Nothing Special   »   [go: up one dir, main page]

JP7573577B2 - Resin molded body with a thickness of 1 mm or less - Google Patents

Resin molded body with a thickness of 1 mm or less Download PDF

Info

Publication number
JP7573577B2
JP7573577B2 JP2022142028A JP2022142028A JP7573577B2 JP 7573577 B2 JP7573577 B2 JP 7573577B2 JP 2022142028 A JP2022142028 A JP 2022142028A JP 2022142028 A JP2022142028 A JP 2022142028A JP 7573577 B2 JP7573577 B2 JP 7573577B2
Authority
JP
Japan
Prior art keywords
layer
fiber
mold
compound
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022142028A
Other languages
Japanese (ja)
Other versions
JP2022177086A (en
Inventor
好典 杉浦
尚幸 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2022142028A priority Critical patent/JP7573577B2/en
Publication of JP2022177086A publication Critical patent/JP2022177086A/en
Application granted granted Critical
Publication of JP7573577B2 publication Critical patent/JP7573577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、繊維強化樹脂複合成形体とその製造方法に関する。 The present invention relates to a fiber-reinforced resin composite molding and a method for manufacturing the same.

従来、繊維強化樹脂成形体は、高強度且つ高剛性であるという点から、スポーツ、レジャー、航空機などの幅広い産業分野で使用されている。
繊維強化樹脂成形体の製造方法として、補強繊維に熱硬化性樹脂を含浸したプリプレグや、シートモールディングコンパウンドなどを圧縮成形する方法が、多くの分野で採用されている。
2. Description of the Related Art Fiber-reinforced resin molded articles have been used in a wide range of industrial fields, such as sports, leisure, and aviation, due to their high strength and high rigidity.
2. Description of the Related Art As a method for producing fiber-reinforced resin moldings, methods of compression molding prepregs in which reinforcing fibers are impregnated with a thermosetting resin, sheet molding compounds, and the like, are adopted in many fields.

プリプレグは補強繊維として長繊維を用いるため、高強度・高剛性の成形体が得られる反面、複雑な形状に賦形し難い。それに対して、シートモールディングコンパウンドは、補強繊維として短い繊維を用いるため、成形品の強度はプリプレグより低くなるものの、成形時の流動性に優れ、リブやボスなどの複雑な形状にも賦形し易い。 Prepreg uses long fibers as reinforcing fibers, which allows for the production of molded products with high strength and rigidity, but it is difficult to mold them into complex shapes. In contrast, sheet molding compounds use short fibers as reinforcing fibers, which means that the strength of the molded products is lower than that of prepreg, but they have excellent fluidity during molding and can be easily molded into complex shapes such as ribs and bosses.

また、プリプレグとシートモールディングコンパウンドの双方の利点を取り入れて剛性を維持しつつ、複雑な形状な賦形を可能にするため、プリプレグとシートモールディングコンパウンドを積層して圧縮成形することが提案されている(特許文献1)。 In addition, in order to incorporate the advantages of both prepregs and sheet molding compounds, while maintaining rigidity, and enabling the creation of complex shapes, it has been proposed to laminate prepregs and sheet molding compounds and perform compression molding (Patent Document 1).

特開2009-083441号公報JP 2009-083441 A

しかし、プリプレグとシートモールディングコンパウンドを積層して圧縮成形した複合成形体は、シートモールディングコンパウンドから形成された層の厚みを、圧縮成形前のシートモールディングコンパウンドの厚みに対して70%程度にしかできないため、成形品全体の厚みを薄くすることができず、剛性を有し、複雑形状に賦形可能な薄肉な成形体を得ることができなかった。 However, in the case of a composite molded product made by laminating prepregs and sheet molding compounds and compressing them, the thickness of the layer formed from the sheet molding compound can only be about 70% of the thickness of the sheet molding compound before compression molding, so the overall thickness of the molded product cannot be made thin, and it has not been possible to obtain a thin-walled molded product that is rigid and can be molded into complex shapes.

本発明は、前記の点に鑑みなされたものであり、剛性を有し、複雑形状及び薄肉に賦形可能な繊維強化樹脂複合成形体と、その製造方法の提供を目的とする。 The present invention has been made in consideration of the above points, and aims to provide a fiber-reinforced resin composite molding that has rigidity and can be formed into complex shapes and thin walls, and a manufacturing method thereof.

第1の発明の態様は、剛性層用繊維強化樹脂材から形成された剛性層と、前記剛性層用繊維強化樹脂材に含まれる繊維よりも短い繊維と熱硬化性樹脂とよりなる賦形層用コンパウンドから、前記剛性層の少なくとも一面に形成された賦形層と、前記賦形層の表面に付着した液状樹脂が硬化した樹脂と、よりなり、前記剛性層用繊維強化樹脂材と前記賦形層用コンパウンドが、積層状態で前記液状樹脂と共に加熱圧縮硬化したものであることを特徴とする繊維強化樹脂複合成形体に係る。 A first aspect of the invention relates to a fiber-reinforced resin composite molding comprising a rigid layer formed from a fiber-reinforced resin material for the rigid layer, a mold layer formed on at least one side of the rigid layer from a compound for the mold layer comprising fibers shorter than the fibers contained in the fiber-reinforced resin material for the rigid layer and a thermosetting resin, and a resin formed by hardening liquid resin adhered to the surface of the mold layer, wherein the fiber-reinforced resin material for the rigid layer and the compound for the mold layer are heated, compressed, and hardened together with the liquid resin in a laminated state.

第2の発明の態様は、第1の発明の態様において、前記剛性層用繊維強化樹脂材はプリプレグであり、前記賦形層用コンパウンドはシートモールディングコンパウンドであり、前記液状樹脂は熱硬化性樹脂であることを特徴する。 A second aspect of the invention is characterized in that, in the first aspect of the invention , the fiber-reinforced resin material for the rigid layer is a prepreg, the compound for the shape-imparting layer is a sheet molding compound, and the liquid resin is a thermosetting resin.

第3の発明の態様は、剛性層用繊維強化樹脂材から形成された剛性層と、前記剛性層用繊維強化樹脂材に含まれる繊維よりも短い繊維と熱硬化性樹脂とよりなる賦形層用コンパウンドから、前記剛性層の少なくとも一面に形成された賦形層と、前記賦形層の表面に付着した液状樹脂が硬化した樹脂とよりなる繊維強化樹脂複合成形体の製造方法であって、前記賦形層用コンパウンドの表面に液状樹脂を塗布し、または該賦形層用コンパウンドの表面を押圧することになる金型の型面に液状樹脂を塗布し、前記剛性層用繊維強化樹脂材と前記賦形層用コンパウンドを、積層状態で前記液状樹脂と共に前記金型で加熱圧縮し、硬化させることを特徴とする。 A third aspect of the invention is a method for producing a fiber-reinforced resin composite molding comprising a rigid layer formed from a fiber-reinforced resin material for a rigid layer, a mold layer formed on at least one side of the rigid layer from a compound for a mold layer comprising fibers shorter than the fibers contained in the fiber-reinforced resin material for the rigid layer and a thermosetting resin, and a resin formed by hardening the liquid resin adhering to the surface of the mold layer, characterized in that a liquid resin is applied to the surface of the compound for the mold layer, or a liquid resin is applied to a mold surface of a mold that will press the surface of the compound for the mold layer, and the fiber-reinforced resin material for the rigid layer and the compound for the mold layer are heated and compressed in the mold together with the liquid resin in a stacked state, and hardened.

第4の発明の態様は、第3の発明の態様において、前記剛性層用繊維強化樹脂材はプリプレグであり、前記賦形層用コンパウンドはシートモールディングコンパウンドであり、前記液状樹脂は熱硬化性樹脂であることを特徴する。
A fourth aspect of the invention is characterized in that, in the third aspect of the invention , the fiber-reinforced resin material for the rigid layer is a prepreg, the compound for the shape-imparting layer is a sheet molding compound, and the liquid resin is a thermosetting resin.

本発明によれば、繊維強化樹脂複合成形体は、剛性層用繊維強化樹脂材と賦形層用コンパウンドと液状樹脂が、積層状態で液状樹脂と共に加熱圧縮硬化したものであるため、繊維強化樹脂複合成形体を製造する際の金型による加熱圧縮時に、液状樹脂が、賦形層用コンパウンドと金型の型面間で断熱層として作用し、賦形層用コンパウンドの硬化反応が遅れることから、硬化完了までの間における賦形層用コンパウンドの流動量が大になり、賦形層用コンパウンドから形成される賦形層を薄肉にできる。さらに、液状樹脂が、賦形層用コンパウンドと金型の型面間で潤滑剤の作用をして賦形層用コンパウンドの流動性を向上させるため、それによっても賦形層を薄くすることができる。その結果、剛性層による剛性を有し、かつ賦形層によって複雑な形状に賦形でき、さらに薄肉な繊維強化樹脂複合成形体を得ることができる。 According to the present invention, the fiber-reinforced resin composite molded body is a product of heating, compressing and curing the fiber-reinforced resin material for the rigid layer, the compound for the mold layer and the liquid resin in a laminated state together with the liquid resin. During heating and compression by a mold to manufacture the fiber-reinforced resin composite molded body, the liquid resin acts as an insulating layer between the compound for the mold layer and the mold surface of the mold, and the curing reaction of the compound for the mold layer is delayed. This increases the flow rate of the compound for the mold layer until the completion of curing, and the mold layer formed from the compound for the mold layer can be made thin. Furthermore, the liquid resin acts as a lubricant between the compound for the mold layer and the mold surface of the mold to improve the fluidity of the compound for the mold layer, which also makes it possible to make the mold layer thinner. As a result, a fiber-reinforced resin composite molded body that has rigidity due to the rigid layer and can be shaped into a complex shape by the mold layer and is further thin can be obtained.

本発明における繊維強化樹脂複合成形体の一実施形態の断面図である。1 is a cross-sectional view of one embodiment of a fiber-reinforced resin composite molded product according to the present invention. 金型の一実施形態の断面図である。FIG. 2 is a cross-sectional view of one embodiment of a mold. 各実施例と各比較例における塗布樹脂の構成と成形後の厚み等を示す表である。1 is a table showing the configuration of the applied resin and the thickness after molding in each of the examples and comparative examples.

以下、本発明の繊維強化樹脂複合成形体とその製造方法について説明する。
図1に示す繊維強化樹脂複合成形体10は、剛性用繊維強化樹脂材から形成された剛性層11と、賦形層用コンパウンドから形成された賦形層21と、賦形層用コンパウンドの表面に付着した液状樹脂が硬化した樹脂31とよりなる。
The fiber-reinforced resin composite molded product and the method for producing the same of the present invention will be described below.
The fiber-reinforced resin composite molding 10 shown in Figure 1 comprises a rigid layer 11 formed from a rigid fiber-reinforced resin material, a mold layer 21 formed from a mold layer compound, and resin 31 formed by hardening liquid resin adhered to the surface of the mold layer compound.

剛性層11は、剛性層用繊維強化樹脂材が加熱圧縮されて硬化したものからなる。
剛性層用繊維強化樹脂材は、繊維シートに熱硬化性樹脂が含浸したものである。繊維シートとしては、炭素繊維、ガラス繊維、アラミド繊維等の繊維から構成されたものを挙げることができる。特に、軽量化と剛性向上の点から炭素繊維が好ましい。繊維シートは、織物、編み物、不織布等であってもよい。織物としては、平織、綾織、朱子織、三軸織等がある。また、繊維シートは、一方向あるいは複数方向に配向した繊維で構成されていてもよい。繊維シートは、剛性向上の点から、繊維織物が好ましい。
The rigid layer 11 is made of a fiber-reinforced resin material for a rigid layer that is heated, compressed, and cured.
The fiber reinforced resin material for the rigid layer is a fiber sheet impregnated with a thermosetting resin. Examples of the fiber sheet include those made of fibers such as carbon fiber, glass fiber, and aramid fiber. In particular, carbon fiber is preferable from the viewpoints of weight reduction and improved rigidity. The fiber sheet may be woven, knitted, nonwoven, etc. Examples of the woven fabric include plain weave, twill weave, satin weave, and triaxial weave. The fiber sheet may be made of fibers oriented in one direction or multiple directions. The fiber sheet is preferably a woven fiber from the viewpoint of improved rigidity.

繊維シートを構成する繊維は、後記の賦形層用コンパウンドに含まれる繊維よりも繊維長が長いものが好ましく、例えば連続繊維あるいは不連続繊維からなるものが挙げられる。 The fibers constituting the fiber sheet are preferably longer than the fibers contained in the compound for the mold layer described below, and may be, for example, continuous or discontinuous fibers.

繊維シートに含浸する熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、またはこれらの混合樹脂等が挙げられる。繊維シートに熱硬化性樹脂が含浸した剛性層用繊維強化樹脂材としては、プリプレグが好ましい。 Thermosetting resins impregnated into the fiber sheet include epoxy resins, phenolic resins, vinyl ester resins, unsaturated polyester resins, and mixtures of these resins. Prepregs are preferred as fiber-reinforced resin materials for rigid layers in which the fiber sheet is impregnated with a thermosetting resin.

賦形層21は、剛性層用繊維強化樹脂材に含まれる繊維よりも短い繊維と熱硬化性樹脂とよりなる賦形層用コンパウンドが加熱圧縮されて硬化したものからなる。賦形層21の表面形状は、繊維強化樹脂複合成形体10の用途等に応じて適宜の凹形状、凸形状、凹凸形状を有するものであってもよい。 The shaping layer 21 is made of a compound for the shaping layer, which is made of a thermosetting resin and fibers shorter than those contained in the fiber-reinforced resin material for the rigid layer, and is heated, compressed, and hardened. The surface shape of the shaping layer 21 may be an appropriate concave, convex, or uneven shape depending on the application of the fiber-reinforced resin composite molding 10.

賦形層用コンパウンドに含まれる繊維の長さは、成形性の点から30mm以下が好ましく、また、剛性向上の点からは5mm以上が好ましい。賦形層用コンパウンドに含まれる繊維としては、炭素繊維、ガラス繊維等の短繊維が挙げられる。特に軽量化と剛性向上の点から炭素繊維が好ましい。 The length of the fibers contained in the compound for the mold layer is preferably 30 mm or less from the viewpoint of moldability, and 5 mm or more from the viewpoint of improving rigidity. Examples of fibers contained in the compound for the mold layer include short fibers such as carbon fiber and glass fiber. Carbon fiber is particularly preferred from the viewpoints of weight reduction and improving rigidity.

賦形層用コンパウンドに含まれる熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、またはこれらの混合樹脂等が挙げられる。
賦形層用コンパウンドとしては、シートモールディングコンパウンド(以下SMCと記す)が好ましい。SMCは、熱硬化性樹脂に充填材や硬化剤などを含んだコンパウンドを、ガラス繊維や炭素繊維などの繊維材に含浸させたシート状の成形材料をいう。
Examples of the thermosetting resin contained in the compound for the mold layer include epoxy resin, phenol resin, vinyl ester resin, unsaturated polyester resin, and mixed resins thereof.
The compound for the mold layer is preferably a sheet molding compound (hereinafter referred to as SMC). SMC refers to a sheet-shaped molding material in which a compound containing a thermosetting resin, a filler, a curing agent, etc. is impregnated into a fiber material such as glass fiber or carbon fiber.

樹脂31は、液状樹脂が硬化したものからなる。液状樹脂は、熱硬化性樹脂からなる。液状樹脂は、繊維強化樹脂複合成形体10を製造する際、賦形層用コンパウンドと共に加熱圧縮されることにより、賦形層用コンパウンドに含まれる熱硬化性樹脂の硬化剤と混ざり合うため、硬化剤を含まなくても硬化することができる。 The resin 31 is made of a hardened liquid resin. The liquid resin is made of a thermosetting resin. When the fiber-reinforced resin composite molding 10 is produced, the liquid resin is heated and compressed together with the compound for the mold layer, and mixes with the hardener for the thermosetting resin contained in the compound for the mold layer, so that the resin can harden even without the hardener.

液状樹脂を構成する熱硬化性樹脂としては、ビニルエステル樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等のラジカル重合型の熱硬化性樹脂が好ましい。熱硬化性樹脂には、必要に応じて、硬化剤、分散剤、難燃剤、UV吸収剤等を添加してもよい。また、液状樹脂には、熱硬化性樹脂と共に溶媒が配合され、塗布可能な粘度に調製してもよい。 The thermosetting resin constituting the liquid resin is preferably a radical polymerization type thermosetting resin such as vinyl ester resin, unsaturated polyester resin, or epoxy resin. If necessary, a hardener, dispersant, flame retardant, UV absorber, etc. may be added to the thermosetting resin. In addition, a solvent may be mixed with the thermosetting resin to adjust the viscosity of the liquid resin so that it can be applied.

剛性層11と賦形層21と樹脂31は、繊維強化樹脂複合成形体10を製造する際の加熱圧縮によって、剛性層用繊維強化樹脂材と賦形層用コンパウンド、及びその表面の液状樹脂が、積層状態で硬化することにより一体化して形成されている。 The rigid layer 11, the molding layer 21, and the resin 31 are integrated together by hardening the fiber-reinforced resin material for the rigid layer, the compound for the molding layer, and the liquid resin on the surface of the compound in a layered state through heating and compression during the manufacture of the fiber-reinforced resin composite molded body 10.

繊維強化樹脂複合成形体10の製造方法について説明する。繊維強化樹脂複合成形体10の製造方法は、塗布工程と、加熱圧縮工程とからなる。 The manufacturing method of the fiber-reinforced resin composite molded body 10 is explained below. The manufacturing method of the fiber-reinforced resin composite molded body 10 consists of a coating process and a heating and compressing process.

塗布工程では、賦形層用コンパウンドの一側表面、あるいは金型の型面に、未硬化の液状樹脂を塗布する。図2に示す金型60は、上型61と下型63とからなる。金型の型面に、未硬化の液状樹脂を塗布する場合は、次の加熱圧縮工程で賦形層用コンパウンドを押圧することになる型面、例えば上型61の型面に対して液状樹脂を塗布する。なお、賦形層用コンパウンドの一側表面への液状樹脂の塗布は、金型60の下型63に、剛性層用繊維強化樹脂材と賦形層用コンパウンドを積層配置し、その賦形層用コンパウンドの表面に液状樹脂を塗布してもよい。塗布方法は、刷毛塗り、ローラ塗り、スプレー塗り等を挙げることができ、何れの方法でもよい。また、液状樹脂を塗布する範囲は、賦形層用コンパウンドの表面全体に限られず、その一部であってもよい。 In the coating process, uncured liquid resin is applied to one side surface of the compound for the mold layer or to the mold surface of the mold. The mold 60 shown in FIG. 2 is composed of an upper mold 61 and a lower mold 63. When applying uncured liquid resin to the mold surface of the mold, the liquid resin is applied to the mold surface that will press the compound for the mold layer in the next heating and compression process, for example, the mold surface of the upper mold 61. In addition, the liquid resin may be applied to one side surface of the compound for the mold layer by stacking the fiber-reinforced resin material for the rigid layer and the compound for the mold layer on the lower mold 63 of the mold 60, and applying the liquid resin to the surface of the compound for the mold layer. The coating method may be brush coating, roller coating, spray coating, or the like, and any method may be used. In addition, the area to which the liquid resin is applied is not limited to the entire surface of the compound for the mold layer, and may be a part of it.

賦形層用コンパウンドは、繊維強化樹脂複合成形体10において説明したとおりである。ここで使用する賦形層用コンパウンドの大きさは、製品(繊維強化樹脂複合成形体10)に対して平面寸法が30~100%の大きさが好ましい。
また、液状樹脂は、繊維強化樹脂複合成形体10において説明したとおりである。液状樹脂の塗布量は、賦形層用コンパウンドの表面に対して20~200g/mとなるようにするのが好ましい。
The compound for the mold-imparting layer is as described in the fiber-reinforced resin composite molded body 10. The size of the compound for the mold-imparting layer used here is preferably 30 to 100% of the planar dimensions of the product (fiber-reinforced resin composite molded body 10).
The liquid resin is as described in the fiber-reinforced resin composite molded body 10. The amount of liquid resin applied to the surface of the compound for the mold layer is preferably 20 to 200 g/ m2 .

加熱圧縮工程では、金型60の上型61の型面と下型63の型面間に、剛性層用繊維強化樹脂材と、賦形層用コンパウンドと、液状樹脂を積層状態で配置し、その状態で上型63の型面と下型61の型面で加熱・圧縮する。下型63には、繊維強化樹脂複合成形体10の賦形用キャビティが形成されている。賦形用キャビティの平面サイズは、繊維強化樹脂複合成形体10の平面サイズと等しくされている。 In the heating and compressing process, the fiber reinforced resin material for the rigid layer, the compound for the shaping layer, and the liquid resin are arranged in a layered state between the mold surfaces of the upper die 61 and the lower die 63 of the metal mold 60, and are heated and compressed in this state by the mold surfaces of the upper die 63 and the lower die 61. A cavity for shaping the fiber reinforced resin composite molding 10 is formed in the lower die 63. The planar size of the cavity for shaping is set to be equal to the planar size of the fiber reinforced resin composite molding 10.

加熱・圧縮により、剛性層用繊維強化樹脂材が圧縮されると共に賦形層用コンパウンドが圧縮されて金型60内で流動し、剛性層用繊維強化樹脂材と賦形層用コンパウンドがキャビティ形状に賦形されて硬化する。その際、賦形層用コンパウンドと型面間に液状樹脂が存在するため、液状樹脂が賦形層用コンパウンド表面で潤滑剤の作用をし、金型60内で賦形層用コンパウンドの流動性が向上し、賦形層用コンパウンドは薄く賦形される。また、賦形層用コンパウンドと型面間で液状樹脂が断熱層の作用をして、型面からの伝熱による賦形層用コンパウンドの硬化反応を遅らせ、硬化完了するまでの間における賦形層用コンパウンドの流動量を大にするため、これによっても賦形層用コンパウンドは薄く賦形される。 By heating and compression, the fiber-reinforced resin material for the rigid layer is compressed, and the compound for the mold layer is compressed and flows in the mold 60, and the fiber-reinforced resin material for the rigid layer and the compound for the mold layer are molded into the cavity shape and hardened. At that time, since the liquid resin is present between the compound for the mold layer and the mold surface, the liquid resin acts as a lubricant on the surface of the compound for the mold layer, improving the fluidity of the compound for the mold layer in the mold 60, and the compound for the mold layer is molded thinly. In addition, the liquid resin acts as an insulating layer between the compound for the mold layer and the mold surface, delaying the hardening reaction of the compound for the mold layer due to heat transfer from the mold surface, and increasing the flow amount of the compound for the mold layer until hardening is completed, which also causes the compound for the mold layer to be molded thinly.

また、加熱・圧縮時、賦形層用コンパウンドの表面の液状樹脂は、型面で押圧されて、賦形層用コンパウンドの表面及びその付近の熱硬化性樹脂と混ざり合って硬化する。その際、液状樹脂は、硬化剤が含まれていなくても、賦形層用コンパウンドに含まれている硬化剤と混ざり合うことで硬化することができる。 During heating and compression, the liquid resin on the surface of the compound for the mold layer is pressed by the mold surface, and mixes with the thermosetting resin on the surface of the compound for the mold layer and in its vicinity, and hardens. At that time, even if the liquid resin does not contain a hardener, it can harden by mixing with the hardener contained in the compound for the mold layer.

加熱圧縮工程時の加熱は、金型に設けた電熱ヒータ等の加熱手段により、あるいは予め金型を加熱炉等に収容して加熱しておく方法などにより行う。加熱温度は、剛性層用繊維強化樹脂材及び賦形層用コンパウンドに含まれる熱硬化性樹脂及び液状樹脂が硬化する温度とされる。 Heating during the heat compression process is performed by a heating means such as an electric heater installed in the mold, or by a method in which the mold is placed in a heating furnace or the like and heated in advance. The heating temperature is set to a temperature at which the thermosetting resin and liquid resin contained in the fiber-reinforced resin material for the rigid layer and the compound for the mold-imparting layer harden.

加熱圧縮工程により、剛性層用繊維強化樹脂材が圧縮されて硬化した剛性層と、賦形層用コンパウンドが圧縮されて薄く賦形された状態で硬化した賦形層と、その表面で液状樹脂が硬化してなる樹脂とが一体化し、図1に示した剛性層11と賦形層21とその表面の樹脂31とからなる厚みの薄い繊維強化樹脂複合成形体10が得られる。 The heating and compressing process integrates the rigid layer formed by compressing and hardening the fiber-reinforced resin material for the rigid layer, the shaping layer formed by compressing and hardening the compound for the shaping layer in a thin shaped state, and the resin formed by hardening the liquid resin on its surface, resulting in a thin fiber-reinforced resin composite molded body 10 consisting of the rigid layer 11, the shaping layer 21, and the resin 31 on its surface, as shown in Figure 1.

フェノール樹脂溶液(住友ベークライト株式会社製、品名:PR-55791B、樹脂濃度60wt%エタノール溶液)中に、炭素繊維織物(帝人株式会社製、品名:W-3161L、厚み0.22mm)を400×400mmに裁断したものを漬け、取り出した後に、25℃の室温で2時間自然乾燥し、その後、60℃の雰囲気下で1時間乾燥させて剛性層用繊維強化樹脂材(プリプレグ)を形成した。 A carbon fiber fabric (Teijin Limited, product name: W-3161L, thickness 0.22 mm) cut to 400 x 400 mm was immersed in a phenolic resin solution (Sumitomo Bakelite Co., Ltd., product name: PR-55791B, resin concentration 60 wt% ethanol solution), removed, and naturally dried at room temperature of 25°C for 2 hours, and then dried in an atmosphere of 60°C for 1 hour to form a fiber-reinforced resin material (prepreg) for the rigid layer.

金型の下型の成形面に、剛性層用繊維強化樹脂材(プリプレグ)の1枚を配置し、その上に300×300mmのサイズに切り出した賦形層用コンパウンド(SMC、三菱ケミカル株式会社製、品名:STR120N131、厚み2mm、繊維含有率53%)を積層し、その賦形層用コンパウンドの表面に、図3の各実施例に示す液状の未硬化の塗布樹脂(熱硬化性樹脂)を刷毛で塗布し、その後に金型を閉じて150℃×20分間、圧力200kgf/cmで加熱圧縮し、剛性層用繊維強化樹脂材(プリプレグ)と賦形層用コンパウンド及び塗布樹脂を積層圧縮状態で硬化させた。それにより、剛性層用繊維強化樹脂材(プリプレグ)から形成された剛性層と、賦形層用コンパウンドから形成された賦形層と、塗布樹脂から形成された樹脂との積層一体品からなる繊維強化樹脂複合成形体を製造した。金型は下型と上型とよりなり、横460×縦460mmの成形面が形成されている。 A sheet of fiber-reinforced resin material (prepreg) for rigid layer is placed on the molding surface of the lower mold of the mold, and a compound for molding layer (SMC, manufactured by Mitsubishi Chemical Corporation, product name: STR120N131, thickness 2 mm, fiber content 53%) cut to a size of 300 x 300 mm is laminated on it, and the surface of the compound for molding layer is coated with a liquid uncured coating resin (thermosetting resin) shown in each example of FIG. 3 with a brush, and then the mold is closed and heated and compressed at 150 ° C. x 20 minutes at a pressure of 200 kgf / cm 2 to cure the fiber-reinforced resin material for rigid layer (prepreg), the compound for molding layer, and the coating resin in a laminated compressed state. As a result, a fiber-reinforced resin composite molded body consisting of a laminated integral product of a rigid layer formed from a fiber-reinforced resin material for rigid layer (prepreg), a molding layer formed from a compound for molding layer, and a resin formed from a coating resin was produced. The mold is composed of a lower mold and an upper mold, and has a molding surface of 460 mm wide x 460 mm long.

また、賦形層用コンパウンドの表面に熱硬化性樹脂を塗布しないで加熱圧縮成形することにより、比較例1~3の繊維強化樹脂複合成形体を製造した。
各実施例及び各比較例の繊維強化樹脂複合成形体について、成形後の厚みを測定した。その結果を図3に示す。なお、図3のチャージ率[%]は、賦形層用コンパウンドの元厚(2mm)に対する賦形層の厚みの割合である。チャージ率の計算において、賦形層の厚みは、加熱圧縮によって剛性層用繊維強化樹脂材(プリプレグ)の厚み(0.22mm)が変化しないとして、成形後の厚み(繊維強化樹脂複合成形体の厚み)から剛性層用繊維強化樹脂材(プリプレグ)の厚み(0.22mm)を引いて得た値を用いた。
In addition, the fiber-reinforced resin composite moldings of Comparative Examples 1 to 3 were produced by hot compression molding the compound for the mold layer without applying a thermosetting resin to the surface thereof.
The thickness after molding was measured for the fiber-reinforced resin composite molded body of each Example and each Comparative Example. The results are shown in FIG. 3. The charge rate [%] in FIG. 3 is the ratio of the thickness of the molded layer to the original thickness (2 mm) of the compound for the molded layer. In calculating the charge rate, the thickness of the molded layer was calculated by subtracting the thickness (0.22 mm) of the fiber-reinforced resin material (prepreg) for the rigid layer from the thickness after molding (thickness of the fiber-reinforced resin composite molded body), assuming that the thickness (0.22 mm) of the fiber-reinforced resin material (prepreg) for the rigid layer does not change due to heating and compression.

実施例1は、賦形層用コンパウンドの表面に、塗布樹脂(熱硬化性樹脂)として、ビニルエステル樹脂(昭和電工株式会社社製、品名:リポキシR-806)を、50g/m塗布した例である。実施例1は、成形後の繊維強化樹脂複合成形体の厚みが0.95mm、チャージ率37%であった。なお、賦形層用コンパウンド(厚み2mm)から形成された賦形層の厚みは、繊維強化樹脂複合成形体の厚み(0.95mm)-剛性層用繊維強化樹脂材の厚み(0.22mm)=0.73mmであり、賦形層が薄肉に形成されている。 Example 1 is an example in which 50 g/m 2 of vinyl ester resin (manufactured by Showa Denko K.K., product name: Lipoxy R-806) was applied as a coating resin (thermosetting resin) to the surface of the compound for the mold layer. In Example 1, the thickness of the fiber-reinforced resin composite molded body after molding was 0.95 mm and the charge rate was 37%. The thickness of the mold layer formed from the compound for the mold layer (thickness 2 mm) was the thickness of the fiber-reinforced resin composite molded body (0.95 mm) - the thickness of the fiber-reinforced resin material for the rigid layer (0.22 mm) = 0.73 mm, and the mold layer was formed thin.

実施例2は、賦形層用コンパウンドの表面に、塗布樹脂(熱硬化性樹脂)として実施例1と同じビニルエステル樹脂(昭和電工株式会社社製、品名:リポキシR-806)を、75g/m塗布した例である。実施例2は、成形後の繊維強化樹脂複合成形体の厚みが0.93mm、チャージ率36%であった。賦形層用コンパウンド(厚み2mm)から形成された賦形層の厚みは、繊維強化樹脂複合成形体の厚み(0.93mm)-剛性層用繊維強化樹脂材の厚み(0.22mm)=0.71mmであり、塗布樹脂の塗布量を実施例1よりも増加させたことにより、賦形層が実施例1よりも薄肉に形成された。 Example 2 is an example in which the same vinyl ester resin (manufactured by Showa Denko K.K., product name: Lipoxy R-806) as in Example 1 was applied to the surface of the compound for the mold layer at 75 g/m 2 as the coating resin (thermosetting resin). In Example 2, the thickness of the fiber-reinforced resin composite molded body after molding was 0.93 mm and the charge rate was 36%. The thickness of the mold layer formed from the compound for the mold layer (thickness 2 mm) was the thickness of the fiber-reinforced resin composite molded body (0.93 mm) - the thickness of the fiber-reinforced resin material for the rigid layer (0.22 mm) = 0.71 mm, and the amount of coating resin applied was increased compared to Example 1, so that the mold layer was formed thinner than in Example 1.

実施例3は、賦形層用コンパウンドの表面に、塗布樹脂(熱硬化性樹脂)として実施例1及び実施例2と同じビニルエステル樹脂(昭和電工株式会社社製、品名:リポキシR-806)を、100g/m塗布した例である。実施例3は、成形後の繊維強化樹脂複合成形体の厚みが0.91mm、チャージ率35%であった。賦形層用コンパウンド(厚み2mm)から形成された賦形層の厚みは、繊維強化樹脂複合成形体の厚み(0.91mm)-剛性層用繊維強化樹脂材の厚み(0.22mm)=0.69mmであり、塗布樹脂の塗布量を実施例1及び実施例2よりも増加させたことにより、賦形層が実施例1及び実施例2よりもさらに薄肉に形成された。 Example 3 is an example in which the same vinyl ester resin (manufactured by Showa Denko K.K., product name: Lipoxy R-806) as in Examples 1 and 2 was applied to the surface of the compound for the mold layer at 100 g/m 2 as the coating resin (thermosetting resin). In Example 3, the thickness of the fiber-reinforced resin composite molded body after molding was 0.91 mm and the charge rate was 35%. The thickness of the mold layer formed from the compound for the mold layer (thickness 2 mm) was the thickness of the fiber-reinforced resin composite molded body (0.91 mm) - the thickness of the fiber-reinforced resin material for the rigid layer (0.22 mm) = 0.69 mm, and the amount of coating resin was increased more than in Examples 1 and 2, so that the mold layer was formed even thinner than in Examples 1 and 2.

実施例4は、賦形層用コンパウンドの表面に、塗布樹脂(熱硬化性樹脂)として不飽和ポリエステル樹脂(昭和電工株式会社社製、品名:RIGOLAC T-543TPA)を、50g/m塗布した例である。実施例4は、成形後の繊維強化樹脂複合成形体の厚みが1.00mm、チャージ率39%であった。賦形層用コンパウンド(厚み2mm)から形成された賦形層の厚みは、繊維強化樹脂複合成形体の厚み(1.00mm)-剛性層用繊維強化樹脂材の厚み(0.22mm)=0.78mmであり、薄肉に形成された。 Example 4 is an example in which 50 g/m 2 of unsaturated polyester resin (manufactured by Showa Denko K.K., product name: RIGOLAC T-543TPA) was applied as a coating resin (thermosetting resin) to the surface of the compound for the mold layer. In Example 4, the thickness of the fiber-reinforced resin composite molded body after molding was 1.00 mm, and the charge rate was 39%. The thickness of the mold layer formed from the compound for the mold layer (thickness 2 mm) was the thickness of the fiber-reinforced resin composite molded body (1.00 mm) - the thickness of the fiber-reinforced resin material for the rigid layer (0.22 mm) = 0.78 mm, and it was formed thin.

このように、実施例1~4は、剛性層用繊維強化樹脂材(プリプレグ)に積層した賦形層用コンパウンドの表面に液状の熱硬化性樹脂を塗布して加熱圧縮成形したことにより、賦形層用コンパウンドから形成される賦形層の厚みを、0.69~0.78mmと薄肉に賦形でき、厚み1mm以下の薄い繊維強化樹脂複合成形体を得ることができた。 In this way, in Examples 1 to 4, by applying a liquid thermosetting resin to the surface of the compound for the mold layer laminated to the fiber-reinforced resin material (prepreg) for the rigid layer and then performing heat compression molding, the thickness of the mold layer formed from the compound for the mold layer could be thinned to 0.69 to 0.78 mm, and a thin fiber-reinforced resin composite molded body with a thickness of 1 mm or less could be obtained.

比較例1は、賦形層用コンパウンドの表面に、液状の熱硬化性樹脂を塗布しなかった例であり、加熱圧縮条件は実施例1~4と同様である。比較例1は、成形後の繊維強化樹脂複合成形体の厚みが1.12mm、チャージ率45%であった。賦形層用コンパウンド(厚み2mm)から形成された賦形層の厚みは、繊維強化樹脂複合成形体の厚み(1.12mm)-剛性層用繊維強化樹脂材の厚み(0.22mm)=0.90mmであり、賦形層用コンパウンドの表面に液状の熱硬化性樹脂を塗布しなかったことにより、賦形層が実施例1~4よりも厚肉に形成された。 Comparative Example 1 is an example in which liquid thermosetting resin was not applied to the surface of the compound for the mold layer, and the heating and compression conditions were the same as those of Examples 1 to 4. In Comparative Example 1, the thickness of the fiber-reinforced resin composite molding after molding was 1.12 mm, and the charge rate was 45%. The thickness of the mold layer formed from the compound for the mold layer (thickness 2 mm) was the thickness of the fiber-reinforced resin composite molding (1.12 mm) - the thickness of the fiber-reinforced resin material for the rigid layer (0.22 mm) = 0.90 mm, and the mold layer was formed thicker than Examples 1 to 4 by not applying liquid thermosetting resin to the surface of the compound for the mold layer.

比較例2は、比較例1における賦形層用コンパウンド面積を10%増加し、液状の熱硬化性樹脂を塗布しなかった例である。比較例2は、成形後の繊維強化樹脂複合成形体の厚みが1.30mm、チャージ率54%であった。賦形層用コンパウンド(厚み2mm)から形成された賦形層の厚みは、繊維強化樹脂複合成形体の厚み(1.30mm)-剛性層用繊維強化樹脂材の厚み(0.22mm)=1.08mmであり、賦形層用コンパウンドの量を増加したことにより、賦形層が比較例1よりも厚肉に形成された。 Comparative Example 2 is an example in which the area of the compound for the molding layer in Comparative Example 1 was increased by 10%, and liquid thermosetting resin was not applied. In Comparative Example 2, the thickness of the fiber-reinforced resin composite molding after molding was 1.30 mm, and the charge rate was 54%. The thickness of the molding layer formed from the compound for the molding layer (thickness 2 mm) was the thickness of the fiber-reinforced resin composite molding (1.30 mm) - the thickness of the fiber-reinforced resin material for the rigid layer (0.22 mm) = 1.08 mm, and by increasing the amount of compound for the molding layer, the molding layer was formed thicker than in Comparative Example 1.

比較例3は、比較例1における賦形層用コンパウンド面積を20%増加し、液状の熱硬化性樹脂を塗布しなかった例である。比較例3は、成形後の繊維強化樹脂複合成形体の厚みが1.60mm、チャージ率69%であった。賦形層用コンパウンド(厚み2mm)から形成された賦形層の厚みは、繊維強化樹脂複合成形体の厚み(1.60mm)-剛性層用繊維強化樹脂材の厚み(0.22mm)=1.38mmであり、賦形層用コンパウンドの量を増加したことにより、賦形層が比較例1及び比較例2よりも厚肉に形成された。 Comparative Example 3 is an example in which the area of the compound for the molding layer in Comparative Example 1 was increased by 20%, and liquid thermosetting resin was not applied. In Comparative Example 3, the thickness of the fiber-reinforced resin composite molding after molding was 1.60 mm, and the charge rate was 69%. The thickness of the molding layer formed from the compound for the molding layer (thickness 2 mm) was the thickness of the fiber-reinforced resin composite molding (1.60 mm) - the thickness of the fiber-reinforced resin material for the rigid layer (0.22 mm) = 1.38 mm, and by increasing the amount of compound for the molding layer, the molding layer was formed thicker than Comparative Examples 1 and 2.

このように、本発明によれば、剛性層による剛性と、賦形層による薄肉で複雑形状に賦形可能との両者を有する線維強化樹脂複合成形体を得ることができる。 In this way, the present invention makes it possible to obtain a fiber-reinforced resin composite molding that has both the rigidity provided by the rigid layer and the ability to be molded into a complex shape with a thin wall provided by the molding layer.

10 繊維強化樹脂複合成形体
11 剛性層
21 賦形層
31 樹脂
60 金型
61 上型
63 下型
Reference Signs List 10 Fiber-reinforced resin composite molded body 11 Rigid layer 21 Shape-imparting layer 31 Resin 60 Mold 61 Upper mold 63 Lower mold

Claims (2)

硬化樹脂層と、
熱硬化性樹脂及び繊維として繊維長30mm以下の短繊維のみを含む賦形層と、
繊維として前記短繊維よりも繊維長が長い繊維シートのみを含む剛性層と、を備え、
前記硬化樹脂層、前記賦形層、前記剛性層の順に積層している、
厚さ1mm以下の樹脂成形体。
A cured resin layer;
A shape-imparting layer containing only a thermosetting resin and short fibers having a fiber length of 30 mm or less;
a rigid layer including only fiber sheets having a fiber length longer than the short fibers,
The cured resin layer, the shape-imparting layer, and the rigid layer are laminated in this order.
A resin molded body with a thickness of 1 mm or less.
硬化樹脂層と、
熱硬化性樹脂及び繊維長30mm以下の短繊維を含むシートモールディングコンパウンドからなる賦形層と、
前記短繊維よりも繊維長が長い繊維シートを含むプリプレグからなる剛性層と、を備え、
前記硬化樹脂層、前記賦形層、前記剛性層の順に積層している、
厚さ1mm以下の樹脂成形体。
A cured resin layer;
A shape-imparting layer made of a sheet molding compound containing a thermosetting resin and short fibers having a fiber length of 30 mm or less;
and a rigid layer made of a prepreg including a fiber sheet having a fiber length longer than the short fibers,
The cured resin layer, the shape-imparting layer, and the rigid layer are laminated in this order.
A resin molded body with a thickness of 1 mm or less.
JP2022142028A 2019-09-11 2022-09-07 Resin molded body with a thickness of 1 mm or less Active JP7573577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022142028A JP7573577B2 (en) 2019-09-11 2022-09-07 Resin molded body with a thickness of 1 mm or less

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019165131A JP7139296B2 (en) 2019-09-11 2019-09-11 Fiber-reinforced resin composite molding and method for producing the same
JP2022142028A JP7573577B2 (en) 2019-09-11 2022-09-07 Resin molded body with a thickness of 1 mm or less

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019165131A Division JP7139296B2 (en) 2019-08-27 2019-09-11 Fiber-reinforced resin composite molding and method for producing the same

Publications (2)

Publication Number Publication Date
JP2022177086A JP2022177086A (en) 2022-11-30
JP7573577B2 true JP7573577B2 (en) 2024-10-25

Family

ID=74863735

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019165131A Active JP7139296B2 (en) 2019-08-27 2019-09-11 Fiber-reinforced resin composite molding and method for producing the same
JP2022142028A Active JP7573577B2 (en) 2019-09-11 2022-09-07 Resin molded body with a thickness of 1 mm or less

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019165131A Active JP7139296B2 (en) 2019-08-27 2019-09-11 Fiber-reinforced resin composite molding and method for producing the same

Country Status (1)

Country Link
JP (2) JP7139296B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099670A1 (en) 2007-02-02 2008-08-21 Toray Industries, Inc. Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP2009119613A (en) 2007-11-12 2009-06-04 Toray Ind Inc Fiber-reinforced plastic molding and its production method
JP2010235779A (en) 2009-03-31 2010-10-21 Toray Ind Inc Prepreg, preform and molded product
JP2012040763A (en) 2010-08-19 2012-03-01 Dic Kako Kk Molding, floor material, and method of manufacturing the molding

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526768A (en) * 1975-07-04 1977-01-19 Mitsubishi Plastics Ind Frp moulding material
JPS55121027A (en) * 1979-03-09 1980-09-17 Hitachi Chem Co Ltd Manufacturing of fiber reinforced composite
JPH01159242A (en) * 1987-12-17 1989-06-22 Hitachi Chem Co Ltd Low dielectric laminated sheet
JPH02273223A (en) * 1989-04-14 1990-11-07 Honda Motor Co Ltd Fiber reinforced resin molding sheet and method for molding fiber reinforced resin
JP2958036B2 (en) * 1990-02-14 1999-10-06 住友ベークライト株式会社 Penetration resistant composite molding
JPH05318468A (en) * 1992-05-22 1993-12-03 Hitachi Chem Co Ltd Gelcoat sheet for molding and preparation thereof and preparation of molding with gelcoat layer using said gelcoat sheet for molding
JP3236943B2 (en) 1992-08-21 2001-12-10 ニチレキ株式会社 Permeable room temperature mixture and production method thereof
JP3024870B2 (en) * 1992-08-25 2000-03-27 松下電工株式会社 Method for manufacturing resin molded products
JPH08118379A (en) * 1994-10-18 1996-05-14 Kobe Steel Ltd Production of fiber reinforced plastic molded object
JPH10128896A (en) * 1996-10-28 1998-05-19 Takiron Co Ltd Fiber reinforced resin laminated molded body
JPH11179746A (en) * 1997-12-25 1999-07-06 Hitachi Chem Co Ltd Smc molded product and method for molding the same
JP2000025144A (en) * 1998-07-14 2000-01-25 Mitsubishi Plastics Ind Ltd Fiber-reinforced resin unit plate
JP2002219775A (en) * 2001-01-26 2002-08-06 Yamaha Livingtec Corp Frp molding
GB2453308B (en) * 2007-10-03 2012-07-25 Acell Group Ltd Composite products
JP5950149B2 (en) * 2011-09-29 2016-07-13 三菱レイヨン株式会社 A method for producing a fiber-reinforced resin structure.
JP6685616B2 (en) * 2018-11-20 2020-04-22 株式会社イノアックコーポレーション Carbon fiber composite material and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099670A1 (en) 2007-02-02 2008-08-21 Toray Industries, Inc. Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP2009119613A (en) 2007-11-12 2009-06-04 Toray Ind Inc Fiber-reinforced plastic molding and its production method
JP2010235779A (en) 2009-03-31 2010-10-21 Toray Ind Inc Prepreg, preform and molded product
JP2012040763A (en) 2010-08-19 2012-03-01 Dic Kako Kk Molding, floor material, and method of manufacturing the molding

Also Published As

Publication number Publication date
JP2021042306A (en) 2021-03-18
JP7139296B2 (en) 2022-09-20
JP2022177086A (en) 2022-11-30

Similar Documents

Publication Publication Date Title
EP2495099B1 (en) Fiber-reinforced molded product and method for producing same
US10596730B2 (en) Hybrid lay-up mold
US10821683B2 (en) Method for molding flame-retardant bending beam integrated with three-dimensional nylon air duct and production mould thereof
JP2020055447A (en) Composite material aircraft part and method of manufacturing the same
JP2004510842A (en) Sheet (SMC) molding compound with vented structure for trapped gas
JP5950149B2 (en) A method for producing a fiber-reinforced resin structure.
JP2008246981A (en) Manufacturing method of fiber-reinforced composite material
US20140138872A1 (en) Method and device configured to produce at least two products including fiber reinforced resin
JP6562153B2 (en) FIBER-REINFORCED COMPOSITE MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
KR101961103B1 (en) Carbon riber and mesh structure tight processing carbon fiber prepreg and manufacturing method of the same
WO2020122260A1 (en) Production method for fiber-reinforced resin molded article
WO2022260186A1 (en) Laminate for pressing, and pressed laminate
JP7573577B2 (en) Resin molded body with a thickness of 1 mm or less
JPS5996951A (en) Tabular composite material previously manufactured
KR20170105667A (en) Composite laminate plate and manufacture method of it
JP2010221489A (en) Rtm molding method
JP2009083441A (en) Manufacturing method of fiber-reinforced resin structure
KR101932635B1 (en) Composite material article manufacturing method
JP3493131B2 (en) Method for manufacturing bisect type fiber reinforced plastic honeycomb core
JP7493439B2 (en) Method for producing fiber-reinforced molding and fiber-reinforced molding
JP7220004B2 (en) Fiber-reinforced resin composite molding and method for producing the same
WO2023062870A1 (en) Metal-prepreg complex
JP7419291B2 (en) Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
JP7466248B1 (en) Press molding member, its manufacturing method, and manufacturing method of battery case using press molding member
JPS584622B2 (en) Sandwich board and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241015

R150 Certificate of patent or registration of utility model

Ref document number: 7573577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150