JP7552019B2 - Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device - Google Patents
Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device Download PDFInfo
- Publication number
- JP7552019B2 JP7552019B2 JP2020011470A JP2020011470A JP7552019B2 JP 7552019 B2 JP7552019 B2 JP 7552019B2 JP 2020011470 A JP2020011470 A JP 2020011470A JP 2020011470 A JP2020011470 A JP 2020011470A JP 7552019 B2 JP7552019 B2 JP 7552019B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- silica particles
- solution
- reaction
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 201
- 238000005498 polishing Methods 0.000 title claims description 105
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 title claims description 74
- 238000004519 manufacturing process Methods 0.000 title claims description 73
- 238000000034 method Methods 0.000 title claims description 34
- 239000004065 semiconductor Substances 0.000 title claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 44
- 239000000203 mixture Substances 0.000 claims description 41
- 239000006185 dispersion Substances 0.000 claims description 40
- 239000003054 catalyst Substances 0.000 claims description 30
- 238000006460 hydrolysis reaction Methods 0.000 claims description 30
- 239000003513 alkali Substances 0.000 claims description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 26
- 238000006482 condensation reaction Methods 0.000 claims description 25
- 239000002612 dispersion medium Substances 0.000 claims description 14
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- 239000000243 solution Substances 0.000 description 128
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 57
- 235000012431 wafers Nutrition 0.000 description 37
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 30
- 229910052710 silicon Inorganic materials 0.000 description 30
- 239000010703 silicon Substances 0.000 description 30
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 28
- 239000002904 solvent Substances 0.000 description 25
- 239000011164 primary particle Substances 0.000 description 20
- 239000011163 secondary particle Substances 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000010419 fine particle Substances 0.000 description 18
- 229920003169 water-soluble polymer Polymers 0.000 description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 13
- 238000004220 aggregation Methods 0.000 description 12
- 230000002776 aggregation Effects 0.000 description 12
- 125000005372 silanol group Chemical group 0.000 description 12
- 239000012295 chemical reaction liquid Substances 0.000 description 11
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 230000000844 anti-bacterial effect Effects 0.000 description 10
- 239000003139 biocide Substances 0.000 description 10
- 239000012535 impurity Substances 0.000 description 10
- 229910021529 ammonia Inorganic materials 0.000 description 9
- 150000007514 bases Chemical class 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000003115 biocidal effect Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000003002 pH adjusting agent Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000002296 dynamic light scattering Methods 0.000 description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- -1 polyoxyethylene Polymers 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000006174 pH buffer Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 2
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical group C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Description
本発明は、シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法に関する。 The present invention relates to a method for producing silica particles, a method for producing silica sol, a polishing method, a method for producing semiconductor wafers, and a method for producing semiconductor devices.
金属や無機化合物等の材料の表面を研磨する方法として、研磨液を用いた研磨方法が知られている。中でも、半導体用のプライムシリコンウェハやこれらの再生シリコンウェハの最終仕上げ研磨、及び、半導体デバイス製造時の層間絶縁膜の平坦化、金属プラグの形成、埋め込み配線形成等の化学的機械的研磨(CMP)では、その表面状態が半導体特性に大きく影響するため、これらの部品の表面や端面は、極めて高精度に研磨されることが要求されている。 Polishing methods using polishing liquids are known as a method for polishing the surfaces of materials such as metals and inorganic compounds. In particular, in the final polishing of prime silicon wafers for semiconductors and reclaimed silicon wafers, as well as in chemical mechanical polishing (CMP) for planarizing interlayer insulating films during semiconductor device manufacturing, forming metal plugs, forming embedded wiring, and the like, the surface condition has a significant effect on the semiconductor characteristics, so the surfaces and end faces of these components must be polished with extremely high precision.
このような精密研磨においては、シリカ粒子を含む研磨組成物が採用されており、その主成分である砥粒として、コロイダルシリカが広く用いられている。コロイダルシリカは、その製造方法の違いにより、四塩化珪素の熱分解によるもの(ヒュームドシリカ等)、水ガラス等の珪酸アルカリの脱イオンによるもの、アルコキシシランの加水分解反応及び縮合反応(一般に「ゾルゲル法」と称される)によるもの等が知られている。 In such precision polishing, polishing compositions containing silica particles are used, and colloidal silica is widely used as the abrasive grains, which are the main component. Colloidal silica is known to be produced by different manufacturing methods, such as by thermal decomposition of silicon tetrachloride (fumed silica, etc.), by deionization of alkali silicate such as water glass, and by hydrolysis and condensation reactions of alkoxysilanes (commonly known as the "sol-gel method").
シリカ粒子の製造方法に関し、これまで多くの検討がなされてきた。例えば、特許文献1及び特許文献2には、アルコキシシランの加水分解反応及び縮合反応によりシリカ粒子を製造する方法が開示されている。 Many studies have been conducted on methods for producing silica particles. For example, Patent Documents 1 and 2 disclose methods for producing silica particles by hydrolysis and condensation reactions of alkoxysilanes.
ところで、加水分解反応及び縮合反応により得られたシリカ粒子は、その製造条件次第で、所望の粒子径よりも遥かに小さいシリカ粒子(以下、微粒子という。)が発生することがある。この微粒子は、研磨時に被研磨体に付着して研磨レートを低下させたり、研磨後の洗浄で除去されにくい等、研磨工程において悪影響を及ぼすという課題を有する。 However, depending on the manufacturing conditions, silica particles obtained by hydrolysis and condensation reactions may produce silica particles (hereinafter referred to as fine particles) that are much smaller than the desired particle size. These fine particles have the problem of adversely affecting the polishing process, such as by adhering to the object being polished during polishing, reducing the polishing rate, and being difficult to remove by cleaning after polishing.
特許文献1に開示されているシリカ粒子を製造する方法は、添加するテトラアルコキシシラン溶液中のテトラアルコキシシランの濃度が高く、反応液中でのテトラアルコキシシランの溶解性が悪くなり、微粒子が発生する可能性を有するという課題を有する。特許文献2に開示されているシリカ粒子を製造する方法は、添加するテトラアルコキシシランの質量に対して反応前の反応系内のアルコールの質量の比が小さく、反応液中でのテトラアルコキシシランの溶解性が悪くなり、微粒子が発生する可能性を有するという課題を有する。 The method for producing silica particles disclosed in Patent Document 1 has a problem that the concentration of tetraalkoxysilane in the tetraalkoxysilane solution added is high, which reduces the solubility of tetraalkoxysilane in the reaction solution, and there is a possibility of fine particles being generated. The method for producing silica particles disclosed in Patent Document 2 has a problem that the ratio of the mass of alcohol in the reaction system before the reaction to the mass of tetraalkoxysilane added is small, which reduces the solubility of tetraalkoxysilane in the reaction solution, and there is a possibility of fine particles being generated.
本発明は、このような課題を鑑みてなされたものであり、本発明の目的は、微粒子の発生を抑制するシリカ粒子の製造方法を提供することにある。 The present invention was made in consideration of these problems, and the object of the present invention is to provide a method for producing silica particles that suppresses the generation of fine particles.
従来、微粒子の発生を抑制したシリカ粒子を得るのに好適な製造条件については開示されていなかった。しかしながら、本発明者らは、鋭意検討を重ねた結果、添加するテトラアルコキシシラン溶液中のテトラアルコキシシランの濃度を好適化することで、微粒子の発生を抑制することを見出し、本発明を完成するに至った。 Conventionally, suitable manufacturing conditions for obtaining silica particles in which the generation of fine particles is suppressed have not been disclosed. However, as a result of extensive research, the inventors have discovered that the generation of fine particles can be suppressed by optimizing the concentration of tetraalkoxysilane in the tetraalkoxysilane solution to be added, and have completed the present invention.
即ち、本発明の要旨は、以下の通りである。
[1]以下の工程(1)を含む、シリカ粒子の製造方法。
工程(1):水を含む溶液(A)に、テトラアルコキシシランを77質量%~89質量%含む溶液(B)を添加し、テトラアルコキシシランを加水分解反応及び縮合反応させる工程
[2]溶液(B)の添加速度が、50gシリカ/時/kg溶液~150gシリカ/時/kg溶液である、請求項1に記載のシリカ粒子の製造方法。
[3]加水分解反応及び縮合反応の反応温度が、20℃~50℃である、[1]又は[2]に記載のシリカ粒子の製造方法。
[4]加水分解反応及び縮合反応の反応系内の水の濃度を、3質量%~25質量%に維持する、[1]~[3]のいずれかに記載のシリカ粒子の製造方法。
[5]溶液(A)が、アルカリ触媒を含む、[1]~[4]のいずれかに記載のシリカ粒子の製造方法。
[6]溶液(A)に、溶液(B)及びアルカリ触媒を含む溶液(C)を添加する、[1]~[5]のいずれかに記載のシリカ粒子の製造方法。
[7]加水分解反応及び縮合反応の反応系内のアルカリ触媒の濃度を、0.5質量%~2.0質量%に維持する、[6]に記載のシリカ粒子の製造方法。
[8]溶液(A)が、アルコールを含む、[1]~[7]のいずれかに記載のシリカ粒子の製造方法。
[9]反応前の溶液(B)中のテトラアルコキシシランの質量に対する反応前の溶液(A)中のアルコールの質量の比が、0.73~0.91である、[8]に記載のシリカ粒子の製造方法。
[10]更に、以下の工程(2)を含む、[1]~[9]のいずれかに記載のシリカ粒子の製造方法。
工程(2):工程(1)で得られたシリカ粒子の分散液を濃縮し、分散媒を添加する工程
[11]更に、以下の工程(3)を含む、[10]に記載のシリカ粒子の製造方法。
工程(3):工程(2)で得られたシリカ粒子の分散液を加圧加熱処理する工程
[12][1]~[11]のいずれかに記載のシリカ粒子の製造方法を含む、シリカゾルの製造方法。
[13]シリカゾル中のシリカ粒子の濃度が、10質量%~25質量%である、[12]に記載のシリカゾルの製造方法。
[14][12]又は[13]に記載のシリカゾルの製造方法で得られたシリカゾルを含む研磨組成物を用いて研磨する、研磨方法。
[15][14]に記載の研磨方法を含む、半導体ウェハの製造方法。
[16][14]に記載の研磨方法を含む、半導体デバイスの製造方法。
That is, the gist of the present invention is as follows.
[1] A method for producing silica particles, comprising the following step (1):
Step (1): A step of adding a solution (B) containing 77% by mass to 89% by mass of tetraalkoxysilane to a solution (A) containing water, and subjecting the tetraalkoxysilane to a hydrolysis reaction and a condensation reaction. [2] The method for producing silica particles according to claim 1, wherein the addition rate of the solution (B) is 50 g silica/hour/kg solution to 150 g silica/hour/kg solution.
[3] The method for producing silica particles according to [1] or [2], wherein the reaction temperatures of the hydrolysis reaction and the condensation reaction are 20° C. to 50° C.
[4] The method for producing silica particles according to any one of [1] to [3], wherein the concentration of water in the reaction system for the hydrolysis reaction and the condensation reaction is maintained at 3% by mass to 25% by mass.
[5] The method for producing silica particles according to any one of [1] to [4], wherein the solution (A) contains an alkali catalyst.
[6] The method for producing silica particles according to any one of [1] to [5], wherein the solution (B) and a solution (C) containing an alkali catalyst are added to the solution (A).
[7] The method for producing silica particles according to [6], wherein the concentration of the alkali catalyst in the reaction system for the hydrolysis reaction and the condensation reaction is maintained at 0.5% by mass to 2.0% by mass.
[8] The method for producing silica particles according to any one of [1] to [7], wherein the solution (A) contains an alcohol.
[9] The method for producing silica particles according to [8], wherein the ratio of the mass of the alcohol in the solution (A) before the reaction to the mass of the tetraalkoxysilane in the solution (B) before the reaction is 0.73 to 0.91.
[10] The method for producing silica particles according to any one of [1] to [9], further comprising the following step (2):
Step (2): A step of concentrating the dispersion liquid of silica particles obtained in step (1) and adding a dispersion medium. [11] The method for producing silica particles according to [10], further comprising the following step (3):
Step (3): A step of subjecting the dispersion of silica particles obtained in step (2) to a pressurized and heated treatment. [12] A method for producing a silica sol, comprising the method for producing silica particles according to any one of [1] to [11].
[13] The method for producing a silica sol according to [12], wherein the concentration of silica particles in the silica sol is 10% by mass to 25% by mass.
[14] A polishing method, comprising polishing using a polishing composition containing the silica sol obtained by the method for producing a silica sol according to [12] or [13].
[15] A method for producing a semiconductor wafer, comprising the polishing method according to [14].
[16] A method for manufacturing a semiconductor device, comprising the polishing method according to [14].
本発明のシリカ粒子の製造方法は、微粒子の発生を抑制し、シリカ粒子を得ることができる。 The method for producing silica particles of the present invention can suppress the generation of fine particles and obtain silica particles.
以下に本発明について詳述するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。尚、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いる。 The present invention is described in detail below, but is not limited to the following embodiments and can be modified and implemented in various ways within the scope of the gist. In this specification, when the expression "~" is used, it is used as an expression including the numerical values or physical property values before and after it.
(シリカ粒子の製造方法)
本発明のシリカ粒子の製造方法は、以下の工程(1)を含む。
工程(1):水を含む溶液(A)に、テトラアルコキシシランを77質量%~89質量%含む溶液(B)を添加し、テトラアルコキシシランを加水分解反応及び縮合反応させる工程
(Method for producing silica particles)
The method for producing silica particles of the present invention includes the following step (1).
Step (1): A step of adding a solution (B) containing 77% by mass to 89% by mass of tetraalkoxysilane to a solution (A) containing water, and subjecting the tetraalkoxysilane to a hydrolysis reaction and a condensation reaction.
(工程(1))
工程(1)は、水を含む溶液(A)に、テトラアルコキシシランを77質量%~89質量%含む溶液(B)を添加し、テトラアルコキシシランを加水分解反応及び縮合反応させる工程である。
(Step (1))
Step (1) is a step in which a solution (B) containing 77% by mass to 89% by mass of a tetraalkoxysilane is added to a solution (A) containing water, and the tetraalkoxysilane is subjected to a hydrolysis reaction and a condensation reaction.
溶液(A)は、水を含む。 Solution (A) contains water.
溶液(A)は、反応液中でのテトラアルコキシシランの分散性に優れることから、水以外の溶媒を含むことが好ましい。
溶液(A)中の水以外の溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の中でも、テトラアルコキシシランを溶解しやすく、加水分解反応及び縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、アルコールが好ましく、メタノール、エタノールがより好ましく、メタノールが更に好ましい。
It is preferable that the solution (A) contains a solvent other than water, since this provides excellent dispersibility of the tetraalkoxysilane in the reaction liquid.
Examples of the solvent other than water in the solution (A) include methanol, ethanol, propanol, isopropanol, ethylene glycol, etc. These solvents may be used alone or in combination of two or more. Among these solvents, alcohol is preferred, more preferably methanol or ethanol, and even more preferably methanol, because it is easy to dissolve tetraalkoxysilane, the by-product is the same as that used in the hydrolysis reaction and the condensation reaction, and it is convenient to manufacture.
溶液(A)は、テトラアルコキシシランの加水分解反応及び縮合反応の反応速度を高めることができることから、アルカリ触媒を含むことが好ましい。
溶液(A)中のアルカリ触媒としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等が挙げられる。これらのアルカリ触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのアルカリ触媒の中でも、触媒作用に優れ、粒子形状を制御しやすく、金属不純物の混入を抑制することができ、揮発性が高く加水分解反応及び縮合反応後の除去性に優れることから、アンモニアが好ましい。
The solution (A) preferably contains an alkali catalyst, since this can increase the reaction rates of the hydrolysis reaction and condensation reaction of the tetraalkoxysilane.
Examples of the alkali catalyst in the solution (A) include ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanolamine, tetramethylammonium hydroxide, etc. These alkali catalysts may be used alone or in combination of two or more. Among these alkali catalysts, ammonia is preferred because it has excellent catalytic action, is easy to control the particle shape, can suppress the inclusion of metal impurities, is highly volatile, and is easy to remove after the hydrolysis reaction and the condensation reaction.
溶液(A)中のアルカリ触媒の濃度は、溶液(A)100質量%中、0.5質量%~2.0質量%が好ましく、1.0質量%~1.5質量%がより好ましい。溶液(A)中のアルカリ触媒の濃度が下限値以上であると、シリカ粒子の凝集を抑制し、分散液中のシリカ粒子の分散安定性に優れる。また、溶液(A)中のアルカリ触媒の濃度が上限値以下であると、反応が過度に速く進行せず、反応制御性に優れる。 The concentration of the alkaline catalyst in solution (A) is preferably 0.5% by mass to 2.0% by mass, and more preferably 1.0% by mass to 1.5% by mass, based on 100% by mass of solution (A). When the concentration of the alkaline catalyst in solution (A) is equal to or greater than the lower limit, aggregation of the silica particles is suppressed, and the dispersion stability of the silica particles in the dispersion is excellent. When the concentration of the alkaline catalyst in solution (A) is equal to or less than the upper limit, the reaction does not proceed excessively quickly, and reaction controllability is excellent.
溶液(A)中の水の濃度は、溶液(A)100質量%中、3質量%~25質量%が好ましく、7質量%~20質量%がより好ましい。溶液(A)中の水の濃度が下限値以上であると、加水分解反応で生成するケイ酸の反応液中での分散性に優れる。また、溶液(A)中の水の濃度が上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れる。 The concentration of water in solution (A) is preferably 3% by mass to 25% by mass, and more preferably 7% by mass to 20% by mass, based on 100% by mass of solution (A). When the concentration of water in solution (A) is equal to or higher than the lower limit, the dispersibility of the silicic acid produced by the hydrolysis reaction in the reaction liquid is excellent. Furthermore, when the concentration of water in solution (A) is equal to or lower than the upper limit, the dispersibility of the tetraalkoxysilane in the reaction liquid is excellent.
溶液(A)中の水以外の溶媒の濃度は、アルカリ触媒と水の残部とすることが好ましい。 The concentration of the solvent other than water in solution (A) is preferably the balance of the alkali catalyst and water.
溶液(B)は、テトラアルコキシシランを含む。
溶液(B)中のテトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン等が挙げられる。これらのテトラアルコキシシランは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのテトラアルコキシシランの中でも、加水分解反応が早く、未反応物が残留しづらく、生産性に優れ、安定なシリカゾルを容易に得ることができることから、テトラメトキシシラン、テトラエトキシシランが好ましく、テトラメトキシシランがより好ましい。
The solution (B) contains a tetraalkoxysilane.
Examples of the tetraalkoxysilane in the solution (B) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, etc. These tetraalkoxysilanes may be used alone or in combination of two or more. Among these tetraalkoxysilanes, tetramethoxysilane and tetraethoxysilane are preferred, and tetramethoxysilane is more preferred, because they undergo a fast hydrolysis reaction, are less likely to leave unreacted material, are highly productive, and can easily obtain a stable silica sol.
溶液(B)は、反応液中でのテトラアルコキシシランの分散性に優れることから、溶媒を含むことが好ましい。
溶液(B)中の溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の中でも、加水分解反応及び縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、アルコールが好ましく、メタノール、エタノールがより好ましく、メタノールが更に好ましい。
It is preferable that the solution (B) contains a solvent, since this provides excellent dispersibility of the tetraalkoxysilane in the reaction liquid.
Examples of the solvent in the solution (B) include methanol, ethanol, propanol, isopropanol, and ethylene glycol. These solvents may be used alone or in combination of two or more. Among these solvents, alcohol is preferred, more preferably methanol or ethanol, and even more preferably methanol, because the solvent used in the hydrolysis reaction and the solvent by-produced in the condensation reaction are the same, and the convenience in production is excellent.
溶液(B)中のテトラアルコキシシランの濃度は、溶液(B)100質量%中、77質量%~89質量%であり、78質量%~88質量%が好ましい。溶液(B)中のテトラアルコキシシランの濃度が下限値以上であると、用いる溶媒の量を低減することができ、シリカ粒子の生産性に優れ、微粒子の発生を抑制することができる。また、溶液(B)中のテトラアルコキシシランの濃度が上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れ、微粒子の発生を抑制することができる。 The concentration of tetraalkoxysilane in solution (B) is 77% by mass to 89% by mass, preferably 78% by mass to 88% by mass, in 100% by mass of solution (B). When the concentration of tetraalkoxysilane in solution (B) is equal to or greater than the lower limit, the amount of solvent used can be reduced, the productivity of silica particles is excellent, and the generation of fine particles can be suppressed. When the concentration of tetraalkoxysilane in solution (B) is equal to or less than the upper limit, the dispersibility of tetraalkoxysilane in the reaction liquid is excellent, and the generation of fine particles can be suppressed.
溶液(B)中の溶媒の濃度は、溶液(B)100質量%中、11質量%~23質量%が好ましく、12質量%~22質量%がより好ましい。溶液(B)中の溶媒の濃度が下限値以上であると、反応液中でのテトラアルコキシシランの分散性に優れ、微粒子の発生を抑制することができる。また、溶液(B)中の溶媒の濃度が上限値以下であると、用いる溶媒の量を低減することができ、シリカ粒子の生産性に優れ、微粒子の発生を抑制することができる。 The concentration of the solvent in solution (B) is preferably 11% by mass to 23% by mass, and more preferably 12% by mass to 22% by mass, based on 100% by mass of solution (B). When the concentration of the solvent in solution (B) is equal to or greater than the lower limit, the dispersibility of tetraalkoxysilane in the reaction liquid is excellent and the generation of fine particles can be suppressed. When the concentration of the solvent in solution (B) is equal to or less than the upper limit, the amount of solvent used can be reduced, the productivity of silica particles is excellent, and the generation of fine particles can be suppressed.
反応前の溶液(B)中のテトラアルコキシシランの質量に対する反応前の溶液(A)中のアルコールの質量の比は、0.73~0.91が好ましく、0.75~0.90がより好ましい。比が下限値以上であると、反応液中でのテトラアルコキシシランの分散性に優れる。また、比が上限値以下であると、加水分解反応で生成するケイ酸の反応液中での分散性に優れる。 The ratio of the mass of the alcohol in solution (A) before the reaction to the mass of the tetraalkoxysilane in solution (B) before the reaction is preferably 0.73 to 0.91, more preferably 0.75 to 0.90. When the ratio is equal to or greater than the lower limit, the dispersibility of the tetraalkoxysilane in the reaction liquid is excellent. When the ratio is equal to or less than the upper limit, the dispersibility of the silicic acid produced by the hydrolysis reaction in the reaction liquid is excellent.
溶液(B)の添加速度は、50gシリカ/時/kg溶液~150gシリカ/時/kg溶液が好ましく、70gシリカ/時/kg溶液~130gシリカ/時/kg溶液がより好ましい。溶液(B)の添加速度が下限値以上であると、反応時間が短縮され、生産性に優れ、微粒子の発生を抑制することができる。また、溶液(B)の添加速度が上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れ、微粒子の発生を抑制することができる。
シリカ/時/kg溶液とは、溶液(A)1kgに対して、1時間当たりに添加するテトラアルコキシシランの質量をシリカの質量に換算した値を表す。
The addition rate of solution (B) is preferably 50 g silica/hour/kg solution to 150 g silica/hour/kg solution, more preferably 70 g silica/hour/kg solution to 130 g silica/hour/kg solution. When the addition rate of solution (B) is equal to or higher than the lower limit, the reaction time is shortened, the productivity is excellent, and the generation of fine particles can be suppressed. When the addition rate of solution (B) is equal to or lower than the upper limit, the dispersibility of tetraalkoxysilane in the reaction solution is excellent, and the generation of fine particles can be suppressed.
The term "silica/hour/kg of solution" refers to the mass of tetraalkoxysilane added per hour per kg of solution (A), converted into the mass of silica.
テトラアルコキシシランの加水分解反応及び縮合反応の反応速度を高めることができることから、テトラアルコキシシランを含む溶液(B)以外にも、アルカリ触媒を含む溶液(C)を溶液(A)に添加することが好ましい。
溶液(C)中のアルカリ触媒としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等が挙げられる。これらのアルカリ触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのアルカリ触媒の中でも、触媒作用に優れ、粒子形状を制御しやすく、金属不純物の混入を抑制することができ、揮発性が高く加水分解反応及び縮合反応後の除去性に優れることから、アンモニアが好ましい。
It is preferable to add a solution (C) containing an alkali catalyst to the solution (A) in addition to the solution (B) containing a tetraalkoxysilane, since this can increase the reaction rates of the hydrolysis reaction and condensation reaction of the tetraalkoxysilane.
Examples of the alkali catalyst in the solution (C) include ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanolamine, tetramethylammonium hydroxide, etc. These alkali catalysts may be used alone or in combination of two or more. Among these alkali catalysts, ammonia is preferred because it has excellent catalytic action, is easy to control the particle shape, can suppress the inclusion of metal impurities, is highly volatile, and is easy to remove after the hydrolysis reaction and the condensation reaction.
溶液(C)は、反応液の組成の変動を小さくすることができることから、溶媒を含むことが好ましい。
溶液(C)中の溶媒としては、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の中でも、加水分解反応及び縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、水、アルコールが好ましく、水がより好ましい。
It is preferable that the solution (C) contains a solvent, since this can reduce fluctuations in the composition of the reaction liquid.
Examples of the solvent in the solution (C) include water, methanol, ethanol, propanol, isopropanol, and ethylene glycol. These solvents may be used alone or in combination of two or more. Among these solvents, water and alcohol are preferred, and water is more preferred, because the solvents used in the hydrolysis reaction and the solvents produced as by-products are the same, and therefore the convenience of production is excellent.
溶液(C)中のアルカリ触媒の濃度は、溶液(C)100質量%中、2質量%~5質量%が好ましく、3質量%~4質量%がより好ましい。溶液(C)中のアルカリ触媒の濃度が下限値以上であると、シリカ粒子の凝集を抑制し、分散液中のシリカ粒子の分散安定性に優れる。また、溶液(C)中のアルカリ触媒の濃度が上限値以下であると、反応が過度に速く進行せず、反応制御性に優れる。 The concentration of the alkali catalyst in solution (C) is preferably 2% by mass to 5% by mass, and more preferably 3% by mass to 4% by mass, based on 100% by mass of solution (C). When the concentration of the alkali catalyst in solution (C) is equal to or greater than the lower limit, aggregation of the silica particles is suppressed, and the dispersion stability of the silica particles in the dispersion is excellent. When the concentration of the alkali catalyst in solution (C) is equal to or less than the upper limit, the reaction does not proceed excessively quickly, and reaction controllability is excellent.
溶液(C)中の溶媒の濃度は、溶液(C)100質量%中、95質量%~98質量%が好ましく、96質量%~97質量%がより好ましい。溶液(C)中の溶媒の濃度が下限値以上であると、加水分解反応で生成するケイ酸の反応液中での分散性に優れる。また、溶液(C)中の溶媒の濃度が上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れる。 The concentration of the solvent in solution (C) is preferably 95% by mass to 98% by mass, and more preferably 96% by mass to 97% by mass, based on 100% by mass of solution (C). When the concentration of the solvent in solution (C) is equal to or greater than the lower limit, the dispersibility of the silicic acid produced by the hydrolysis reaction in the reaction liquid is excellent. When the concentration of the solvent in solution (C) is equal to or less than the upper limit, the dispersibility of the tetraalkoxysilane in the reaction liquid is excellent.
溶液(C)の添加速度は、2gアルカリ触媒/時/kg溶液~6gアルカリ触媒/時/kg溶液が好ましく、3gアルカリ触媒/時/kg溶液~5gアルカリ触媒/時/kg溶液がより好ましい。溶液(C)の添加速度が下限値以上であると、シリカ粒子の凝集を抑制し、分散液中のシリカ粒子の分散安定性に優れる。また、溶液(C)の添加速度が上限値以下であると、反応が過度に速く進行せず、反応制御性に優れる。
アルカリ触媒/時/kg溶液とは、溶液(A)1kgに対して、1時間当たりに添加するアルカリ触媒の質量を表す。
The addition rate of solution (C) is preferably 2 g of alkali catalyst/hour/kg of solution to 6 g of alkali catalyst/hour/kg of solution, and more preferably 3 g of alkali catalyst/hour/kg of solution to 5 g of alkali catalyst/hour/kg of solution. When the addition rate of solution (C) is equal to or higher than the lower limit, the aggregation of silica particles is suppressed, and the dispersion stability of silica particles in the dispersion is excellent. When the addition rate of solution (C) is equal to or lower than the upper limit, the reaction does not proceed too quickly, and the reaction controllability is excellent.
The term "alkali catalyst/hour/kg of solution" refers to the mass of alkali catalyst added per hour per kg of solution (A).
加水分解反応及び縮合反応の反応温度は、20℃~50℃が好ましく、25℃~45℃がより好ましい。反応温度が下限値以上であると、反応が過度に遅く進行せず、制御性に優れる。また、反応温度が上限値以下であると、加水分解反応速度と縮合反応速度のバランスに優れる。 The reaction temperature for the hydrolysis reaction and the condensation reaction is preferably 20°C to 50°C, and more preferably 25°C to 45°C. If the reaction temperature is equal to or higher than the lower limit, the reaction does not proceed too slowly, and controllability is excellent. Furthermore, if the reaction temperature is equal to or lower than the upper limit, a good balance between the hydrolysis reaction rate and the condensation reaction rate is achieved.
加水分解反応及び縮合反応の反応系内の水の濃度は、反応系内の全量100質量%中、3質量%~25質量%に維持することが好ましく、7質量%~20質量%に維持することがより好ましい。反応系内の水の濃度が下限値以上であると、中間生成物であるケイ酸の反応溶中での分散性に優れる。また、反応系内の水の濃度が上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れる。 The concentration of water in the reaction system for the hydrolysis reaction and condensation reaction is preferably maintained at 3% to 25% by mass, and more preferably at 7% to 20% by mass, out of a total of 100% by mass in the reaction system. When the concentration of water in the reaction system is equal to or higher than the lower limit, the intermediate product silicic acid has excellent dispersibility in the reaction solution. Furthermore, when the concentration of water in the reaction system is equal to or lower than the upper limit, the dispersibility of tetraalkoxysilane in the reaction solution is excellent.
加水分解反応及び縮合反応の反応系内のアルカリ触媒の濃度は、反応系内の全量100質量%中、0.5質量%~2.0質量%に維持することが好ましく、1.0質量%~1.5質量%に維持することがより好ましい。反応系内のアルカリ触媒の濃度が下限値以上であると、シリカ粒子の凝集を抑制し、分散液中のシリカ粒子の分散安定性に優れる。また、反応系内のアルカリ触媒の濃度が上限値以下であると、反応が過度に速く進行せず、反応制御性に優れる。 The concentration of the alkali catalyst in the reaction system for the hydrolysis reaction and the condensation reaction is preferably maintained at 0.5% to 2.0% by mass, and more preferably at 1.0% to 1.5% by mass, based on the total amount in the reaction system (100% by mass). When the concentration of the alkali catalyst in the reaction system is equal to or higher than the lower limit, the aggregation of the silica particles is suppressed, and the dispersion stability of the silica particles in the dispersion is excellent. Furthermore, when the concentration of the alkali catalyst in the reaction system is equal to or lower than the upper limit, the reaction does not proceed excessively quickly, and reaction control is excellent.
(工程(2))
本発明のシリカ粒子の製造方法は、不必要な成分を除去し、必要な成分を添加することができることから、更に、以下の工程(2)を含むことが好ましい。
工程(2):工程(1)で得られたシリカ粒子の分散液を濃縮し、分散媒を添加する工程
(Step (2))
Since the method for producing silica particles of the present invention can remove unnecessary components and add necessary components, it is preferable that the method further includes the following step (2).
Step (2): A step of concentrating the dispersion of silica particles obtained in step (1) and adding a dispersion medium.
分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらの分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの分散媒の中でも、シリカ粒子との親和性に優れることから、水、アルコールが好ましく、水がより好ましい。 Examples of the dispersion medium include water, methanol, ethanol, propanol, isopropanol, and ethylene glycol. These dispersion media may be used alone or in combination of two or more. Among these dispersion media, water and alcohol are preferred, and water is more preferred, because they have excellent affinity with silica particles.
(工程(3))
本発明のシリカ粒子の製造方法は、シリカ粒子の縮合度を高めることができることから、更に、以下の工程(3)を含むことが好ましい。
工程(3):工程(2)で得られたシリカ粒子の分散液を加圧加熱処理する工程
(Step (3))
The method for producing silica particles of the present invention preferably further includes the following step (3) since the condensation degree of the silica particles can be increased.
Step (3): A step of subjecting the dispersion of silica particles obtained in step (2) to a pressurized and heated treatment.
加圧加熱処理の圧力は、0.10MPa~2.3MPaが好ましく、0.14MPa~1.0MPaがより好ましい。加圧加熱処理の圧力が0.10MPa以上であると、シリカ粒子の縮合度を高めることができる。また、加圧加熱処理の圧力が2.3MPa以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子を製造することができ、シリカゾルの分散安定性に優れる。
加圧は、密閉した状態でシリカ粒子の分散液を分散媒の沸点以上に加熱すればよい。密閉した状態でシリカ粒子の水分散液を100℃以上に加熱した場合、圧力は、その温度の飽和水蒸気圧となる。
The pressure of the pressurized heat treatment is preferably 0.10 MPa to 2.3 MPa, and more preferably 0.14 MPa to 1.0 MPa. When the pressure of the pressurized heat treatment is 0.10 MPa or more, the degree of condensation of the silica particles can be increased. When the pressure of the pressurized heat treatment is 2.3 MPa or less, silica particles can be produced without significant changes in the average primary particle size, average secondary particle size, cv value, and association ratio, and the dispersion stability of the silica sol is excellent.
The pressurization can be achieved by heating the dispersion of silica particles in a sealed state to a temperature equal to or higher than the boiling point of the dispersion medium. When the aqueous dispersion of silica particles is heated to 100° C. or higher in a sealed state, the pressure becomes the saturated water vapor pressure at that temperature.
加圧加熱処理の温度は、100℃~220℃が好ましく、110℃~180℃がより好ましい。加圧加熱処理の温度が100℃以上であると、シリカ粒子の縮合度を高めることができる。加圧加熱処理の温度が220℃以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子を製造することができ、シリカゾルの分散安定性に優れる。 The temperature of the pressure and heat treatment is preferably 100°C to 220°C, and more preferably 110°C to 180°C. If the temperature of the pressure and heat treatment is 100°C or higher, the degree of condensation of the silica particles can be increased. If the temperature of the pressure and heat treatment is 220°C or lower, silica particles can be produced without significant changes to the average primary particle size, average secondary particle size, cv value, and association ratio, and the dispersion stability of the silica sol is excellent.
加圧加熱処理の時間は、0.25時間~10時間が好ましく、0.5時間~8時間がより好ましい。加圧加熱処理の時間が0.25時間以上であると、シリカ粒子の縮合度を高めることができる。加圧加熱処理の時間が10時間以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子を製造することができ、シリカゾルの分散安定性に優れる。 The time for the pressurized heat treatment is preferably 0.25 hours to 10 hours, and more preferably 0.5 hours to 8 hours. If the time for the pressurized heat treatment is 0.25 hours or more, the degree of condensation of the silica particles can be increased. If the time for the pressurized heat treatment is 10 hours or less, silica particles can be produced without significant changes in the average primary particle size, average secondary particle size, cv value, and association ratio, and the dispersion stability of the silica sol is excellent.
加圧加熱処理は、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子の縮合度を高めることができることから、水分散液中で行うことがより好ましい。 The pressurized heat treatment is preferably carried out in an aqueous dispersion, since it can increase the degree of condensation of the silica particles without significantly changing the average primary particle size, average secondary particle size, cv value, or association ratio.
加圧加熱処理を水分散液中で行う際のpHは、6.0~8.0が好ましく、6.5~7.8がより好ましい。加圧加熱処理を水分散液中で行う際のpHが6.0以上であると、シリカゾルのゲル化を抑制することができる。また、加圧加熱処理を水分散液中で行う際のpHが8.0以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子の縮合度を高めることができる。 The pH when the pressure heating treatment is performed in the aqueous dispersion is preferably 6.0 to 8.0, and more preferably 6.5 to 7.8. When the pH when the pressure heating treatment is performed in the aqueous dispersion is 6.0 or higher, gelation of the silica sol can be suppressed. Furthermore, when the pH when the pressure heating treatment is performed in the aqueous dispersion is 8.0 or lower, the degree of condensation of the silica particles can be increased without significantly changing the average primary particle size, average secondary particle size, cv value, or association ratio.
(シリカ粒子の物性)
シリカ粒子の平均1次粒子径は、5nm~100nmが好ましく、10nm~60nmがより好ましい。シリカ粒子の平均1次粒子径が5nm以上であると、シリカゾルの保存安定性に優れる。また、シリカ粒子の平均1次粒子径が100nm以下であると、シリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の沈降を抑制することができる。
(Physical properties of silica particles)
The average primary particle size of the silica particles is preferably 5 nm to 100 nm, more preferably 10 nm to 60 nm. When the average primary particle size of the silica particles is 5 nm or more, the storage stability of the silica sol is excellent. Furthermore, when the average primary particle size of the silica particles is 100 nm or less, the surface roughness and scratches of the polished object, such as a silicon wafer, can be reduced, and sedimentation of the silica particles can be suppressed.
シリカ粒子の平均1次粒子径は、BET法により測定する。具体的には、比表面積自動測定装置を用いてシリカ粒子の比表面積を測定し、下記式(1)を用いて平均1次粒子径を算出する。
平均1次粒子径(nm)=6000/(比表面積(m2/g)×密度(g/cm3)) ・・・ (1)
The average primary particle diameter of the silica particles is measured by the BET method. Specifically, the specific surface area of the silica particles is measured using an automatic specific surface area measuring device, and the average primary particle diameter is calculated using the following formula (1).
Average primary particle diameter (nm) = 6000/(specific surface area (m 2 /g) x density (g/cm 3 )) ... (1)
シリカ粒子の平均1次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average primary particle size of the silica particles can be set within the desired range using known conditions and methods.
シリカ粒子の平均2次粒子径は、10nm~200nmが好ましく、20nm~100nmがより好ましい。シリカ粒子の平均2次粒子径が10nm以上であると、研磨後の洗浄における粒子等の除去性に優れ、シリカゾルの保存安定性に優れる。シリカ粒子の平均2次粒子径が200nm以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れ、シリカ粒子の沈降を抑制することができる。 The average secondary particle diameter of the silica particles is preferably 10 nm to 200 nm, and more preferably 20 nm to 100 nm. When the average secondary particle diameter of the silica particles is 10 nm or more, the removability of particles and the like during cleaning after polishing is excellent, and the storage stability of the silica sol is excellent. When the average secondary particle diameter of the silica particles is 200 nm or less, the surface roughness and scratches on the polished object, such as a silicon wafer, can be reduced during polishing, particles and the like can be removed easily during cleaning after polishing, and sedimentation of the silica particles can be suppressed.
シリカ粒子の平均2次粒子径は、DLS法により測定する。具体的には、動的光散乱粒子径測定装置を用いて測定する。 The average secondary particle size of silica particles is measured by the DLS method. Specifically, it is measured using a dynamic light scattering particle size measuring device.
シリカ粒子の平均2次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average secondary particle size of the silica particles can be set within the desired range using known conditions and methods.
シリカ粒子のcv値は、10~50が好ましく、15~40がより好ましく、20~35が更に好ましい。シリカ粒子のcv値が下限値以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子のcv値が上限値以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れる。 The cv value of the silica particles is preferably 10 to 50, more preferably 15 to 40, and even more preferably 20 to 35. When the cv value of the silica particles is equal to or greater than the lower limit, the polishing rate for the workpiece, such as a silicon wafer, is excellent, and the productivity of the silicon wafer is excellent. When the cv value of the silica particles is equal to or less than the upper limit, the surface roughness and scratches on the workpiece, such as a silicon wafer, during polishing can be reduced, and the removal of particles and the like during cleaning after polishing is excellent.
シリカ粒子のcv値は、動的光散乱粒子径測定装置を用いてシリカ粒子の平均2次粒子径を測定し、下記式(2)を用いて算出する。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
The cv value of the silica particles is calculated using the following formula (2) by measuring the average secondary particle diameter of the silica particles using a dynamic light scattering particle diameter measuring device.
cv value=(standard deviation (nm)/average secondary particle diameter (nm))×100 (2)
シリカ粒子の会合比は、1.0~4.0が好ましく、1.1~3.0がより好ましい。シリカ粒子の会合比が下限値以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子の会合比が上限値以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の凝集を抑制することができる。 The association ratio of the silica particles is preferably 1.0 to 4.0, and more preferably 1.1 to 3.0. When the association ratio of the silica particles is equal to or greater than the lower limit, the polishing rate for the workpiece, such as a silicon wafer, is excellent, and the productivity of the silicon wafer is excellent. When the association ratio of the silica particles is equal to or less than the upper limit, the surface roughness and scratches on the workpiece, such as a silicon wafer, during polishing can be reduced, and the aggregation of the silica particles can be suppressed.
シリカ粒子の会合比は、前述の測定方法にて測定した平均1次粒子径と前述の測定方法にて測定した平均2次粒子径とから、下記式(3)を用いて会合比を算出する。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
The association ratio of the silica particles is calculated using the following formula (3) from the average primary particle diameter measured by the above-mentioned measurement method and the average secondary particle diameter measured by the above-mentioned measurement method.
Association ratio = average secondary particle diameter / average primary particle diameter ... (3)
シリカ粒子の表面シラノール基密度は、0.1個/nm2~10個/nm2が好ましく、0.5個/nm2~7.5個/nm2がより好ましく、2.0個/nm2~7.0個/nm2が更に好ましい。シリカ粒子の表面シラノール基密度が0.1個/nm2以上であると、シリカ粒子が適度な表面反発を有し、シリカゾルの分散安定性に優れる。また、シリカ粒子の表面シラノール基密度が10個/nm2以下であると、シリカ粒子が適度な表面反発を有し、シリカ粒子の凝集を抑制することができる。 The surface silanol group density of the silica particles is preferably 0.1/nm 2 to 10/nm 2 , more preferably 0.5/nm 2 to 7.5/nm 2 , and even more preferably 2.0/nm 2 to 7.0/nm 2. When the surface silanol group density of the silica particles is 0.1/nm 2 or more, the silica particles have a suitable surface repulsion, and the dispersion stability of the silica sol is excellent. In addition, when the surface silanol group density of the silica particles is 10/nm 2 or less, the silica particles have a suitable surface repulsion, and the aggregation of the silica particles can be suppressed.
シリカ粒子の表面シラノール基密度は、シアーズ法により測定する。具体的には、下記に示す条件で測定、算出する。
シリカ粒子1.5gに相当するシリカゾルを採取し、純水を加えて液量を90mLにする。25℃の環境下、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加え、塩化ナトリウム30gを加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させ、最終的に試験液の総量が150mLになるまで純水を加え、試験液を得る。
得られた試験液を自動滴定装置に入れ、0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定する。
下記式(4)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(5)を用いて、シリカ粒子の表面シラノール基密度ρ(個/nm2)を算出する。
V=(A×f×100×1.5)/(W×C) ・・・ (4)
A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
C:シリカゾル中のシリカ粒子の濃度(質量%)
W:シリカゾルの採取量(g)
ρ=(B×NA)/(1018×M×SBET) ・・・ (5)
B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
NA:アボガドロ数(個/mol)
M:シリカ粒子量(1.5g)
SBET:平均1次粒子径の算出の際に測定したシリカ粒子の比表面積(m2/g)
The surface silanol group density of the silica particles is measured by the Sears method, specifically, under the following conditions.
A silica sol equivalent to 1.5 g of silica particles is collected, and pure water is added to make the liquid volume 90 mL. In an environment of 25° C., a 0.1 mol/L aqueous hydrochloric acid solution is added until the pH becomes 3.6, 30 g of sodium chloride is added, and pure water is gradually added to completely dissolve the sodium chloride. Finally, pure water is added until the total volume of the test liquid becomes 150 mL to obtain a test liquid.
The obtained test solution is placed in an automatic titrator, and a 0.1 mol/L aqueous solution of sodium hydroxide is added dropwise to measure the titration amount A (mL) of the 0.1 mol/L aqueous solution of sodium hydroxide required to change the pH from 4.0 to 9.0.
The amount V (mL) of 0.1 mol/L aqueous sodium hydroxide solution required to change the pH from 4.0 to 9.0 per 1.5 g of silica particles is calculated using the following formula (4), and the surface silanol group density ρ (number/ nm2 ) of the silica particles is calculated using the following formula (5).
V=(A×f×100×1.5)/(W×C)... (4)
A: Titration amount (mL) of 0.1 mol/L sodium hydroxide aqueous solution required to change the pH from 4.0 to 9.0 per 1.5 g of silica particles
f: Titer of 0.1 mol/L aqueous sodium hydroxide solution used C: Concentration of silica particles in silica sol (mass%)
W: Amount of silica sol collected (g)
ρ=(B× NA )/(10 18 ×M×S BET )...(5)
B: The amount (mol) of sodium hydroxide required to change the pH per 1.5 g of silica particles from 4.0 to 9.0 calculated from V
N A : Avogadro's number (pieces/mol)
M: Amount of silica particles (1.5 g)
S BET : specific surface area (m 2 /g) of silica particles measured when calculating the average primary particle diameter
尚、前記シリカ粒子の表面シラノール基密度の測定、算出方法は、「G.W.Sears,Jr., Analytical Chemistry, Vol.28, No.12, pp.1981-1983(1956).」、「羽場真一, 半導体集積回路プロセス用研磨剤の開発, 高知工科大学博士論文, pp.39-45, 2004年3月」、「特許第5967118号公報」、「特許第6047395号公報」を参考にした。 The method for measuring and calculating the surface silanol group density of the silica particles was based on "G.W. Sears, Jr., Analytical Chemistry, Vol. 28, No. 12, pp. 1981-1983 (1956)," "Shinichi Haba, Development of an Abrasive for Semiconductor Integrated Circuit Processing, Doctoral Dissertation, Kochi University of Technology, pp. 39-45, March 2004," "Patent Publication No. 5967118," and "Patent Publication No. 6047395."
シリカ粒子の表面シラノール基密度は、アルコキシシランの加水分解反応及び縮合反応の条件を調整することで、所望の範囲に設定することができる。 The surface silanol group density of silica particles can be set within the desired range by adjusting the conditions of the hydrolysis reaction and condensation reaction of alkoxysilane.
シリカ粒子の金属不純物含有率は、5ppm以下が好ましく、2ppm以下がより好ましい。 The metal impurity content of the silica particles is preferably 5 ppm or less, and more preferably 2 ppm or less.
半導体デバイスのシリコンウェハの研磨において、金属不純物が被研磨体の表面に付着、汚染することで、ウェハ特性に悪影響を及ぼすと共に、ウェハ内部に拡散して品質が劣化するため、このようなウェハによって製造された半導体デバイスの性能が著しく低下する。
また、シリカ粒子に金属不純物が存在すると、酸性を示す表面シラノール基と金属不純物とが配位的な相互作用が発生し、表面シラノール基の化学的性質(酸性度等)を変化させたり、シリカ粒子表面の立体的な環境(シリカ粒子の凝集のしやすさ等)を変化させたり、研磨レートに影響を及ぼす。
When polishing silicon wafers for semiconductor devices, metallic impurities adhere to and contaminate the surface of the workpiece to be polished, adversely affecting the characteristics of the wafer and diffusing into the interior of the wafer, degrading its quality, resulting in a significant decrease in the performance of semiconductor devices manufactured from such wafers.
Furthermore, when metal impurities are present on silica particles, coordination interactions occur between the acidic surface silanol groups and the metal impurities, changing the chemical properties (acidity, etc.) of the surface silanol groups and the three-dimensional environment of the silica particle surfaces (e.g. ease of aggregation of silica particles), thereby affecting the polishing rate.
シリカ粒子の金属不純物含有率は、高周波誘導結合プラズマ質量分析法(ICP-MS)により測定する。具体的には、シリカ粒子0.4g含むシリカゾルを正確に量り取り、硫酸とフッ酸を加え、加温、溶解、蒸発させ、残存した硫酸滴に総量が正確に10gとなるよう純水を加えて試験液を作成し、高周波誘導結合プラズマ質量分析装置を用いて測定する。対象の金属は、ナトリウム、カリウム、鉄、アルミニウム、カルシウム、マグネシウム、亜鉛、コバルト、クロム、銅、マンガン、鉛、チタン、銀、ニッケルとし、これらの金属の含有率の合計を金属不純物含有率とする。 The metal impurity content of silica particles is measured by inductively coupled plasma mass spectrometry (ICP-MS). Specifically, a silica sol containing 0.4 g of silica particles is accurately weighed, sulfuric acid and hydrofluoric acid are added, and the mixture is heated, dissolved, and evaporated. Pure water is added to the remaining sulfuric acid droplets so that the total amount is exactly 10 g to create a test solution, which is then measured using an inductively coupled plasma mass spectrometer. The target metals are sodium, potassium, iron, aluminum, calcium, magnesium, zinc, cobalt, chromium, copper, manganese, lead, titanium, silver, and nickel, and the sum of the contents of these metals is the metal impurity content.
シリカ粒子の金属不純物含有率は、アルコキシシランを主原料として加水分解反応及び縮合反応を行ってシリカ粒子を得ることで、5ppm以下とすることができる。
水ガラス等の珪酸アルカリの脱イオンによる方法では、原料由来のナトリウム等が残存するため、シリカ粒子の金属不純物含有率を5ppm以下とすることが極めて困難である。
The metal impurity content of the silica particles can be reduced to 5 ppm or less by obtaining the silica particles through hydrolysis and condensation reactions using alkoxysilane as a main raw material.
In the method of deionizing alkali silicate such as water glass, sodium and the like derived from the raw material remain, so it is extremely difficult to reduce the metal impurity content of the silica particles to 5 ppm or less.
シリカ粒子の形状としては、例えば、球状、鎖状、繭状(こぶ状や落花生状とも称される)、異形状(例えば、疣状、屈曲状、分岐状等)等が挙げられる。これらのシリカ粒子の形状の中でも、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減させたい場合は、球状が好ましく、シリコンウェハに代表される被研磨体に対する研磨レートをより高めたい場合は、異形状が好ましい。 Examples of the shape of silica particles include spherical, chain-like, cocoon-like (also called lump-like or peanut-like), and irregular shapes (e.g., wart-like, bent, branched, etc.). Among these silica particle shapes, spherical shapes are preferred when it is desired to reduce the surface roughness and scratches on the polished object, such as a silicon wafer, during polishing, and irregular shapes are preferred when it is desired to increase the polishing rate for the polished object, such as a silicon wafer.
シリカ粒子は、機械的強度、保存安定性に優れることから、細孔を有しないことが好ましい。
シリカ粒子の細孔の有無は、窒素を吸着ガスとした吸着等温線を用いたBET多点法解析により確認する。
Silica particles preferably have no pores because they have excellent mechanical strength and storage stability.
The presence or absence of pores in the silica particles is confirmed by a multipoint BET analysis using an adsorption isotherm with nitrogen as the adsorption gas.
(シリカゾルの製造方法)
本発明のシリカゾルの製造方法は、本発明のシリカ粒子の製造方法を含む。
(Method for producing silica sol)
The method for producing a silica sol of the present invention includes the method for producing silica particles of the present invention.
シリカゾルは、本発明のシリカ粒子の製造方法で得られたシリカ粒子の分散液をそのまま用いてもよく、得られたシリカ粒子の分散液中の成分のうち、不必要な成分の除去や必要な成分の添加をして製造してもよい。 Silica sol may be produced by using the dispersion of silica particles obtained by the method for producing silica particles of the present invention as is, or by removing unnecessary components from the dispersion of silica particles obtained and adding necessary components.
シリカゾルは、シリカ粒子及び分散媒を含むことが好ましい。
シリカゾル中の分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等が挙げられる。これらのシリカゾル中の分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのシリカゾル中の分散媒の中でも、シリカ粒子との親和性に優れることから、水、アルコールが好ましく、水がより好ましい。
The silica sol preferably contains silica particles and a dispersion medium.
Examples of the dispersion medium in silica sol include water, methanol, ethanol, propanol, isopropanol, ethylene glycol, etc. These dispersion mediums in silica sol can be used alone or in combination of two or more. Among these dispersion mediums in silica sol, water and alcohol are preferred, and water is more preferred, because they have excellent affinity with silica particles.
シリカゾル中のシリカ粒子の含有率は、シリカゾル全量100質量%中、3質量%~50質量%が好ましく、4質量%~40質量%がより好ましく、5質量%~30質量%が更に好ましい。シリカゾル中のシリカ粒子の含有率が3質量%以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。また、シリカゾル中のシリカ粒子の含有率が50質量%以下であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。 The content of silica particles in the silica sol is preferably 3% to 50% by mass, more preferably 4% to 40% by mass, and even more preferably 5% to 30% by mass, based on the total amount of the silica sol (100% by mass). When the content of silica particles in the silica sol is 3% by mass or more, the polishing rate for a workpiece such as a silicon wafer is excellent. Furthermore, when the content of silica particles in the silica sol is 50% by mass or less, the aggregation of silica particles in the silica sol or polishing composition can be suppressed, and the storage stability of the silica sol or polishing composition is excellent.
シリカゾル中の分散媒の含有率は、シリカゾル全量100質量%中、50質量%~97質量%が好ましく、60質量%~96質量%がより好ましく、70質量%~95質量%が更に好ましい。シリカゾル中の分散媒の含有率が50質量%以上であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。また、シリカゾル中の分散媒の含有率が97質量%以下であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The content of the dispersion medium in the silica sol is preferably 50% to 97% by mass, more preferably 60% to 96% by mass, and even more preferably 70% to 95% by mass, out of a total amount of 100% by mass of the silica sol. When the content of the dispersion medium in the silica sol is 50% by mass or more, aggregation of silica particles in the silica sol or polishing composition can be suppressed, and the storage stability of the silica sol or polishing composition is excellent. Furthermore, when the content of the dispersion medium in the silica sol is 97% by mass or less, the polishing rate for the object to be polished, such as a silicon wafer, is excellent.
シリカゾル中のシリカ粒子や分散媒の含有率は、得られたシリカ粒子の分散液中の成分のうち、不必要な成分を除去し、必要な成分を添加することで、所望の範囲に設定することができる。 The content of silica particles and dispersion medium in the silica sol can be set to the desired range by removing unnecessary components from the resulting dispersion of silica particles and adding necessary components.
シリカゾルは、シリカ粒子及び分散媒以外に、その性能を損なわない範囲において、必要に応じて、酸化剤、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌殺生物剤等の他の成分を含んでもよい。
特に、シリカゾルの保存安定性に優れることから、シリカゾル中に抗菌殺生物剤を含ませることが好ましい。
In addition to the silica particles and the dispersion medium, the silica sol may contain other components, such as an oxidizing agent, a preservative, an antifungal agent, a pH adjuster, a pH buffer, a surfactant, a chelating agent, and an antibacterial and biocide, as necessary, within the range that does not impair the performance of the silica sol.
In particular, it is preferable to include an antibacterial biocide in the silica sol, since this provides excellent storage stability of the silica sol.
抗菌殺生物剤としては、例えば、過酸化水素、アンモニア、第四級アンモニウム水酸化物、第四級アンモニウム塩、エチレンジアミン、グルタルアルデヒド、過酸化水素、p-ヒドロキシ安息香酸メチル、亜塩素酸ナトリウム等が挙げられる。これらの抗菌殺生物剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの抗菌殺生物剤の中でも、シリカゾルとの親和性に優れることから、過酸化水素が好ましい。
殺生物剤は、一般に殺菌剤と言われるものも含む。
Examples of antibacterial biocides include hydrogen peroxide, ammonia, quaternary ammonium hydroxide, quaternary ammonium salt, ethylenediamine, glutaraldehyde, hydrogen peroxide, methyl p-hydroxybenzoate, sodium chlorite, etc. These antibacterial biocides may be used alone or in combination of two or more. Among these antibacterial biocides, hydrogen peroxide is preferred because of its excellent affinity with silica sol.
Biocides also include those commonly referred to as bactericides.
シリカゾル中の抗菌殺生物剤の含有率は、シリカゾル全量100質量%中、0.0001質量%~10質量%が好ましく、0.001質量%~1質量%がより好ましい。シリカゾル中の抗菌殺生物剤の含有率が0.0001質量%質量%以上であると、シリカゾルの保存安定性に優れる。シリカゾル中の抗菌殺生物剤の含有率が10質量%以下であると、シリカゾルの本来の性能を損なわない。 The content of the antibacterial biocide in the silica sol is preferably 0.0001% to 10% by mass, and more preferably 0.001% to 1% by mass, based on 100% by mass of the total amount of the silica sol. When the content of the antibacterial biocide in the silica sol is 0.0001% by mass or more, the storage stability of the silica sol is excellent. When the content of the antibacterial biocide in the silica sol is 10% by mass or less, the original performance of the silica sol is not impaired.
シリカゾルのpHは、6.0~8.0が好ましく、6.5~7.8がより好ましい。シリカゾルのpHが6.0以上であると、分散安定性に優れて、シリカ粒子の凝集を抑制することができる。また、シリカゾルのpHが8.0以下であると、シリカ粒子の溶解を防ぎ、長期間の保存安定性に優れる。
シリカゾルのpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the silica sol is preferably 6.0 to 8.0, more preferably 6.5 to 7.8. When the pH of the silica sol is 6.0 or more, the dispersion stability is excellent and the aggregation of the silica particles can be suppressed. When the pH of the silica sol is 8.0 or less, dissolution of the silica particles is prevented and the long-term storage stability is excellent.
The pH of the silica sol can be adjusted to a desired range by adding a pH adjuster.
(研磨組成物)
本発明のシリカ粒子の製造方法で得られたシリカ粒子は、研磨組成物として好適に用いることができる。
研磨組成物は、前述したシリカゾル及び水溶性高分子を含むことが好ましい。
(Polishing composition)
The silica particles obtained by the method for producing silica particles of the present invention can be suitably used as a polishing composition.
The polishing composition preferably contains the above-mentioned silica sol and a water-soluble polymer.
水溶性高分子は、シリコンウェハに代表される被研磨体に対する研磨組成物の濡れ性を高める。水溶性高分子は、水親和性の高い官能基を保有する高分子であることが好ましく、この水親和性の高い官能基とシリカ粒子の表面シラノール基との親和性が高く、研磨組成物中でより近傍にシリカ粒子と水溶性高分子とが安定して分散する。そのため、シリコンウェハに代表される被研磨体への研磨の際、シリカ粒子と水溶性高分子との効果が相乗的に機能する。 The water-soluble polymer increases the wettability of the polishing composition to the object to be polished, such as a silicon wafer. The water-soluble polymer is preferably a polymer having a functional group with high water affinity, and this functional group with high water affinity has a high affinity with the surface silanol groups of the silica particles, so that the silica particles and the water-soluble polymer are stably dispersed in close proximity in the polishing composition. Therefore, when polishing an object to be polished, such as a silicon wafer, the effects of the silica particles and the water-soluble polymer function synergistically.
水溶性高分子としては、例えば、セルロース誘導体、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルピロリドン骨格を有する共重合体、ポリオキシアルキレン構造を有する重合体等が挙げられる。 Examples of water-soluble polymers include cellulose derivatives, polyvinyl alcohol, polyvinylpyrrolidone, copolymers having a polyvinylpyrrolidone skeleton, and polymers having a polyoxyalkylene structure.
セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、加水分解処理を施したヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。
ポリビニルピロリドン骨格を有する共重合体としては、例えば、ポリビニルアルコールとポリビニルピロリドンとのグラフト共重合体等が挙げられる。
ポリオキシアルキレン構造を有する重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、エチレンオキサイドとプロピレンオキサイドとの共重合体等が挙げられる。
Examples of cellulose derivatives include hydroxyethyl cellulose, hydrolyzed hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, and carboxymethyl cellulose.
An example of the copolymer having a polyvinylpyrrolidone skeleton is a graft copolymer of polyvinyl alcohol and polyvinylpyrrolidone.
Examples of polymers having a polyoxyalkylene structure include polyoxyethylene, polyoxypropylene, and copolymers of ethylene oxide and propylene oxide.
これらの水溶性高分子は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの水溶性高分子の中でも、シリカ粒子の表面シラノール基との親和性が高く、相乗的に作用して被研磨体の表面に良好な親水性を与えることから、セルロース誘導体が好ましく、ヒドロキシエチルセルロースがより好ましい。 These water-soluble polymers may be used alone or in combination of two or more. Among these water-soluble polymers, cellulose derivatives are preferred, and hydroxyethyl cellulose is more preferred, because they have a high affinity with the surface silanol groups of the silica particles and act synergistically to impart good hydrophilicity to the surface of the object to be polished.
水溶性高分子の質量平均分子量は、1,000~3,000,000が好ましく、5,000~2,000,000がより好ましく、10,000~1,000,000が更に好ましい。水溶性高分子の質量平均分子量が1,000以上であると、研磨組成物の親水性が向上する。また、水溶性高分子の質量平均分子量が3,000,000以下であると、シリカゾルとの親和性に優れ、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The mass average molecular weight of the water-soluble polymer is preferably 1,000 to 3,000,000, more preferably 5,000 to 2,000,000, and even more preferably 10,000 to 1,000,000. When the mass average molecular weight of the water-soluble polymer is 1,000 or more, the hydrophilicity of the polishing composition is improved. Furthermore, when the mass average molecular weight of the water-soluble polymer is 3,000,000 or less, the affinity with silica sol is excellent, and the polishing rate for the object to be polished, such as a silicon wafer, is excellent.
水溶性高分子の質量平均分子量は、ポリエチレンオキサイド換算で、0.1mol/LのNaCl溶液を移動相とする条件で、サイズ排除クロマトグラフィーにより測定する。 The mass average molecular weight of the water-soluble polymer is measured by size exclusion chromatography using a 0.1 mol/L NaCl solution as the mobile phase, in terms of polyethylene oxide.
研磨組成物中の水溶性高分子の含有率は、研磨組成物全量100質量%中、0.02質量%~10質量%が好ましく、0.05質量%~5質量%がより好ましい。研磨組成物中の水溶性高分子の含有率が0.02質量%以上であると、研磨組成物の親水性が向上する。また、研磨組成物中の水溶性高分子の含有率が10質量%以下であると、研磨組成物調製時のシリカ粒子の凝集を抑制することができる。 The content of the water-soluble polymer in the polishing composition is preferably 0.02% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass, based on 100% by mass of the total amount of the polishing composition. When the content of the water-soluble polymer in the polishing composition is 0.02% by mass or more, the hydrophilicity of the polishing composition is improved. Furthermore, when the content of the water-soluble polymer in the polishing composition is 10% by mass or less, aggregation of silica particles during preparation of the polishing composition can be suppressed.
研磨組成物は、シリカゾル及び水溶性高分子以外に、その性能を損なわない範囲において、必要に応じて、塩基性化合物、研磨促進剤、界面活性剤、親水性化合物、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌殺生物剤等の他の成分を含んでもよい。
特に、シリコンウェハに代表される被研磨体の表面に化学的な作用を与えて化学的研磨(ケミカルエッチング)ができ、シリカ粒子の表面シラノール基との相乗効果により、シリコンウェハに代表される被研磨体の研磨速度を向上させることができることから、研磨組成物中に塩基性化合物を含ませることが好ましい。
In addition to the silica sol and the water-soluble polymer, the polishing composition may contain other components, such as a basic compound, a polishing accelerator, a surfactant, a hydrophilic compound, a preservative, an antifungal agent, a pH adjuster, a pH buffer, a surfactant, a chelating agent, and an antibacterial and biocide, as necessary, within the range that does not impair the performance of the polishing composition.
In particular, it is preferable to include a basic compound in the polishing composition, since it is possible to perform chemical polishing (chemical etching) by applying a chemical action to the surface of an object to be polished, such as a silicon wafer, and because a synergistic effect with the surface silanol groups of the silica particles can be achieved, the polishing rate of an object to be polished, such as a silicon wafer, can be improved.
塩基性化合物としては、例えば、有機塩基性化合物、アルカリ金属水酸化物、アルカリ金属炭酸水素塩、アルカリ金属炭酸塩、アンモニア等が挙げられる。これらの塩基性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの塩基性化合物の中でも、水溶性が高く、シリカ粒子や水溶性高分子との親和性に優れることから、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウムが好ましく、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムがより好ましく、アンモニアが更に好ましい。 Examples of basic compounds include organic basic compounds, alkali metal hydroxides, alkali metal hydrogen carbonates, alkali metal carbonates, and ammonia. These basic compounds may be used alone or in combination of two or more. Among these basic compounds, ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogen carbonate, and ammonium carbonate are preferred because they are highly water-soluble and have excellent affinity with silica particles and water-soluble polymers, with ammonia, tetramethylammonium hydroxide, and tetraethylammonium hydroxide being more preferred, and ammonia being even more preferred.
研磨組成物中の塩基性化合物の含有率は、研磨組成物全量100質量%中、0.001質量%~5質量%が好ましく、0.01質量%~3質量%がより好ましい。研磨組成物中の塩基性化合物の含有率が0.001質量%以上であると、シリコンウェハに代表される被研磨体の研磨速度を向上させることができる。また、研磨組成物中の塩基性化合物の含有率が5質量%以下であると、研磨組成物の安定性に優れる。 The content of the basic compound in the polishing composition is preferably 0.001% by mass to 5% by mass, and more preferably 0.01% by mass to 3% by mass, based on 100% by mass of the total amount of the polishing composition. If the content of the basic compound in the polishing composition is 0.001% by mass or more, the polishing speed of the object to be polished, such as a silicon wafer, can be improved. Furthermore, if the content of the basic compound in the polishing composition is 5% by mass or less, the stability of the polishing composition is excellent.
研磨組成物のpHは、8.0~12.0が好ましく、9.0~11.0がより好ましい。研磨組成物のpHが8.0以上であると、研磨組成物中のシリカ粒子の凝集を抑制することができ、研磨組成物の分散安定性に優れる。また、研磨組成物のpHが12.0以下であると、シリカ粒子の溶解を抑制することができ、研磨組成物の安定性に優れる。
研磨組成物のpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the polishing composition is preferably 8.0 to 12.0, more preferably 9.0 to 11.0. When the pH of the polishing composition is 8.0 or more, the aggregation of silica particles in the polishing composition can be suppressed, and the dispersion stability of the polishing composition is excellent. When the pH of the polishing composition is 12.0 or less, the dissolution of silica particles can be suppressed, and the stability of the polishing composition is excellent.
The pH of the polishing composition can be adjusted to a desired range by adding a pH adjuster.
研磨組成物は、本発明のシリカゾルの製造方法で得られたシリカゾル、水溶性高分子、及び、必要に応じて、他の成分を混合することで得られるが、保管、運搬を考慮し、一旦高濃度で調製し、研磨直前に水等で希釈してもよい。 The polishing composition can be obtained by mixing the silica sol obtained by the silica sol manufacturing method of the present invention, the water-soluble polymer, and, if necessary, other components. However, taking into consideration storage and transportation, it may be prepared at a high concentration first and then diluted with water or the like immediately before polishing.
(研磨方法)
本発明の研磨方法は、本発明のシリカゾルの製造方法で得られたシリカゾルを含む研磨組成物を用いて研磨する方法である。
研磨組成物は、前述した研磨組成物を用いることが好ましい。
具体的な研磨の方法としては、例えば、シリコンウェハの表面を研磨パッドに押し付け、研磨パッド上に本発明の研磨組成物を滴下し、シリコンウェハの表面を研磨する方法が挙げられる。
(Polishing method)
The polishing method of the present invention is a method of polishing using a polishing composition containing the silica sol obtained by the method for producing a silica sol of the present invention.
As the polishing composition, it is preferable to use the polishing composition described above.
A specific polishing method includes, for example, a method in which the surface of a silicon wafer is pressed against a polishing pad, the polishing composition of the present invention is dropped onto the polishing pad, and the surface of the silicon wafer is polished.
(半導体ウェハの製造方法)
本発明の半導体ウェハの製造方法は、本発明の研磨方法を含む方法であり、具体的な研磨方法は、前述した通りである。
半導体ウェハとしては、例えば、シリコンウェハ、化合物半導体ウェハ等が挙げられる。
(Method of manufacturing semiconductor wafer)
The method for producing a semiconductor wafer of the present invention includes the polishing method of the present invention, and the specific polishing method is as described above.
Examples of semiconductor wafers include silicon wafers and compound semiconductor wafers.
(半導体デバイスの製造方法)
本発明の半導体デバイスの製造方法は、本発明の研磨方法を含む方法であり、具体的な研磨方法は、前述した通りである。
(Method of manufacturing semiconductor devices)
The method for producing a semiconductor device of the present invention includes the polishing method of the present invention, and the specific polishing method is as described above.
(用途)
本発明のシリカ粒子の製造方法で得られたシリカ粒子、本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができ、中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。
(Application)
The silica particles obtained by the method for producing silica particles of the present invention and the silica sol obtained by the method for producing a silica sol of the present invention can be suitably used for polishing purposes, for example, polishing semiconductor materials such as silicon wafers, polishing electronic materials such as hard disk substrates, polishing in the planarization process in the production of integrated circuits (chemical mechanical polishing), polishing synthetic quartz glass substrates used for photomasks and liquid crystals, polishing magnetic disk substrates, and the like, and among these, they can be particularly suitably used for polishing silicon wafers and chemical mechanical polishing.
以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to the description of the following examples as long as it does not deviate from the gist of the invention.
(平均1次粒子径の測定)
実施例及び比較例で得られたシリカ粒子の分散液を150℃で乾燥し、比表面積自動測定装置「BELSORP-MR1」(機種名、マイクロトラック・ベル株式会社)を用いて、シリカ粒子の比表面積を測定し、下記式(1)を用い、密度を2.2g/cm3とし、平均1次粒子径を算出した。
平均1次粒子径(nm)=6000/(比表面積(m2/g)×密度(g/cm3)) ・・・ (1)
(Measurement of average primary particle size)
The dispersions of silica particles obtained in the examples and comparative examples were dried at 150°C, and the specific surface area of the silica particles was measured using an automatic specific surface area measuring device "BELSORP-MR1" (model name, Microtrack BEL Co., Ltd.). The average primary particle size was calculated using the following formula (1), assuming the density to be 2.2 g/cm3.
Average primary particle diameter (nm) = 6000/(specific surface area (m 2 /g) x density (g/cm 3 )) ... (1)
(平均2次粒子径、cv値の測定)
実施例及び比較例で得られたシリカ粒子の分散液を、動的光散乱粒子径測定装置「ゼーターサイザーナノZS」(機種名、マルバーン社製)を用いて、シリカ粒子の平均2次粒子径を測定し、下記式(2)を用いてcv値を算出した。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
(Measurement of average secondary particle size and cv value)
The average secondary particle diameter of the silica particles in the dispersions of the silica particles obtained in the examples and comparative examples was measured using a dynamic light scattering particle size measurement device "Zetersizer Nano ZS" (model name, manufactured by Malvern Instruments), and the cv value was calculated using the following formula (2).
cv value=(standard deviation (nm)/average secondary particle diameter (nm))×100 (2)
(会合比の算出)
測定した平均1次粒子径と平均2次粒子径とから、下記式(3)を用いて会合比を算出した。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
(Calculation of Association Ratio)
The association ratio was calculated from the measured average primary particle size and average secondary particle size using the following formula (3).
Association ratio = average secondary particle diameter / average primary particle diameter ... (3)
(微粒子の測定)
実施例及び比較例で得られたシリカ粒子の分散液を超純水で5000倍に希釈し、希釈したシリカ粒子の分散液5μLをシリコン基板上に滴下し乾燥させた。次いで、電界放出型走査電子顕微鏡(機種名「S-5200型」、株式会社日立ハイテクノロジーズ製、FE-SEM)を用いて、シリコン基板に加速電圧5kVで電子線を照射し、倍率5万倍で観測される二次電子像を撮影した。撮影した写真を、画像解析式粒度分布測定ソフト(ソフト名「Mac-View Ver.4」、株式会社マウンテック製)に取り込み、同一視野に含まれる全シリカ粒子(80個~120個)のHeywood径と面積を測定した。Heywood径が30nm未満の粒子を微粒子と定義し、全粒子の面積の総和に対する微粒子の面積の割合(面積%)を算出した。
(Measurement of fine particles)
The dispersion of silica particles obtained in the examples and comparative examples was diluted 5000 times with ultrapure water, and 5 μL of the diluted dispersion of silica particles was dropped onto a silicon substrate and dried. Next, a field emission scanning electron microscope (model name "S-5200 type", Hitachi High-Technologies Corporation, FE-SEM) was used to irradiate the silicon substrate with an electron beam at an acceleration voltage of 5 kV, and a secondary electron image observed at a magnification of 50,000 times was taken. The photograph was imported into an image analysis type particle size distribution measurement software (software name "Mac-View Ver. 4", Mountec Co., Ltd.), and the Heywood diameter and area of all silica particles (80 to 120 particles) contained in the same field of view were measured. Particles with a Heywood diameter of less than 30 nm were defined as fine particles, and the ratio (area %) of the area of the fine particles to the sum of the areas of all particles was calculated.
[実施例1]
純水3.9質量部、メタノール78.3質量部及び10質量%アンモニア水11.2質量部を混合した溶液(A-1)に、テトラメトキシシラン100質量部及びメタノール25.0質量部を混合した溶液(B-1)(テトラメトキシシランの濃度80質量%)並びに純水29.1質量部及び10質量%アンモニア水15.6質量部を混合した溶液(C-1)を、253分かけてそれぞれ等速で滴下した。滴下中、反応液の温度を37℃に保ったまま、反応液の撹拌を続けた。滴下終了後、反応液の温度を37℃に保ったまま、更に反応液を30分間撹拌した。反応液を濾過し、シリカ粒子の分散液を得た。
得られたシリカ粒子の評価結果を、表1に示す。
[Example 1]
A solution (B-1) (tetramethoxysilane concentration 80% by mass) of 100 parts by mass of tetramethoxysilane and 25.0 parts by mass of methanol was mixed into a solution (A-1) of 3.9 parts by mass of pure water, 78.3 parts by mass of methanol, and 11.2 parts by mass of 10% by mass aqueous ammonia, and a solution (C-1) of 29.1 parts by mass of pure water and 15.6 parts by mass of 10% by mass aqueous ammonia were dropped at a constant speed over 253 minutes. During the drop, the reaction solution was stirred while maintaining the temperature of the reaction solution at 37 ° C. After the drop, the reaction solution was further stirred for 30 minutes while maintaining the temperature of the reaction solution at 37 ° C. The reaction solution was filtered to obtain a dispersion of silica particles.
The evaluation results of the obtained silica particles are shown in Table 1.
[実施例2]
純水4.3質量部、メタノール85.6質量部及び10質量%アンモニア水12.3質量部を混合した溶液(A-2)に、テトラメトキシシラン100質量部及びメタノール17.7質量部を混合した溶液(B-2)(テトラメトキシシランの濃度85質量%)並びに純水28.7質量部及び10質量%アンモニア水14.6質量部を混合した溶液(C-2)を、232分かけてそれぞれ等速で滴下した。滴下中、反応液の温度を37℃に保ったまま、反応液の撹拌を続けた。滴下終了後、反応液の温度を37℃に保ったまま、更に反応液を30分間撹拌した。反応液を濾過し、シリカ粒子の分散液を得た。
得られたシリカ粒子の評価結果を、表1に示す。
[Example 2]
A solution (B-2) (tetramethoxysilane concentration 85% by mass) of 100 parts by mass of tetramethoxysilane and 17.7 parts by mass of methanol was added dropwise to a solution (A-2) of 4.3 parts by mass of pure water, 85.6 parts by mass of methanol, and 12.3 parts by mass of 10% by mass aqueous ammonia, and a solution (C-2) of 28.7 parts by mass of pure water and 14.6 parts by mass of 10% by mass aqueous ammonia were added dropwise at a constant speed over 232 minutes. During the dropwise addition, the reaction solution was stirred while maintaining the temperature of the reaction solution at 37 ° C. After the dropwise addition, the reaction solution was further stirred for 30 minutes while maintaining the temperature of the reaction solution at 37 ° C. The reaction solution was filtered to obtain a dispersion of silica particles.
The evaluation results of the obtained silica particles are shown in Table 1.
[実施例3]
純水4.5質量部、メタノール89.0質量部及び10質量%アンモニア水12.7質量部を混合した溶液(A-3)に、テトラメトキシシラン100質量部及びメタノール14.3質量部を混合した溶液(B-3)(テトラメトキシシランの濃度87.5質量%)並びに純水28.6質量部及び10質量%アンモニア水14.1質量部を混合した溶液(C-3)を、223分かけてそれぞれ等速で滴下した。滴下中、反応液の温度を37℃に保ったまま、反応液の撹拌を続けた。滴下終了後、反応液の温度を37℃に保ったまま、更に反応液を30分間撹拌した。反応液を濾過し、シリカ粒子の分散液を得た。
得られたシリカ粒子の評価結果を、表1に示す。
[Example 3]
A solution (B-3) (tetramethoxysilane concentration 87.5% by mass) of 100 parts by mass of tetramethoxysilane and 14.3 parts by mass of methanol was added dropwise to a solution (A-3) of 4.5 parts by mass of pure water, 89.0 parts by mass of methanol, and 12.7 parts by mass of 10% by mass aqueous ammonia, and a solution (C-3) of 28.6 parts by mass of pure water and 14.1 parts by mass of 10% by mass aqueous ammonia were added dropwise at a constant speed over 223 minutes. During the dropwise addition, the reaction solution was stirred while maintaining the temperature of the reaction solution at 37 ° C. After the dropwise addition, the reaction solution was stirred for another 30 minutes while maintaining the temperature of the reaction solution at 37 ° C. The reaction solution was filtered to obtain a dispersion of silica particles.
The evaluation results of the obtained silica particles are shown in Table 1.
[比較例1]
純水3.5質量部、メタノール69.9質量部及び10質量%アンモニア水10.0質量部を混合した溶液(A’-1)に、テトラメトキシシラン100質量部及びメタノール33.3質量部を混合した溶液(B’-1)(テトラメトキシシランの濃度75質量%)並びに純水29.5質量部及び10質量%アンモニア水16.8質量部を混合した溶液(C’-1)を、284分かけてそれぞれ等速で滴下した。滴下中、反応液の温度を37℃に保ったまま、反応液の撹拌を続けた。滴下終了後、反応液の温度を37℃に保ったまま、更に反応液を30分間撹拌した。反応液を濾過し、シリカ粒子の分散液を得た。
得られたシリカ粒子の評価結果を、表1に示す。
[Comparative Example 1]
A solution (B'-1) (tetramethoxysilane concentration 75% by mass) of 100 parts by mass of tetramethoxysilane and 33.3 parts by mass of methanol was added dropwise to a solution (A'-1) of 3.5 parts by mass of pure water, 69.9 parts by mass of methanol, and 10.0 parts by mass of 10% by mass aqueous ammonia, and a solution (C'-1) of 29.5 parts by mass of pure water and 16.8 parts by mass of 10% by mass aqueous ammonia were added dropwise at a constant speed over 284 minutes. During the dropwise addition, the reaction solution was stirred while maintaining the temperature of the reaction solution at 37 ° C. After the dropwise addition, the reaction solution was further stirred for 30 minutes while maintaining the temperature of the reaction solution at 37 ° C. The reaction solution was filtered to obtain a dispersion of silica particles.
The evaluation results of the obtained silica particles are shown in Table 1.
[比較例2]
純水4.6質量部、メタノール92.2質量部及び10質量%アンモニア水13.2質量部を混合した溶液(A’-2)に、テトラメトキシシラン100質量部及びメタノール11.1質量部を混合した溶液(B’-2)(テトラメトキシシランの濃度90質量%)並びに純水28.4質量部及び10質量%アンモニア水13.7質量部を混合した溶液(C’-2)を、215分かけてそれぞれ等速で滴下した。滴下中、反応液の温度を37℃に保ったまま、反応液の撹拌を続けた。滴下終了後、反応液の温度を37℃に保ったまま、更に反応液を30分間撹拌した。反応液を濾過し、シリカ粒子の分散液を得た。
得られたシリカ粒子の評価結果を、表1に示す。
[Comparative Example 2]
A solution (B'-2) (tetramethoxysilane concentration 90% by mass) of 100 parts by mass of tetramethoxysilane and 11.1 parts by mass of methanol was added dropwise to a solution (A'-2) of 4.6 parts by mass of pure water, 92.2 parts by mass of methanol, and 13.2 parts by mass of 10% by mass aqueous ammonia, and a solution (C'-2) of 28.4 parts by mass of pure water and 13.7 parts by mass of 10% by mass aqueous ammonia were added dropwise at a constant speed over 215 minutes. During the dropwise addition, the reaction solution was stirred while maintaining the temperature of the reaction solution at 37 ° C. After the dropwise addition, the reaction solution was further stirred for 30 minutes while maintaining the temperature of the reaction solution at 37 ° C. The reaction solution was filtered to obtain a dispersion of silica particles.
The evaluation results of the obtained silica particles are shown in Table 1.
表1から分かるように、実施例1~3のシリカ粒子の製造方法は、比較例1~2のシリカ粒子の製造方法と比較して、微粒子の発生を抑制することができた。これは、添加するテトラアルコキシシランの濃度を適切な範囲とすることにより、テトラアルコキシシランの反応液中での分散性が良好に保たれるためであると考えられる。 As can be seen from Table 1, the methods for producing silica particles in Examples 1 to 3 were able to suppress the generation of fine particles compared to the methods for producing silica particles in Comparative Examples 1 and 2. This is believed to be because the concentration of the tetraalkoxysilane added is set within an appropriate range, thereby maintaining good dispersibility of the tetraalkoxysilane in the reaction solution.
本発明のシリカ粒子の製造方法で得られたシリカ粒子、本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができ、中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。 The silica particles obtained by the method for producing silica particles of the present invention and the silica sol obtained by the method for producing silica sol of the present invention can be suitably used for polishing purposes, such as polishing semiconductor materials such as silicon wafers, polishing electronic materials such as hard disk substrates, polishing in the planarization process when manufacturing integrated circuits (chemical mechanical polishing), polishing synthetic quartz glass substrates used in photomasks and liquid crystals, and polishing magnetic disk substrates, and are particularly suitable for use in polishing silicon wafers and chemical mechanical polishing.
Claims (15)
工程(1):水を含む溶液(A)に、テトラアルコキシシランを77質量%~89質量%含み、前記テトラアルコキシシランの反応前の質量に対する反応前の溶液(A)中のアルコールの質量の比が0.91以下である溶液(B)を50gシリカ/時/kg溶液~150gシリカ/時/kg溶液の添加速度で添加し、テトラアルコキシシランを加水分解反応及び縮合反応させる工程 A method for producing silica particles, comprising the following step (1):
Step (1): A step of adding a solution (B) containing 77% by mass to 89% by mass of tetraalkoxysilane, in which the ratio of the mass of alcohol in the solution (A) before the reaction to the mass of the tetraalkoxysilane before the reaction is 0.91 or less, to a solution (A) containing water at an addition rate of 50 g silica/hour to 150 g silica/hour/kg solution, to cause a hydrolysis reaction and a condensation reaction of the tetraalkoxysilane.
工程(2):工程(1)で得られたシリカ粒子の分散液を濃縮し、分散媒を添加する工程 The method for producing silica particles according to any one of claims 1 to 8, further comprising the following step (2):
Step (2): A step of concentrating the dispersion of silica particles obtained in step (1) and adding a dispersion medium.
工程(3):工程(2)で得られたシリカ粒子の分散液を加圧加熱処理する工程 The method for producing silica particles according to claim 9 , further comprising the following step (3):
Step (3): A step of subjecting the dispersion of silica particles obtained in step (2) to a pressurized and heated treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020011470A JP7552019B2 (en) | 2020-01-28 | 2020-01-28 | Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020011470A JP7552019B2 (en) | 2020-01-28 | 2020-01-28 | Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021116209A JP2021116209A (en) | 2021-08-10 |
JP7552019B2 true JP7552019B2 (en) | 2024-09-18 |
Family
ID=77173952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020011470A Active JP7552019B2 (en) | 2020-01-28 | 2020-01-28 | Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7552019B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112021008472T5 (en) * | 2021-12-23 | 2024-09-05 | Fuso Chemical Co., Ltd. | Colloidal silicon dioxide and process for its preparation |
JPWO2023219004A1 (en) | 2022-05-13 | 2023-11-16 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004074180A1 (en) | 2003-02-18 | 2004-09-02 | Tytemn Corporation | Alkali-resistant cocoon-shaped colloidal silica particle and process for producing the same |
JP2005060217A (en) | 2003-07-25 | 2005-03-10 | Fuso Chemical Co Ltd | Silica sol and method for producing the same |
JP2005060219A (en) | 2003-07-25 | 2005-03-10 | Fuso Chemical Co Ltd | Silica sol and method for producing the same |
JP2018048042A (en) | 2016-09-21 | 2018-03-29 | Jsr株式会社 | Method for producing silica particle, silica particle, and chemical mechanical polishing composition |
JP2018095509A (en) | 2016-12-13 | 2018-06-21 | Jsr株式会社 | Method for producing silica particle, silica particle, and chemical mechanical polishing composition |
JP2018108924A (en) | 2016-12-28 | 2018-07-12 | 日揮触媒化成株式会社 | Silica particle dispersion and production method thereof |
WO2019049907A1 (en) | 2017-09-07 | 2019-03-14 | 扶桑化学工業株式会社 | Hydrophobic silica powder |
JP2019089692A (en) | 2017-11-10 | 2019-06-13 | 三菱ケミカル株式会社 | Colloidal silica, silica sol, polishing composition, polishing method of silicon wafer, manufacturing method of silicon wafer, chemical mechanical polishing composition and manufacturing method of semiconductor device |
-
2020
- 2020-01-28 JP JP2020011470A patent/JP7552019B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004074180A1 (en) | 2003-02-18 | 2004-09-02 | Tytemn Corporation | Alkali-resistant cocoon-shaped colloidal silica particle and process for producing the same |
JP2005060217A (en) | 2003-07-25 | 2005-03-10 | Fuso Chemical Co Ltd | Silica sol and method for producing the same |
JP2005060219A (en) | 2003-07-25 | 2005-03-10 | Fuso Chemical Co Ltd | Silica sol and method for producing the same |
JP2018048042A (en) | 2016-09-21 | 2018-03-29 | Jsr株式会社 | Method for producing silica particle, silica particle, and chemical mechanical polishing composition |
JP2018095509A (en) | 2016-12-13 | 2018-06-21 | Jsr株式会社 | Method for producing silica particle, silica particle, and chemical mechanical polishing composition |
JP2018108924A (en) | 2016-12-28 | 2018-07-12 | 日揮触媒化成株式会社 | Silica particle dispersion and production method thereof |
WO2019049907A1 (en) | 2017-09-07 | 2019-03-14 | 扶桑化学工業株式会社 | Hydrophobic silica powder |
JP2019089692A (en) | 2017-11-10 | 2019-06-13 | 三菱ケミカル株式会社 | Colloidal silica, silica sol, polishing composition, polishing method of silicon wafer, manufacturing method of silicon wafer, chemical mechanical polishing composition and manufacturing method of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2021116209A (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7552669B2 (en) | Silica sol, polishing composition, method for polishing silicon wafer, method for manufacturing silicon wafer, chemical mechanical polishing composition, and method for manufacturing semiconductor device | |
JP2021147267A (en) | Method for producing silica particle, method for producing silica sol, polishing process, method for producing semiconductor wafer, and method for producing semiconductor device | |
CN115023408B (en) | Silica particles, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device | |
JP2024097789A (en) | Polishing composition, polishing method, method for producing semiconductor wafer and method for producing semiconductor device | |
JP7443857B2 (en) | Silica particle manufacturing method, silica sol manufacturing method, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method | |
JP7552019B2 (en) | Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device | |
JP2021116225A (en) | Silica particle manufacturing method, silica sol manufacturing method, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method | |
JP2024177258A (en) | Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device | |
JP7622443B2 (en) | Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device | |
JP7622444B2 (en) | Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device | |
JP6756422B1 (en) | Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method | |
JP7331437B2 (en) | Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method | |
JP7581910B2 (en) | Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device | |
JP7491081B2 (en) | Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device | |
JP7516763B2 (en) | Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing | |
JP2023043024A (en) | Method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device | |
JP7596881B2 (en) | Method for producing silica sol, method for polishing, method for producing semiconductor wafer, and method for producing semiconductor device | |
JP7331436B2 (en) | Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method | |
JP2020132478A (en) | Method for producing silica particle, method for producing silica sol and polishing method | |
JP7552145B2 (en) | Silica sol, method for producing silica sol, polishing composition, polishing method, and method for producing semiconductor device | |
JP7565671B2 (en) | Method for producing silica sol and method for suppressing intermediate products in silica sol | |
JP2024141877A (en) | Method for producing silica particles, method for producing silica sol, method for producing polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device | |
JP7331435B2 (en) | Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method | |
JP2024131533A (en) | Method for producing silica sol, method for producing polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device | |
WO2024122583A1 (en) | Silica particle, production method for silica particle, silica sol, polishing composition, polishing method, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230823 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20230823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7552019 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |