JP2008246981A - Manufacturing method of fiber-reinforced composite material - Google Patents
Manufacturing method of fiber-reinforced composite material Download PDFInfo
- Publication number
- JP2008246981A JP2008246981A JP2007094205A JP2007094205A JP2008246981A JP 2008246981 A JP2008246981 A JP 2008246981A JP 2007094205 A JP2007094205 A JP 2007094205A JP 2007094205 A JP2007094205 A JP 2007094205A JP 2008246981 A JP2008246981 A JP 2008246981A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- fiber
- prepreg
- smc
- molded product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
本発明は、例えば、FRP等の繊維強化複合材料の製造方法に関する。 The present invention relates to a method for producing a fiber-reinforced composite material such as FRP, for example.
従来から、SMC(Sheet Molding Compound)成形材料をプレス成形することにより、FRP(Fiber Reinforced Plastics)成形品を製造する方法が知られている。 Conventionally, a method of manufacturing an FRP (Fiber Reinforced Plastics) molded product by press molding an SMC (Sheet Molding Compound) molding material is known.
このFRP成形品では、収縮するマトリックス樹脂と、収縮しない強化繊維及び炭酸カルシウム等の無機粒子とが混在することにより、FRP成形品の表面に凹凸が発生する場合がある。 In this FRP molded product, unevenness may occur on the surface of the FRP molded product due to a mixture of shrinkable matrix resin and non-shrinkable reinforcing fibers and inorganic particles such as calcium carbonate.
例えば、自動車の外装部品等のように優れた外観品質が要求されるFRP成形品においては、このFRP成形品の表面に発生する凹凸を平滑化するための種々の平滑化手段がなされている。一般的には、プレス成形の前処理として、プレス成形時に予め外観性能を必要とする成形型の表面側にゲルコート塗装等を施す方法、外観性能を必要とする中間成形体の表面側にインモールドコート処理を施す方法、成形後に発生した表面凹凸を、例えば、サンドペーパー等の研磨手段によって平滑化する方法等が挙げられる。 For example, in an FRP molded product that requires excellent appearance quality, such as an exterior part of an automobile, various smoothing means for smoothing irregularities generated on the surface of the FRP molded product are used. In general, as a pre-treatment for press molding, a method of applying a gel coat coating or the like on the surface side of a mold that requires appearance performance in advance during press molding, or in-mold on the surface side of an intermediate molded body that requires appearance performance Examples thereof include a method of performing a coating treatment, and a method of smoothing surface irregularities generated after molding by a polishing means such as sandpaper.
また、FRP成形品の表面を平滑化する方法として、例えば、特許文献1には、エポキシ樹脂組成物において、予め無機粒子をエポキシ樹脂の一部に分散させる繊維強化複合材料用樹脂組成物の製造方法が開示されている。特許文献2には、強化繊維として長さが略1インチのものと、長さが略1/2インチのものとの2種類の長さの強化繊維を混入させて表面平滑化を図る方法が開示されている。
SMC成形品で表面平滑性を得る方法として、前記特許文献1では、マトリックス樹脂であるエポキシ樹脂の組成を改良することにより、成形収縮量を減少させる方法が採用され、前記特許文献2では、強化繊維そのものの形態を改良することにより、表面凹凸量を減少させる方法が採用されている。 As a method of obtaining surface smoothness in an SMC molded product, in Patent Document 1, a method of reducing the amount of molding shrinkage by improving the composition of an epoxy resin that is a matrix resin is adopted. In Patent Document 2, strengthening is performed. A method of reducing the amount of surface irregularities by improving the shape of the fiber itself has been adopted.
しかしながら、前記特許文献1及び前記特許文献2に開示された技術的思想では、マトリックス樹脂又は強化繊維を改変するためにその成形工程が煩雑となる。また、産業界では、前記特許文献1及び前記特許文献2に開示された表面平滑化の方法よりも、より一層簡便で且つ安価な方法によってSMC成形品の表面平滑性を向上させることが希求されている。 However, in the technical idea disclosed in Patent Document 1 and Patent Document 2, the molding process is complicated in order to modify the matrix resin or the reinforcing fiber. Further, in the industry, there is a demand for improving the surface smoothness of SMC molded products by a method that is much simpler and cheaper than the surface smoothing methods disclosed in Patent Document 1 and Patent Document 2. ing.
本発明は、前記の点に鑑みてなされたものであり、より一層簡便で且つ安価な方法によって良好なSMC成形品の表面平滑性を得ることが可能な繊維強化複合材料の製造方法を提供することを目的とする。 The present invention has been made in view of the above points, and provides a method for producing a fiber-reinforced composite material capable of obtaining good surface smoothness of an SMC molded article by a more simple and inexpensive method. For the purpose.
本発明では、先ず、強化繊維材料に樹脂を含浸してシート状のプリプレグを形成しておく。続いて、複数の前記プリプレグを積層し成形型によって成形する際、プリプレグ層の間に、樹脂が未含浸の基材を介装してプリプレグ積層体を形成し、前記プリプレグ積層体に加圧力を付与して加圧成形する。さらに、前記加圧成形されたプリプレグ積層体に対して樹脂を含浸させた後、前記樹脂を硬化させることにより、成形品が得られる。 In the present invention, first, a reinforcing fiber material is impregnated with a resin to form a sheet-like prepreg. Subsequently, when a plurality of the prepregs are laminated and molded by a molding die, a prepreg laminate is formed between the prepreg layers by interposing a substrate not impregnated with resin, and a pressure is applied to the prepreg laminate. Apply and pressure mold. Further, after the pressure-molded prepreg laminate is impregnated with a resin, the molded product is obtained by curing the resin.
ここで、前記「プリプレグ」とは、炭素繊維、アラミド繊維、ガラス繊維、ビニロン繊維等を1/2インチから4インチに切断し、チョップ状にして得たマット形態の基材、又は不織布もしくは繊維を一方向に揃えたもの(繊維補強材)に対し、各種の熱硬化性樹脂(マトリックス樹脂)を含浸させた未硬化状態のシート体をいう。 Here, the “prepreg” refers to a mat-shaped base material obtained by cutting carbon fiber, aramid fiber, glass fiber, vinylon fiber, etc. from 1/2 inch to 4 inch to obtain a chop shape, or a nonwoven fabric or fiber. Refers to a sheet body in an uncured state in which various thermosetting resins (matrix resins) are impregnated with respect to a material (fiber reinforcing material) aligned in one direction.
前記マトリックス樹脂としては、例えば、不飽和ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等が挙げられる。 Examples of the matrix resin include unsaturated polyester resins, phenol resins, and epoxy resins.
また、本発明において、プリプレグ層の間に介装される未含浸の基材としては、樹脂が含浸されていないものであればよく、例えば、不織布又は織物のいずれであってもよい。 In the present invention, the non-impregnated base material interposed between the prepreg layers may be any substrate that is not impregnated with resin, and may be, for example, a nonwoven fabric or a woven fabric.
前記不織布とは、例えば、マット、不織布、ペーパー等の織物以外のものをいう。 The said nonwoven fabric means things other than textile fabrics, such as a mat | matte, a nonwoven fabric, and paper, for example.
本発明によれば、プリプレグ層の間に樹脂が未含浸の基材を介装し、得られた成形品の厚さ方向を、前記樹脂が未含浸の基材によって細分化(分割化)することにより、厚さ方向における樹脂の収縮を抑制することができる。 According to the present invention, the base material not impregnated with the resin is interposed between the prepreg layers, and the thickness direction of the obtained molded product is subdivided (divided) by the base material not impregnated with the resin. Thereby, shrinkage of the resin in the thickness direction can be suppressed.
さらに、本発明によれば、積層されたプリプレグの両面(積層面)を未含浸の基材で挟持することにより、樹脂の流動性に起因する強化繊維のうねりが抑制され、成形品の表面に凹凸が発生することを抑制して表面平滑化を図ることができる。 Furthermore, according to the present invention, by sandwiching both surfaces (laminated surfaces) of the laminated prepregs with an unimpregnated base material, the swell of reinforcing fibers due to the fluidity of the resin is suppressed, and the surface of the molded product is suppressed. Surface unevenness can be achieved by suppressing the occurrence of unevenness.
このように本発明では、プリプレグ層の間に、樹脂が未含浸の基材を介装することにより、前記未含浸の基材によってプリプレグ層に含有する樹脂の収縮による窪みを抑制すると共に、樹脂の塑性流動による強化繊維のうねりを抑制することができる。この結果、本発明によれば、成形品の表面に窪みが発生することが抑制されて、平滑化された良好な外観品質を有する成形品を得ることができる。 As described above, in the present invention, the resin-impregnated base material is interposed between the prepreg layers, thereby suppressing depression due to shrinkage of the resin contained in the prepreg layer by the non-impregnated base material and the resin. It is possible to suppress the undulation of the reinforcing fiber due to the plastic flow. As a result, according to the present invention, it is possible to obtain a molded product having a good appearance quality that is suppressed from being depressed on the surface of the molded product and smoothed.
本発明では、プリプレグ層の間に、樹脂が未含浸の基材を介装するという、より一層簡便で且つ安価な方法によって、表面平滑性を有する良好なSMC成形品を得ることができるという効果を奏する。 In the present invention, an effect that a good SMC molded article having surface smoothness can be obtained by a more simple and inexpensive method in which an unimpregnated base material is interposed between prepreg layers. Play.
本発明では、「強化繊維材料」として、例えば、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等が用いられる。これらの繊維を2種以上混合して用いてもよい。また、強化繊維の形態及び配列については、特に限定されない。なお、軽量化を図り且つ耐久性を向上させるためには、特に炭素繊維の使用が好ましい。 In the present invention, for example, glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber or the like is used as the “reinforced fiber material”. Two or more of these fibers may be mixed and used. Moreover, it does not specifically limit about the form and arrangement | sequence of a reinforced fiber. In order to reduce the weight and improve the durability, it is particularly preferable to use carbon fibers.
また、本発明のプリプレグの製造方法として、例えば、熱硬化性樹脂に対しては、マトリックス樹脂を溶媒に溶解して低粘度化して含浸させるウェット法、また、熱可塑性樹脂に対しては、加熱により低粘度化して含浸させるホットメルト法等が挙げられる。 As a method for producing the prepreg of the present invention, for example, for a thermosetting resin, a wet method in which a matrix resin is dissolved in a solvent to lower the viscosity and impregnated, and for a thermoplastic resin, a heating method is used. And a hot melt method in which the viscosity is lowered by impregnation.
さらに、本発明のプリプレグ積層体を成形する方法としては、例えば、成形型を用いたプレス成形が挙げられるが、真空バッグ成形、真空バッグを用いたオートクレーブ成形等を適用してもよい。 Furthermore, examples of the method for molding the prepreg laminate of the present invention include press molding using a molding die, but vacuum bag molding, autoclave molding using a vacuum bag, and the like may be applied.
また、本発明において、プリプレグ層の間に介装される未含浸の基材としては、樹脂が含浸されていないものであればよく、例えば、不織布又は織物のいずれであってもよく、さらに、ガラス繊維、カーボン繊維等、その他、樹脂が未含浸のどのような素材であってもよい。 Further, in the present invention, the non-impregnated base material interposed between the prepreg layers may be any material that is not impregnated with a resin, for example, any of a nonwoven fabric or a woven fabric, Any material that is not impregnated with resin, such as glass fiber or carbon fiber, may be used.
本実施例では、図1に示すように、SMC成形材料に対して加圧力を付与するパンチが設けられた上型と、前記SMC成形材料を載置(敷設)するキャビティ及びリブを成形するためのリブ成形用凹部が形成された下型とから構成されたプレス成形型を準備し、前記パンチによって前記SMC成形材料に対して所定の加圧力を付与して、SMC成形品が得られた。 In this embodiment, as shown in FIG. 1, an upper die provided with a punch for applying pressure to the SMC molding material, and a cavity and rib for placing (laying) the SMC molding material are formed. A press mold composed of a lower mold having rib forming recesses was prepared, and a predetermined pressure was applied to the SMC molding material by the punch to obtain an SMC molded product.
このSMC成形材料は、炭素繊維を1インチのチョップ状にして得られたマット基材に不飽和ポリエステル樹脂を含浸させて未硬化状態のシート体からなるCFRP基材(プリプレグ)と、前記不飽和ポリエステル樹脂等の樹脂を一切含浸しない(未含浸)の不織布とを交互に積層して積層体を形成した。この場合、CFRP基材は、未硬化状態であるため、不織布は、前記CFRP基材よりも硬質である。 This SMC molding material comprises a CFRP base material (prepreg) comprising a sheet body in an uncured state by impregnating an unsaturated polyester resin into a mat base material obtained by making a 1-inch chopped carbon fiber, and the unsaturated base material. A laminate was formed by alternately laminating non-impregnated non-impregnated nonwoven fabrics such as polyester resin. In this case, since the CFRP substrate is in an uncured state, the nonwoven fabric is harder than the CFRP substrate.
具体的には、炭素繊維を1インチのチョップ状にして得られたマット基材に不飽和ポリエステル樹脂を含浸させたシート体からなる3枚のCFRP基材と、前記不飽和ポリエステル樹脂等の何ら樹脂が含浸されていない3枚の不織布とを準備し、先ず、リブ成形用凹部が形成されたキャビティ底壁の最下層に第1のCFRP基材を敷設し、前記第1のCFRP基材の上面に第1の不織布を積層し、続いて、前記第1の不織布の上面に第2のCFRP基材を敷設し、前記第2のCFRP基材の上面に第2の不織布を積層し、さらに、前記第2の不織布の上面に第3のCFRP基材を敷設し、前記第3のCFRP基材の上面に第3の不織布を順次積層して積層体を構成した。 Specifically, three CFRP base materials composed of a sheet body obtained by impregnating an unsaturated polyester resin into a mat base material obtained by chopping carbon fibers into one inch, and the unsaturated polyester resin or the like And three nonwoven fabrics not impregnated with resin. First, a first CFRP base material is laid on the bottom layer of the cavity bottom wall in which the rib forming recesses are formed, and the first CFRP base material is Laminating a first non-woven fabric on the upper surface, subsequently laying a second CFRP substrate on the upper surface of the first non-woven fabric, laminating a second non-woven fabric on the upper surface of the second CFRP substrate, and A third CFRP base material was laid on the upper surface of the second nonwoven fabric, and a third nonwoven fabric was sequentially laminated on the upper surface of the third CFRP base material to form a laminate.
このようにして、第2及び第3のCFRP基材の上下両面をドライの第1〜第3の不織布でそれぞれ挟み込むことによって、第1〜第3のCFRP基材及び第1〜第3の不織布によって構成されたプリプレグ積層体を形成した。なお、上記のような方法によって第1〜第3のCFRP基材及び第1〜第3の不織布が順次重畳された積層体を予め構成した後、下型のキャビティ内に移載してもよい。 In this way, the first and third CFRP substrates and the first to third nonwoven fabrics are sandwiched between the first and third nonwoven fabrics of the second and third CFRP substrates, respectively. The prepreg laminated body comprised by this was formed. In addition, after constructing in advance a laminated body in which the first to third CFRP base materials and the first to third nonwoven fabrics are sequentially superimposed by the above-described method, the laminate may be transferred into the lower mold cavity. .
図2(a)は、本実施例によって成形された前記SMC成形材料に対してパンチによって加圧力が付与された後のSMC成形品の部分拡大縦断面図であり、図2(b)は、本実施例によって成形された前記SMC成形品の表面(積層体の最上面)の面粗度を示す特性図である。なお、前記面粗度の測定は、JIS規格 B−0601に基づいて行った。 FIG. 2A is a partially enlarged longitudinal sectional view of an SMC molded product after a pressing force is applied by a punch to the SMC molding material molded according to the present embodiment, and FIG. It is a characteristic view which shows the surface roughness of the surface (uppermost surface of a laminated body) of the said SMC molded product shape | molded by the present Example. The surface roughness was measured based on JIS standard B-0601.
図2(a)中において略水平方向に沿って延在している白色部分は、プレス成形によって樹脂が含浸された不織布をそれぞれ示している。本実施例では、SMC成形品の厚さ方向(鉛直方向)を、樹脂が未含浸の不織布によって細分化(分割化)することにより、厚さ方向における樹脂の収縮を抑制することができた。 In FIG. 2A, the white portions extending along the substantially horizontal direction indicate nonwoven fabrics impregnated with resin by press molding. In this example, the shrinkage of the resin in the thickness direction could be suppressed by subdividing (dividing) the thickness direction (vertical direction) of the SMC molded product with a non-impregnated nonwoven fabric.
換言すると、本実施例では、プリプレグであるCFRP基材の厚さ方向を、樹脂が未含浸で前記CFRP基材よりも硬質からなる不織布によって挟持することにより、SMC成形品の厚さ方向に連続する樹脂リッチ部をなくすことができ、SMC成形品の表面側(積層体の最上面)の樹脂収縮に起因する窪み(凹部)の発生を抑制して表面平滑化を達成することができた。この結果、本実施例では、外観品質が良好なSMC成形品を得ることができた。 In other words, in this example, the thickness direction of the CFRP base material that is a prepreg is continuously sandwiched in the thickness direction of the SMC molded product by sandwiching the non-impregnated resin with a nonwoven fabric that is harder than the CFRP base material. The resin-rich portion to be removed can be eliminated, and the surface smoothing can be achieved by suppressing the generation of the depression (concave portion) due to the resin shrinkage on the surface side (the uppermost surface of the laminate) of the SMC molded product. As a result, in this example, it was possible to obtain an SMC molded product with good appearance quality.
さらに、プリプレグ積層体に対して上方側から加圧力が付与された際、前記加圧力の作用下にCFRP基材に含有された炭素繊維が塑性流動によってうねりながら賦形することが想定されるが、本実施例では、プリプレグであるCFRP基材の上下両面を不織布で挟持することにより、流動性に起因する前記炭素繊維のうねりが抑制され、SMC成形品の表面側に前記炭素繊維のうねりに起因する表面の凹凸の発生を抑制して表面平滑化を達成することができた。 Furthermore, when a pressing force is applied to the prepreg laminate from above, it is assumed that the carbon fiber contained in the CFRP base material is shaped while being swelled by plastic flow under the action of the pressing force. In this example, by sandwiching the upper and lower surfaces of the CFRP base material, which is a prepreg, with the nonwoven fabric, the undulation of the carbon fiber due to fluidity is suppressed, and the undulation of the carbon fiber on the surface side of the SMC molded product is suppressed. It was possible to achieve surface smoothing by suppressing the occurrence of surface irregularities.
この点については、図2(a)中に黒色部分で示される樹脂層(CFRP基材層)が略水平状に延在していると共に、図2(b)に示される特性曲線において、測定長さに沿って面粗度の上下方向の振れが小さくなっていることから諒解される。 About this point, while the resin layer (CFRP base material layer) shown by the black part in FIG. 2 (a) is extending substantially horizontally, it is measured in the characteristic curve shown in FIG. 2 (b). This can be interpreted from the fact that the vertical fluctuation of the surface roughness is reduced along the length.
換言すると、本実施例では、樹脂が未含浸でCFRP基材よりも硬質からなる不織布によって前記CFRP基材の上下両面を挟み込むことにより、塑性流動に起因するうねりが前記不織布によって好適に緩衝されるため、SMC成形品の表面側に前記うねりが到達することがなく、窪みの発生が阻止される。 In other words, in this embodiment, the undulation caused by plastic flow is suitably buffered by the nonwoven fabric by sandwiching the upper and lower surfaces of the CFRP substrate with a nonwoven fabric that is not impregnated with resin and is harder than the CFRP substrate. Therefore, the swell does not reach the surface side of the SMC molded product, and the generation of the depression is prevented.
さらに、SMC成形品に対して高剛性を付与するためにリブ成形用凹部を下型に形成した場合であっても、本実施例では、樹脂が未含浸でCFRP基材よりも硬質からなる不織布によって前記CFRP基材の上下両面を挟み込むことにより、塑性流動した成形材料がリブ成形用凹部に流入してSMC成形品の表面に窪みが発生することを抑制することができた(図3参照)。 Further, even in the case where the rib forming concave portion is formed in the lower mold in order to give high rigidity to the SMC molded product, in this embodiment, the nonwoven fabric which is not impregnated with resin and is harder than the CFRP base material By sandwiching the upper and lower surfaces of the CFRP base material, it was possible to suppress the plastic flow molding material from flowing into the rib molding recess and generating depressions on the surface of the SMC molded product (see FIG. 3). .
図3に示すように、CFRP基材の上面に設けられた不織布が、いわゆる重石のような働きをすることにより、リブ成形用凹部の上方に対応する部分の成形材料のみが部分的にリブ成形用凹部内に流入することが抑制され、前記リブ成形用凹部に近接する略水平方向部分の成形材料の塑性流動が促進される。この結果、本実施の形態では、CFRP基材の上面に窪みが形成されることがなく、SMC成形品の裏面側に複数のリブを好適に形成することができた。 As shown in FIG. 3, the non-woven fabric provided on the upper surface of the CFRP base material functions like a so-called weight, so that only the portion of the molding material corresponding to the upper part of the rib molding recess is rib-molded. Inflow into the concave portion for use is suppressed, and plastic flow of the molding material in the substantially horizontal direction portion adjacent to the concave portion for rib forming is promoted. As a result, in this embodiment, no depression was formed on the upper surface of the CFRP base material, and a plurality of ribs could be suitably formed on the back surface side of the SMC molded product.
さらにまた、本実施例では、CFRP基材中における炭素繊維のVf(繊維体積含有率)を20%に設定しており、前記Vfが低く抑制されたSMC成形品に好適に適用することができる。なお、従来技術で記載した特許文献1及び特許文献2では、材料組成中における無機物の体積含有率Vfがいずれも45%以上からなる材料に設定されており、前記Vfを45%未満に設定した場合、樹脂収縮量が大きくなって成形品の表面平滑化が得られないおそれがある。 Furthermore, in this example, the Vf (fiber volume content) of the carbon fiber in the CFRP base material is set to 20%, which can be suitably applied to an SMC molded product in which the Vf is suppressed to a low level. . In Patent Document 1 and Patent Document 2 described in the prior art, the volume content Vf of the inorganic substance in the material composition is set to a material of 45% or more, and the Vf is set to less than 45%. In this case, there is a possibility that the amount of resin shrinkage becomes large and the surface smoothness of the molded product cannot be obtained.
[比較例]
次に、図4に示される比較例について説明する。この比較例では、SMC成形材料中において、複数のCFRP基材の間に不織布が介装されておらず、第1〜第3のCFRP基材のみが直接的に順次重畳されてプリプレグ積層体が構成されている点で本実施例と相違している。
[Comparative example]
Next, a comparative example shown in FIG. 4 will be described. In this comparative example, in the SMC molding material, a non-woven fabric is not interposed between a plurality of CFRP base materials, and only the first to third CFRP base materials are directly and sequentially superimposed to form a prepreg laminate. This is different from the present embodiment in that it is configured.
図5(a)は、比較例によって成形されたSMC成形材料に対してパンチによって加圧力が付与された後のSMC成形品の部分拡大縦断面図であり、図5(b)は、比較例によって成形された前記SMC成形品の表面の面粗度を示す特性図である。なお、前記面粗度の測定は、JIS規格 B−0601に基づいて行った。 Fig.5 (a) is a partial expanded longitudinal cross-sectional view of the SMC molded product after a pressurizing force was given with the punch with respect to the SMC molding material shape | molded by the comparative example, FIG.5 (b) is a comparative example. It is a characteristic view which shows the surface roughness of the surface of the said SMC molded product shape | molded by (3). The surface roughness was measured based on JIS standard B-0601.
比較例では、プリプレグ積層体に対して上方側から加圧力が付与された際、前記加圧力の作用下に、CFRP基材に含有された炭素繊維が塑性流動によってうねりながら賦形されていることが図5(a)のA部及びB部から諒解される。図5(a)のA部及びB部では、他の部分と比較して大きく湾曲してうねった状態にあるからである。 In the comparative example, when a pressing force is applied to the prepreg laminate from above, the carbon fibers contained in the CFRP base material are shaped while being swelled by plastic flow under the action of the pressing force. Is understood from part A and part B in FIG. This is because the portion A and the portion B in FIG. 5A are greatly curved and undulated as compared with the other portions.
従って、比較例では、SMC成形品の厚さ方向(鉛直方向)における樹脂の収縮を抑制することができなかった。この結果、比較例では、SMC成形品の厚さ方向に連続する樹脂リッチ部が発生し、SMC成形品の表面側(積層体の最上面)の樹脂収縮に起因する窪みが発生した。 Therefore, in the comparative example, the shrinkage of the resin in the thickness direction (vertical direction) of the SMC molded product could not be suppressed. As a result, in the comparative example, a resin-rich portion continuous in the thickness direction of the SMC molded product was generated, and a depression caused by resin shrinkage on the surface side of the SMC molded product (the uppermost surface of the laminate) was generated.
また、比較例では、図5(b)に示される特性曲線において、測定長さに沿った面粗度の上下方向の振れが全体的に大きくなっており、特に、図5(a)のA部及びB部に示されるうねりに対応して面粗度が大きく変動し、窪みが形成されていることが諒解される。 Further, in the comparative example, in the characteristic curve shown in FIG. 5B, the fluctuation in the vertical direction of the surface roughness along the measurement length is increased as a whole, and in particular, A in FIG. It can be seen that the surface roughness greatly fluctuates corresponding to the undulations shown in the part and the part B, and a depression is formed.
さらに、比較例では、SMC成形品に対して高剛性を付与するためにリブ成形用凹部を下型に形成した場合、塑性流動した成形材料がリブ成形用凹部に流入してSMC成形品の表面に窪みが発生した(図6参照)。 Further, in the comparative example, when the rib molding recess is formed in the lower mold in order to impart high rigidity to the SMC molded product, the plastically flowed molding material flows into the rib molding recess and the surface of the SMC molded product. A depression was generated in the surface (see FIG. 6).
Claims (3)
強化繊維材料に樹脂を含浸してシート状のプリプレグを形成する工程と、
複数の前記プリプレグを積層し成形型によって成形する際、プリプレグ層の間に、樹脂が未含浸の基材を介装してプリプレグ積層体を成形する工程と、
前記プリプレグ積層体に対して樹脂を含浸させた後、前記樹脂を硬化させる工程と、
を有することを特徴とする繊維強化複合材料の製造方法。 In the method for producing a fiber-reinforced composite material,
A step of impregnating a reinforcing fiber material with a resin to form a sheet-like prepreg;
When laminating a plurality of the prepregs and molding with a molding die, a step of forming a prepreg laminate between the prepreg layers by interposing a non-impregnated base material;
A step of curing the resin after impregnating the resin with the prepreg laminate;
A method for producing a fiber-reinforced composite material, comprising:
前記未含浸の基材は、少なくとも、不織布又は織物のいずれか1つからなることを特徴とする繊維強化複合材料の製造方法。 In the manufacturing method of the fiber reinforced composite material of Claim 1,
The method for producing a fiber-reinforced composite material, wherein the unimpregnated base material comprises at least one of a nonwoven fabric and a woven fabric.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007094205A JP2008246981A (en) | 2007-03-30 | 2007-03-30 | Manufacturing method of fiber-reinforced composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007094205A JP2008246981A (en) | 2007-03-30 | 2007-03-30 | Manufacturing method of fiber-reinforced composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008246981A true JP2008246981A (en) | 2008-10-16 |
Family
ID=39972479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007094205A Pending JP2008246981A (en) | 2007-03-30 | 2007-03-30 | Manufacturing method of fiber-reinforced composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008246981A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013060060A (en) * | 2011-09-12 | 2013-04-04 | Toyota Motor Corp | Vehicle structure member and vehicle floor using the same |
JP2015178241A (en) * | 2014-03-19 | 2015-10-08 | トヨタ自動車株式会社 | Method of producing fiber-reinforced resin material |
JP2015231836A (en) * | 2015-08-06 | 2015-12-24 | トヨタ自動車株式会社 | Molding method of vehicle structural member and molding method of vehicle floor |
WO2016136790A1 (en) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
JP2016155259A (en) * | 2015-02-23 | 2016-09-01 | 公立大学法人首都大学東京 | Method for producing fiber-reinforced composite material without using autoclave, and fiber-reinforced composite material produced by the same |
JP2017065181A (en) * | 2015-09-30 | 2017-04-06 | 積水化学工業株式会社 | Method for producing fiber-reinforced sheet and method for producing structure |
WO2017145872A1 (en) | 2016-02-23 | 2017-08-31 | 東レ株式会社 | Method for producing fiber reinforced composite material |
WO2018101245A1 (en) * | 2016-11-29 | 2018-06-07 | 三菱ケミカル株式会社 | Fiber-reinforced resin molded article and method for manufacturing fiber-reinforced resin molded article |
KR20190071696A (en) | 2016-10-26 | 2019-06-24 | 도레이 카부시키가이샤 | Prepreg laminate, fiber-reinforced composite material and method for producing fiber-reinforced composite material |
US10800894B2 (en) | 2015-02-27 | 2020-10-13 | Toray Industries, Inc. | Resin supply material, preform, and method of producing fiber-reinforced resin |
EP3795617A2 (en) | 2015-02-27 | 2021-03-24 | Toray Industries, Inc. | Resin supply material, preform, and method for producing fiber-reinforced resin |
KR102274173B1 (en) * | 2020-07-15 | 2021-07-08 | 한국항공우주산업 주식회사 | Co curing method of composite material through reinforcement and its composite material |
JPWO2022097438A1 (en) * | 2020-11-04 | 2022-05-12 | ||
WO2022163404A1 (en) * | 2021-01-28 | 2022-08-04 | 東レ株式会社 | Fiber-reinforced plastic and method for producing same |
-
2007
- 2007-03-30 JP JP2007094205A patent/JP2008246981A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013060060A (en) * | 2011-09-12 | 2013-04-04 | Toyota Motor Corp | Vehicle structure member and vehicle floor using the same |
JP2015178241A (en) * | 2014-03-19 | 2015-10-08 | トヨタ自動車株式会社 | Method of producing fiber-reinforced resin material |
JP2016155259A (en) * | 2015-02-23 | 2016-09-01 | 公立大学法人首都大学東京 | Method for producing fiber-reinforced composite material without using autoclave, and fiber-reinforced composite material produced by the same |
US10800894B2 (en) | 2015-02-27 | 2020-10-13 | Toray Industries, Inc. | Resin supply material, preform, and method of producing fiber-reinforced resin |
WO2016136790A1 (en) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber-reinforced resin |
US11034809B2 (en) | 2015-02-27 | 2021-06-15 | Toray Industries, Inc. | Resin supply material, preform, and method of producing fiber-reinforced resin |
JPWO2016136790A1 (en) * | 2015-02-27 | 2017-11-30 | 東レ株式会社 | Resin supply material, preform, and method for producing fiber reinforced resin |
EP3795617A2 (en) | 2015-02-27 | 2021-03-24 | Toray Industries, Inc. | Resin supply material, preform, and method for producing fiber-reinforced resin |
US10822463B2 (en) | 2015-02-27 | 2020-11-03 | Toray Industries, Inc. | Resin supply material, preform, and method of producing fiber-reinforced resin |
JP2015231836A (en) * | 2015-08-06 | 2015-12-24 | トヨタ自動車株式会社 | Molding method of vehicle structural member and molding method of vehicle floor |
JP2017065181A (en) * | 2015-09-30 | 2017-04-06 | 積水化学工業株式会社 | Method for producing fiber-reinforced sheet and method for producing structure |
US11001011B2 (en) | 2016-02-23 | 2021-05-11 | Toray Industries, Inc. | Method of producing fiber reinforced composite material |
KR20180117143A (en) | 2016-02-23 | 2018-10-26 | 도레이 카부시키가이샤 | Manufacturing method of fiber reinforced composite material |
EP3421212A4 (en) * | 2016-02-23 | 2019-10-30 | Toray Industries, Inc. | Method for producing fiber reinforced composite material |
WO2017145872A1 (en) | 2016-02-23 | 2017-08-31 | 東レ株式会社 | Method for producing fiber reinforced composite material |
CN108698268A (en) * | 2016-02-23 | 2018-10-23 | 东丽株式会社 | The manufacturing method of fiber reinforced composite material |
CN108698268B (en) * | 2016-02-23 | 2020-11-17 | 东丽株式会社 | Method for producing fiber-reinforced composite material |
US11001033B2 (en) | 2016-10-26 | 2021-05-11 | Toray Industries, Inc. | Prepreg laminate and fiber-reinforced composite material, and method of producing fiber-reinforced composite material |
KR20190071696A (en) | 2016-10-26 | 2019-06-24 | 도레이 카부시키가이샤 | Prepreg laminate, fiber-reinforced composite material and method for producing fiber-reinforced composite material |
CN109996658B (en) * | 2016-11-29 | 2021-10-22 | 三菱化学株式会社 | Fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article |
CN109996658A (en) * | 2016-11-29 | 2019-07-09 | 三菱化学株式会社 | The manufacturing method of fiber-reinforced resin molded product and fiber-reinforced resin molded product |
WO2018101245A1 (en) * | 2016-11-29 | 2018-06-07 | 三菱ケミカル株式会社 | Fiber-reinforced resin molded article and method for manufacturing fiber-reinforced resin molded article |
EP3549741A4 (en) * | 2016-11-29 | 2019-12-18 | Mitsubishi Chemical Corporation | Fiber-reinforced resin molded article and method for manufacturing fiber-reinforced resin molded article |
JP2020062893A (en) * | 2016-11-29 | 2020-04-23 | 三菱ケミカル株式会社 | Fiber-reinforced resin molded product and method for producing fiber-reinforced resin molded product |
US11312090B2 (en) | 2016-11-29 | 2022-04-26 | Mitsubishi Chemical Corporation | Fiber-reinforced resin molded article and method for manufacturing fiber-reinforced resin molded article |
KR102274173B1 (en) * | 2020-07-15 | 2021-07-08 | 한국항공우주산업 주식회사 | Co curing method of composite material through reinforcement and its composite material |
JPWO2022097438A1 (en) * | 2020-11-04 | 2022-05-12 | ||
WO2022097438A1 (en) * | 2020-11-04 | 2022-05-12 | 帝人株式会社 | Method for performing compression molding and producing molded article |
JP7377993B2 (en) | 2020-11-04 | 2023-11-10 | 帝人株式会社 | Method of manufacturing a molded object by compression molding |
US12134216B2 (en) | 2020-11-04 | 2024-11-05 | Teijin Limited | Method for producing molded body by compression-molding |
WO2022163404A1 (en) * | 2021-01-28 | 2022-08-04 | 東レ株式会社 | Fiber-reinforced plastic and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008246981A (en) | Manufacturing method of fiber-reinforced composite material | |
US10118349B2 (en) | Press moulding method | |
JP5762533B2 (en) | Method for producing components from fiber composites, preforms therefor, and components | |
US6509078B1 (en) | Composite material | |
JP5466076B2 (en) | Manufacturing method of composite molded product | |
KR20150093745A (en) | Articles including untwisted fibers and methods of using them | |
WO2014112644A1 (en) | Manufacturing method for fibre-reinforced resin substrate or resin molded article, and plasticizing exhauster used in manufacturing method | |
US20100196654A1 (en) | Process for producing composite laminate structures and composite laminate structures formed thereby | |
JP2015178241A (en) | Method of producing fiber-reinforced resin material | |
CN106739245A (en) | Electronic product casing and its manufacture method | |
KR101961103B1 (en) | Carbon riber and mesh structure tight processing carbon fiber prepreg and manufacturing method of the same | |
KR20170112396A (en) | Three Dimensional Fiber-Reinforced Plastics and Manufacturing Method thereof | |
JP7294131B2 (en) | Molded product manufacturing method | |
GB2560703A (en) | Moulding method | |
JP4239400B2 (en) | Artificial marble bathtub and manufacturing method thereof | |
JP4399687B2 (en) | Artificial marble bathtub and manufacturing method thereof | |
JP2004338270A (en) | Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material | |
US11529770B2 (en) | Moulding method | |
JP7139296B2 (en) | Fiber-reinforced resin composite molding and method for producing the same | |
JP7473416B2 (en) | Method for producing fiber-reinforced composite material | |
JP2017177435A (en) | Manufacturing method of composite fiber reinforced resin substrate and molded article | |
KR102291931B1 (en) | Manufacturing method for molded article using fiber reinforcerd plastic waste comprising thermosetting plastics and molded article using the same | |
Wang et al. | Reducing fiber readout of structural composite panels | |
GB2560704A (en) | Moulded part | |
JP4367994B2 (en) | Method for producing composite material of pulp fiber panel and fiber reinforced plastic |