分であるZnを保持し鋼板の耐食性向上に寄与する。金属間化合物相は単一組成である必要はなく、複数の金属間化合物相がラメラ状又は海島状の様に混ざり合っていてよい。また固溶体相や金属単体の相を含んでもよい。主な金属間化合物相の組成としては、CuZn、NiZn、ZrZn等が挙げられる。
The total concentration of one or more elements of Cu, Ni and Zr in the intermetallic compound phase containing one or more elements of Cu, Ni and Zr and Zn is 40 to 70% by mass.
The intermetallic compound phase is a phase in which one or more of Cu, Ni and Zr supplied as pre-plating and Zn supplied as plating form an intermetallic compound by hot pressing. be. Formed between the steel sheet and the oxide layer, it mainly retains Zn, which is a plating component, and contributes to improving the corrosion resistance of the steel sheet. The intermetallic compound phase does not need to have a single composition, and multiple intermetallic compound phases may be mixed in a lamellar or sea-island state. It may also contain a solid solution phase or a phase of an elemental metal. Compositions of main intermetallic compound phases include CuZn, NiZn, ZrZn, and the like.
鋼板の表面に通常のZn系めっき層を付与したものでは、熱間プレス時に鋼板へのZnの拡散や、融点の低いZnが液化してFe粒界に侵入するという現象が生じる。これにより熱間プレス部材のめっきと鋼板の界面は凹凸状の構造で、且つZnリッチな粒界を持つFe拡散相が形成される。この部材が溶接されると、入熱によりFe拡散相でZnがより深く侵入する事となり、Znを伝って発生するLMEの亀裂深さが深くなるほか、電極コンタクト時またはオープン時に生じる応力がFe拡散相の凹部に集中する事で、LMEの頻度も増加する。しかしながら本発明は、熱間プレス用鋼板上にCu、Ni及びZrの内1種または2種以上の元素を含むプレめっき層と、Zn系めっき層とを所定量形成後、Ac3変態点~1000℃の温度範囲で熱間プレスする事で達成できるものである。 When a steel sheet is coated with a normal Zn-based plating layer, Zn diffuses into the steel sheet during hot pressing, and Zn, which has a low melting point, liquefies and enters Fe grain boundaries. As a result, the interface between the plating of the hot pressed member and the steel sheet has an uneven structure, and an Fe diffusion phase having Zn-rich grain boundaries is formed. When this member is welded, Zn penetrates deeper into the Fe diffusion phase due to heat input, and the crack depth of the LME that occurs along the Zn increases. By concentrating in the depressions of the diffusion phase, the frequency of LME also increases. However, in the present invention, after forming a predetermined amount of a pre-plating layer containing one or more elements of Cu, Ni and Zr and a Zn-based plating layer on a steel sheet for hot press, the Ac 3 transformation point ~ This can be achieved by hot pressing in the temperature range of 1000°C.
金属間化合物相にCu、Ni、Zrを含有させる理由として、何れの元素も熱間プレス後の耐LME性を向上させる働きを有する元素であることが挙げられる。プレめっきの構成成分であるCu、Ni及びZrは、鋼板の主成分であるFeに対する固溶量が少なく、また単体での融点が高いため、熱間プレス時にある程度高温まで層構造を維持していると考えられる。するとプレめっきの層構造がZnに対し物理的な障壁として作用するためZnの鋼板側への拡散を抑制する事となり、Znを多量に含み且つ凹凸を有するようなFe拡散相が形成され難くなる。その結果、この部材を溶接しても、Fe拡散相やその粒界に存在するZnが少ないためLMEによる亀裂の進展が抑制されるほか、凹凸構造が少ないため応力集中が起こらず、LME発生の頻度も低下すると考えられる。更にZnとCu、Ni及びZrが熱間プレス途中に金属間化合物を形成した場合においても、化合物の融点を800℃以上で規定する事により、プレめっき無しよりも溶接時にめっき部が液化するまでの時間を長く取る事ができ、結果Znの拡散に伴うLMEの進展を抑制できると考える。なお、Cu、Ni及びZrの中で最も上記の効果が優れるものは、Zrで、Ni、Cuの順に優れる。 The reason why Cu, Ni, and Zr are included in the intermetallic compound phase is that each element has a function of improving LME resistance after hot pressing. Cu, Ni, and Zr, which are the constituent components of pre-plating, have a small amount of solid solution in Fe, which is the main component of the steel sheet, and have a high melting point by themselves. It is thought that there are Then, since the layer structure of the pre-plating acts as a physical barrier against Zn, the diffusion of Zn to the steel sheet side is suppressed, making it difficult to form an Fe diffused phase containing a large amount of Zn and having irregularities. . As a result, even if this member is welded, the amount of Zn present in the Fe diffusion phase and its grain boundaries is small, so the propagation of cracks due to LME is suppressed. The frequency is also expected to decrease. Furthermore, even if Zn and Cu, Ni and Zr form an intermetallic compound during hot pressing, by specifying the melting point of the compound at 800 ° C or more, can be taken longer, and as a result, it is thought that the progress of LME accompanying the diffusion of Zn can be suppressed. Among Cu, Ni and Zr, Zr is the most excellent in the above effect, followed by Ni and Cu in that order.
Cu、Ni及びZrの内1種または2種以上の元素の合計濃度は、40~70質量%である。ここで、合計濃度とは、金属間化合物中のCu、Ni及びZrの質量%濃度を合計した値である。合計濃度が70%を超えると金属化合物中のZnの割合が減少し、耐食性が低下するため、合計濃度は70%以下とする。合計濃度は、好ましくは60%以下とする。一方、合計濃度が40%未満では、熱間プレス時のLME抑制効果が低下するため、合計濃度は40%以上とする。合計濃度は、好ましくは50%以上とする。 The total concentration of one or more of Cu, Ni and Zr is 40-70% by mass. Here, the total concentration is the sum of the mass % concentrations of Cu, Ni and Zr in the intermetallic compound. If the total concentration exceeds 70%, the ratio of Zn in the metal compound is reduced and the corrosion resistance is lowered, so the total concentration is made 70% or less. The total concentration is preferably 60% or less. On the other hand, if the total concentration is less than 40%, the effect of suppressing LME during hot pressing is reduced, so the total concentration is made 40% or more. The total concentration is preferably 50% or more.
金属間化合物相の融点が800℃以上
融点とは、金属間化合物が融解を開始する際の温度である。融点が低い場合はZnが鋼板側へ拡散しやすくなり、LMEが発生し易くなる。金属間化合物相の融点が800℃未満では、Znの鋼板側への拡散を抑制することが難しい。このため金属間化合物相の融点が800℃以上とする。
The melting point of the intermetallic compound phase is 800° C. or higher The melting point is the temperature at which the intermetallic compound starts to melt. When the melting point is low, Zn tends to diffuse toward the steel sheet, and LME tends to occur. If the melting point of the intermetallic compound phase is less than 800°C, it is difficult to suppress the diffusion of Zn to the steel sheet side. Therefore, the melting point of the intermetallic compound phase is set to 800° C. or higher.
金属間化合物相中に含まれるZnと酸化物層に含まれるZnの合計Zn含有量が10~120g/m2
合計Zn含有量とは、熱間プレス前の鋼板上にめっきとして付与されたZnの総量である。熱間プレスを行っても、Znは蒸発することはないため、熱間プレス前の鋼板上にめっきとして付与されたZnの総量は、そのまま、熱間プレス部材における、金属間化合物相中に含まれるZnと酸化物層に含まれるZnの合計Zn含有量に相当する。合計Zn含有量が10g/m2未満では、耐食性が低下するため、合計Zn含有量が10g/m2以上とする。合計Zn含有量が120g/m2を超えるとコスト的に不利になるため、合計Zn含有量が120g/m2以下とする。なお、Zn含有量は化学溶解した溶液のICP発光分析にて測定する。
酸化物層とは、めっきとして供給されるZnが、熱間プレス時の酸素との反応により、酸化物を形成した層である。主成分はZnOであるが、酸化物の価数が変化する、又はZn以外の元素を含むなどしてもよい。
The total Zn content of Zn contained in the intermetallic compound phase and Zn contained in the oxide layer is 10 to 120 g/m 2
The total Zn content is the total amount of Zn applied as plating on the steel sheet before hot pressing. Since Zn does not evaporate even when hot pressing is performed, the total amount of Zn applied as plating on the steel sheet before hot pressing is contained in the intermetallic compound phase of the hot pressed member as it is. It corresponds to the total Zn content of the Zn contained in the oxide layer and the Zn contained in the oxide layer. If the total Zn content is less than 10 g/m 2 , the corrosion resistance deteriorates, so the total Zn content is made 10 g/m 2 or more. If the total Zn content exceeds 120 g/m 2 , the cost becomes disadvantageous, so the total Zn content is made 120 g/m 2 or less. The Zn content is measured by ICP emission spectrometry of a chemically dissolved solution.
The oxide layer is a layer in which Zn, which is supplied as plating, forms an oxide through reaction with oxygen during hot pressing. Although the main component is ZnO, the valence of the oxide may change, or an element other than Zn may be included.
熱間プレス部材とは、熱間プレスを施された鋼板である。熱間プレス条件は後述の条件を満たして入れば、任意に設定することができる。
3)熱間プレス部材の製造方法
本発明の熱間プレス部材の製造方法は、鋼板の少なくとも一方の表面に対し、鋼板表面に近い順に、Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/m2であるプレめっき層と、Zn含有量が10~120g/m2のZn系めっき層と、を備える鋼板を、Ac3変態点~1000℃の温度範囲に加熱後熱間プレスするものである。
A hot pressed member is a steel plate subjected to hot pressing. The hot press conditions can be arbitrarily set as long as the conditions described later are satisfied.
3) Method for manufacturing hot pressed member The method for manufacturing a hot pressed member according to the present invention includes adding one or more of Cu, Ni, and Zr to at least one surface of a steel plate in order of proximity to the steel plate surface. A steel sheet comprising a pre - plating layer containing elements and having a total content of the elements of 10 to 70 g/m 2 and a Zn - based coating layer having a Zn content of 10 to 120 g/m After heating to a temperature range of up to 1000° C., hot pressing is performed.
Ac3変態点~1000℃の温度範囲に加熱後熱間プレスする
加熱温度がAc3変態点より低いと、熱間プレス部材として必要な強度を得ることができない場合があるため、加熱温度がAc3変態点以上とすることが好ましい。逆に加熱温度が1000℃を超えると、金属間化合物相が消失してしまう場合があるため、加熱温度が1000℃以下とすることが好ましい。なお、加熱時間はコストの観点から、950℃以下が好ましく、加熱後の冷却方法は金型冷却や油冷等の方法で実施することができる。冷却速度は、400℃までは15℃/秒以上で行うことが好ましい。
After heating to a temperature range of Ac 3 transformation point to 1000 ° C. , hot pressing is performed. It is preferable to set it as 3 or more transformation points. Conversely, if the heating temperature exceeds 1000° C., the intermetallic compound phase may disappear, so the heating temperature is preferably 1000° C. or lower. In addition, the heating time is preferably 950° C. or less from the viewpoint of cost, and the cooling method after heating can be carried out by a method such as mold cooling or oil cooling. The cooling rate is preferably 15°C/second or more up to 400°C.
以下、本発明を実施例に基づいて具体的に説明する。下記の実施例は本発明を限定するものではなく、要旨構成の範囲内で適宜変更することは、本発明の範囲に含まれるものとする。 EXAMPLES The present invention will be specifically described below based on examples. The following examples are not intended to limit the present invention, and appropriate modifications within the scope of the gist and configuration are included in the scope of the present invention.
下地鋼板として、質量%で、C:0.33%、Si:0.25%、Mn:1.9%、P:0.005%、S:0.001%、Al:0.03%、N:0.004%、Nb:0.02%、Ti:0.02%、B:0.002%、Cr:0.2%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、板厚1.4mmの冷延鋼板を用いた(Ac3=730℃)。なお、本発明において、Ac3点は、熱力学計算ソフトThermo-Calcで求めた。 As a substrate steel plate, in mass%, C: 0.33%, Si: 0.25%, Mn: 1.9%, P: 0.005%, S: 0.001%, Al: 0.03%, N: 0.004%, Nb: 0.02%, Ti: 0.02%, B: 0.002%, Cr: 0.2%, Sb: 0.008%, the balance being Fe and unavoidable A cold-rolled steel sheet having a thickness of 1.4 mm and having a chemical composition consisting of organic impurities was used (Ac 3 =730° C.). Incidentally, in the present invention, the Ac 3 point was determined by thermodynamic calculation software Thermo-Calc.
上記の下地鋼板に、電気めっきによりCu、Ni及びZrプレめっき層のいずれかを形成した後、純Znめっき、Zn-Niめっき、GAめっき、Zn-Alめっきのいずれかを形成した。めっきの形成は純Zn、Zn-Niめっきを電気めっきで、GAめっき、Zn-Alめっきを溶融めっきで行った。めっきの含有量は化学溶解した溶液をICP発光分析により定量することで求めた。ICP発光分析とは、濃既知濃度のCu、Ni、Zr、Znを含む溶液を測定し、濃度と発光強度の相関からえられた検量線により含有量を算出した。 After forming any one of Cu, Ni and Zr pre-plating layers on the base steel sheet by electroplating, any one of pure Zn plating, Zn--Ni plating, GA plating and Zn--Al plating was formed. The plating was formed by electroplating for pure Zn and Zn--Ni plating, and by hot-dip plating for GA plating and Zn--Al plating. The plating content was obtained by quantifying the chemically dissolved solution by ICP emission analysis. In the ICP emission analysis, a solution containing Cu, Ni, Zr, and Zn at known concentrations was measured, and the content was calculated from the calibration curve obtained from the correlation between concentration and emission intensity.
電気めっきによるめっき及びプレめっきは流動槽を用いて実施した。プレめっき時の浴条件は、浴組成が硫酸銅5水和物、硫酸ニッケル6水和物、硫酸ジルコニウム4水和物の何れか1種を225g/L及び硫酸50g/L、温度が40℃、流速が1m/s、電流密度が10A/dm2とした。まためっき時の浴条件は、純Znめっきでは浴組成が硫酸亜鉛7水和物440g/L、pHが1.9、温度が50℃、流速が1m/s、電流密度が25A/dm2とし、Zn-Niめっきでは浴組成が硫酸亜鉛7水和物1150g/L、硫酸ニッケル6水和物2450g/L、及び硫酸ナトリウム530g/Lとし、pHが1.5、温度が50℃、流速が1m/s、電流密度が50A/dm2とした。 Plating by electroplating and pre-plating were performed using a fluid bath. The bath conditions for pre-plating are as follows: bath composition: 225 g/L of any one of copper sulfate pentahydrate, nickel sulfate hexahydrate, and zirconium sulfate tetrahydrate; sulfuric acid 50 g/L; temperature: 40°C. , the flow velocity was 1 m/s, and the current density was 10 A/dm 2 . The bath conditions for plating are as follows: for pure Zn plating, the bath composition is 440 g/L of zinc sulfate heptahydrate, the pH is 1.9, the temperature is 50°C, the flow rate is 1 m/s, and the current density is 25 A/ dm2 . , In Zn-Ni plating, the bath composition is 1150 g/L of zinc sulfate heptahydrate, 2450 g/L of nickel sulfate hexahydrate, and 530 g/L of sodium sulfate, the pH is 1.5, the temperature is 50 ° C., and the flow rate is 1 m/s and a current density of 50 A/dm 2 .
溶融めっきによるめっきはラボスケールの溶融めっき槽を用いて実施した。上記の条件でプレめっきを施した後、GAめっきでは、浴組成が亜鉛99.87重量%、及びアルミニウム0.13重量%、浴温が460℃でめっきを行い、その後510℃で合金化処理を行った。またZn-Alめっきでは、浴組成が亜鉛95.0重量%、アルミニウム4.5重量%及びマグネシウム0.5重量%、浴温が450℃として、めっきを行った。 Plating by hot-dip plating was performed using a lab-scale hot-dip plating tank. After pre-plating under the above conditions, in GA plating, plating is performed at a bath composition of 99.87% by weight of zinc and 0.13% by weight of aluminum at a bath temperature of 460 ° C., and then alloying treatment at 510 ° C. did In the Zn--Al plating, plating was performed with a bath composition of 95.0% by weight of zinc, 4.5% by weight of aluminum and 0.5% by weight of magnesium at a bath temperature of 450.degree.
めっき後、鋼板をラボスケールのマッフル炉で2分30秒の時間でMAX900℃になるまで加熱し、金型で300℃まで冷却し、その後常温まで空冷する事で熱間プレス部材を模擬したサンプルを作製した。表1-1および表1-2にサンプルの水準を示す。サンプルの金属間化合物及び酸化物組成はXRDで同定し、付着量及び金属間化合物相中のZn以外の成分の割合はICP発光分析により確認した。XRDの測定は、サンプルを30mm×30mmに剪断後、CuKα線またはMoKα線により得られたスペクトルを分析する事で実施した。また金属化合物相の融点は熱力学計算ソフトThermo-Calcにより求めた。 After plating, the steel sheet is heated in a laboratory-scale muffle furnace for 2 minutes and 30 seconds to a maximum of 900°C, cooled in a mold to 300°C, and then air-cooled to room temperature to simulate a hot press member. was made. Tables 1-1 and 1-2 show sample levels. The intermetallic compound and oxide composition of the sample were identified by XRD, and the adhesion amount and the ratio of components other than Zn in the intermetallic compound phase were confirmed by ICP emission spectrometry. XRD measurements were performed by shearing the sample to 30 mm×30 mm and analyzing the spectrum obtained by CuKα or MoKα radiation. Also, the melting point of the metal compound phase was determined by thermodynamic calculation software Thermo-Calc.
<溶接時のLME評価>
得られたサンプルを100mm×35mmに剪断後、同一サイズの980GA材と重ね、打角5度、加圧力3.5kN、6.0kA、初期加圧時間600ms、通電時間21cyc、ホールド時間1cycの条件でスポット溶接を実施した。その後ナゲット近傍の断面を研磨し、光学顕微鏡を用いて×100の倍率でナゲット近傍を観察した。評価は発生した各LMEの最大長さを測定して以下の基準で判定を行い、◎又は〇を合格とした。評価結果を表1-1および表1-2に示す。
◎:LME未発生
〇:LME長さ<5μm
×:5μm≦LME長さ
<LME evaluation during welding>
After shearing the obtained sample to 100 mm × 35 mm, it is overlapped with 980 GA material of the same size, the hitting angle is 5 degrees, the pressure is 3.5 kN, 6.0 kA, the initial pressure time is 600 ms, the energization time is 21 cyc, and the hold time is 1 cyc. spot welding was performed. After that, the cross section in the vicinity of the nugget was polished, and the vicinity of the nugget was observed at a magnification of ×100 using an optical microscope. For evaluation, the maximum length of each LME generated was measured and judged according to the following criteria. Evaluation results are shown in Tables 1-1 and 1-2.
◎: LME not generated ○: LME length < 5 μm
×: 5 µm ≤ LME length
<塗装後耐食性>
得られたサンプルを100mm×100mmに剪断後、ジルコニウム系化成処理および電着塗装を施した。ジルコニウム系化成処理は、日本パーカライジング社製PLM2100を用いて標準条件で行った。また電着塗装は関西ペイント社製GT100Vを用いて塗装膜厚が10μmとなるように電着後、焼付けを170℃で20分間保持して行った。次いで、ジルコニウム系化成処理および電着塗装を施したサンプルにクロスカットを付与した後、腐食試験(SAE-J2334)に供し、30サイクル後の腐食状況の評価を行った。
<Corrosion resistance after painting>
After shearing the obtained sample to 100 mm x 100 mm, it was subjected to zirconium-based chemical conversion treatment and electrodeposition coating. The zirconium chemical conversion treatment was performed under standard conditions using PLM2100 manufactured by Nihon Parkerizing Co., Ltd. Electrodeposition coating was carried out by using GT100V manufactured by Kansai Paint Co., Ltd. so that the coating film thickness was 10 μm, followed by baking at 170° C. for 20 minutes. Next, the samples subjected to the zirconium-based chemical conversion treatment and the electrodeposition coating were cross-cut, subjected to a corrosion test (SAE-J2334), and the state of corrosion after 30 cycles was evaluated.
評価はクロスカットからの片側最大膨れ幅を測定して以下の基準で判定を行い、◎又は〇を合格とした。評価結果を表1-1および表1-2に示す。
◎:片側最大膨れ幅<2.0mm
〇:2.0mm≦片側最大膨れ幅<4.0mm
×:4.0mm≦片側最大膨れ幅
Evaluation was performed by measuring the maximum bulging width on one side from the cross-cut and making judgments according to the following criteria. Evaluation results are shown in Tables 1-1 and 1-2.
◎: Maximum swelling width on one side <2.0 mm
○: 2.0 mm ≤ one side maximum swelling width < 4.0 mm
×: 4.0 mm ≤ maximum swelling width on one side
表1-1および表1-2の結果から、本発明の熱間プレス部材は、耐食性に優れ、かつ耐LME性に優れる。また、本発明の熱間プレス用鋼板に熱間プレス用部材の製造方法を適用することにより、塗装後耐食性を担保しつつ耐LME性に優れる本発明の熱間プレス部材を得ることができる。 From the results in Tables 1-1 and 1-2, the hot pressed member of the present invention has excellent corrosion resistance and excellent LME resistance. Further, by applying the method for manufacturing a hot press member to the steel plate for hot press of the present invention, it is possible to obtain the hot press member of the present invention that is excellent in LME resistance while ensuring post-coating corrosion resistance.
10 熱間プレス用鋼板
12 鋼板
14 プレめっき層
16 Zn系めっき層
20 熱間プレス部材
22 金属間化合物相
24 酸化物層
10 Steel plate for hot pressing 12
Claims (3)
Cu、Ni及びZrの内1種または2種以上の元素とZnを含む金属間化合物相と、Znを含む酸化物層と、を備える熱間プレス部材であって、
前記金属間化合物相中でCu、Ni及びZrの内1種または2種以上の元素の合計濃度が40~70質量%であり、前記金属間化合物相の融点が800℃以上であり、
前記金属間化合物相中に含まれるZn含有量と前記酸化物層に含まれるZn含有量との合計が10~120g/m2であることを特徴とする
熱間プレス部材。 For at least one surface of the steel plate, in order close to the steel plate surface,
A hot press member comprising an intermetallic compound phase containing one or more elements selected from Cu, Ni, and Zr and Zn, and an oxide layer containing Zn,
The total concentration of one or more elements of Cu, Ni and Zr in the intermetallic compound phase is 40 to 70% by mass, and the intermetallic compound phase has a melting point of 800 ° C. or higher,
A hot press member, wherein the sum of the Zn content in the intermetallic compound phase and the Zn content in the oxide layer is 10 to 120 g/m 2 .
Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/m2であるプレめっき層と、
Zn含有量が10~120g/m2のZn系めっき層と、を備える鋼板を、
Ac3変態点~1000℃の温度範囲に加熱後熱間プレスすることを特徴とする
請求項1に記載の熱間プレス部材の製造方法。 For at least one surface of the steel plate, in order close to the steel plate surface,
a pre-plating layer containing one or more elements selected from Cu, Ni, and Zr, and having a total content of the elements of 10 to 70 g/m 2 ;
A steel plate comprising a Zn-based plating layer having a Zn content of 10 to 120 g/m 2 ,
2. The method for producing a hot press member according to claim 1, wherein the hot pressing is performed after heating to a temperature range of Ac 3 transformation point to 1000° C.
Cu、Ni及びZrの内1種または2種以上の元素を含み、前記元素の合計含有量が10~70g/m2であるプレめっき層と、
Zn含有量が10~120g/m2のZn系めっき層と、を備えることを特徴とする
熱間プレス用鋼板。 For at least one surface of the steel plate, in order close to the steel plate surface,
a pre-plating layer containing one or more elements selected from Cu, Ni, and Zr, and having a total content of the elements of 10 to 70 g/m 2 ;
A steel sheet for hot pressing, comprising: a Zn-based plating layer having a Zn content of 10 to 120 g/m 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021101402A JP7537376B2 (en) | 2021-06-18 | 2021-06-18 | Hot-pressed member, its manufacturing method, and hot-pressed steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021101402A JP7537376B2 (en) | 2021-06-18 | 2021-06-18 | Hot-pressed member, its manufacturing method, and hot-pressed steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023000523A true JP2023000523A (en) | 2023-01-04 |
JP7537376B2 JP7537376B2 (en) | 2024-08-21 |
Family
ID=84687040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021101402A Active JP7537376B2 (en) | 2021-06-18 | 2021-06-18 | Hot-pressed member, its manufacturing method, and hot-pressed steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7537376B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015007266A (en) * | 2013-06-25 | 2015-01-15 | Jfeスチール株式会社 | Hot pressing steel sheet |
JP2015168881A (en) * | 2014-03-11 | 2015-09-28 | Jfeスチール株式会社 | Hot pressing steel sheet |
JP2016089274A (en) * | 2014-11-04 | 2016-05-23 | 株式会社神戸製鋼所 | Plating steel sheet for hot stamp |
JP2016539249A (en) * | 2013-09-13 | 2016-12-15 | ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag | Steel part with anticorrosion coating and method for producing the same |
-
2021
- 2021-06-18 JP JP2021101402A patent/JP7537376B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015007266A (en) * | 2013-06-25 | 2015-01-15 | Jfeスチール株式会社 | Hot pressing steel sheet |
JP2016539249A (en) * | 2013-09-13 | 2016-12-15 | ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag | Steel part with anticorrosion coating and method for producing the same |
JP2015168881A (en) * | 2014-03-11 | 2015-09-28 | Jfeスチール株式会社 | Hot pressing steel sheet |
JP2016089274A (en) * | 2014-11-04 | 2016-05-23 | 株式会社神戸製鋼所 | Plating steel sheet for hot stamp |
Also Published As
Publication number | Publication date |
---|---|
JP7537376B2 (en) | 2024-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2002309283B2 (en) | High-strength Alloyed Aluminum-system Plated Steel Sheet and High-strength Automotive Part Excellent in Heat Resistance and After-painting Corrosion Resistance | |
US9592772B2 (en) | Zn—Al—Mg based alloy hot-dip plated steel sheet, and method for producing the same | |
CN113557318A (en) | Coated steel sheet | |
CA2911442C (en) | Galvannealed steel sheet and manufacturing method thereof | |
KR20150041167A (en) | HOT-DIP Al-Zn COATED STEEL SHEET | |
EP4023790A1 (en) | Hot-stamped article | |
JP5640312B2 (en) | Zinc-based alloy-plated steel with excellent corrosion resistance and weldability and painted steel with excellent corrosion resistance | |
JP4555738B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP2012255204A (en) | Surface treated steel sheet excellent in corrosion resistance after coating, method for producing the same, and automobile part produced using the same | |
JP2017532442A (en) | Surface-finished steel plates and methods for producing them | |
JP7394921B2 (en) | Manufacturing method of coated steel plate | |
JP2004027263A (en) | Hot dip galvanized steel sheet having excellent surface appearance and method of producing the same | |
JP3843042B2 (en) | Aluminum-plated steel sheet with excellent resistance weldability and machined parts using it | |
JP2023000523A (en) | Hot press member, production method thereof, and steel plate for hot press | |
JP4022063B2 (en) | High-strength aluminum-plated steel sheet and high-strength automotive parts with excellent workability and corrosion resistance | |
JP2001355051A (en) | HOT DIP Zn-Sn PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE | |
JP5206114B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality | |
JP7173368B2 (en) | HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER | |
JP2004002931A (en) | Aluminum plated steel sheet having excellent resistance weldability and worked parts obtained by using the same | |
JP7301233B2 (en) | Aluminum-based alloy plated steel sheet and method for producing the same | |
KR102697682B1 (en) | Galvanized steel sheet for hot stamping | |
JP7485219B2 (en) | HOT PRESSED MEMBER, STEEL SHEET FOR HOT PRESSING, AND METHOD FOR MANUFACTURING THE SAME | |
JP6939825B2 (en) | Al-based galvanized steel sheet and its manufacturing method | |
JP7338606B2 (en) | HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER | |
JP6939824B2 (en) | Al-based galvanized steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240722 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7537376 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |