Nothing Special   »   [go: up one dir, main page]

JP7573356B2 - Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte - Google Patents

Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte Download PDF

Info

Publication number
JP7573356B2
JP7573356B2 JP2018199869A JP2018199869A JP7573356B2 JP 7573356 B2 JP7573356 B2 JP 7573356B2 JP 2018199869 A JP2018199869 A JP 2018199869A JP 2018199869 A JP2018199869 A JP 2018199869A JP 7573356 B2 JP7573356 B2 JP 7573356B2
Authority
JP
Japan
Prior art keywords
group
anion exchange
aqueous electrolyte
basic anion
weakly basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018199869A
Other languages
Japanese (ja)
Other versions
JP2020068107A (en
Inventor
健太 合庭
彰 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018199869A priority Critical patent/JP7573356B2/en
Application filed by Organo Corp filed Critical Organo Corp
Priority to US17/287,829 priority patent/US20210384557A1/en
Priority to PCT/JP2019/038124 priority patent/WO2020085001A1/en
Priority to CN201980064421.1A priority patent/CN112889170A/en
Priority to EP19877049.7A priority patent/EP3872915A4/en
Priority to KR1020217013123A priority patent/KR102627186B1/en
Publication of JP2020068107A publication Critical patent/JP2020068107A/en
Priority to JP2023103485A priority patent/JP2023116810A/en
Application granted granted Critical
Publication of JP7573356B2 publication Critical patent/JP7573356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水電解液の製造装置および非水電解液の製造方法に関するものである。 The present invention relates to a non-aqueous electrolyte manufacturing apparatus and a non-aqueous electrolyte manufacturing method.

リチウムイオン電池においては、電解液として、炭酸エステル溶媒に六フッ化リン酸リチウム(LiPF6 )などのリチウム系電解質を溶解させた非水電解液が用いられている。 In lithium ion batteries, a non-aqueous electrolyte solution in which a lithium-based electrolyte such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a carbonate ester solvent is used as the electrolyte solution.

しかしながら、上記電解液を構成する炭酸エステル溶媒及びリチウム系電解質中には微量の水分が残留しており、この水分は、上記LiPF6 等のリチウム系電解質と反応して、例えば以下の反応式(1)~(3)に示すようにフッ化水素(HF)等を生成する。
(1)LiPF6+H2O → LiF+2HF+POF3
(2)POF3+H2O → POF2(OH)+HF
(3)POF2(OH)+H2O → POF(OH)2+HF
However, trace amounts of water remain in the carbonate ester solvent and the lithium-based electrolyte constituting the electrolytic solution. This water reacts with the lithium-based electrolyte such as LiPF6 to produce hydrogen fluoride (HF) and the like, for example, as shown in the following reaction formulas (1) to (3).
(1) LiPF 6 +H 2 O → LiF+2HF+POF 3
(2) POF 3 +H 2 O → POF 2 (OH) + HF
(3) POF 2 (OH) + H 2 O → POF (OH) 2 +HF

電解液中に上記フッ化水素(フッ酸)等の酸性不純物が存在する場合、リチウムイオン電池の電池容量や充放電のサイクル特性を低下させたり、電池内部の腐食を生じやすくなる(特許文献1(特開2011-71111号公報)等参照)。 If acidic impurities such as hydrogen fluoride (hydrofluoric acid) are present in the electrolyte, they can reduce the battery capacity and charge/discharge cycle characteristics of the lithium-ion battery, and can easily cause corrosion inside the battery (see Patent Document 1 (JP 2011-71111 A)).

特開2011-71111号公報JP 2011-71111 A

このため、従来より、電解液中からフッ酸等の酸性不純物を除去する方法が望まれるようになっており、係る酸性不純物を除去する方法として、三級アミン構造を有する陰イオン交換基(三級アミノ基)を含む弱塩基性陰イオン交換樹脂にリチウムイオン電池用電解液を接触させる方法が考えられる。 For this reason, there has been a demand for a method for removing acidic impurities such as hydrofluoric acid from the electrolyte. One possible method for removing such acidic impurities is to bring the lithium-ion battery electrolyte into contact with a weakly basic anion exchange resin that contains an anion exchange group having a tertiary amine structure (a tertiary amino group).

しかしながら、本発明者等が検討したところ、水中と異なり非水電解液中では、上記弱塩基性陰イオン交換樹脂の種類によってはフッ酸等の酸性不純物の除去性能が上手く発揮できず、目標とする電解液の品質まで達しない場合があることが判明した。 However, the inventors' investigations revealed that, unlike in water, in a non-aqueous electrolyte, depending on the type of weakly basic anion exchange resin, the ability to remove acidic impurities such as hydrofluoric acid may not be fully demonstrated, and the electrolyte may not achieve the desired quality.

このような状況下、本発明は、フッ酸等の酸性不純物を効果的に吸着してその含有量を低減したリチウムイオン電池用電解液等の非水電解液を容易に調製し得る非水電解液の製造装置を提供するとともに、非水電解液の製造方法を提供することを目的とするものである。 Under these circumstances, the present invention aims to provide a nonaqueous electrolyte manufacturing apparatus that can easily prepare nonaqueous electrolytes, such as electrolytes for lithium ion batteries, that effectively adsorb acidic impurities such as hydrofluoric acid and have a reduced content, and to provide a method for manufacturing nonaqueous electrolytes.

本発明者等は、上記目的を達成するために鋭意研究を重ねた結果、炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部を有し、前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とするとともに弱塩基性陰イオン交換基として特定の三級アミノ基を有する非水電解液の製造装置により、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。 As a result of intensive research conducted by the inventors in order to achieve the above object, they discovered that the above technical problems can be solved by a non-aqueous electrolyte manufacturing apparatus having an ion exchange section containing a weakly basic anion exchange resin for obtaining a non-aqueous electrolyte by passing an alkali metal salt electrolyte-containing liquid in which an alkali metal salt electrolyte is dispersed in a carbonate ester through the apparatus, and the weakly basic anion exchange resin has a styrene-based resin base and a specific tertiary amino group as a weakly basic anion exchange group. Based on this knowledge, the present invention has been completed.

すなわち、本発明は、
(1)炭酸エステル中に分解して酸を生成し得るアルカリ金属塩電解質が溶解されたアルカリ金属塩電解質含有液を通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)

Figure 0007573356000001
(ただし、R基およびR基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部位を示す。)
で表される三級アミノ基を有する
ことを特徴とする非水電解液の製造装置、
(2)前記スチレン系樹脂が、スチレン-ジビニルベンゼン共重合体である上記(1)に記載の非水電解液の製造装置、
(3)前記弱塩基性陰イオン交換基が、下記一般式(II)
Figure 0007573356000002
(ただし、R基およびR基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R基は炭素数1~3の炭化水素基であり、*は基体との結合部位を示す。)
で表される三級アミノ基である上記(1)または(2)に記載の非水電解液の製造装置、
(4)前記一般式(I)または一般式(II)で表される弱塩基性陰イオン交換基が、ジメチルアミノメチル基である上記(1)~(3)のいずれかに記載の非水電解液の製造装置、
(5)前記非水電解液がリチウムイオン電池用電解液である上記(1)~(4)のいずれかに記載の非水電解液の製造装置、
(6)非水電解液を製造する方法であって、
炭酸エステル中に分解して酸を生成し得るアルカリ金属塩電解質が溶解されたアルカリ金属塩電解質含有液を、弱塩基性陰イオン交換樹脂が収容されたイオン交換部に通液して非水電解液を得る酸吸着工程を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)
Figure 0007573356000003
(ただし、R基およびR基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部を示す。)
で表される三級アミノ基を有する
ことを特徴とする非水電解液の製造方法、
(7)前記スチレン系樹脂が、スチレン-ジビニルベンゼン共重合体である上記(6)に記載の非水電解液の製造方法、
(8)前記弱塩基性陰イオン交換基が、下記一般式(II)
Figure 0007573356000004
(ただし、R基およびR基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R基は炭素数1~3の炭化水素基であり、*は基体との結合部位を示す。)
で表される三級アミノ基である上記(6)または(7)に記載の非水電解液の製造方法、
(9)前記一般式(I)または一般式(II)で表される弱塩基性陰イオン交換基が、ジメチルアミノメチル基である上記(6)~(8)のいずれかに記載の非水電解液の製造方法、
(10)前記非水電解液がリチウムイオン電池用電解液である上記(6)~(9)のいずれかに記載の非水電解液の製造方法、
を提供するものである。 That is, the present invention provides
(1) An ion exchange unit containing a weakly basic anion exchange resin is provided for passing an alkali metal salt electrolyte-containing liquid in which an alkali metal salt electrolyte capable of decomposing into a carbonate ester to generate an acid is dissolved, to obtain a nonaqueous electrolyte solution.
The weakly basic anion exchange resin has a styrene-based resin as a base and a weakly basic anion exchange group represented by the following general formula (I):
Figure 0007573356000001
(wherein R1 group and R2 group are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and * indicates a bonding site with a substrate or a bonding group for bonding to a substrate.)
An apparatus for producing a non-aqueous electrolyte solution, comprising:
(2) The apparatus for producing a non-aqueous electrolyte according to (1) above, wherein the styrene-based resin is a styrene-divinylbenzene copolymer.
(3) The weakly basic anion exchange group is represented by the following general formula (II):
Figure 0007573356000002
(wherein R1 and R2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, R3 is a hydrocarbon group having 1 to 3 carbon atoms, and * indicates the bonding site with the substrate.)
The apparatus for producing a non-aqueous electrolyte solution according to the above (1) or (2),
(4) The apparatus for producing a nonaqueous electrolyte according to any one of (1) to (3) above, wherein the weakly basic anion exchange group represented by the general formula (I) or the general formula (II) is a dimethylaminomethyl group.
(5) The apparatus for producing a non-aqueous electrolyte according to any one of (1) to (4), wherein the non-aqueous electrolyte is an electrolyte for a lithium ion battery.
(6) A method for producing a nonaqueous electrolyte solution, comprising the steps of:
an acid adsorption step of passing an alkali metal salt electrolyte-containing solution, in which an alkali metal salt electrolyte capable of being decomposed into a carbonate ester to generate an acid, through an ion exchange unit containing a weakly basic anion exchange resin to obtain a non-aqueous electrolyte;
The weakly basic anion exchange resin has a styrene-based resin as a base and a weakly basic anion exchange group represented by the following general formula (I):
Figure 0007573356000003
(wherein R1 group and R2 group are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and * indicates a bond to a substrate or a bonding group for bonding to a substrate.)
A method for producing a non-aqueous electrolyte solution, comprising the steps of:
(7) The method for producing a non-aqueous electrolyte according to (6), wherein the styrene-based resin is a styrene-divinylbenzene copolymer.
(8) The weakly basic anion exchange group is represented by the following general formula (II):
Figure 0007573356000004
(wherein R1 and R2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, R3 is a hydrocarbon group having 1 to 3 carbon atoms, and * indicates the bonding site with the substrate.)
The method for producing a non-aqueous electrolyte solution according to the above (6) or (7), wherein the tertiary amino group is represented by the following formula:
(9) The method for producing a nonaqueous electrolyte according to any one of (6) to (8), wherein the weakly basic anion exchange group represented by the general formula (I) or the general formula (II) is a dimethylaminomethyl group.
(10) The method for producing a non-aqueous electrolyte solution according to any one of (6) to (9), wherein the non-aqueous electrolyte solution is an electrolyte solution for a lithium ion battery.
This provides:

本発明によれば、フッ酸等の酸性不純物を効果的に吸着してその含有量を低減した非水電解液を容易に調製し得る非水電解液の製造装置を提供するとともに、非水電解液の製造方法を提供することができる。 The present invention provides a nonaqueous electrolyte manufacturing device that can easily prepare a nonaqueous electrolyte with a reduced content of acidic impurities such as hydrofluoric acid by effectively adsorbing them, and also provides a method for manufacturing a nonaqueous electrolyte.

本発明に係る非水電解液の製造装置の構成を説明するための図である。FIG. 2 is a diagram illustrating a configuration of an apparatus for producing a nonaqueous electrolyte according to the present invention. 本発明に係る非水電解液の製造装置の形態例を示す図である。1 is a diagram showing an example of an apparatus for producing a nonaqueous electrolyte according to the present invention;

本発明に係る非水電解液の製造装置は、炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)

Figure 0007573356000005
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部位を示す。)
で表される三級アミノ基を有する
ことを特徴とするものである。 The apparatus for producing a non-aqueous electrolyte according to the present invention includes an ion exchange unit containing a weakly basic anion exchange resin, and configured to pass an alkali metal salt electrolyte-containing liquid in which an alkali metal salt electrolyte is dispersed in a carbonate ester to obtain a non-aqueous electrolyte,
The weakly basic anion exchange resin has a styrene-based resin as a base and a weakly basic anion exchange group represented by the following general formula (I):
Figure 0007573356000005
(wherein R1 and R2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and * indicates a bonding site with a substrate or a bonding group for bonding to a substrate.)
The compound is characterized in that it has a tertiary amino group represented by the following formula:

図1は、本発明に係る非水電解液の製造装置の構成例を示すものである。 Figure 1 shows an example of the configuration of a nonaqueous electrolyte manufacturing device according to the present invention.

図1に示すように、本発明に係る非水電解液の製造装置1は、炭酸エステル中にリチウム系電解質等のアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液Sを通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部2を有している。 As shown in FIG. 1, the nonaqueous electrolyte manufacturing apparatus 1 according to the present invention has an ion exchange section 2 containing a weakly basic anion exchange resin for passing an alkali metal salt electrolyte-containing liquid S in which an alkali metal salt electrolyte such as a lithium-based electrolyte is dispersed in a carbonate ester to obtain a nonaqueous electrolyte.

本発明に係る非水電解液の製造装置において、炭酸エステルとしては、環状炭酸エステルおよび鎖状炭酸エステルから選ばれる一種以上を挙げることができる。 In the non-aqueous electrolyte manufacturing apparatus according to the present invention, the carbonate ester may be one or more selected from cyclic carbonate esters and chain carbonate esters.

環状炭酸エステルとしては、エチレンカーボネート(炭酸エチレン)、プロピレンカーボネート(炭酸プロピレン)等から選ばれる一種以上を挙げることができ、鎖状炭酸エステルとしては、ジメチルカーボネート(炭酸ジメチル)、ジエチルカーボネート(炭酸ジエチル)、エチルメチルカーボネート(炭酸エチルメチル)等から選ばれる一種以上を挙げることができる。 Examples of cyclic carbonate esters include one or more selected from ethylene carbonate (ethylene carbonate), propylene carbonate (propylene carbonate), etc., and examples of chain carbonate esters include one or more selected from dimethyl carbonate (dimethyl carbonate), diethyl carbonate (diethyl carbonate), ethyl methyl carbonate (ethyl methyl carbonate), etc.

本発明に係る非水電解液の製造装置において、アルカリ金属塩電解質としては、リチウム系電解質を挙げることができ、リチウム系電解質としては、LiPF6、LiClO4、LiBF4 、LiAsF6 、LiSbF6 、LiAlCl4 、LiCF3SO3 等から選ばれる一種以上を挙げることができ、電池性能を考慮した場合、LiPF6 が好適である。
本発明に係る非水電解液の製造装置において、非水電解液としては、リチウムイオン電池用電解液が好適である。
In the non-aqueous electrolyte manufacturing apparatus of the present invention, the alkali metal salt electrolyte may be a lithium-based electrolyte, and the lithium-based electrolyte may be one or more selected from LiPF6 , LiClO4 , LiBF4 , LiAsF6 , LiSbF6 , LiAlCl4 , LiCF3SO3 , etc., with LiPF6 being preferred in terms of battery performance.
In the non-aqueous electrolyte production apparatus according to the present invention, the non-aqueous electrolyte is preferably an electrolyte for lithium ion batteries.

本発明に係る非水電解液の製造装置において、アルカリ金属塩電解質含有液中のアルカリ金属塩電解質濃度は、0.5~2.0mol/Lが好ましく、0.5~1.2mol/Lがより好ましく、0.8~1.2mol/Lがさらに好ましい。 In the nonaqueous electrolyte manufacturing apparatus according to the present invention, the concentration of the alkali metal salt electrolyte in the alkali metal salt electrolyte-containing solution is preferably 0.5 to 2.0 mol/L, more preferably 0.5 to 1.2 mol/L, and even more preferably 0.8 to 1.2 mol/L.

アルカリ金属塩電解質含有液の調製方法も特に制限されないが、例えば、炭酸エステル中にアルカリ金属塩電解質を、不活性ガス雰囲気下で添加、溶解することにより調製することができる。 The method for preparing the alkali metal salt electrolyte-containing liquid is not particularly limited, but it can be prepared, for example, by adding and dissolving an alkali metal salt electrolyte in a carbonate ester under an inert gas atmosphere.

本発明に係る非水電解液の製造装置は、アルカリ金属塩電解質含有液(未精製の非水電解液)を通液する、弱塩基性陰イオン交換樹脂を収容したイオン交換部を有している。 The non-aqueous electrolyte manufacturing apparatus according to the present invention has an ion exchange section containing a weakly basic anion exchange resin through which an alkali metal salt electrolyte-containing liquid (unrefined non-aqueous electrolyte) is passed.

本発明に係る非水電解液の製造装置において、イオン交換部で使用する弱塩基性陰イオン交換樹脂は、スチレン系樹脂を基体として有するものである。 In the nonaqueous electrolyte manufacturing apparatus according to the present invention, the weakly basic anion exchange resin used in the ion exchange section has a styrene-based resin as the base.

本出願書類において、スチレン系樹脂とは、スチレン又はスチレン誘導体を単独または共重合した、スチレン又はスチレン誘導体に由来する構成単位を50質量%以上含む樹脂を意味する。 In this application, styrene-based resin means a resin containing 50% by mass or more of structural units derived from styrene or a styrene derivative, either homopolymerized or copolymerized with styrene or a styrene derivative.

上記スチレン誘導体としては、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。 Examples of the styrene derivatives include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, and bromostyrene.

スチレン系樹脂としては、スチレンまたはスチレン誘導体の単独または共重合体を主成分とするものであれば、共重合可能な他のビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、o-ジビニルベンゼン、m-ジビニルベンゼン、p-ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等の多官能性モノマーや、(メタ)アクリロニトリル、メチル(メタ)アクリレート等から選ばれる一種以上を挙げることができる。 As long as the styrene-based resin is mainly composed of a homopolymer or copolymer of styrene or a styrene derivative, it may be a copolymer with other copolymerizable vinyl monomers. Examples of such vinyl monomers include polyfunctional monomers such as divinylbenzenes, such as o-divinylbenzene, m-divinylbenzene, and p-divinylbenzene, alkylene glycol di(meth)acrylates, such as ethylene glycol di(meth)acrylate and polyethylene glycol di(meth)acrylate, (meth)acrylonitrile, methyl (meth)acrylate, and the like.

上記共重合可能な他のビニルモノマーとしては、エチレングリコールジ(メタ)アクリレート、エチレン重合数が4~16のポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートがより好ましく、ジビニルベンゼンがさらに好ましい。 The other copolymerizable vinyl monomers are preferably ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate having an ethylene polymerization number of 4 to 16, and divinylbenzene, more preferably divinylbenzene and ethylene glycol di(meth)acrylate, and even more preferably divinylbenzene.

本発明に係る非水電解液の製造装置において、イオン交換部で使用する弱塩基性陰イオン交換樹脂は、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)

Figure 0007573356000006
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部位を示す。)
で表される三級アミノ基を有している。 In the apparatus for producing a non-aqueous electrolyte according to the present invention, the weakly basic anion exchange resin used in the ion exchange section has a styrene-based resin as a base and a weakly basic anion exchange group represented by the following general formula (I):
Figure 0007573356000006
(wherein R1 and R2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and * indicates a bonding site with a substrate or a bonding group for bonding to a substrate.)
The tertiary amino group is represented by the following formula:

上記一般式(I)で表される弱塩基性陰イオン交換基において、R1基およびR2基は炭素数1~3の炭化水素基である。
1基またはR2基としては、アルキル基およびアルケニル基から選ばれる一種以上を挙げることができ、アルキル基であることが好ましい。
1基またはR2基として、具体的には、メチル基、エチル基、プロピル基およびプロピレン基から選ばれる一種以上を挙げることができ、メチル基であることが好ましい。
上記一般式(I)で表される弱塩基性陰イオン交換基において、R1基およびR2基は、互いに同一であっても異なっていてもよい。
In the weakly basic anion exchange group represented by the above general formula (I), the R 1 group and the R 2 group are hydrocarbon groups having 1 to 3 carbon atoms.
The R 1 group or R 2 group may be one or more groups selected from an alkyl group and an alkenyl group, and is preferably an alkyl group.
Specific examples of the R 1 group or R 2 group include one or more groups selected from a methyl group, an ethyl group, a propyl group, and a propylene group, and a methyl group is preferable.
In the weakly basic anion exchange group represented by the above general formula (I), the R 1 group and the R 2 group may be the same or different.

上記一般式(I)で表される弱塩基性陰イオン交換基としては、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基等を挙げることができ、ジメチルアミノ基であることが好ましい。 Examples of the weakly basic anion exchange group represented by the above general formula (I) include a dimethylamino group, a diethylamino group, a dipropylamino group, etc., and the dimethylamino group is preferable.

上記一般式(I)において、*は、上記一般式(I)で表される弱塩基性陰イオン交換基と、基体または基体へ結合するための結合基との結合部位を示す。 In the above general formula (I), * indicates the binding site between the weakly basic anion exchange group represented by the above general formula (I) and the substrate or the binding group for binding to the substrate.

上記一般式(I)で表される弱塩基性陰イオン交換基は、スチレン系樹脂からなる基体に対し、下記一般式(II)に示すように、適宜結合基であるR3基を介して結合していることが好ましい。

Figure 0007573356000007
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R3基は炭素数1~3の炭化水素基であり、*は基体との結合部位を示す。) The weakly basic anion exchange group represented by the above general formula (I) is preferably bonded to the substrate made of a styrene-based resin via an appropriate bonding group, R3 group, as shown in the following general formula (II).
Figure 0007573356000007
(wherein R1 and R2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, R3 is a hydrocarbon group having 1 to 3 carbon atoms, and * indicates the bonding site with the substrate.)

上記R1基およびR2基としては、上述したものと同様のものを挙げることができる。
上記R3基は炭素数1~3の炭化水素基であり、R3基としては、アルキレン基およびアルケニレン基から選ばれる一種以上を挙げることができ、アルキレン基であることが好ましい。
3基として、具体的には、メチレン基 (-CH2-)、エチレン基(-CH2CH2CH2-)、 プロピレン基(-CH2CH2CH2-)等から選ばれる一種以上を挙げることができ、メチレン基が好ましい。
The R 1 group and R 2 group may be the same as those mentioned above.
The R 3 group is a hydrocarbon group having 1 to 3 carbon atoms, and examples of the R 3 group include one or more groups selected from alkylene groups and alkenylene groups, with an alkylene group being preferred.
Specific examples of the R 3 group include one or more groups selected from the group consisting of a methylene group (--CH 2 --), an ethylene group (--CH 2 CH 2 CH 2 --), a propylene group (--CH 2 CH 2 CH 2 --), and the like, with a methylene group being preferred.

上記一般式(I)で表される弱塩基性陰イオン交換基は、スチレン又はスチレン誘導体に置換基として導入することにより、スチレン系樹脂中に導入することができる。 The weakly basic anion exchange group represented by the above general formula (I) can be introduced into a styrene-based resin by introducing it as a substituent into styrene or a styrene derivative.

イオン交換部に収容される弱塩基性陰イオン交換樹脂は、ゲル型構造、マクロポーラス(MR)型構造、ポーラス型構造のいずれの構造を有するものであってもよく、マクロポーラス型構造を有するものが好ましい。 The weakly basic anion exchange resin contained in the ion exchange section may have any of a gel type structure, a macroporous (MR) type structure, and a porous type structure, with a macroporous type structure being preferred.

弱塩基性陰イオン交換樹脂のサイズは特に制限されないが、その調和平均径が、300~1000μmであるものが好ましく、400~800μmであるものがより好ましく、500~700μmであるものがさらに好ましい。 There are no particular limitations on the size of the weakly basic anion exchange resin, but it is preferable for its harmonic mean diameter to be 300 to 1000 μm, more preferably 400 to 800 μm, and even more preferably 500 to 700 μm.

また、弱塩基性陰イオン交換樹脂としては、その湿潤状態の総イオン交換容量が、0.1~3.0(eq/L-R)であるものが好ましく、0.5~2.5(eq/L-R)であるものがより好ましく、1.0~2.0(eq/L-R)であるものがさらに好ましい。 In addition, the weakly basic anion exchange resin preferably has a total ion exchange capacity in a wet state of 0.1 to 3.0 (eq/L-R), more preferably 0.5 to 2.5 (eq/L-R), and even more preferably 1.0 to 2.0 (eq/L-R).

このような弱塩基性陰イオン交換樹脂は、市販品であってもよく、例えば、三菱化学(株)製ダイヤイオンWA30や、オルガノ(株)製ORLITE DS-6等から選ばれる一種以上を挙げることができる。 Such weakly basic anion exchange resins may be commercially available products, for example, one or more selected from Diaion WA30 manufactured by Mitsubishi Chemical Corporation and ORLITE DS-6 manufactured by Organo Corporation.

本発明に係る非水電解液の製造装置において、イオン交換部内に収容される弱塩基性陰イオン交換樹脂の収容形態は、アルカリ金属塩電解質含有液と弱塩基性陰イオン交換樹脂とが接触し得る形態であれば特に制限されない。
例えば、イオン交換部が、アルカリ金属塩電解質含有液を通液し得る弱塩基性陰イオン交換樹脂を充填したカラムまたは槽であってもよい。
また、イオン交換部は、アルカリ金属塩電解質含有液を通液するためのポンプを備えたものであってもよい。
In the non-aqueous electrolyte manufacturing apparatus according to the present invention, the form of the weakly basic anion exchange resin contained in the ion exchange unit is not particularly limited as long as it allows contact between the alkali metal salt electrolyte-containing liquid and the weakly basic anion exchange resin.
For example, the ion exchange unit may be a column or tank packed with a weakly basic anion exchange resin through which the alkali metal salt electrolyte-containing liquid can pass.
The ion exchange unit may also be provided with a pump for passing the alkali metal salt electrolyte-containing liquid.

本発明に係る非水電解液の製造装置において、アルカリ金属塩電解質含有液をイオン交換部内の弱塩基性陰イオン交換装置に通液する通液速度(液空間速度)は、アルカリ金属塩電解質含有液中の酸性不純物を除去し得る速度から適宜選定すればよい。 In the nonaqueous electrolyte manufacturing apparatus according to the present invention, the liquid passing speed (liquid hourly space velocity) at which the alkali metal salt electrolyte-containing liquid is passed through the weakly basic anion exchange device in the ion exchange section may be appropriately selected from the speed at which acidic impurities in the alkali metal salt electrolyte-containing liquid can be removed.

上記弱塩基性陰イオン交換樹脂による処理は、例えば、先ず、処理すべきアルカリ金属塩電解質含有液を構成する炭酸エステル溶媒で予め弱塩基性陰イオン交換樹脂を洗浄した後、約40~80℃で減圧下にて乾燥し、次いで、再度処理すべきアルカリ金属塩電解質含有液を構成する炭酸エステル溶媒で弱塩基性陰イオン交換樹脂を膨潤した上で、カラムに充填する。その上で、常法に従い逆洗・押出し操作等を行った後、処理すべき電解液を好ましくはSV(流量/イオン交換樹脂体積比)1~100hr-1、より好ましくはSV2~50hr-1、さらに好ましくはSV5~20hr-1で通液することにより行うことができる。 The treatment with the weakly basic anion exchange resin may be carried out, for example, by first washing the weakly basic anion exchange resin with the carbonate ester solvent constituting the alkali metal salt electrolyte-containing liquid to be treated, drying the resin under reduced pressure at about 40 to 80° C., and then swelling the weakly basic anion exchange resin with the carbonate ester solvent constituting the alkali metal salt electrolyte-containing liquid to be treated again, and then packing the resin into a column. After that, backwashing and pushing operations are carried out according to the usual method, and the electrolyte to be treated is passed through the column at a SV (flow rate/ion exchange resin volume ratio) of preferably 1 to 100 hr −1 , more preferably 2 to 50 hr −1 , and even more preferably 5 to 20 hr −1 .

本発明に係る非水電解液の製造装置においては、上記イオン交換部から得られる酸吸着処理液中のフッ酸等の酸性不純物の含有量が、20質量ppm以下であることが好ましく、10質量ppm以下であることがより好ましく、5質量ppm以下であることがさらに好ましい。
なお、本出願書類において、上記酸性不純物量は、中和滴定法により測定した値を意味する。
In the nonaqueous electrolyte manufacturing apparatus according to the present invention, the content of acidic impurities such as hydrofluoric acid in the acid adsorption treatment solution obtained from the ion exchange unit is preferably 20 ppm by mass or less, more preferably 10 ppm by mass or less, and even more preferably 5 ppm by mass or less.
In the present application, the amount of acidic impurities refers to a value measured by neutralization titration.

本発明によれば、イオン交換部に収容する弱塩基性陰イオン交換樹脂として、スチレン系樹脂を基体とし、三級アミン構造を有する特定の弱塩基性陰イオン交換基を有するものを採用することにより、電解液中の酸性不純物を効果的に吸着除去することができる。 According to the present invention, the weakly basic anion exchange resin contained in the ion exchange section is based on a styrene-based resin and has a specific weakly basic anion exchange group with a tertiary amine structure, thereby making it possible to effectively adsorb and remove acidic impurities in the electrolyte.

このため、本発明によれば、フッ酸等の酸性不純物を効果的に吸着してその含有量を低減した非水電解液を容易に調製し得る非水電解液の製造装置を提供することができる。 Therefore, according to the present invention, it is possible to provide a nonaqueous electrolyte manufacturing device that can easily prepare a nonaqueous electrolyte with a reduced content of acidic impurities such as hydrofluoric acid by effectively adsorbing them.

次に、本発明に係る非水電解液の製造方法について説明する。
本発明に係る非水電解液の製造方法は、炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を、弱塩基性陰イオン交換樹脂が収容されたイオン交換部に通液して非水電解液を得る酸吸着工程を有し、前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)

Figure 0007573356000008
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部を示す。)
で表される三級アミノ基を有することを特徴とするものである。 Next, a method for producing the nonaqueous electrolyte according to the present invention will be described.
The method for producing a non-aqueous electrolyte according to the present invention includes an acid adsorption step of passing an alkali metal salt electrolyte-containing solution, in which an alkali metal salt electrolyte is dispersed in a carbonate ester, through an ion exchange unit containing a weakly basic anion exchange resin to obtain a non-aqueous electrolyte, the weakly basic anion exchange resin having a styrene-based resin as a base and a weakly basic anion exchange group represented by the following general formula (I):
Figure 0007573356000008
(wherein R1 and R2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and * indicates a bond to a substrate or a bonding group for bonding to a substrate.)
The compound is characterized in that it has a tertiary amino group represented by the following formula:

本発明に係る非水電解液の製造方法は、実質的に、本発明に係る製造装置を用いて非水電解液を製造するものであることから、製造方法の詳細は、上述した本発明に係る製造装置の使用形態の説明と共通する。 The method for producing a non-aqueous electrolyte according to the present invention essentially produces a non-aqueous electrolyte using the production apparatus according to the present invention, and therefore the details of the production method are the same as those described above for the mode of use of the production apparatus according to the present invention.

本発明によれば、フッ酸等の酸性不純物を効果的にその含有量を低減した非水電解液を容易に調製し得る非水電解液の製造方法を提供することができる。 The present invention provides a method for producing a non-aqueous electrolyte that can easily prepare a non-aqueous electrolyte in which the content of acidic impurities such as hydrofluoric acid is effectively reduced.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 Next, the present invention will be explained in more detail with reference to examples, but these are merely illustrative and do not limit the present invention.

(実施例1)
図2に示す非水電解液の製造装置1としてリチウムイオン電池用電解液の製造装置を用いて電解液を調製した。
すなわち、先ず、図2に示すように、非水電解質の製造装置(リチウムイオン電池用電解液の製造装置)1を構成するイオン交換部2として、スチレン-ジビニルベンゼンを基体とし、弱塩基性陰イオン交換基としてジメチルアミノ基を有する弱塩基性陰イオン交換樹脂(マクロポーラス型)を充填したカラムを用意した。
次いで、上記カラムに対し、エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPFを1mol/Lとなるように溶解した電解液Sを、ポンプPを用いて40hr -1 の速度で通液し、通液後の電解液をタンクTに貯蔵した。
上記通液前後における、電解液中のフッ酸濃度を以下の方法で測定した。結果を表1に示す。
Example 1
An electrolyte solution was prepared using an apparatus for producing an electrolyte solution for lithium ion batteries, which is the nonaqueous electrolyte solution producing apparatus 1 shown in FIG.
That is, first, as shown in FIG. 2, a column packed with a weakly basic anion exchange resin (macroporous type) having a styrene-divinylbenzene base and dimethylamino groups as weakly basic anion exchange groups was prepared as an ion exchange section 2 constituting a nonaqueous electrolyte production apparatus (an apparatus for producing an electrolyte solution for lithium ion batteries) 1.
Next, an electrolyte solution S, in which LiPF6 was dissolved in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1:1, so as to give a concentration of 1 mol/L, was passed through the column at a rate of 40 hr -1 using a pump P, and the electrolyte solution after passing through was stored in a tank T.
The hydrofluoric acid concentration in the electrolyte was measured before and after the passage of the electrolyte by the following method. The results are shown in Table 1.

<フッ酸濃度の測定方法>
水酸化ナトリウムによる中和滴定から算出した水素イオン濃度を全てフッ酸に換算してフッ酸濃度とした。
<Method for measuring hydrofluoric acid concentration>
The hydrogen ion concentrations calculated from the neutralization titration with sodium hydroxide were all converted into hydrofluoric acid concentrations to obtain hydrofluoric acid concentrations.

(比較例1)
弱塩基性陰イオン交換樹脂として、アクリル系樹脂を基体とし、弱塩基性陰イオン交換基としてジメチルアミノ基を有するもの(ゲル型)を用いた以外は、実施例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し電解液Sを通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表1に示す。
(Comparative Example 1)
As the weakly basic anion exchange resin, an acrylic resin was used as a base material, and a dimethylamino group was used as a weakly basic anion exchange group (gel type). In the same manner as in Example 1, the electrolytic solution S was passed through a column packed with the weakly basic anion exchange resin, and the hydrofluoric acid concentration in the electrolytic solution was measured before and after passing the electrolytic solution.
The results are shown in Table 1.

(比較例2)
弱塩基性陰イオン交換樹脂として、スチレン-ジビニルベンゼンを基体とし、弱塩基性陰イオン交換基としてポリアミン基を有するもの(マクロポーラス型)を用いた以外は、実施例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し電解液Sを通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表1に示す。
(Comparative Example 2)
The weakly basic anion exchange resin was a styrene-divinylbenzene based resin having a polyamine group as a weakly basic anion exchange group (macroporous type). In the same manner as in Example 1, except that the weakly basic anion exchange resin was used, the electrolytic solution S was passed through a column packed with the weakly basic anion exchange resin, and the hydrofluoric acid concentration in the electrolytic solution was measured before and after passing the electrolytic solution through the column.
The results are shown in Table 1.

(比較例3)
弱塩基性陰イオン交換樹脂として、アクリル系樹脂を基体とし、弱塩基性陰イオン交換基としてポリアミン基を有するもの(マクロポーラス型)を用いた以外は、実施例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し電解液Sを通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表1に示す。
(Comparative Example 3)
As the weakly basic anion exchange resin, an acrylic resin was used as a base material, and a polyamine group was used as a weakly basic anion exchange group (macroporous type). In the same manner as in Example 1, the electrolytic solution S was passed through a column packed with the weakly basic anion exchange resin, and the hydrofluoric acid concentration in the electrolytic solution was measured before and after passing the electrolytic solution.
The results are shown in Table 1.

Figure 0007573356000009
Figure 0007573356000009

(参考例1)
エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPF6を1mol/Lとなるように溶解した電解液に代えて、フッ酸を濃度100質量ppmとなるように溶解した水を通液した以外は、実施例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し上記水溶液を通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表2に示す。
(Reference Example 1)
Instead of the electrolyte solution in which LiPF6 was dissolved to 1 mol/L in a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed in a volume ratio of 1:1, water in which hydrofluoric acid was dissolved to a concentration of 100 mass ppm was passed through the column packed with a weakly basic anion exchange resin in the same manner as in Example 1, and the hydrofluoric acid concentration in the electrolyte solution before and after passing through was measured.
The results are shown in Table 2.

(参考例2)
エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPF6を1mol/Lとなるように溶解した電解液に代えて、フッ酸を濃度100質量ppmとなるように溶解した水を通液した以外は、比較例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し上記水溶液を通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表2に示す。
(Reference Example 2)
Instead of the electrolyte solution in which LiPF6 was dissolved to 1 mol/L in a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed in a volume ratio of 1:1, water in which hydrofluoric acid was dissolved to a concentration of 100 mass ppm was passed through the column packed with a weakly basic anion exchange resin in the same manner as in Comparative Example 1. The above aqueous solution was passed through the column, and the hydrofluoric acid concentration in the electrolyte solution was measured before and after passing through the column.
The results are shown in Table 2.

(参考例3)
エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPF6を1mol/Lとなるように溶解した電解液に代えて、フッ酸を濃度100質量ppmとなるように溶解した水を通液した以外は、比較例2と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し上記水溶液を通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表2に示す。
(Reference Example 3)
Instead of the electrolyte solution in which LiPF6 was dissolved to 1 mol/L in a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed in a volume ratio of 1:1, water in which hydrofluoric acid was dissolved to a concentration of 100 mass ppm was passed through the column packed with a weakly basic anion exchange resin in the same manner as in Comparative Example 2. The above aqueous solution was passed through the column, and the hydrofluoric acid concentration in the electrolyte solution was measured before and after passing through the column.
The results are shown in Table 2.

(参考例4)
エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPF6を1mol/Lとなるように溶解した電解液に代えて、フッ酸を濃度100質量ppmとなるように溶解した水を通液した以外は、比較例3と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し上記水溶液を通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表2に示す。
(Reference Example 4)
Instead of the electrolyte solution in which LiPF6 was dissolved to 1 mol/L in a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed in a volume ratio of 1:1, water in which hydrofluoric acid was dissolved to a concentration of 100 mass ppm was passed through the column packed with a weakly basic anion exchange resin in the same manner as in Comparative Example 3. The above aqueous solution was passed through the column, and the hydrofluoric acid concentration in the electrolyte solution was measured before and after passing through the column.
The results are shown in Table 2.

Figure 0007573356000010
Figure 0007573356000010

表1より、実施例1においては、炭酸エステル中にリチウム系電解質を分散したリチウム系電解質含有液中の酸性不純物の除去処理を、スチレン系樹脂を基体とする特定の弱塩基性陰イオン交換樹脂を用いて行っているために、酸性不純物を効果的に除去し得ることが分かる。 From Table 1, it can be seen that in Example 1, the removal process of acidic impurities in the lithium-based electrolyte-containing solution in which the lithium-based electrolyte is dispersed in carbonate ester is carried out using a specific weakly basic anion exchange resin based on a styrene-based resin, and therefore the acidic impurities can be effectively removed.

一方、表1より、比較例1~比較例3においては、炭酸エステル中にリチウム系電解質を分散したリチウム系電解質含有液中の酸性不純物の除去処理を、上記特定の弱塩基性陰イオン交換樹脂を用いて行っていないために、酸性不純物の効果的な除去が困難であることが分かる。 On the other hand, from Table 1, it can be seen that in Comparative Examples 1 to 3, the treatment for removing acidic impurities from the lithium-based electrolyte-containing solution in which the lithium-based electrolyte is dispersed in the carbonate ester is not performed using the specific weakly basic anion exchange resin, making it difficult to effectively remove acidic impurities.

また、表2に示す参考例1~参考例4の結果より、水中の酸性不純物を除去する場合には、イオン交換樹脂の種類に拘わらず酸性不純物を効果的に除去し得ることが分かる。 In addition, the results of Reference Examples 1 to 4 shown in Table 2 show that when removing acidic impurities from water, the acidic impurities can be effectively removed regardless of the type of ion exchange resin.

本発明によれば、フッ酸等の酸性不純物を効果的に吸着してその含有量を低減した非水電解液を容易に調製し得る非水電解液の製造装置を提供するとともに、非水電解液の製造方法を提供することができる。 The present invention provides a nonaqueous electrolyte manufacturing device that can easily prepare a nonaqueous electrolyte with a reduced content of acidic impurities such as hydrofluoric acid by effectively adsorbing them, and also provides a method for manufacturing a nonaqueous electrolyte.

1 非水電解液の製造装置
2 酸吸収装置
1. Non-aqueous electrolyte manufacturing equipment 2. Acid absorption equipment

Claims (10)

炭酸エステル中に分解して酸を生成し得るアルカリ金属塩電解質が溶解されたアルカリ金属塩電解質含有液を通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)
Figure 0007573356000011
(ただし、R基およびR基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部位を示す。)
で表される三級アミノ基を有する
ことを特徴とする非水電解液の製造装置。
an ion exchange section containing a weakly basic anion exchange resin for passing an alkali metal salt electrolyte-containing liquid in which an alkali metal salt electrolyte capable of decomposing into a carbonate ester to generate an acid is dissolved, to obtain a nonaqueous electrolyte;
The weakly basic anion exchange resin has a styrene-based resin as a base and a weakly basic anion exchange group represented by the following general formula (I):
Figure 0007573356000011
(wherein R1 and R2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and * indicates a bonding site with a substrate or a bonding group for bonding to a substrate.)
The apparatus for producing a non-aqueous electrolyte solution is characterized in that the non-aqueous electrolyte solution has a tertiary amino group represented by the formula:
前記スチレン系樹脂が、スチレン-ジビニルベンゼン共重合体である請求項1に記載の非水電解液の製造装置。 The non-aqueous electrolyte manufacturing apparatus according to claim 1, wherein the styrene-based resin is a styrene-divinylbenzene copolymer. 前記弱塩基性陰イオン交換基が、下記一般式(II)
Figure 0007573356000012
(ただし、R基およびR基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R基は炭素数1~3の炭化水素基であり、*は基体との結合部位を示す。)
で表される三級アミノ基である請求項1または請求項2に記載の非水電解液の製造装置。
The weakly basic anion exchange group is represented by the following general formula (II):
Figure 0007573356000012
(wherein R1 and R2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, R3 is a hydrocarbon group having 1 to 3 carbon atoms, and * indicates the bonding site with the substrate.)
3. The apparatus for producing a non-aqueous electrolyte solution according to claim 1, wherein the tertiary amino group is represented by the following formula:
前記一般式(I)または一般式(II)で表される弱塩基性陰イオン交換基が、ジメチルアミノメチル基である請求項1~請求項3のいずれかに記載の非水電解液の製造装置。 The apparatus for producing a non-aqueous electrolyte according to any one of claims 1 to 3, wherein the weakly basic anion exchange group represented by general formula (I) or general formula (II) is a dimethylaminomethyl group. 前記非水電解液がリチウムイオン電池用電解液である請求項1~請求項4のいずれかに記載の非水電解液の製造装置。 The nonaqueous electrolyte manufacturing apparatus according to any one of claims 1 to 4, wherein the nonaqueous electrolyte is an electrolyte for a lithium ion battery. 非水電解液を製造する方法であって、
炭酸エステル中に分解して酸を生成し得るアルカリ金属塩電解質が溶解されたアルカリ金属塩電解質含有液を、弱塩基性陰イオン交換樹脂が収容されたイオン交換部に通液して非水電解液を得る酸吸着工程を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)
Figure 0007573356000013
(ただし、R基およびR基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部を示す。)
で表される三級アミノ基を有する
ことを特徴とする非水電解液の製造方法。
A method for producing a non-aqueous electrolyte solution, comprising the steps of:
an acid adsorption step of passing an alkali metal salt electrolyte-containing solution, in which an alkali metal salt electrolyte capable of being decomposed into a carbonate ester to generate an acid, through an ion exchange unit containing a weakly basic anion exchange resin to obtain a non-aqueous electrolyte;
The weakly basic anion exchange resin has a styrene-based resin as a base and a weakly basic anion exchange group represented by the following general formula (I):
Figure 0007573356000013
(wherein R1 group and R2 group are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and * indicates a bond to a substrate or a bonding group for bonding to a substrate.)
The present invention relates to a method for producing a non-aqueous electrolyte solution, the non-aqueous electrolyte solution having a tertiary amino group represented by the formula:
前記スチレン系樹脂が、スチレン-ジビニルベンゼン共重合体である請求項6に記載の非水電解液の製造方法。 The method for producing a non-aqueous electrolyte according to claim 6, wherein the styrene-based resin is a styrene-divinylbenzene copolymer. 前記弱塩基性陰イオン交換基が、下記一般式(II)
Figure 0007573356000014
(ただし、R基およびR基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R基は炭素数1~3の炭化水素基であり、*は基体との結合部位を示す。)
で表される三級アミノ基である請求項6または請求項7に記載の非水電解液の製造方法。
The weakly basic anion exchange group is represented by the following general formula (II):
Figure 0007573356000014
(wherein R1 and R2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, R3 is a hydrocarbon group having 1 to 3 carbon atoms, and * indicates the bonding site with the substrate.)
The method for producing a non-aqueous electrolyte solution according to claim 6 or 7, wherein the tertiary amino group is represented by the following formula:
前記一般式(I)または一般式(II)で表される弱塩基性陰イオン交換基が、ジメチルアミノメチル基である請求項6~請求項8のいずれかに記載の非水電解液の製造方法。 The method for producing a non-aqueous electrolyte according to any one of claims 6 to 8, wherein the weakly basic anion exchange group represented by general formula (I) or general formula (II) is a dimethylaminomethyl group. 前記非水電解液がリチウムイオン電池用電解液である請求項6~請求項9のいずれかに記載の非水電解液の製造方法。 The method for producing a non-aqueous electrolyte according to any one of claims 6 to 9, wherein the non-aqueous electrolyte is an electrolyte for a lithium ion battery.
JP2018199869A 2018-10-24 2018-10-24 Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte Active JP7573356B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018199869A JP7573356B2 (en) 2018-10-24 2018-10-24 Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte
PCT/JP2019/038124 WO2020085001A1 (en) 2018-10-24 2019-09-27 Device for producing nonaqueous electrolytic solution and method of producing nonaqueous electrolytic solution
CN201980064421.1A CN112889170A (en) 2018-10-24 2019-09-27 Apparatus for producing nonaqueous electrolyte solution and method for producing nonaqueous electrolyte solution
EP19877049.7A EP3872915A4 (en) 2018-10-24 2019-09-27 Device for producing nonaqueous electrolytic solution and method of producing nonaqueous electrolytic solution
US17/287,829 US20210384557A1 (en) 2018-10-24 2019-09-27 Apparatus for producing non-aqueous electrolytic solution and method for producing non-aqueous electrolytic solution
KR1020217013123A KR102627186B1 (en) 2018-10-24 2019-09-27 Non-aqueous electrolyte manufacturing device and non-aqueous electrolyte manufacturing method
JP2023103485A JP2023116810A (en) 2018-10-24 2023-06-23 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018199869A JP7573356B2 (en) 2018-10-24 2018-10-24 Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023103485A Division JP2023116810A (en) 2018-10-24 2023-06-23 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution

Publications (2)

Publication Number Publication Date
JP2020068107A JP2020068107A (en) 2020-04-30
JP7573356B2 true JP7573356B2 (en) 2024-10-25

Family

ID=70388580

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018199869A Active JP7573356B2 (en) 2018-10-24 2018-10-24 Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte
JP2023103485A Pending JP2023116810A (en) 2018-10-24 2023-06-23 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023103485A Pending JP2023116810A (en) 2018-10-24 2023-06-23 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution

Country Status (1)

Country Link
JP (2) JP7573356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233724A1 (en) * 2022-05-31 2023-12-07 オルガノ株式会社 Nonaqueous electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505042A (en) 1996-11-26 2000-04-25 エフエムシー・コーポレイション Method for removing acid from lithium salt solution
JP2003535007A (en) 2000-05-27 2003-11-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Advanced methods for purifying hydrogen peroxide solutions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185810A (en) * 1997-12-16 1999-07-09 Tonen Corp Electrolyte for lithium battery and its manufacture
US9084980B2 (en) * 2009-08-28 2015-07-21 Tosoh Corporation Zeolite for treatment of nonaqueous electrolytic solution and treatment method of nonaqueous electrolytic solution
US9023204B2 (en) * 2009-12-17 2015-05-05 Entegris, Inc. Purifier for removing hydrogen fluoride from electrolytic solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000505042A (en) 1996-11-26 2000-04-25 エフエムシー・コーポレイション Method for removing acid from lithium salt solution
JP2003535007A (en) 2000-05-27 2003-11-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Advanced methods for purifying hydrogen peroxide solutions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
狩野直樹、二瓶誠、今泉洋,OT-for-OH交換反応を用いた陰イオン交換樹脂の反応性,RADIOISOTOPES,日本,1996年,Vol. 45,pp. 613-618

Also Published As

Publication number Publication date
JP2023116810A (en) 2023-08-22
JP2020068107A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP7203556B2 (en) Non-aqueous electrolyte manufacturing apparatus and method for manufacturing non-aqueous electrolyte
JP2008251528A (en) High-purity lithium polyhalogenated boron cluster salt useful for lithium battery
CN110818674A (en) Preparation method of vinyl sulfate
CN103259040B (en) Organotin fluoride is utilized to prepare the method for high-purity lithium difluorophosphate
JP7573356B2 (en) Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte
JP7182427B2 (en) Non-aqueous electrolyte manufacturing apparatus and method for manufacturing non-aqueous electrolyte
CN113336793A (en) Lithium difluorobis (oxalato) phosphate and preparation method and application thereof
CN110867624B (en) Method for recycling lithium battery electrolyte
CN101453037B (en) Organic electrolysis solution purification process for lithium ionic cell
JP7573355B2 (en) Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte
JP7265855B2 (en) Non-aqueous electrolyte manufacturing apparatus and method for manufacturing non-aqueous electrolyte
KR102627186B1 (en) Non-aqueous electrolyte manufacturing device and non-aqueous electrolyte manufacturing method
JPH11185810A (en) Electrolyte for lithium battery and its manufacture
JP7585220B2 (en) Method for producing non-aqueous electrolyte
JP2023004087A (en) Storage method of non-aqueous electrolyte
WO2021090640A1 (en) Apparatus for producing nonaqueous electrolyte solution and method for producing nonaqueous electrolyte solution
CN1181924C (en) Ion exchange fiber and its preparation method and use
WO2024117048A1 (en) Method for producing ion conductor
JP2021170525A (en) Refining method of electrolyte solution for lithium ion secondary battery, and lithium ion secondary battery
CN116495711A (en) Lithium bis (fluorosulfonyl) imide composition and preparation method thereof
CN115411350A (en) Mesoporous molecular sieve doped lithium ion battery electrolyte and application
JP2022157042A (en) Refining method and refiner of non-aqueous solvent
CN103788002A (en) Oxazolidine ionic liquid and ionic liquid electrolytic solution, and preparation methods and applications thereof
CN117815703A (en) Method for removing water and acid in liquid lithium salt by resin adsorption method
KR20130078175A (en) Method for extracting manganese in system of recovering lithium in sea water and mehtod for manufacturing adsorbent for recovering lithium in sea water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230703

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241015

R150 Certificate of patent or registration of utility model

Ref document number: 7573356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150