Nothing Special   »   [go: up one dir, main page]

JP2023116810A - Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution - Google Patents

Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution Download PDF

Info

Publication number
JP2023116810A
JP2023116810A JP2023103485A JP2023103485A JP2023116810A JP 2023116810 A JP2023116810 A JP 2023116810A JP 2023103485 A JP2023103485 A JP 2023103485A JP 2023103485 A JP2023103485 A JP 2023103485A JP 2023116810 A JP2023116810 A JP 2023116810A
Authority
JP
Japan
Prior art keywords
anion exchange
weakly basic
basic anion
aqueous electrolyte
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2023103485A
Other languages
Japanese (ja)
Inventor
健太 合庭
Kenta Aiba
彰 中村
Akira Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2023103485A priority Critical patent/JP2023116810A/en
Publication of JP2023116810A publication Critical patent/JP2023116810A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】フッ酸等の酸性不純物を効果的にその含有量を低減した非水電解液を容易に調製し得る非水電解液の製造装置を提供する。【解決手段】炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を通液して非水電解液をえるための、弱塩基性陰イオン交換樹脂を収容したイオン交換部を有し、前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、特定の三級アミノ基を有することを特徴とする非水電解液の製造装置である。【選択図】 図1A non-aqueous electrolyte manufacturing apparatus capable of easily preparing a non-aqueous electrolyte in which the content of acidic impurities such as hydrofluoric acid is effectively reduced is provided. An ion exchange unit containing a weakly basic anion exchange resin for obtaining a non-aqueous electrolyte solution by passing an alkali metal salt electrolyte-containing solution in which an alkali metal salt electrolyte is dispersed in a carbonate ester. and wherein the weakly basic anion exchange resin is based on a styrene resin and has a specific tertiary amino group as the weakly basic anion exchange group. be. [Selection diagram] Fig. 1

Description

本発明は、非水電解液の製造装置および非水電解液の製造方法に関するものである。 TECHNICAL FIELD The present invention relates to an apparatus for producing a non-aqueous electrolyte and a method for producing a non-aqueous electrolyte.

リチウムイオン電池においては、電解液として、炭酸エステル溶媒に六フッ化リン酸リチウム(LiPF6 )などのリチウム系電解質を溶解させた非水電解液が用いられている。 In a lithium ion battery, a non-aqueous electrolyte is used as an electrolyte, which is obtained by dissolving a lithium-based electrolyte such as lithium hexafluorophosphate (LiPF 6 ) in a carbonate solvent.

しかしながら、上記電解液を構成する炭酸エステル溶媒及びリチウム系電解質中には微量の水分が残留しており、この水分は、上記LiPF6 等のリチウム系電解質と反応して、例えば以下の反応式(1)~(3)に示すようにフッ化水素(HF)等を生成する。
(1)LiPF6+H2O → LiF+2HF+POF3
(2)POF3+H2O → POF2(OH)+HF
(3)POF2(OH)+H2O → POF(OH)2+HF
However, a small amount of water remains in the carbonate ester solvent and the lithium-based electrolyte that constitute the electrolytic solution, and this water reacts with the lithium-based electrolyte such as LiPF 6 , for example, by the following reaction formula ( Hydrogen fluoride (HF) or the like is generated as shown in 1) to (3).
(1) LiPF6 + H2O- >LiF+2HF+ POF3
(2) POF3 + H2OPOF2 (OH)+HF
(3) POF2 (OH)+ H2O →POF(OH) 2 +HF

電解液中に上記フッ化水素(フッ酸)等の酸性不純物が存在する場合、リチウムイオン電池の電池容量や充放電のサイクル特性を低下させたり、電池内部の腐食を生じやすくなる(特許文献1(特開2011-71111号公報)等参照)。 When acidic impurities such as hydrogen fluoride (hydrofluoric acid) are present in the electrolytic solution, the battery capacity and charge/discharge cycle characteristics of the lithium ion battery are reduced, and corrosion inside the battery is likely to occur (Patent Document 1 (See Japanese Unexamined Patent Application Publication No. 2011-71111, etc.).

特開2011-71111号公報Japanese Unexamined Patent Application Publication No. 2011-71111

このため、従来より、電解液中からフッ酸等の酸性不純物を除去する方法が望まれるようになっており、係る酸性不純物を除去する方法として、三級アミン構造を有する陰イオン交換基(三級アミノ基)を含む弱塩基性陰イオン交換樹脂にリチウムイオン電池用電解液を接触させる方法が考えられる。 Therefore, conventionally, a method for removing acidic impurities such as hydrofluoric acid from electrolyte solutions has been desired. A possible method is to bring the electrolytic solution for a lithium ion battery into contact with a weakly basic anion exchange resin containing a group amino group).

しかしながら、本発明者等が検討したところ、水中と異なり非水電解液中では、上記弱塩基性陰イオン交換樹脂の種類によってはフッ酸等の酸性不純物の除去性能が上手く発揮できず、目標とする電解液の品質まで達しない場合があることが判明した。 However, as a result of investigations by the present inventors, unlike water, in a non-aqueous electrolyte, depending on the type of the weakly basic anion exchange resin, the removal performance of acidic impurities such as hydrofluoric acid cannot be exhibited well, and the target is not achieved. It was found that in some cases the quality of the electrolytic solution used was not achieved.

このような状況下、本発明は、フッ酸等の酸性不純物を効果的に吸着してその含有量を低減したリチウムイオン電池用電解液等の非水電解液を容易に調製し得る非水電解液の製造装置を提供するとともに、非水電解液の製造方法を提供することを目的とするものである。 Under such circumstances, the present invention provides a non-aqueous electrolytic solution that can easily prepare a non-aqueous electrolytic solution such as an electrolytic solution for a lithium ion battery in which acidic impurities such as hydrofluoric acid are effectively adsorbed and the content thereof is reduced. An object of the present invention is to provide an apparatus for producing a liquid and a method for producing a non-aqueous electrolyte.

本発明者等は、上記目的を達成するために鋭意研究を重ねた結果、炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部を有し、前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とするとともに弱塩基性陰イオン交換基として特定の三級アミノ基を有する非水電解液の製造装置により、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors have found that a non-aqueous electrolyte solution is obtained by passing an alkali metal salt electrolyte-containing solution in which an alkali metal salt electrolyte is dispersed in a carbonate ester. The weakly basic anion exchange resin has an ion exchange part containing a weakly basic anion exchange resin, and the weakly basic anion exchange resin is based on a styrene resin and contains a specific tertiary The present inventors have found that the above technical problems can be solved by an apparatus for producing a non-aqueous electrolytic solution having an amino group, and have completed the present invention based on this finding.

すなわち、本発明は、
(1)炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)

Figure 2023116810000002
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部位を示す。)
で表される三級アミノ基を有する
ことを特徴とする非水電解液の製造装置、
(2)前記スチレン系樹脂が、スチレン-ジビニルベンゼン共重合体である上記(1)に記載の非水電解液の製造装置、
(3)前記弱塩基性陰イオン交換基が、下記一般式(II)
Figure 2023116810000003
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R3基は炭素数1~3の炭化水素基であり、*は基体との結合部位
を示す。)
で表される三級アミノ基である上記(1)または(2)に記載の非水電解液の製造装置、(4)前記一般式(I)または一般式(II)で表される弱塩基性陰イオン交換基が、ジメチルアミノメチル基である上記(1)~(3)のいずれかに記載の非水電解液の製造装置、
(5)前記非水電解液がリチウムイオン電池用電解液である上記(1)~(4)のいずれかに記載の非水電解液の製造装置、
(6)非水電解液を製造する方法であって、
炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を、弱塩基性陰イオン交換樹脂が収容されたイオン交換部に通液して非水電解液を得る酸吸着工程を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)
Figure 2023116810000004
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部を示す。)で表される三級アミノ基を有する
ことを特徴とする非水電解液の製造方法、
(7)前記スチレン系樹脂が、スチレン-ジビニルベンゼン共重合体である上記(6)に記載の非水電解液の製造方法、
(8)前記弱塩基性陰イオン交換基が、下記一般式(II)
Figure 2023116810000005
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R3基は炭素数1~3の炭化水素基であり、*は基体との結合部位
を示す。)
で表される三級アミノ基である上記(6)または(7)に記載の非水電解液の製造方法、(9)前記一般式(I)または一般式(II)で表される弱塩基性陰イオン交換基が、ジメチルアミノメチル基である上記(6)~(8)のいずれかに記載の非水電解液の製造方法、
(10)前記非水電解液がリチウムイオン電池用電解液である上記(6)~(9)のいずれかに記載の非水電解液の製造方法、
を提供するものである。 That is, the present invention
(1) an ion exchange section containing a weakly basic anion exchange resin for passing an alkali metal salt electrolyte-containing liquid in which an alkali metal salt electrolyte is dispersed in a carbonate ester to obtain a non-aqueous electrolyte; have
The weakly basic anion exchange resin is based on a styrene resin, and the weakly basic anion exchange group is represented by the following general formula (I)
Figure 2023116810000002
(where R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different; indicate the part.)
An apparatus for producing a non-aqueous electrolyte, characterized by having a tertiary amino group represented by
(2) The apparatus for producing a non-aqueous electrolytic solution according to (1) above, wherein the styrene-based resin is a styrene-divinylbenzene copolymer.
(3) the weakly basic anion exchange group is represented by the following general formula (II)
Figure 2023116810000003
(However, R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and R 3 is a hydrocarbon group having 1 to 3 carbon atoms. , * indicates the binding site to the substrate.)
(4) the weak base represented by the general formula (I) or general formula (II) The apparatus for producing a non-aqueous electrolyte solution according to any one of the above (1) to (3), wherein the anion exchange group is a dimethylaminomethyl group,
(5) The apparatus for producing a non-aqueous electrolyte according to any one of (1) to (4) above, wherein the non-aqueous electrolyte is an electrolyte for a lithium ion battery.
(6) A method for producing a non-aqueous electrolyte,
An acid adsorption step of obtaining a non-aqueous electrolyte by passing an alkali metal salt electrolyte-containing liquid in which an alkali metal salt electrolyte is dispersed in a carbonate ester through an ion exchange section containing a weakly basic anion exchange resin. death,
The weakly basic anion exchange resin is based on a styrene resin, and the weakly basic anion exchange group is represented by the following general formula (I)
Figure 2023116810000004
(where R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different; part.) A method for producing a non-aqueous electrolyte, characterized by having a tertiary amino group represented by
(7) The method for producing a nonaqueous electrolytic solution according to (6) above, wherein the styrene resin is a styrene-divinylbenzene copolymer,
(8) The weakly basic anion exchange group is represented by the following general formula (II)
Figure 2023116810000005
(However, R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and R 3 is a hydrocarbon group having 1 to 3 carbon atoms. , * indicates the binding site to the substrate.)
(9) a weak base represented by the general formula (I) or general formula (II) The method for producing a non-aqueous electrolyte according to any one of (6) to (8) above, wherein the anion exchange group is a dimethylaminomethyl group,
(10) The method for producing a non-aqueous electrolyte according to any one of (6) to (9) above, wherein the non-aqueous electrolyte is an electrolyte for lithium ion batteries;
It provides

本発明によれば、フッ酸等の酸性不純物を効果的に吸着してその含有量を低減した非水電解液を容易に調製し得る非水電解液の製造装置を提供するとともに、非水電解液の製造方法を提供することができる。 According to the present invention, there is provided an apparatus for producing a non-aqueous electrolytic solution that can easily prepare a non-aqueous electrolytic solution in which acidic impurities such as hydrofluoric acid are effectively adsorbed and the content thereof is reduced, and non-aqueous electrolysis is performed. A liquid manufacturing method can be provided.

本発明に係る非水電解液の製造装置の構成を説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining the configuration of a non-aqueous electrolyte manufacturing apparatus according to the present invention; 本発明に係る非水電解液の製造装置の形態例を示す図である。It is a figure which shows the example of the form of the manufacturing apparatus of the nonaqueous electrolyte which concerns on this invention.

本発明に係る非水電解液の製造装置は、炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)

Figure 2023116810000006
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部位を示す。)
で表される三級アミノ基を有する
ことを特徴とするものである。 The apparatus for producing a non-aqueous electrolyte according to the present invention is a weakly basic anion for obtaining a non-aqueous electrolyte by passing an alkali metal salt electrolyte-containing liquid in which an alkali metal salt electrolyte is dispersed in a carbonate ester. Having an ion exchange part containing an exchange resin,
The weakly basic anion exchange resin is based on a styrene resin, and the weakly basic anion exchange group is represented by the following general formula (I)
Figure 2023116810000006
(where R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different; indicate the part.)
It is characterized by having a tertiary amino group represented by.

図1は、本発明に係る非水電解液の製造装置の構成例を示すものである。 FIG. 1 shows a configuration example of a non-aqueous electrolyte manufacturing apparatus according to the present invention.

図1に示すように、本発明に係る非水電解液の製造装置1は、炭酸エステル中にリチウム系電解質等のアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液Sを通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部2を有している。 As shown in FIG. 1, an apparatus 1 for producing a non-aqueous electrolyte according to the present invention passes an alkali metal salt electrolyte-containing liquid S in which an alkali metal salt electrolyte such as a lithium-based electrolyte is dispersed in carbonate ester. It has an ion exchange section 2 containing a weakly basic anion exchange resin for obtaining a non-aqueous electrolyte.

本発明に係る非水電解液の製造装置において、炭酸エステルとしては、環状炭酸エステルおよび鎖状炭酸エステルから選ばれる一種以上を挙げることができる。 In the apparatus for producing a non-aqueous electrolytic solution according to the present invention, the carbonic acid ester may be one or more selected from cyclic carbonic acid esters and chain carbonic acid esters.

環状炭酸エステルとしては、エチレンカーボネート(炭酸エチレン)、プロピレンカーボネート(炭酸プロピレン)等から選ばれる一種以上を挙げることができ、鎖状炭酸エステルとしては、ジメチルカーボネート(炭酸ジメチル)、ジエチルカーボネート(炭酸ジエチル)、エチルメチルカーボネート(炭酸エチルメチル)等から選ばれる一種以上を挙げることができる。 Examples of the cyclic carbonate include one or more selected from ethylene carbonate (ethylene carbonate), propylene carbonate (propylene carbonate), and the like. Examples of the chain carbonate include dimethyl carbonate (dimethyl carbonate), diethyl carbonate (diethyl carbonate ), ethyl methyl carbonate (ethyl methyl carbonate), and the like.

本発明に係る非水電解液の製造装置において、アルカリ金属塩電解質としては、リチウム系電解質を挙げることができ、リチウム系電解質としては、LiPF6、LiClO4、LiBF4 、LiAsF6 、LiSbF6 、LiAlCl4 、LiCF3SO3 等から選
ばれる一種以上を挙げることができ、電池性能を考慮した場合、LiPF6 が好適である。
本発明に係る非水電解液の製造装置において、非水電解液としては、リチウムイオン電池用電解液が好適である。
In the apparatus for producing a non-aqueous electrolyte according to the present invention, examples of the alkali metal salt electrolyte include lithium-based electrolytes. Lithium-based electrolytes include LiPF6 , LiClO4 , LiBF4 , LiAsF6 , LiSbF6 , One or more selected from LiAlCl 4 , LiCF 3 SO 3 and the like can be mentioned, and LiPF 6 is preferable when battery performance is considered.
In the apparatus for producing a non-aqueous electrolyte according to the present invention, the non-aqueous electrolyte is preferably an electrolyte for lithium ion batteries.

本発明に係る非水電解液の製造装置において、アルカリ金属塩電解質含有液中のアルカリ金属塩電解質濃度は、0.5~2.0mol/Lが好ましく、0.5~1.2mol/Lがより好ましく、0.8~1.2mol/Lがさらに好ましい。 In the apparatus for producing a non-aqueous electrolyte according to the present invention, the alkali metal salt electrolyte concentration in the alkali metal salt electrolyte-containing liquid is preferably 0.5 to 2.0 mol/L, more preferably 0.5 to 1.2 mol/L. More preferably 0.8 to 1.2 mol/L.

アルカリ金属塩電解質含有液の調製方法も特に制限されないが、例えば、炭酸エステル中にアルカリ金属塩電解質を、不活性ガス雰囲気下で添加、溶解することにより調製することができる。 The preparation method of the alkali metal salt electrolyte-containing liquid is not particularly limited, either, but it can be prepared, for example, by adding and dissolving the alkali metal salt electrolyte in carbonate ester under an inert gas atmosphere.

本発明に係る非水電解液の製造装置は、アルカリ金属塩電解質含有液(未精製の非水電解液)を通液する、弱塩基性陰イオン交換樹脂を収容したイオン交換部を有している。 An apparatus for producing a non-aqueous electrolyte according to the present invention has an ion exchange section containing a weakly basic anion exchange resin through which an alkali metal salt electrolyte-containing liquid (unpurified non-aqueous electrolyte) is passed. there is

本発明に係る非水電解液の製造装置において、イオン交換部で使用する弱塩基性陰イオン交換樹脂は、スチレン系樹脂を基体として有するものである。 In the apparatus for producing a nonaqueous electrolyte according to the present invention, the weakly basic anion exchange resin used in the ion exchange section has a styrene resin as a base.

本出願書類において、スチレン系樹脂とは、スチレン又はスチレン誘導体を単独または共重合した、スチレン又はスチレン誘導体に由来する構成単位を50質量%以上含む樹脂を意味する。 In the present application documents, the styrenic resin means a resin obtained by homopolymerizing or copolymerizing styrene or a styrene derivative and containing 50% by mass or more of constitutional units derived from styrene or a styrene derivative.

上記スチレン誘導体としては、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。 Examples of the above styrene derivatives include α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene and the like.

スチレン系樹脂としては、スチレンまたはスチレン誘導体の単独または共重合体を主成分とするものであれば、共重合可能な他のビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、o-ジビニルベンゼン、m-ジビニルベンゼン、p-ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等の多官能性モノマーや、(メタ)アクリロニトリル、メチル(メ
タ)アクリレート等から選ばれる一種以上を挙げることができる。
The styrene-based resin may be a copolymer with other copolymerizable vinyl monomers, as long as the main component is a homopolymer or a copolymer of styrene or a styrene derivative. Examples include divinylbenzenes such as o-divinylbenzene, m-divinylbenzene and p-divinylbenzene; alkylene glycol di(meth)acrylates such as ethylene glycol di(meth)acrylate and polyethylene glycol di(meth)acrylate; One or more selected from polyfunctional monomers, (meth)acrylonitrile, methyl (meth)acrylate, and the like can be used.

上記共重合可能な他のビニルモノマーとしては、エチレングリコールジ(メタ)アクリレート、エチレン重合数が4~16のポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートがより好ましく、ジビニルベンゼンがさらに好ましい。 As the other copolymerizable vinyl monomer, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate having an ethylene polymerization number of 4 to 16, and divinylbenzene are more preferable, and divinylbenzene, ethylene glycol di(meth) ) acrylates are more preferred, and divinylbenzene is even more preferred.

本発明に係る非水電解液の製造装置において、イオン交換部で使用する弱塩基性陰イオン交換樹脂は、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)

Figure 2023116810000007
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部位を示す。)
で表される三級アミノ基を有している。 In the apparatus for producing a non-aqueous electrolyte according to the present invention, the weakly basic anion exchange resin used in the ion exchange part is based on a styrene resin, and the weakly basic anion exchange group is represented by the following general formula (I)
Figure 2023116810000007
(where R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different; indicate the part.)
It has a tertiary amino group represented by

上記一般式(I)で表される弱塩基性陰イオン交換基において、R1基およびR2基は炭素数1~3の炭化水素基である。
1基またはR2基としては、アルキル基およびアルケニル基から選ばれる一種以上を挙げることができ、アルキル基であることが好ましい。
1基またはR2基として、具体的には、メチル基、エチル基、プロピル基およびプロピレン基から選ばれる一種以上を挙げることができ、メチル基であることが好ましい。
上記一般式(I)で表される弱塩基性陰イオン交換基において、R1基およびR2基は、互いに同一であっても異なっていてもよい。
In the weakly basic anion exchange group represented by the general formula (I), R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms.
As the R 1 group or R 2 group, one or more selected from an alkyl group and an alkenyl group can be mentioned, and an alkyl group is preferable.
Specific examples of the R 1 group or R 2 group include one or more selected from methyl group, ethyl group, propyl group and propylene group, preferably methyl group.
In the weakly basic anion exchange group represented by general formula (I) above, the R 1 and R 2 groups may be the same or different.

上記一般式(I)で表される弱塩基性陰イオン交換基としては、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基等を挙げることができ、ジメチルアミノ基であることが好ましい。 Examples of the weakly basic anion exchange group represented by the general formula (I) include a dimethylamino group, a diethylamino group, and a dipropylamino group, with the dimethylamino group being preferred.

上記一般式(I)において、*は、上記一般式(I)で表される弱塩基性陰イオン交換基と、基体または基体へ結合するための結合基との結合部位を示す。 In the above general formula (I), * indicates a binding site between the weakly basic anion exchange group represented by the above general formula (I) and the substrate or the binding group for binding to the substrate.

上記一般式(I)で表される弱塩基性陰イオン交換基は、スチレン系樹脂からなる基体に対し、下記一般式(II)に示すように、適宜結合基であるR3基を介して結合している
ことが好ましい。

Figure 2023116810000008
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R3基は炭素数1~3の炭化水素基であり、*は基体との結合部位
を示す。) The weakly basic anion-exchange group represented by the above general formula (I) is attached to a substrate made of a styrenic resin, as shown in the following general formula (II), via an R 3 group that is an appropriate bonding group. Bonding is preferred.
Figure 2023116810000008
(However, R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and R 3 is a hydrocarbon group having 1 to 3 carbon atoms. , * indicates the binding site to the substrate.)

上記R1基およびR2基としては、上述したものと同様のものを挙げることができる。
上記R3基は炭素数1~3の炭化水素基であり、R3基としては、アルキレン基およびアルケニレン基から選ばれる一種以上を挙げることができ、アルキレン基であることが好ましい。
3基として、具体的には、メチレン基 (-CH2-)、エチレン基(-CH2CH2
2-)、 プロピレン基(-CH2CH2CH2-)等から選ばれる一種以上を挙げること
ができ、メチレン基が好ましい。
Examples of the R 1 and R 2 groups are the same as those described above.
The R 3 group is a hydrocarbon group having 1 to 3 carbon atoms, and examples of the R 3 group include one or more selected from an alkylene group and an alkenylene group, preferably an alkylene group.
Specific examples of R 3 groups include a methylene group (--CH 2 --) and an ethylene group (--CH 2 CH 2 C
H 2 —), propylene group (—CH 2 CH 2 CH 2 —), etc., and methylene group is preferred.

上記一般式(I)で表される弱塩基性陰イオン交換基は、スチレン又はスチレン誘導体に置換基として導入することにより、スチレン系樹脂中に導入することができる。 The weakly basic anion exchange group represented by the general formula (I) can be introduced into the styrene resin by introducing it into styrene or a styrene derivative as a substituent.

イオン交換部に収容される弱塩基性陰イオン交換樹脂は、ゲル型構造、マクロポーラス(MR)型構造、ポーラス型構造のいずれの構造を有するものであってもよく、マクロポーラス型構造を有するものが好ましい。 The weakly basic anion exchange resin accommodated in the ion exchange part may have any structure of a gel type structure, a macroporous (MR) type structure, and a porous type structure, and has a macroporous type structure. things are preferred.

弱塩基性陰イオン交換樹脂のサイズは特に制限されないが、その調和平均径が、300~1000μmであるものが好ましく、400~800μmであるものがより好ましく、500~700μmであるものがさらに好ましい。 The size of the weakly basic anion exchange resin is not particularly limited, but the harmonic mean diameter is preferably 300 to 1000 μm, more preferably 400 to 800 μm, even more preferably 500 to 700 μm.

また、弱塩基性陰イオン交換樹脂としては、その湿潤状態の総イオン交換容量が、0.1~3.0(eq/L-R)であるものが好ましく、0.5~2.5(eq/L-R)であるものがより好ましく、1.0~2.0(eq/L-R)であるものがさらに好ましい。 The weakly basic anion exchange resin preferably has a total ion exchange capacity in a wet state of 0.1 to 3.0 (eq/LR), and preferably 0.5 to 2.5 (eq/LR). eq/L−R) is more preferred, and 1.0 to 2.0 (eq/L−R) is even more preferred.

このような弱塩基性陰イオン交換樹脂は、市販品であってもよく、例えば、三菱化学(株)製ダイヤイオンWA30や、オルガノ(株)製ORLITE DS-6等から選ばれる一種以上を挙げることができる。 Such weakly basic anion exchange resins may be commercially available products, for example, Mitsubishi Chemical Corporation Diaion WA30, Organo Co., Ltd. ORLITE DS-6 and the like selected from one or more. be able to.

本発明に係る非水電解液の製造装置において、イオン交換部内に収容される弱塩基性陰イオン交換樹脂の収容形態は、アルカリ金属塩電解質含有液と弱塩基性陰イオン交換樹脂とが接触し得る形態であれば特に制限されない。
例えば、イオン交換部が、アルカリ金属塩電解質含有液を通液し得る弱塩基性陰イオン交換樹脂を充填したカラムまたは槽であってもよい。
また、イオン交換部は、アルカリ金属塩電解質含有液を通液するためのポンプを備えたものであってもよい。
In the apparatus for producing a non-aqueous electrolyte according to the present invention, the accommodation form of the weakly basic anion exchange resin accommodated in the ion exchange part is such that the alkali metal salt electrolyte-containing liquid and the weakly basic anion exchange resin are in contact with each other. It is not particularly limited as long as it is obtained in a form.
For example, the ion exchange section may be a column or tank filled with a weakly basic anion exchange resin through which the alkali metal salt electrolyte-containing liquid can flow.
Further, the ion exchange section may be provided with a pump for passing the alkali metal salt electrolyte-containing liquid.

本発明に係る非水電解液の製造装置において、アルカリ金属塩電解質含有液をイオン交換部内の弱塩基性陰イオン交換装置に通液する通液速度(液空間速度)は、アルカリ金属塩電解質含有液中の酸性不純物を除去し得る速度から適宜選定すればよい。 In the apparatus for producing a non-aqueous electrolyte according to the present invention, the flow rate (liquid hourly space velocity) for passing the alkali metal salt electrolyte-containing liquid through the weakly basic anion exchange device in the ion exchange unit is It may be appropriately selected based on the rate at which acidic impurities in the liquid can be removed.

上記弱塩基性陰イオン交換樹脂による処理は、例えば、先ず、処理すべきアルカリ金属塩電解質含有液を構成する炭酸エステル溶媒で予め弱塩基性陰イオン交換樹脂を洗浄した後、約40~80℃で減圧下にて乾燥し、次いで、再度処理すべきアルカリ金属塩電解質含有液を構成する炭酸エステル溶媒で弱塩基性陰イオン交換樹脂を膨潤した上で、カラムに充填する。その上で、常法に従い逆洗・押出し操作等を行った後、処理すべき電解液を好ましくはSV(流量/イオン交換樹脂体積比)1~100hr-1、より好ましくはSV2~50hr-1、さらに好ましくはSV5~20hr-1で通液することにより行うことができる。 For the treatment with the weakly basic anion exchange resin, for example, the weakly basic anion exchange resin is washed in advance with a carbonate solvent that constitutes the alkali metal salt electrolyte-containing liquid to be treated, and then the temperature is adjusted to about 40 to 80°C. Then, the weakly basic anion exchange resin is swollen with a carbonate solvent constituting the alkali metal salt electrolyte-containing liquid to be treated again, and then packed into a column. After that, after performing backwashing, extrusion, etc. in accordance with a conventional method, the electrolytic solution to be treated is preferably SV (flow rate/ion exchange resin volume ratio) 1 to 100 hr -1 , more preferably SV 2 to 50 hr -1 , and more preferably by passing the solution at SV 5 to 20 hr -1 .

本発明に係る非水電解液の製造装置においては、上記イオン交換部から得られる酸吸着処理液中のフッ酸等の酸性不純物の含有量が、20質量ppm以下であることが好ましく、10質量ppm以下であることがより好ましく、5質量ppm以下であることがさらに好ましい。
なお、本出願書類において、上記酸性不純物量は、中和滴定法により測定した値を意味する。
In the apparatus for producing a non-aqueous electrolyte according to the present invention, the content of acidic impurities such as hydrofluoric acid in the acid adsorption treatment liquid obtained from the ion exchange part is preferably 20 mass ppm or less, and preferably 10 mass ppm. ppm or less is more preferable, and 5 mass ppm or less is even more preferable.
In addition, in this application document, the said amount of acidic impurities means the value measured by the neutralization titration method.

本発明によれば、イオン交換部に収容する弱塩基性陰イオン交換樹脂として、スチレン系樹脂を基体とし、三級アミン構造を有する特定の弱塩基性陰イオン交換基を有するものを採用することにより、電解液中の酸性不純物を効果的に吸着除去することができる。 According to the present invention, as the weakly basic anion exchange resin accommodated in the ion exchange section, a resin having a styrene resin as a base and specific weakly basic anion exchange groups having a tertiary amine structure is adopted. Therefore, acidic impurities in the electrolytic solution can be effectively adsorbed and removed.

このため、本発明によれば、フッ酸等の酸性不純物を効果的に吸着してその含有量を低減した非水電解液を容易に調製し得る非水電解液の製造装置を提供することができる。 Therefore, according to the present invention, it is possible to provide an apparatus for producing a non-aqueous electrolytic solution that can easily prepare a non-aqueous electrolytic solution in which acidic impurities such as hydrofluoric acid are effectively adsorbed and the content thereof is reduced. can.

次に、本発明に係る非水電解液の製造方法について説明する。
本発明に係る非水電解液の製造方法は、炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を、弱塩基性陰イオン交換樹脂が収容されたイオン交換部に通液して非水電解液を得る酸吸着工程を有し、前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)

Figure 2023116810000009
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部を示す。)で表される三級アミノ基を有することを特徴とするものである。 Next, a method for producing a non-aqueous electrolyte according to the present invention will be described.
In the method for producing a non-aqueous electrolyte according to the present invention, an alkali metal salt electrolyte-containing solution in which an alkali metal salt electrolyte is dispersed in a carbonate ester is passed through an ion exchange section containing a weakly basic anion exchange resin. The weakly basic anion exchange resin is based on a styrene resin, and the weakly basic anion exchange group is represented by the following general formula (I):
Figure 2023116810000009
(where R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different; part.) is characterized by having a tertiary amino group.

本発明に係る非水電解液の製造方法は、実質的に、本発明に係る製造装置を用いて非水電解液を製造するものであることから、製造方法の詳細は、上述した本発明に係る製造装置の使用形態の説明と共通する。 Since the method for producing a non-aqueous electrolyte according to the present invention substantially uses the production apparatus according to the present invention to produce a non-aqueous electrolyte, the details of the manufacturing method can be found in the above-described present invention. It is common to the description of the usage pattern of the manufacturing apparatus.

本発明によれば、フッ酸等の酸性不純物を効果的にその含有量を低減した非水電解液を容易に調製し得る非水電解液の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the non-aqueous electrolyte which can prepare easily the non-aqueous electrolyte which effectively reduced the content of acidic impurities, such as hydrofluoric acid, can be provided.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 EXAMPLES Next, the present invention will be described in more detail with reference to Examples, which are merely illustrative and do not limit the present invention.

(実施例1)
図2に示す非水電解液の製造装置1としてリチウムイオン電池用電解液の製造装置を用いて電解液を調製した。
すなわち、先ず、図2に示すように、非水電解質の製造装置(リチウムイオン電池用電解液の製造装置)1を構成するイオン交換部2として、スチレン-ジビニルベンゼンを基体とし、弱塩基性陰イオン交換基としてジメチルアミノ基を有する弱塩基性陰イオン交換樹脂(マクロポーラス型)を充填したカラムを用意した。
次いで、上記カラムに対し、エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPF6を1mol/Lと
なるように溶解した電解液Sを、ポンプPを用いて40L/L-樹脂の速度で通液し、通液後の電解液をタンクTに貯蔵した。
上記通液前後における、電解液中のフッ酸濃度を以下の方法で測定した。結果を表1に示す。
(Example 1)
An electrolytic solution was prepared by using an electrolytic solution producing apparatus for a lithium ion battery as the non-aqueous electrolytic solution producing apparatus 1 shown in FIG.
That is, first, as shown in FIG. 2, as an ion exchange section 2 constituting a non-aqueous electrolyte manufacturing apparatus (lithium ion battery electrolyte manufacturing apparatus) 1, styrene-divinylbenzene is used as a base material, and a weakly basic negative electrode is used. A column filled with a weakly basic anion exchange resin (macroporous type) having dimethylamino groups as ion exchange groups was prepared.
Next, an electrolytic solution S prepared by dissolving LiPF 6 at a concentration of 1 mol/L in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) at a volume ratio of 1:1 was added to the column. A pump P was used to feed the electrolyte at a rate of 40 L/L-resin, and the electrolytic solution after the feeding was stored in a tank T.
The concentration of hydrofluoric acid in the electrolytic solution was measured by the following method before and after the passage of the solution. Table 1 shows the results.

<フッ酸濃度の測定方法>
水酸化ナトリウムによる中和滴定から算出した水素イオン濃度を全てフッ酸に換算してフッ酸濃度とした。
<Method for measuring hydrofluoric acid concentration>
All the hydrogen ion concentrations calculated from neutralization titration with sodium hydroxide were converted into hydrofluoric acid to obtain hydrofluoric acid concentrations.

(比較例1)
弱塩基性陰イオン交換樹脂として、アクリル系樹脂を基体とし、弱塩基性陰イオン交換基としてジメチルアミノ基を有するもの(ゲル型)を用いた以外は、実施例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し電解液Sを通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表1に示す。
(Comparative example 1)
A weak base was prepared in the same manner as in Example 1, except that the weakly basic anion exchange resin used was an acrylic resin as a base and had a dimethylamino group as the weakly basic anion exchange group (gel type). Electrolyte S was passed through a column packed with a polar anion exchange resin, and the concentration of hydrofluoric acid in the electrolyte was measured before and after the flow.
Table 1 shows the results.

(比較例2)
弱塩基性陰イオン交換樹脂として、スチレン-ジビニルベンゼンを基体とし、弱塩基性陰イオン交換基としてポリアミン基を有するもの(マクロポーラス型)を用いた以外は、実施例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し電解液Sを通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表1に示す。
(Comparative example 2)
As the weakly basic anion-exchange resin, a weakly basic anion-exchange resin based on styrene-divinylbenzene and having a polyamine group as the weakly basic anion-exchange group (macroporous type) was used. The electrolytic solution S was passed through a column filled with a basic anion exchange resin, and the concentration of hydrofluoric acid in the electrolytic solution was measured before and after passing the solution.
Table 1 shows the results.

(比較例3)
弱塩基性陰イオン交換樹脂として、アクリル系樹脂を基体とし、弱塩基性陰イオン交換基としてポリアミン基を有するもの(マクロポーラス型)を用いた以外は、実施例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し電解液Sを通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表1に示す。
(Comparative Example 3)
A weak base was prepared in the same manner as in Example 1, except that the weakly basic anion exchange resin used was an acrylic resin as a base and had a polyamine group as the weakly basic anion exchange group (macroporous type). Electrolyte S was passed through a column packed with a polar anion exchange resin, and the concentration of hydrofluoric acid in the electrolyte was measured before and after the flow.
Table 1 shows the results.

Figure 2023116810000010
Figure 2023116810000010

(参考例1)
エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPF6を1mol/Lとなるように溶解した電解液に
代えて、フッ酸を濃度100質量ppmとなるように溶解した水を通液した以外は、実施例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し上記水溶液を通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表2に示す。
(Reference example 1)
Hydrofluoric acid at a concentration of 100 wt. The above aqueous solution was passed through a column filled with a weakly basic anion exchange resin in the same manner as in Example 1, except that water dissolved so as to be ppm was passed through. The hydrofluoric acid concentration was measured.
Table 2 shows the results.

(参考例2)
エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPF6を1mol/Lとなるように溶解した電解液に
代えて、フッ酸を濃度100質量ppmとなるように溶解した水を通液した以外は、比較例1と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し上記水溶液を通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表2に示す。
(Reference example 2)
Hydrofluoric acid at a concentration of 100 wt. The aqueous solution was passed through a column filled with a weakly basic anion exchange resin in the same manner as in Comparative Example 1, except that water dissolved so as to be ppm was passed through. The hydrofluoric acid concentration was measured.
Table 2 shows the results.

(参考例3)
エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPF6を1mol/Lとなるように溶解した電解液に
代えて、フッ酸を濃度100質量ppmとなるように溶解した水を通液した以外は、比較例2と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し上記水溶液を通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表2に示す。
(Reference example 3)
Hydrofluoric acid at a concentration of 100 wt. The above aqueous solution was passed through a column filled with a weakly basic anion exchange resin in the same manner as in Comparative Example 2, except that water dissolved so as to be ppm was passed through. The hydrofluoric acid concentration was measured.
Table 2 shows the results.

(参考例4)
エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比で1:1の割合で混合した混合溶媒にLiPF6を1mol/Lとなるように溶解した電解液に
代えて、フッ酸を濃度100質量ppmとなるように溶解した水を通液した以外は、比較例3と同様にして、弱塩基性陰イオン交換樹脂を充填したカラムに対し上記水溶液を通液し、通液前後における、電解液中のフッ酸濃度を測定した。
結果を表2に示す。
(Reference example 4)
Hydrofluoric acid at a concentration of 100 wt. The above aqueous solution was passed through a column filled with a weakly basic anion exchange resin in the same manner as in Comparative Example 3, except that water dissolved so as to be ppm was passed through. The hydrofluoric acid concentration was measured.
Table 2 shows the results.

Figure 2023116810000011
Figure 2023116810000011

表1より、実施例1においては、炭酸エステル中にリチウム系電解質を分散したリチウム系電解質含有液中の酸性不純物の除去処理を、スチレン系樹脂を基体とする特定の弱塩基性陰イオン交換樹脂を用いて行っているために、酸性不純物を効果的に除去し得ることが分かる。 From Table 1, in Example 1, the treatment for removing acidic impurities in the lithium-based electrolyte-containing liquid in which the lithium-based electrolyte was dispersed in the carbonate ester was performed using a specific weakly basic anion exchange resin based on a styrene-based resin. is used to effectively remove acidic impurities.

一方、表1より、比較例1~比較例3においては、炭酸エステル中にリチウム系電解質を分散したリチウム系電解質含有液中の酸性不純物の除去処理を、上記特定の弱塩基性陰イオン交換樹脂を用いて行っていないために、酸性不純物の効果的な除去が困難であることが分かる。 On the other hand, from Table 1, in Comparative Examples 1 to 3, the treatment for removing acidic impurities in the lithium-based electrolyte-containing liquid in which the lithium-based electrolyte was dispersed in the carbonate ester was performed using the specific weakly basic anion exchange resin. It can be seen that the effective removal of acidic impurities is difficult because it is not carried out using

また、表2に示す参考例1~参考例4の結果より、水中の酸性不純物を除去する場合には、イオン交換樹脂の種類に拘わらず酸性不純物を効果的に除去し得ることが分かる。 Further, from the results of Reference Examples 1 to 4 shown in Table 2, it can be seen that when removing acidic impurities in water, the acidic impurities can be effectively removed regardless of the type of ion exchange resin.

本発明によれば、フッ酸等の酸性不純物を効果的に吸着してその含有量を低減した非水電解液を容易に調製し得る非水電解液の製造装置を提供するとともに、非水電解液の製造方法を提供することができる。 According to the present invention, there is provided an apparatus for producing a non-aqueous electrolytic solution that can easily prepare a non-aqueous electrolytic solution in which acidic impurities such as hydrofluoric acid are effectively adsorbed and the content thereof is reduced, and non-aqueous electrolysis is performed. A liquid manufacturing method can be provided.

1 非水電解液の製造装置
2 酸吸収装置
1 non-aqueous electrolyte manufacturing device 2 acid absorption device

Claims (10)

炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を通液して非水電解液を得るための、弱塩基性陰イオン交換樹脂が収容されたイオン交換部を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)
Figure 2023116810000012
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部位を示す。)
で表される三級アミノ基を有する
ことを特徴とする非水電解液の製造装置。
an ion exchange unit containing a weakly basic anion exchange resin for passing an alkali metal salt electrolyte-containing liquid in which an alkali metal salt electrolyte is dispersed in a carbonate ester to obtain a non-aqueous electrolyte;
The weakly basic anion exchange resin is based on a styrene resin, and the weakly basic anion exchange group is represented by the following general formula (I)
Figure 2023116810000012
(where R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different; indicate the part.)
An apparatus for producing a non-aqueous electrolyte, characterized by having a tertiary amino group represented by.
前記スチレン系樹脂が、スチレン-ジビニルベンゼン共重合体である請求項1に記載の非水電解液の製造装置。 2. The apparatus for producing a non-aqueous electrolyte according to claim 1, wherein the styrene resin is a styrene-divinylbenzene copolymer. 前記弱塩基性陰イオン交換基が、下記一般式(II)
Figure 2023116810000013
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R3基は炭素数1~3の炭化水素基であり、*は基体との結合部位
を示す。)
で表される三級アミノ基である請求項1または請求項2に記載の非水電解液の製造装置。
The weakly basic anion exchange group has the following general formula (II)
Figure 2023116810000013
(However, R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and R 3 is a hydrocarbon group having 1 to 3 carbon atoms. , * indicates the binding site to the substrate.)
3. The apparatus for producing a non-aqueous electrolyte solution according to claim 1, wherein the tertiary amino group is represented by:
前記一般式(I)または一般式(II)で表される弱塩基性陰イオン交換基が、ジメチルアミノメチル基である請求項1~請求項3のいずれかに記載の非水電解液の製造装置。 The production of the non-aqueous electrolyte according to any one of claims 1 to 3, wherein the weakly basic anion exchange group represented by general formula (I) or general formula (II) is a dimethylaminomethyl group. Device. 前記非水電解液がリチウムイオン電池用電解液である請求項1~請求項4のいずれかに記載の非水電解液の製造装置。 5. The apparatus for producing a non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte is an electrolyte for a lithium ion battery. 非水電解液を製造する方法であって、
炭酸エステル中にアルカリ金属塩電解質が分散されたアルカリ金属塩電解質含有液を、弱塩基性陰イオン交換樹脂が収容されたイオン交換部に通液して非水電解液を得る酸吸着工程を有し、
前記弱塩基性陰イオン交換樹脂が、スチレン系樹脂を基体とし、弱塩基性陰イオン交換基として、下記一般式(I)
Figure 2023116810000014
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、*は基体または基体へ結合するための結合基との結合部を示す。)で表される三級アミノ基を有する
ことを特徴とする非水電解液の製造方法。
A method for producing a non-aqueous electrolyte,
An acid adsorption step of obtaining a non-aqueous electrolyte by passing an alkali metal salt electrolyte-containing liquid in which an alkali metal salt electrolyte is dispersed in a carbonate ester through an ion exchange section containing a weakly basic anion exchange resin. death,
The weakly basic anion exchange resin is based on a styrene resin, and the weakly basic anion exchange group is represented by the following general formula (I)
Figure 2023116810000014
(where R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different; Part is shown).
前記スチレン系樹脂が、スチレン-ジビニルベンゼン共重合体である請求項6に記載の非水電解液の製造方法。 7. The method for producing a nonaqueous electrolyte according to claim 6, wherein the styrene resin is a styrene-divinylbenzene copolymer. 前記弱塩基性陰イオン交換基が、下記一般式(II)
Figure 2023116810000015
(ただし、R1基およびR2基は炭素数1~3の炭化水素基であって互いに同一であっても異なっていてもよく、R3基は炭素数1~3の炭化水素基であり、*は基体との結合部位
を示す。)
で表される三級アミノ基である請求項6または請求項7に記載の非水電解液の製造方法。
The weakly basic anion exchange group has the following general formula (II)
Figure 2023116810000015
(However, R 1 and R 2 are hydrocarbon groups having 1 to 3 carbon atoms and may be the same or different, and R 3 is a hydrocarbon group having 1 to 3 carbon atoms. , * indicates the binding site to the substrate.)
The method for producing a non-aqueous electrolyte according to claim 6 or 7, wherein the tertiary amino group represented by
前記一般式(I)または一般式(II)で表される弱塩基性陰イオン交換基が、ジメチルアミノメチル基である請求項6~請求項8のいずれかに記載の非水電解液の製造方法。 The production of the non-aqueous electrolyte according to any one of claims 6 to 8, wherein the weakly basic anion exchange group represented by general formula (I) or general formula (II) is a dimethylaminomethyl group. Method. 前記非水電解液がリチウムイオン電池用電解液である請求項6~請求項9のいずれかに記載の非水電解液の製造方法。 10. The method for producing a non-aqueous electrolyte according to any one of claims 6 to 9, wherein the non-aqueous electrolyte is an electrolyte for lithium ion batteries.
JP2023103485A 2018-10-24 2023-06-23 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution Withdrawn JP2023116810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023103485A JP2023116810A (en) 2018-10-24 2023-06-23 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018199869A JP7573356B2 (en) 2018-10-24 2018-10-24 Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte
JP2023103485A JP2023116810A (en) 2018-10-24 2023-06-23 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018199869A Division JP7573356B2 (en) 2018-10-24 2018-10-24 Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte

Publications (1)

Publication Number Publication Date
JP2023116810A true JP2023116810A (en) 2023-08-22

Family

ID=70388580

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018199869A Active JP7573356B2 (en) 2018-10-24 2018-10-24 Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte
JP2023103485A Withdrawn JP2023116810A (en) 2018-10-24 2023-06-23 Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018199869A Active JP7573356B2 (en) 2018-10-24 2018-10-24 Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte

Country Status (1)

Country Link
JP (2) JP7573356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023233724A1 (en) * 2022-05-31 2023-12-07

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001325A (en) * 1996-11-26 1999-12-14 Fmc Corporation Process for removing acids from lithium salt solutions
JPH11185810A (en) * 1997-12-16 1999-07-09 Tonen Corp Electrolyte for lithium battery and its manufacture
DE10026363A1 (en) 2000-05-27 2001-11-29 Merck Patent Gmbh Process for the purification of hydrogen peroxide solutions
WO2011024687A1 (en) * 2009-08-28 2011-03-03 東ソー株式会社 Zeolite for processing non-aqueous electrolyte, and method for processing non-aqueous electrolyte
US9023204B2 (en) * 2009-12-17 2015-05-05 Entegris, Inc. Purifier for removing hydrogen fluoride from electrolytic solution

Also Published As

Publication number Publication date
JP2020068107A (en) 2020-04-30
JP7573356B2 (en) 2024-10-25

Similar Documents

Publication Publication Date Title
JP7203556B2 (en) Non-aqueous electrolyte manufacturing apparatus and method for manufacturing non-aqueous electrolyte
JP6367313B2 (en) Spherical particles, their production and methods of using them
CN101383430B (en) Process for lithium salt treatment
JP2008251528A (en) High-purity lithium polyhalogenated boron cluster salt useful for lithium battery
JP2023116810A (en) Device for producing nonaqueous electrolytic solution and method for producing nonaqueous electrolytic solution
JP7182427B2 (en) Non-aqueous electrolyte manufacturing apparatus and method for manufacturing non-aqueous electrolyte
JP7265855B2 (en) Non-aqueous electrolyte manufacturing apparatus and method for manufacturing non-aqueous electrolyte
HU et al. Review of SEI film forming additives for electrolyte of lithium ion battery
JP7573355B2 (en) Apparatus for producing non-aqueous electrolyte and method for producing non-aqueous electrolyte
WO2020085001A1 (en) Device for producing nonaqueous electrolytic solution and method of producing nonaqueous electrolytic solution
JP7602418B2 (en) Method and apparatus for purifying non-aqueous solvent
JPH11185810A (en) Electrolyte for lithium battery and its manufacture
CN115775657A (en) Method and apparatus for producing ion conductor
CN108808086B (en) Lithium ion battery non-aqueous electrolyte and lithium ion battery
JP2023004087A (en) Storage method of non-aqueous electrolyte
JP7585220B2 (en) Method for producing non-aqueous electrolyte
CN108666535B (en) Lithium ion battery cathode material, preparation method thereof and lithium ion battery
WO2024117048A1 (en) Method for producing ion conductor
JP6058553B2 (en) Process for producing transition metal carbonate
JP2021170525A (en) Refining method of electrolyte solution for lithium ion secondary battery, and lithium ion secondary battery
CN116495711B (en) Lithium bis (fluorosulfonyl) imide composition and preparation method thereof
CN117317366A (en) Electrolyte for lithium iron phosphate large cylindrical battery and battery
CN106784825A (en) A kind of spherical nickeliferous carbonic acid manganese material and its preparation method and application
CN118231828A (en) A deep eutectic solvent and method for repairing retired lithium-ion battery positive electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230626

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20250116