Nothing Special   »   [go: up one dir, main page]

JP7491081B2 - Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device - Google Patents

Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device Download PDF

Info

Publication number
JP7491081B2
JP7491081B2 JP2020107122A JP2020107122A JP7491081B2 JP 7491081 B2 JP7491081 B2 JP 7491081B2 JP 2020107122 A JP2020107122 A JP 2020107122A JP 2020107122 A JP2020107122 A JP 2020107122A JP 7491081 B2 JP7491081 B2 JP 7491081B2
Authority
JP
Japan
Prior art keywords
silica particles
polishing
producing
mass
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020107122A
Other languages
Japanese (ja)
Other versions
JP2022001545A (en
Inventor
友寛 加藤
栄治 出島
耕史 本田
勇生 奈木野
康弘 河瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020107122A priority Critical patent/JP7491081B2/en
Publication of JP2022001545A publication Critical patent/JP2022001545A/en
Application granted granted Critical
Publication of JP7491081B2 publication Critical patent/JP7491081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、シリカ粒子の製造方法、シリカゾルの製造方法、研磨方法、半導体ウェハの製造方法及び半導体デバイスの製造方法に関する。 The present invention relates to a method for producing silica particles, a method for producing silica sol, a polishing method, a method for producing semiconductor wafers, and a method for producing semiconductor devices.

金属や無機化合物等の材料の表面を研磨する方法として、研磨液を用いた研磨方法が知られている。中でも、半導体用のプライムシリコンウェハやこれらの再生シリコンウェハの最終仕上げ研磨、及び、半導体デバイス製造時の層間絶縁膜の平坦化、金属プラグの形成、埋め込み配線形成等の化学的機械的研磨(CMP)では、その表面状態が半導体特性に大きく影響するため、これらの部品の表面や端面は、極めて高精度に研磨されることが要求されている。 Polishing methods using polishing liquids are known as a method for polishing the surfaces of materials such as metals and inorganic compounds. In particular, in the final polishing of prime silicon wafers for semiconductors and reclaimed silicon wafers, as well as in chemical mechanical polishing (CMP) for planarizing interlayer insulating films during semiconductor device manufacturing, forming metal plugs, forming embedded wiring, and the like, the surface condition has a significant effect on the semiconductor characteristics, so the surfaces and end faces of these components must be polished with extremely high precision.

このような精密研磨においては、シリカ粒子を含む研磨組成物が採用されており、その主成分である砥粒として、コロイダルシリカが広く用いられている。コロイダルシリカは、その製造方法の違いにより、四塩化珪素の熱分解によるもの(ヒュームドシリカ等)、水ガラス等の珪酸アルカリの脱イオンによるもの、アルコキシシランの加水分解反応及び縮合反応(一般に「ゾルゲル法」と称される)によるもの等が知られている。 In such precision polishing, polishing compositions containing silica particles are used, and colloidal silica is widely used as the abrasive grains, which are the main component. Colloidal silica is known to be produced by a variety of methods, including those produced by the thermal decomposition of silicon tetrachloride (fumed silica, etc.), those produced by the deionization of alkali silicate such as water glass, and those produced by the hydrolysis and condensation reaction of alkoxysilanes (commonly known as the "sol-gel method").

シリカ粒子の製造方法に関し、これまで多くの検討がなされてきた。例えば、特許文献1及び特許文献2には、アルコキシシランの加水分解反応及び縮合反応によりシリカ粒子を製造する方法が開示されている。 Many studies have been conducted on methods for producing silica particles. For example, Patent Documents 1 and 2 disclose methods for producing silica particles by hydrolysis and condensation reactions of alkoxysilanes.

特開2005-060217号公報JP 2005-060217 A 特開2018-108924号公報JP 2018-108924 A

アルコキシシランの加水分解反応及び縮合反応によりシリカ粒子を製造する方法では、その製造条件次第で、反応槽の壁面に付着するシリカ粒子が発生したり、シリカ粒子同士が凝集した粗大粒子が発生したりすることがある。反応槽の壁面に付着するシリカ粒子が発生すると、生産性が低下するという課題が生じる。また、シリカ粒子同士が凝集した粗大粒子が発生すると、精製時に濾過性が悪化し、研磨時に被研磨体にスクラッチが生じるという課題が生じる。 In the method of producing silica particles by hydrolysis and condensation reactions of alkoxysilanes, depending on the production conditions, silica particles may adhere to the walls of the reaction vessel, or coarse particles formed by agglomeration of silica particles may occur. If silica particles adhere to the walls of the reaction vessel, the problem of reduced productivity arises. In addition, if coarse particles formed by agglomeration of silica particles occur, the problem of poor filterability during purification arises, and scratches may occur on the object being polished during polishing.

従来、アルコキシシランの加水分解反応及び縮合反応によるシリカ粒子の製造において、反応槽の壁面へのシリカ粒子の付着、シリカ粒子同士の凝集による粗大粒子の発生を抑制し得る製造条件についての提案はなされておらず、特許文献1,2でも、このような製造条件について何ら記載されていない。このため、特許文献1及び特許文献2に開示されているシリカ粒子の製造方法では、製造条件次第では反応槽の壁面に付着するシリカ粒子が発生したり、シリカ粒子同士が凝集した粗大粒子が発生したりするという課題があった。 Conventionally, in the production of silica particles by the hydrolysis and condensation reactions of alkoxysilanes, there have been no proposals for production conditions that can suppress adhesion of silica particles to the walls of a reaction vessel or the generation of coarse particles due to aggregation of silica particles, and Patent Documents 1 and 2 do not mention any such production conditions. For this reason, the methods for producing silica particles disclosed in Patent Documents 1 and 2 have had problems in that, depending on the production conditions, silica particles may adhere to the walls of a reaction vessel or coarse particles may be generated due to aggregation of silica particles.

本発明は、このような課題を鑑みてなされたものであり、本発明の目的は、反応槽の壁面に付着するシリカ粒子の発生を抑制し、シリカ粒子同士が凝集した粗大粒子の発生を抑制するシリカ粒子の製造方法を提供することにある。 The present invention was made in consideration of these problems, and the object of the present invention is to provide a method for producing silica particles that suppresses the generation of silica particles adhering to the wall surface of a reaction vessel and suppresses the generation of coarse particles formed by agglomeration of silica particles.

本発明者らは、鋭意検討を重ねた結果、テトラアルコキシシランの加水分解反応及び縮合反応によりシリカ粒子を製造するに当たり、撹拌動力を好適化することで、反応槽の壁面に付着するシリカ粒子を抑制し、シリカ粒子同士が凝集した粗大粒子の発生を抑制することができることを見出し、本発明を完成するに至った。 After extensive research, the inventors discovered that, when producing silica particles by hydrolysis and condensation reactions of tetraalkoxysilane, optimizing the stirring power can suppress adhesion of silica particles to the walls of a reaction vessel and suppress the generation of coarse particles formed by aggregation of silica particles, and thus completed the present invention.

即ち、本発明の要旨は、以下の通りである。
[1] 20W/m~200W/mの撹拌動力でテトラアルコキシシランを加水分解反応及び縮合反応させる工程を含む、シリカ粒子の製造方法。
[2] アルカリ触媒を含む溶液(A)に、テトラアルコキシシランを含む溶液(B)及びアルカリ触媒を含む溶液(C)を添加し、撹拌下にテトラアルコキシシランを加水分解反応及び縮合反応させる、[1]に記載のシリカ粒子の製造方法。
[3] 加水分解反応及び縮合反応の反応温度が、20℃~50℃である、[1]又は[2]に記載のシリカ粒子の製造方法。
[4] 加水分解反応及び縮合反応の反応系内の水の濃度を、3質量%~30質量%に維持する、[1]~[3]のいずれかに記載のシリカ粒子の製造方法。
[5] 更に、以下の工程(1)を含む、[1]~[4]のいずれかに記載のシリカ粒子の製造方法。
工程(1):得られたシリカ粒子の分散液を濃縮し、分散媒を添加する工程
[6] 更に、以下の工程(2)を含む、[5]に記載のシリカ粒子の製造方法。
工程(2):工程(1)で得られたシリカ粒子の分散液を加圧加熱処理する工程
[7] [1]~[6]のいずれかに記載のシリカ粒子の製造方法を含む、シリカゾルの製造方法。
[8] シリカゾル中のシリカ粒子の含有率が、3質量%~50質量%である、[7]に記載のシリカゾルの製造方法。
[9] [7]又は[8]に記載のシリカゾルの製造方法で得られたシリカゾルを含む研磨組成物を用いて研磨する、研磨方法。
[10] [9]に記載の研磨方法を含む、半導体ウェハの製造方法。
[11] [9]に記載の研磨方法を含む、半導体デバイスの製造方法。
That is, the gist of the present invention is as follows.
[1] A method for producing silica particles, comprising a step of subjecting tetraalkoxysilane to a hydrolysis reaction and a condensation reaction at a stirring power of 20 W/m 3 to 200 W/m 3 .
[2] The method for producing silica particles according to [1], comprising adding a solution (B) containing a tetraalkoxysilane and a solution (C) containing an alkali catalyst to a solution (A) containing an alkali catalyst, and allowing the tetraalkoxysilane to undergo hydrolysis and condensation reactions under stirring.
[3] The method for producing silica particles according to [1] or [2], wherein the reaction temperature of the hydrolysis reaction and the condensation reaction is 20° C. to 50° C.
[4] The method for producing silica particles according to any one of [1] to [3], wherein the concentration of water in the reaction system for the hydrolysis reaction and the condensation reaction is maintained at 3% by mass to 30% by mass.
[5] The method for producing silica particles according to any one of [1] to [4], further comprising the following step (1):
Step (1): A step of concentrating the obtained dispersion liquid of silica particles and adding a dispersion medium [6] The method for producing silica particles according to [5], further comprising the following step (2):
Step (2): A step of pressurizing and heating the dispersion of silica particles obtained in step (1). [7] A method for producing a silica sol, comprising the method for producing silica particles according to any one of [1] to [6].
[8] The method for producing a silica sol according to [7], wherein the content of silica particles in the silica sol is 3% by mass to 50% by mass.
[9] A polishing method, comprising the step of polishing with a polishing composition containing the silica sol obtained by the method for producing a silica sol according to [7] or [8].
[10] A method for producing a semiconductor wafer, comprising the polishing method according to [9].
[11] A method for manufacturing a semiconductor device, comprising the polishing method according to [9].

本発明のシリカ粒子の製造方法によれば、テトラアルコキシシランの加水分解反応及び縮合反応によりシリカ粒子を製造するに当たり、反応槽の壁面に付着するシリカ粒子の発生を抑制し、シリカ粒子同士が凝集した粗大粒子の発生を抑制することができる。従って、本発明のシリカ粒子の製造方法によれば、粗大粒子の少ない高品質のシリカ粒子を歩留りよく効率的に製造することができる。 According to the method for producing silica particles of the present invention, when producing silica particles by hydrolysis and condensation reactions of tetraalkoxysilane, it is possible to suppress the generation of silica particles adhering to the walls of the reaction vessel and to suppress the generation of coarse particles formed by aggregation of silica particles. Therefore, according to the method for producing silica particles of the present invention, it is possible to efficiently produce high-quality silica particles with few coarse particles with a good yield.

以下に本発明について詳述するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。尚、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いる。 The present invention is described in detail below, but is not limited to the following embodiments and can be modified and implemented in various ways within the scope of the gist. In this specification, when the expression "~" is used, it is used as an expression including the numerical values or physical property values before and after it.

(シリカ粒子の製造方法)
本発明のシリカ粒子の製造方法は、20W/m~200W/mの撹拌動力でテトラアルコキシシランを加水分解反応及び縮合反応させる工程を含む。
本発明における撹拌動力は、反応液の単位体積あたりの撹拌動力である。
(Method for producing silica particles)
The method for producing silica particles of the present invention includes a step of subjecting tetraalkoxysilane to a hydrolysis reaction and a condensation reaction at a stirring power of 20 W/m 3 to 200 W/m 3 .
The stirring power in the present invention is the stirring power per unit volume of the reaction liquid.

該撹拌動力は、20W/m~200W/mであり、25W/m~150W/mが好ましく、30W/m~100W/mがより好ましい。撹拌動力が上記下限値以上であると、シリカ粒子同士が凝集した粗大粒子の発生を抑制することができる。また、撹拌動力が上記上限値以下であると、反応槽の壁面に付着するシリカ粒子の発生を抑制することができる。 The stirring power is 20 W/m 3 to 200 W/m 3 , preferably 25 W/m 3 to 150 W/m 3 , and more preferably 30 W/m 3 to 100 W/m 3 . When the stirring power is equal to or greater than the lower limit, the generation of coarse particles formed by aggregation of silica particles can be suppressed. When the stirring power is equal to or less than the upper limit, the generation of silica particles adhering to the wall surface of the reaction vessel can be suppressed.

撹拌動力は、撹拌翼の種類、撹拌回転数を調整することで、所望の範囲に設定することができる。 The stirring power can be set to the desired range by adjusting the type of stirring blade and the stirring speed.

本発明のシリカ粒子の製造方法は、加水分解反応及び縮合反応の制御性に優れることから、アルカリ触媒を含む溶液(A)に、前述の撹拌動力で撹拌しながら、テトラアルコキシシランを含む溶液(B)及びアルカリ触媒を含む溶液(C)を添加し、前述の撹拌動力で撹拌しながら、テトラアルコキシシランを加水分解反応及び縮合反応させることが好ましい。なお、溶液(A)への溶液(B)と溶液(C)の添加は、ほぼ同時に同程度の時間をかけて行うことが好ましい。 Since the method for producing silica particles of the present invention has excellent controllability of the hydrolysis reaction and condensation reaction, it is preferable to add the solution (B) containing tetraalkoxysilane and the solution (C) containing an alkali catalyst to the solution (A) containing an alkali catalyst while stirring with the stirring power described above, and to cause the hydrolysis reaction and condensation reaction of the tetraalkoxysilane while stirring with the stirring power described above. Note that it is preferable to add the solutions (B) and (C) to the solution (A) at approximately the same time for approximately the same amount of time.

溶液(A)は、アルカリ触媒を含む。
溶液(A)中のアルカリ触媒としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等が挙げられる。これらのアルカリ触媒は、1種を単独で用いてもよく、2種以上を併用してもい。これらのアルカリ触媒の中でも、触媒作用に優れ、粒子形状を制御しやすく、金属不純物の混入を抑制することができ、揮発性が高く加水分解反応及び縮合反応後の除去性に優れることから、アンモニアが好ましい。
The solution (A) contains an alkali catalyst.
Examples of the alkali catalyst in the solution (A) include ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanolamine, tetramethylammonium hydroxide, etc. These alkali catalysts may be used alone or in combination of two or more. Among these alkali catalysts, ammonia is preferred because it has excellent catalytic action, is easy to control the particle shape, can suppress the inclusion of metal impurities, is highly volatile, and is easy to remove after the hydrolysis reaction and the condensation reaction.

溶液(A)は、テトラアルコキシシランの加水分解反応及び縮合反応進行させることができることから、水を含むことが好ましい。 Solution (A) preferably contains water, since this allows the hydrolysis reaction and condensation reaction of tetraalkoxysilane to proceed.

溶液(A)は、反応液中でのテトラアルコキシシランの分散性に優れることから、水以外の溶媒を含むことが好ましい。
溶液(A)中の水以外の溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等のアルコールや、アセトン、メチルエチルケトン等のケトン、酢酸エチル等のエステルなどが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の中でも、テトラアルコキシシランを溶解しやすく、加水分解反応及び縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、アルコールが好ましく、メタノール、エタノールがより好ましく、メタノールが更に好ましい。
It is preferable that the solution (A) contains a solvent other than water, since this provides excellent dispersibility of the tetraalkoxysilane in the reaction liquid.
Examples of the solvent other than water in the solution (A) include alcohols such as methanol, ethanol, propanol, isopropanol, and ethylene glycol, ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate. These solvents may be used alone or in combination of two or more. Among these solvents, alcohols are preferred, more preferably methanol and ethanol, and even more preferably methanol, because they are easy to dissolve tetraalkoxysilane, the by-products are the same as those used in the hydrolysis reaction and the condensation reaction, and they are convenient to manufacture.

溶液(A)中のアルカリ触媒の濃度は、溶液(A)100質量%中、0.5質量%~2.0質量%が好ましく、0.6質量%~1.5質量%がより好ましい。溶液(A)中のアルカリ触媒の濃度が上記下限値以上であると、シリカ粒子の凝集を抑制し、得られる分散液中のシリカ粒子の分散安定性に優れる。また、溶液(A)中のアルカリ触媒の濃度が上記上限値以下であると、反応が過度に速く進行せず、反応制御性に優れる。 The concentration of the alkali catalyst in solution (A) is preferably 0.5% by mass to 2.0% by mass, and more preferably 0.6% by mass to 1.5% by mass, based on 100% by mass of solution (A). When the concentration of the alkali catalyst in solution (A) is equal to or greater than the lower limit, aggregation of silica particles is suppressed, and the dispersion stability of the silica particles in the resulting dispersion is excellent. When the concentration of the alkali catalyst in solution (A) is equal to or less than the upper limit, the reaction does not proceed excessively quickly, and reaction control is excellent.

溶液(A)中の水の濃度は、溶液(A)100質量%中、3質量%~30質量%が好ましく、5質量%~25質量%がより好ましい。溶液(A)中の水の濃度が上記下限値以上であると、加水分解反応で生成するケイ酸の反応液中での分散性に優れる。また、溶液(A)中の水の濃度が上記上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れる。 The concentration of water in solution (A) is preferably 3% by mass to 30% by mass, and more preferably 5% by mass to 25% by mass, based on 100% by mass of solution (A). When the concentration of water in solution (A) is equal to or greater than the above lower limit, the dispersibility of the silicic acid produced by the hydrolysis reaction in the reaction liquid is excellent. When the concentration of water in solution (A) is equal to or less than the above upper limit, the dispersibility of the tetraalkoxysilane in the reaction liquid is excellent.

溶液(A)中の水以外の溶媒の濃度は、アルカリ触媒と水の残部とすることが好ましい。 The concentration of the solvent other than water in solution (A) is preferably the balance of the alkali catalyst and water.

溶液(B)は、テトラアルコキシシランを含む。
溶液(B)中のテトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン等のアルコキシ基の炭素数が1~12のテトラアルコキシシランが挙げられる。これらのテトラアルコキシシランは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのテトラアルコキシシランの中でも、加水分解反応が速く、未反応物が残留し難く、生産性に優れ、安定なシリカゾルを容易に得ることができることから、テトラメトキシシラン、テトラエトキシシランが好ましく、テトラメトキシシランがより好ましい。
The solution (B) contains a tetraalkoxysilane.
Examples of the tetraalkoxysilane in solution (B) include tetraalkoxysilanes having an alkoxy group with 1 to 12 carbon atoms, such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetraisopropoxysilane. These tetraalkoxysilanes may be used alone or in combination of two or more. Among these tetraalkoxysilanes, tetramethoxysilane and tetraethoxysilane are preferred, and tetramethoxysilane is more preferred, since they undergo a fast hydrolysis reaction, are less likely to leave unreacted substances, are highly productive, and can easily produce a stable silica sol.

溶液(B)は、反応液中でのテトラアルコキシシランの分散性に優れることから、溶媒を含むことが好ましい。
溶液(B)中の溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等のアルコールや、アセトン、メチルエチルケトン等のケトン、酢酸エチル等のエステルなどが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の中でも、加水分解反応及び縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、アルコールが好ましく、メタノール、エタノールがより好ましく、メタノールが更に好ましい。
It is preferable that the solution (B) contains a solvent, since this provides excellent dispersibility of the tetraalkoxysilane in the reaction liquid.
Examples of the solvent in the solution (B) include alcohols such as methanol, ethanol, propanol, isopropanol, and ethylene glycol, ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate. These solvents may be used alone or in combination of two or more. Among these solvents, alcohols are preferred, more preferably methanol and ethanol, and even more preferably methanol, because the solvents used in the hydrolysis reaction and the by-products are the same and are convenient to manufacture.

溶液(B)中のテトラアルコキシシランの濃度は、溶液(B)100質量%中、76質量%~89質量%が好ましく、77質量%~88質量%がより好ましい。溶液(B)中のテトラアルコキシシランの濃度が上記下限値以上であると、用いる溶媒の量を低減することができ、シリカ粒子の生産性に優れる。また、溶液(B)中のテトラアルコキシシランの濃度が上記上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れる。 The concentration of tetraalkoxysilane in solution (B) is preferably 76% by mass to 89% by mass, and more preferably 77% by mass to 88% by mass, based on 100% by mass of solution (B). When the concentration of tetraalkoxysilane in solution (B) is equal to or greater than the lower limit, the amount of solvent used can be reduced, resulting in excellent productivity of silica particles. Furthermore, when the concentration of tetraalkoxysilane in solution (B) is equal to or less than the upper limit, the dispersibility of tetraalkoxysilane in the reaction liquid is excellent.

溶液(B)中の溶媒の濃度は、溶液(B)100質量%中、11質量%~24質量%が好ましく、12質量%~23質量%がより好ましい。溶液(B)中の溶媒の濃度が上記下限値以上であると、反応液中でのテトラアルコキシシランの分散性に優れる。また、溶液(B)中の溶媒の濃度が上記上限値以下であると、用いる溶媒の量を低減することができ、シリカ粒子の生産性に優れる。なお、溶液(B)中の溶媒の濃度は、通常、溶液(B)のテトラアルコキシシランの残部であることが好ましい。 The concentration of the solvent in solution (B) is preferably 11% by mass to 24% by mass, and more preferably 12% by mass to 23% by mass, based on 100% by mass of solution (B). When the concentration of the solvent in solution (B) is equal to or greater than the lower limit, the dispersibility of the tetraalkoxysilane in the reaction liquid is excellent. When the concentration of the solvent in solution (B) is equal to or less than the upper limit, the amount of the solvent used can be reduced, and the productivity of the silica particles is excellent. Note that the concentration of the solvent in solution (B) is usually preferably the remainder of the tetraalkoxysilane in solution (B).

溶液(A)への溶液(B)の添加速度は、50gシリカ/時/kg溶液~150gシリカ/時/kg溶液が好ましく、70gシリカ/時/kg溶液~130gシリカ/時/kg溶液がより好ましい。溶液(B)の添加速度が上記下限値以上であると、反応時間が短縮され、生産性に優れる。また、溶液(B)の添加速度が上記上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れる。
ここで、「gシリカ/時/kg溶液」とは、溶液(A)1kgに対して、1時間当たりに添加する溶液(B)中のテトラアルコキシシランの質量をシリカの質量に換算した値(g)を表す。
The addition rate of solution (B) to solution (A) is preferably 50 g silica/hour/kg solution to 150 g silica/hour/kg solution, more preferably 70 g silica/hour/kg solution to 130 g silica/hour/kg solution. When the addition rate of solution (B) is equal to or higher than the lower limit, the reaction time is shortened and the productivity is excellent. When the addition rate of solution (B) is equal to or lower than the upper limit, the dispersibility of tetraalkoxysilane in the reaction solution is excellent.
Here, "g silica/hour/kg solution" refers to the mass of tetraalkoxysilane in solution (B) added per hour per 1 kg of solution (A), converted into the mass of silica (g).

溶液(C)は、アルカリ触媒を含む。
溶液(C)中のアルカリ触媒としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等が挙げられる。これらのアルカリ触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。溶液(C)中のアルカリ触媒は溶液(A)中のアルカリ触媒と同種のアルカリ触媒が好ましく、溶液(A)におけると同様に、これらのアルカリ触媒の中でも、触媒作用に優れ、粒子形状を制御しやすく、金属不純物の混入を抑制することができ、揮発性が高く加水分解反応及び縮合反応後の除去性に優れることから、アンモニアが好ましい。
The solution (C) contains an alkali catalyst.
Examples of the alkali catalyst in solution (C) include ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanolamine, tetramethylammonium hydroxide, etc. These alkali catalysts may be used alone or in combination of two or more. The alkali catalyst in solution (C) is preferably the same type as the alkali catalyst in solution (A), and among these alkali catalysts, ammonia is preferred because it has excellent catalytic action, is easy to control the particle shape, can suppress the inclusion of metal impurities, is highly volatile, and is excellent in removability after hydrolysis reaction and condensation reaction, as in solution (A).

溶液(C)は、反応液の組成の変動を小さくすることができることから、溶媒を含むことが好ましい。
溶液(C)中の溶媒としては、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等のアルコールなどが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の中でも、加水分解反応及び縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、水、アルコールが好ましく、水がより好ましい。
It is preferable that the solution (C) contains a solvent, since this can reduce fluctuations in the composition of the reaction liquid.
Examples of the solvent in the solution (C) include water, methanol, ethanol, propanol, isopropanol, and alcohols such as ethylene glycol. These solvents may be used alone or in combination of two or more. Among these solvents, water and alcohols are preferred, and water is more preferred, because the solvents used in the hydrolysis reaction and the by-products are the same as those used in the condensation reaction, and are therefore convenient to manufacture.

溶液(C)中のアルカリ触媒の濃度は、溶液(C)100質量%中、2質量%~5質量%が好ましく、3質量%~4質量%がより好ましい。溶液(C)中のアルカリ触媒の濃度が上記下限値以上であると、シリカ粒子の凝集を抑制し、得られる分散液中のシリカ粒子の分散安定性に優れる。また、溶液(C)中のアルカリ触媒の濃度が上記上限値以下であると、反応が過度に速く進行せず、反応制御性に優れる。 The concentration of the alkali catalyst in solution (C) is preferably 2% by mass to 5% by mass, and more preferably 3% by mass to 4% by mass, based on 100% by mass of solution (C). When the concentration of the alkali catalyst in solution (C) is equal to or greater than the lower limit, aggregation of the silica particles is suppressed, and the dispersion stability of the silica particles in the resulting dispersion is excellent. When the concentration of the alkali catalyst in solution (C) is equal to or less than the upper limit, the reaction does not proceed excessively quickly, and reaction controllability is excellent.

溶液(C)中の水の濃度は、溶液(C)100質量%中、95質量%~98質量%が好ましく、96質量%~97質量%がより好ましい。溶液(C)中の水の濃度が上記下限値以上であると、加水分解反応で生成するケイ酸の反応液中での分散性に優れる。また、溶液(C)中の水の濃度が上記上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れる。 The concentration of water in solution (C) is preferably 95% by mass to 98% by mass, and more preferably 96% by mass to 97% by mass, based on 100% by mass of solution (C). When the concentration of water in solution (C) is equal to or greater than the lower limit, the dispersibility of the silicic acid produced by the hydrolysis reaction in the reaction liquid is excellent. When the concentration of water in solution (C) is equal to or less than the upper limit, the dispersibility of the tetraalkoxysilane in the reaction liquid is excellent.

溶液(A)への溶液(C)の添加速度は、2gアルカリ触媒/時/kg溶液~6gアルカリ触媒/時/kg溶液が好ましく、3gアルカリ触媒/時/kg溶液~5gアルカリ触媒/時/kg溶液がより好ましい。溶液(C)の添加速度が上記下限値以上であると、シリカ粒子の凝集を抑制し、得られる分散液中のシリカ粒子の分散安定性に優れる。また、溶液(C)の添加速度が上記上限値以下であると、反応が過度に速く進行せず、反応制御性に優れる。
ここで、「gアルカリ触媒/時/kg溶液」とは、溶液(A)1kgに対して、1時間当たりに添加する溶液(C)中のアルカリ触媒の質量(g)を表す。
The addition rate of solution (C) to solution (A) is preferably 2 g alkali catalyst/hour/kg solution to 6 g alkali catalyst/hour/kg solution, more preferably 3 g alkali catalyst/hour/kg solution to 5 g alkali catalyst/hour/kg solution. When the addition rate of solution (C) is equal to or higher than the lower limit, aggregation of silica particles is suppressed, and the dispersion stability of silica particles in the resulting dispersion is excellent. When the addition rate of solution (C) is equal to or lower than the upper limit, the reaction does not proceed too quickly, and the reaction controllability is excellent.
Here, "g alkaline catalyst/hour/kg solution" represents the mass (g) of alkaline catalyst in solution (C) added per hour per 1 kg of solution (A).

テトラアルコキシシランの加水分解反応及び縮合反応の反応温度(反応液の温度)は、20℃~50℃が好ましく、25℃~45℃がより好ましい。反応温度が上記下限値以上であると、反応が過度に遅く進行せず、制御性に優れる。また、反応温度が上記上限値以下であると、加水分解反応速度と縮合反応速度のバランスに優れる。
ここで反応系内の反応液とは、溶液(A)、溶液(B)及び溶液(C)の混合液に相当する。
The reaction temperature (temperature of the reaction solution) of the hydrolysis reaction and condensation reaction of the tetraalkoxysilane is preferably 20° C. to 50° C., more preferably 25° C. to 45° C. When the reaction temperature is equal to or higher than the lower limit, the reaction does not proceed too slowly, and controllability is excellent. On the other hand, when the reaction temperature is equal to or lower than the upper limit, a good balance between the hydrolysis reaction rate and the condensation reaction rate is obtained.
Here, the reaction liquid in the reaction system corresponds to a mixture of solution (A), solution (B) and solution (C).

加水分解反応及び縮合反応の反応系内の水の濃度は、反応系内の反応液100質量%中、3質量%~30質量%に維持することが好ましく、5質量%~25質量%に維持することがより好ましい。反応系内の水の濃度が上記下限値以上であると、中間生成物であるケイ酸の反応液中での分散性に優れる。また、反応系内の水の濃度が上記上限値以下であると、反応液中でのテトラアルコキシシランの分散性に優れる。
ここで反応系内の反応液とは、溶液(A)、溶液(B)及び溶液(C)の混合液に相当する。
The concentration of water in the reaction system of the hydrolysis reaction and the condensation reaction is preferably maintained at 3% by mass to 30% by mass, and more preferably at 5% by mass to 25% by mass, based on 100% by mass of the reaction liquid in the reaction system. When the concentration of water in the reaction system is equal to or higher than the lower limit, the dispersibility of the intermediate product, silicic acid, in the reaction liquid is excellent. When the concentration of water in the reaction system is equal to or lower than the upper limit, the dispersibility of the tetraalkoxysilane in the reaction liquid is excellent.
Here, the reaction liquid in the reaction system corresponds to a mixture of solution (A), solution (B) and solution (C).

加水分解反応及び縮合反応の反応系内のアルカリ触媒の濃度は、反応系内の反応液100質量%中、0.5質量%~2.0質量%に維持することが好ましく、0.6質量%~1.5質量%に維持することがより好ましい。反応系内のアルカリ触媒の濃度が上記下限値以上であると、シリカ粒子の凝集を抑制し、得られる分散液中のシリカ粒子の分散安定性に優れる。また、反応系内のアルカリ触媒の濃度が上記上限値以下であると、反応が過度に速く進行せず、反応制御性に優れる。 The concentration of the alkali catalyst in the reaction system for the hydrolysis reaction and condensation reaction is preferably maintained at 0.5% to 2.0% by mass, and more preferably at 0.6% to 1.5% by mass, based on 100% by mass of the reaction liquid in the reaction system. When the concentration of the alkali catalyst in the reaction system is equal to or greater than the lower limit, aggregation of the silica particles is suppressed, and the dispersion stability of the silica particles in the resulting dispersion liquid is excellent. Furthermore, when the concentration of the alkali catalyst in the reaction system is equal to or less than the upper limit, the reaction does not proceed excessively quickly, and reaction control is excellent.

(工程(1))
本発明のシリカ粒子の製造方法は、不必要な成分を除去し、必要な成分を添加することができることから、上記テトラアルコキシシランの加水分解反応及び縮合反応工程後に、更に、以下の工程(1)を含むことが好ましい。
工程(1):テトラアルコキシシランの加水分解反応及び縮合反応で得られたシリカ粒子の分散液を濃縮し、分散媒を添加する工程
(Step (1))
Since the method for producing silica particles of the present invention can remove unnecessary components and add necessary components, it is preferable that the method further includes the following step (1) after the above-mentioned tetraalkoxysilane hydrolysis reaction and condensation reaction steps.
Step (1): A step of concentrating a dispersion liquid of silica particles obtained by a hydrolysis reaction and a condensation reaction of tetraalkoxysilane, and adding a dispersion medium

工程(1)のシリカ粒子の分散液の濃縮と分散媒の添加とはいずれを先に行ってもよい。 In step (1), either the concentration of the silica particle dispersion or the addition of the dispersion medium can be carried out first.

シリカ粒子の分散液を濃縮する方法は特に限定されず、例えば、加熱濃縮法、膜濃縮法などが挙げられる。
加熱濃縮法によってシリカ粒子の分散液を濃縮するには、該分散液を常圧下、又は減圧下で加熱濃縮すればよい。
膜濃縮法によってシリカ粒子の分散液を濃縮するには、限外濾過法による膜分離が好ましい。ここで用いる限外濾過膜の分画分子量は、分散液中のシリカ粒子の粒径に合わせてシリカ粒子を濾過分離して濃縮できるものを選択する。
限外濾過膜の材質としては、ポリスルホン、ポリアクリルニトリル、焼結金属、セラミック、カーボンなどが挙げられる。限外濾過膜の形態としては、スパイラル型、チューブラー型、中空糸型等が挙げられる。
The method for concentrating the dispersion of silica particles is not particularly limited, and examples thereof include a heat concentration method and a membrane concentration method.
In order to concentrate the dispersion of silica particles by the heat concentration method, the dispersion may be heated and concentrated under normal pressure or reduced pressure.
To concentrate a dispersion of silica particles by the membrane concentration method, membrane separation by ultrafiltration is preferred. The molecular cutoff of the ultrafiltration membrane used here is selected according to the particle size of the silica particles in the dispersion so that the silica particles can be filtered and separated to be concentrated.
Examples of the material of the ultrafiltration membrane include polysulfone, polyacrylonitrile, sintered metal, ceramic, carbon, etc. Examples of the form of the ultrafiltration membrane include a spiral type, a tubular type, a hollow fiber type, etc.

また、シリカ粒子の分散液に添加する分散媒としては、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等のアルコールなどが挙げられる。これらの分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの分散媒の中でも、シリカ粒子との親和性に優れることから、水、アルコールが好ましく、水がより好ましい。 Examples of the dispersion medium to be added to the dispersion liquid of silica particles include water, and alcohols such as methanol, ethanol, propanol, isopropanol, and ethylene glycol. These dispersion media may be used alone or in combination of two or more. Among these dispersion media, water and alcohol are preferred, and water is more preferred, because they have excellent affinity with silica particles.

(工程(2))
本発明のシリカ粒子の製造方法は、シリカ粒子の縮合度を高めることができることから、更に、以下の工程(2)を含むことが好ましい。
工程(2):工程(1)で得られたシリカ粒子の分散液を加圧加熱処理する工程
(Step (2))
The method for producing silica particles of the present invention preferably further includes the following step (2) since the condensation degree of the silica particles can be increased.
Step (2): A step of subjecting the dispersion of silica particles obtained in step (1) to a pressurized and heated treatment.

工程(2)における加圧加熱処理の圧力は、0.10MPa~2.3MPaが好ましく、0.14MPa~1.0MPaがより好ましい。加圧加熱処理の圧力が0.10MPa以上であると、シリカ粒子の縮合度を高めることができる。また、加圧加熱処理の圧力が2.3MPa以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子を製造することができ、シリカゾルの分散安定性に優れる。 The pressure of the pressurized heat treatment in step (2) is preferably 0.10 MPa to 2.3 MPa, and more preferably 0.14 MPa to 1.0 MPa. When the pressure of the pressurized heat treatment is 0.10 MPa or more, the degree of condensation of the silica particles can be increased. Furthermore, when the pressure of the pressurized heat treatment is 2.3 MPa or less, silica particles can be produced without significant changes in the average primary particle size, average secondary particle size, cv value, and association ratio, and the dispersion stability of the silica sol is excellent.

加圧は、密閉した状態でシリカ粒子の分散液を分散媒の沸点以上に加熱すればよい。密閉した状態でシリカ粒子の水分散液を100℃以上に加熱した場合、圧力は、その温度の飽和水蒸気圧となる。 Pressurization can be achieved by heating the silica particle dispersion in a sealed state to above the boiling point of the dispersion medium. When the silica particle aqueous dispersion is heated to above 100°C in a sealed state, the pressure becomes the saturated water vapor pressure at that temperature.

加圧加熱処理の温度は、100℃~220℃が好ましく、110℃~180℃がより好ましい。加圧加熱処理の温度が100℃以上であると、シリカ粒子の縮合度を高めることができる。加圧加熱処理の温度が220℃以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子を製造することができ、シリカゾルの分散安定性に優れる。 The temperature of the pressure and heat treatment is preferably 100°C to 220°C, and more preferably 110°C to 180°C. If the temperature of the pressure and heat treatment is 100°C or higher, the degree of condensation of the silica particles can be increased. If the temperature of the pressure and heat treatment is 220°C or lower, silica particles can be produced without significant changes to the average primary particle size, average secondary particle size, cv value, and association ratio, and the dispersion stability of the silica sol is excellent.

加圧加熱処理の時間は、0.25時間~10時間が好ましく、0.5時間~8時間がより好ましい。加圧加熱処理の時間が0.25時間以上であると、シリカ粒子の縮合度を高めることができる。加圧加熱処理の時間が10時間以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子を製造することができ、シリカゾルの分散安定性に優れる。 The time for the pressurized heat treatment is preferably 0.25 to 10 hours, and more preferably 0.5 to 8 hours. If the time for the pressurized heat treatment is 0.25 hours or more, the degree of condensation of the silica particles can be increased. If the time for the pressurized heat treatment is 10 hours or less, silica particles can be produced without significant changes in the average primary particle size, average secondary particle size, cv value, and association ratio, and the dispersion stability of the silica sol is excellent.

加圧加熱処理は、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子の縮合度を高めることができることから、水分散液中で行うことがより好ましい。 The pressurized heat treatment is preferably carried out in an aqueous dispersion, since it can increase the degree of condensation of silica particles without significantly changing the average primary particle size, average secondary particle size, cv value, or association ratio.

加圧加熱処理を水分散液中で行う際のpHは、6.0~8.0が好ましく、6.5~7.8がより好ましい。加圧加熱処理を水分散液中で行う際のpHが6.0以上であると、シリカゾルのゲル化を抑制することができる。また、加圧加熱処理を水分散液中で行う際のpHが8.0以下であると、平均1次粒子径、平均2次粒子径、cv値、会合比を大きく変化させることなくシリカ粒子の縮合度を高めることができる。 The pH when the pressure and heat treatment is performed in the aqueous dispersion is preferably 6.0 to 8.0, and more preferably 6.5 to 7.8. When the pressure and heat treatment is performed in the aqueous dispersion at a pH of 6.0 or higher, gelation of the silica sol can be suppressed. Furthermore, when the pressure and heat treatment is performed in the aqueous dispersion at a pH of 8.0 or lower, the degree of condensation of the silica particles can be increased without significantly changing the average primary particle size, average secondary particle size, cv value, or association ratio.

(シリカ粒子の物性)
本発明のシリカ粒子の製造方法により製造されるシリカ粒子(以下、「本発明のシリカ粒子」と称す場合がある。)の平均1次粒子径は、5nm~100nmが好ましく、10nm~60nmがより好ましい。シリカ粒子の平均1次粒子径が5nm以上であると、シリカゾルの保存安定性に優れる。また、シリカ粒子の平均1次粒子径が100nm以下であると、シリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の沈降を抑制することができる。
(Physical properties of silica particles)
The average primary particle diameter of the silica particles produced by the method for producing silica particles of the present invention (hereinafter, sometimes referred to as "silica particles of the present invention") is preferably 5 nm to 100 nm, more preferably 10 nm to 60 nm. When the average primary particle diameter of the silica particles is 5 nm or more, the storage stability of the silica sol is excellent. Furthermore, when the average primary particle diameter of the silica particles is 100 nm or less, the surface roughness and scratches of the polished object, typified by a silicon wafer, can be reduced, and sedimentation of the silica particles can be suppressed.

シリカ粒子の平均1次粒子径は、BET法により測定する。具体的には、比表面積自動測定装置を用いてシリカ粒子の比表面積を測定し、下記式(1)を用いて平均1次粒子径を算出する。
平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm))
・・・ (1)
The average primary particle diameter of the silica particles is measured by the BET method. Specifically, the specific surface area of the silica particles is measured using an automatic specific surface area measuring device, and the average primary particle diameter is calculated using the following formula (1).
Average primary particle size (nm) = 6000/(specific surface area ( m2 /g) x density (g/ cm3 ))
... (1)

シリカ粒子の平均1次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average primary particle size of the silica particles can be set within the desired range using known conditions and methods.

本発明のシリカ粒子の平均2次粒子径は、10nm~200nmが好ましく、20nm~100nmがより好ましい。シリカ粒子の平均2次粒子径が10nm以上であると、研磨後の洗浄における粒子等の除去性に優れ、シリカゾルの保存安定性に優れる。シリカ粒子の平均2次粒子径が200nm以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れ、シリカ粒子の沈降を抑制することができる。 The average secondary particle diameter of the silica particles of the present invention is preferably 10 nm to 200 nm, and more preferably 20 nm to 100 nm. When the average secondary particle diameter of the silica particles is 10 nm or more, the removability of particles and the like during cleaning after polishing is excellent, and the storage stability of the silica sol is excellent. When the average secondary particle diameter of the silica particles is 200 nm or less, the surface roughness and scratches on the polished object, such as a silicon wafer, can be reduced during polishing, particles and the like can be removed easily during cleaning after polishing, and sedimentation of the silica particles can be suppressed.

シリカ粒子の平均2次粒子径は、DLS法(動的光散乱法)により測定する。具体的には、動的光散乱粒子径測定装置を用いて測定する。 The average secondary particle size of silica particles is measured by the DLS method (dynamic light scattering method). Specifically, it is measured using a dynamic light scattering particle size measuring device.

シリカ粒子の平均2次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average secondary particle size of the silica particles can be set within the desired range using known conditions and methods.

本発明のシリカ粒子のcv値は、10~50が好ましく、15~40がより好ましく、20~35が更に好ましい。シリカ粒子のcv値が下限値以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、生産性に優れる。また、シリカ粒子のcv値が上記上限値以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れる。 The cv value of the silica particles of the present invention is preferably 10 to 50, more preferably 15 to 40, and even more preferably 20 to 35. When the cv value of the silica particles is equal to or greater than the lower limit, the polishing rate for a workpiece such as a silicon wafer is excellent, and the productivity is excellent. When the cv value of the silica particles is equal to or less than the upper limit, the surface roughness and scratches on a workpiece such as a silicon wafer during polishing can be reduced, and the removal of particles and the like during cleaning after polishing is excellent.

シリカ粒子のcv値は、動的光散乱粒子径測定装置を用いてシリカ粒子の平均2次粒子径を測定し、下記式(2)を用いて算出する。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
The cv value of the silica particles is calculated using the following formula (2) by measuring the average secondary particle diameter of the silica particles using a dynamic light scattering particle diameter measuring device.
cv value=(standard deviation (nm)/average secondary particle diameter (nm))×100 (2)

本発明のシリカ粒子の会合比は、1.0~4.0が好ましく、1.1~3.0がより好ましい。シリカ粒子の会合比が下限値以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、生産性に優れる。また、シリカ粒子の会合比が上記上限値以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の凝集を抑制することができる。 The association ratio of the silica particles of the present invention is preferably 1.0 to 4.0, and more preferably 1.1 to 3.0. When the association ratio of the silica particles is equal to or greater than the lower limit, the polishing rate for a workpiece such as a silicon wafer is excellent, and productivity is excellent. Furthermore, when the association ratio of the silica particles is equal to or less than the upper limit, the surface roughness and scratches on a workpiece such as a silicon wafer during polishing can be reduced, and the aggregation of the silica particles can be suppressed.

シリカ粒子の会合比は、前述の測定方法にて測定した平均1次粒子径と前述の測定方法にて測定した平均2次粒子径とから、下記式(3)を用いて算出される。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
The association ratio of the silica particles is calculated from the average primary particle diameter measured by the above-mentioned measuring method and the average secondary particle diameter measured by the above-mentioned measuring method, using the following formula (3).
Association ratio = average secondary particle size / average primary particle size (3)

本発明のシリカ粒子の表面シラノール基密度は、0.1個/nm~10個/nmが好ましく、0.5個/nm~7.5個/nmがより好ましく、2.0個/nm~7.0個/nmが更に好ましい。シリカ粒子の表面シラノール基密度が0.1個/nm以上であると、シリカ粒子が適度な表面反発を有し、シリカゾルの分散安定性に優れる。また、シリカ粒子の表面シラノール基密度が10個/nm以下であると、シリカ粒子が適度な表面反発を有し、シリカ粒子の凝集を抑制することができる。 The surface silanol group density of the silica particles of the present invention is preferably 0.1/nm 2 to 10/nm 2 , more preferably 0.5/nm 2 to 7.5/nm 2 , and even more preferably 2.0/nm 2 to 7.0/nm 2. When the surface silanol group density of the silica particles is 0.1/nm 2 or more, the silica particles have a suitable surface repulsion, and the dispersion stability of the silica sol is excellent. In addition, when the surface silanol group density of the silica particles is 10/nm 2 or less, the silica particles have a suitable surface repulsion, and the aggregation of the silica particles can be suppressed.

シリカ粒子の表面シラノール基密度は、シアーズ法により測定する。具体的には、下記に示す条件で測定、算出する。 The surface silanol group density of silica particles is measured by the Sears method. Specifically, it is measured and calculated under the conditions shown below.

シリカ粒子1.5gに相当するシリカゾルを採取し、純水を加えて液量を90mLにする。25℃の環境下、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加え、塩化ナトリウム30gを加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させ、最終的に試験液の総量が150mLになるまで純水を加え、試験液を得る。
得られた試験液を自動滴定装置に入れ、0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定する。
下記式(4)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(5)を用いて、シリカ粒子の表面シラノール基密度ρ(個/nm)を算出する。
V=(A×f×100×1.5)/(W×C) ・・・ (4)
A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
C:シリカゾル中のシリカ粒子の濃度(質量%)
W:シリカゾルの採取量(g)
ρ=(B×N)/(1018×M×SBET) ・・・ (5)
B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
:アボガドロ数(個/mol)
M:シリカ粒子量(1.5g)
BET:平均1次粒子径の算出の際に測定したシリカ粒子の比表面積(m/g)
A silica sol equivalent to 1.5 g of silica particles is collected, and pure water is added to make the liquid volume 90 mL. In an environment of 25° C., a 0.1 mol/L hydrochloric acid aqueous solution is added until the pH becomes 3.6, 30 g of sodium chloride is added, and pure water is gradually added to completely dissolve the sodium chloride. Finally, pure water is added until the total volume of the test liquid becomes 150 mL to obtain a test liquid.
The obtained test solution is placed in an automatic titrator, and a 0.1 mol/L aqueous solution of sodium hydroxide is added dropwise to measure the titration amount A (mL) of the 0.1 mol/L aqueous solution of sodium hydroxide required to change the pH from 4.0 to 9.0.
The amount V (mL) of 0.1 mol/L aqueous sodium hydroxide solution required to change the pH from 4.0 to 9.0 per 1.5 g of silica particles is calculated using the following formula (4), and the surface silanol group density ρ (number/ nm2 ) of the silica particles is calculated using the following formula (5).
V = (A x f x 100 x 1.5) / (W x C) ... (4)
A: Titration amount (mL) of 0.1 mol/L sodium hydroxide aqueous solution required to change the pH from 4.0 to 9.0 per 1.5 g of silica particles
f: Titer of 0.1 mol/L aqueous sodium hydroxide solution used C: Concentration (mass%) of silica particles in silica sol
W: Amount of silica sol collected (g)
ρ=(B×N A )/(10 18 ×M×S BET ) . . . (5)
B: The amount (mol) of sodium hydroxide required to change the pH of 1.5 g of silica particles from 4.0 to 9.0 calculated from V
N A : Avogadro's number (pieces/mol)
M: Amount of silica particles (1.5 g)
S BET : specific surface area (m 2 /g) of silica particles measured when calculating the average primary particle size

尚、前記シリカ粒子の表面シラノール基密度の測定、算出方法は、「G.W.Sears,Jr.,Analytical Chemistry,Vol.28,No.12,pp.1981-1983(1956).」、「羽場真一, 半導体集積回路プロセス用研磨剤の開発,高知工科大学博士論文,pp.39-45,2004年3月」、「特許第5967118号公報」、「特許第6047395号公報」を参考にした。 The method for measuring and calculating the surface silanol group density of the silica particles was based on "G.W. Sears, Jr., Analytical Chemistry, Vol. 28, No. 12, pp. 1981-1983 (1956)," "Shinichi Haba, Development of Abrasives for Semiconductor Integrated Circuit Processing, Doctoral Dissertation, Kochi University of Technology, pp. 39-45, March 2004," "Patent Publication No. 5967118," and "Patent Publication No. 6047395."

シリカ粒子の表面シラノール基密度は、アルコキシシランの加水分解反応及び縮合反応の条件を調整することで、所望の範囲に設定することができる。 The surface silanol group density of silica particles can be set within the desired range by adjusting the conditions of the hydrolysis reaction and condensation reaction of alkoxysilane.

本発明のシリカ粒子の金属不純物含有率は、5ppm以下が好ましく、2ppm以下がより好ましい。 The metal impurity content of the silica particles of the present invention is preferably 5 ppm or less, and more preferably 2 ppm or less.

半導体デバイスのシリコンウェハの研磨において、金属不純物が被研磨体の表面に付着、汚染することで、ウェハ特性に悪影響を及ぼすと共に、ウェハ内部に拡散して品質が劣化するため、このようなウェハによって製造された半導体デバイスの性能が著しく低下する。
また、シリカ粒子に金属不純物が存在すると、酸性を示す表面シラノール基と金属不純物とが配位的な相互作用が発生し、表面シラノール基の化学的性質(酸性度等)を変化させたり、シリカ粒子表面の立体的な環境(シリカ粒子の凝集のしやすさ等)を変化させたり、研磨レートに影響を及ぼす。
When polishing silicon wafers for semiconductor devices, metallic impurities adhere to and contaminate the surface of the workpiece to be polished, adversely affecting the characteristics of the wafer and diffusing into the interior of the wafer, degrading its quality, resulting in a significant decrease in the performance of semiconductor devices manufactured from such wafers.
Furthermore, when metal impurities are present on silica particles, coordination interactions occur between the acidic surface silanol groups and the metal impurities, changing the chemical properties (acidity, etc.) of the surface silanol groups and the three-dimensional environment of the silica particle surfaces (e.g. ease of aggregation of silica particles), thereby affecting the polishing rate.

シリカ粒子の金属不純物含有率は、高周波誘導結合プラズマ質量分析法(ICP-MS)により測定する。具体的には、シリカ粒子0.4g含むシリカゾルを正確に量り取り、硫酸とフッ酸を加え、加温、溶解、蒸発させ、残存した硫酸滴に総量が正確に10gとなるよう純水を加えて試験液を作成し、高周波誘導結合プラズマ質量分析装置を用いて測定する。対象の金属は、ナトリウム、カリウム、鉄、アルミニウム、カルシウム、マグネシウム、亜鉛、コバルト、クロム、銅、マンガン、鉛、チタン、銀、ニッケルとし、これらの金属の含有率の合計を金属不純物含有率とする。 The metal impurity content of silica particles is measured by inductively coupled plasma mass spectrometry (ICP-MS). Specifically, a silica sol containing 0.4 g of silica particles is accurately weighed, sulfuric acid and hydrofluoric acid are added, and the mixture is heated, dissolved, and evaporated. Pure water is added to the remaining sulfuric acid droplets so that the total amount is exactly 10 g to create a test solution, which is then measured using an inductively coupled plasma mass spectrometer. The target metals are sodium, potassium, iron, aluminum, calcium, magnesium, zinc, cobalt, chromium, copper, manganese, lead, titanium, silver, and nickel, and the sum of the contents of these metals is the metal impurity content.

シリカ粒子の金属不純物含有率は、アルコキシシランを主原料として加水分解反応及び縮合反応を行ってシリカ粒子を得ることで、5ppm以下とすることができる。
水ガラス等の珪酸アルカリの脱イオンによる方法では、原料由来のナトリウム等が残存するため、シリカ粒子の金属不純物含有率を5ppm以下とすることが極めて困難である。
The metal impurity content of the silica particles can be reduced to 5 ppm or less by obtaining the silica particles through hydrolysis and condensation reactions using alkoxysilane as a main raw material.
In the method of deionizing alkali silicate such as water glass, sodium and the like derived from the raw material remain, so it is extremely difficult to reduce the metal impurity content of the silica particles to 5 ppm or less.

シリカ粒子の形状としては、例えば、球状、鎖状、繭状(こぶ状や落花生状とも称される)、異形状(例えば、疣状、屈曲状、分岐状等)等が挙げられる。これらのシリカ粒子の形状の中でも、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減させたい場合は、球状が好ましく、シリコンウェハに代表される被研磨体に対する研磨レートをより高めたい場合は、異形状が好ましい。 Examples of the shape of silica particles include spherical, chain-like, cocoon-like (also called lump-like or peanut-like), and irregular shapes (e.g. wart-like, bent, branched, etc.). Among these silica particle shapes, spherical shapes are preferred when it is desired to reduce the surface roughness and scratches on the polished object, such as a silicon wafer, during polishing, and irregular shapes are preferred when it is desired to increase the polishing rate for the polished object, such as a silicon wafer.

本発明のシリカ粒子は、機械的強度、保存安定性に優れることから、細孔を有しないことが好ましい。
シリカ粒子の細孔の有無は、窒素を吸着ガスとした吸着等温線を用いたBET多点法解析により確認する。
The silica particles of the present invention preferably have no pores, since they have excellent mechanical strength and storage stability.
The presence or absence of pores in the silica particles is confirmed by a multipoint BET analysis using an adsorption isotherm with nitrogen as the adsorption gas.

(シリカゾルの製造方法)
本発明のシリカゾルの製造方法は、本発明のシリカ粒子の製造方法を含む。
(Method for producing silica sol)
The method for producing a silica sol of the present invention includes the method for producing silica particles of the present invention.

シリカゾルは、本発明のシリカ粒子の製造方法で得られたシリカ粒子の分散液をそのまま用いてもよく、得られたシリカ粒子の分散液中の成分のうち、不必要な成分の除去や必要な成分の添加をして製造してもよい。 Silica sol may be produced by using the dispersion of silica particles obtained by the method for producing silica particles of the present invention as is, or by removing unnecessary components from the dispersion of silica particles obtained and adding necessary components.

シリカゾルは、シリカ粒子及び分散媒を含むことが好ましい。
シリカゾル中の分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等のアルコールなどが挙げられる。これらのシリカゾル中の分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのシリカゾル中の分散媒の中でも、シリカ粒子との親和性に優れることから、水、アルコールが好ましく、水がより好ましい。
The silica sol preferably contains silica particles and a dispersion medium.
The dispersion medium in silica sol can be, for example, water, methanol, ethanol, propanol, isopropanol, ethylene glycol, and other alcohols.These dispersion mediums in silica sol can be used alone or in combination of two or more.Among these dispersion mediums in silica sol, water and alcohol are preferred, and water is more preferred, because they have excellent affinity with silica particles.

シリカゾル中のシリカ粒子の含有率は、シリカゾル全量100質量%中、3質量%~50質量%が好ましく、4質量%~40質量%がより好ましく、5質量%~30質量%が更に好ましい。シリカゾル中のシリカ粒子の含有率が3質量%以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。また、シリカゾル中のシリカ粒子の含有率が50質量%以下であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。 The content of silica particles in the silica sol is preferably 3% to 50% by mass, more preferably 4% to 40% by mass, and even more preferably 5% to 30% by mass, based on the total amount of the silica sol (100% by mass). When the content of silica particles in the silica sol is 3% by mass or more, the polishing rate for a workpiece such as a silicon wafer is excellent. Furthermore, when the content of silica particles in the silica sol is 50% by mass or less, the aggregation of silica particles in the silica sol or polishing composition can be suppressed, and the storage stability of the silica sol or polishing composition is excellent.

シリカゾル中の分散媒の含有率は、シリカゾル全量100質量%中、50質量%~97質量%が好ましく、60質量%~96質量%がより好ましく、70質量%~95質量%が更に好ましい。シリカゾル中の分散媒の含有率が50質量%以上であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。また、シリカゾル中の分散媒の含有率が97質量%以下であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The content of the dispersion medium in the silica sol is preferably 50% to 97% by mass, more preferably 60% to 96% by mass, and even more preferably 70% to 95% by mass, out of a total amount of 100% by mass of the silica sol. When the content of the dispersion medium in the silica sol is 50% by mass or more, aggregation of silica particles in the silica sol or polishing composition can be suppressed, and the storage stability of the silica sol or polishing composition is excellent. Furthermore, when the content of the dispersion medium in the silica sol is 97% by mass or less, the polishing rate for the object to be polished, such as a silicon wafer, is excellent.

シリカゾル中のシリカ粒子や分散媒の含有率は、得られたシリカ粒子の分散液中の成分のうち、不必要な成分を除去し、必要な成分を添加することで、所望の範囲に設定することができる。 The content of silica particles and dispersion medium in the silica sol can be set to the desired range by removing unnecessary components from the resulting dispersion of silica particles and adding necessary components.

シリカゾルは、シリカ粒子及び分散媒以外に、その性能を損なわない範囲において、必要に応じて、酸化剤、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌殺生物剤等の他の成分を含んでもよい。
特に、シリカゾルの保存安定性に優れることから、シリカゾル中に抗菌殺生物剤を含ませることが好ましい。
In addition to the silica particles and the dispersion medium, the silica sol may contain other components, such as an oxidizing agent, a preservative, an antifungal agent, a pH adjuster, a pH buffer, a surfactant, a chelating agent, and an antibacterial and biocide, as necessary, within the range that does not impair the performance of the silica sol.
In particular, it is preferable to include an antibacterial biocide in the silica sol, since this provides excellent storage stability of the silica sol.

抗菌殺生物剤としては、例えば、過酸化水素、アンモニア、第四級アンモニウム水酸化物、第四級アンモニウム塩、エチレンジアミン、グルタルアルデヒド、p-ヒドロキシ安息香酸メチル、亜塩素酸ナトリウム等が挙げられる。これらの抗菌殺生物剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの抗菌殺生物剤の中でも、シリカゾルとの親和性に優れることから、過酸化水素が好ましい。
抗菌殺生物剤は、一般に殺菌剤と言われるものも含む。
Examples of antibacterial biocides include hydrogen peroxide, ammonia, quaternary ammonium hydroxide, quaternary ammonium salt, ethylenediamine, glutaraldehyde, methyl p-hydroxybenzoate, sodium chlorite, etc. These antibacterial biocides may be used alone or in combination of two or more. Among these antibacterial biocides, hydrogen peroxide is preferred because of its excellent affinity with silica sol.
Antimicrobial biocides also include those commonly referred to as germicides.

シリカゾル中の抗菌殺生物剤の含有率は、シリカゾル全量100質量%中、0.0001質量%~10質量%が好ましく、0.001質量%~1質量%がより好ましい。シリカゾル中の抗菌殺生物剤の含有率が0.0001質量%以上であると、シリカゾルの保存安定性に優れる。シリカゾル中の抗菌殺生物剤の含有率が10質量%以下であると、シリカゾルの本来の性能を損なわない。 The content of the antibacterial biocide in the silica sol is preferably 0.0001% to 10% by mass, and more preferably 0.001% to 1% by mass, based on 100% by mass of the total amount of the silica sol. When the content of the antibacterial biocide in the silica sol is 0.0001% by mass or more, the storage stability of the silica sol is excellent. When the content of the antibacterial biocide in the silica sol is 10% by mass or less, the original performance of the silica sol is not impaired.

シリカゾルのpHは、6.0~8.0が好ましく、6.5~7.8がより好ましい。シリカゾルのpHが6.0以上であると、分散安定性に優れ、シリカ粒子の凝集を抑制することができる。また、シリカゾルのpHが8.0以下であると、シリカ粒子の溶解を防ぎ、長期間の保存安定性に優れる。
シリカゾルのpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the silica sol is preferably 6.0 to 8.0, more preferably 6.5 to 7.8. When the pH of the silica sol is 6.0 or more, the dispersion stability is excellent and the aggregation of the silica particles can be suppressed. When the pH of the silica sol is 8.0 or less, dissolution of the silica particles is prevented and the long-term storage stability is excellent.
The pH of the silica sol can be adjusted to a desired range by adding a pH adjuster.

(研磨組成物)
本発明のシリカ粒子の製造方法で得られたシリカ粒子は、研磨組成物として好適に用いることができる。
研磨組成物は、前述したシリカゾル及び水溶性高分子を含むことが好ましい。
(Polishing composition)
The silica particles obtained by the method for producing silica particles of the present invention can be suitably used as a polishing composition.
The polishing composition preferably contains the above-mentioned silica sol and a water-soluble polymer.

水溶性高分子は、シリコンウェハに代表される被研磨体に対する研磨組成物の濡れ性を高める。水溶性高分子は、水親和性の高い官能基を保有する高分子であることが好ましく、この水親和性の高い官能基とシリカ粒子の表面シラノール基との親和性が高く、研磨組成物中でより近傍にシリカ粒子と水溶性高分子とが安定して分散する。そのため、シリコンウェハに代表される被研磨体への研磨の際、シリカ粒子と水溶性高分子との効果が相乗的に機能する。 The water-soluble polymer increases the wettability of the polishing composition to the object to be polished, such as a silicon wafer. The water-soluble polymer is preferably a polymer having a functional group with high water affinity, and this functional group with high water affinity has a high affinity with the surface silanol groups of the silica particles, so that the silica particles and the water-soluble polymer are stably dispersed in close proximity in the polishing composition. Therefore, when polishing an object to be polished, such as a silicon wafer, the effects of the silica particles and the water-soluble polymer function synergistically.

水溶性高分子としては、例えば、セルロース誘導体、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルピロリドン骨格を有する共重合体、ポリオキシアルキレン構造を有する重合体等が挙げられる。 Examples of water-soluble polymers include cellulose derivatives, polyvinyl alcohol, polyvinylpyrrolidone, copolymers having a polyvinylpyrrolidone skeleton, and polymers having a polyoxyalkylene structure.

セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、加水分解処理を施したヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。
ポリビニルピロリドン骨格を有する共重合体としては、例えば、ポリビニルアルコールとポリビニルピロリドンとのグラフト共重合体等が挙げられる。
ポリオキシアルキレン構造を有する重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、エチレンオキサイドとプロピレンオキサイドとの共重合体等が挙げられる。
Examples of cellulose derivatives include hydroxyethyl cellulose, hydrolyzed hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, and carboxymethyl cellulose.
An example of the copolymer having a polyvinylpyrrolidone skeleton is a graft copolymer of polyvinyl alcohol and polyvinylpyrrolidone.
Examples of polymers having a polyoxyalkylene structure include polyoxyethylene, polyoxypropylene, and copolymers of ethylene oxide and propylene oxide.

これらの水溶性高分子は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの水溶性高分子の中でも、シリカ粒子の表面シラノール基との親和性が高く、相乗的に作用して被研磨体の表面に良好な親水性を与えることから、セルロース誘導体が好ましく、ヒドロキシエチルセルロースがより好ましい。 These water-soluble polymers may be used alone or in combination of two or more. Among these water-soluble polymers, cellulose derivatives are preferred, and hydroxyethyl cellulose is more preferred, because they have a high affinity with the surface silanol groups of the silica particles and act synergistically to impart good hydrophilicity to the surface of the object to be polished.

水溶性高分子の質量平均分子量は、1,000~3,000,000が好ましく、5,000~2,000,000がより好ましく、10,000~1,000,000が更に好ましい。水溶性高分子の質量平均分子量が1,000以上であると、研磨組成物の親水性が向上する。また、水溶性高分子の質量平均分子量が3,000,000以下であると、シリカゾルとの親和性に優れ、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The mass average molecular weight of the water-soluble polymer is preferably 1,000 to 3,000,000, more preferably 5,000 to 2,000,000, and even more preferably 10,000 to 1,000,000. When the mass average molecular weight of the water-soluble polymer is 1,000 or more, the hydrophilicity of the polishing composition is improved. Furthermore, when the mass average molecular weight of the water-soluble polymer is 3,000,000 or less, the affinity with silica sol is excellent, and the polishing rate for the object to be polished, such as a silicon wafer, is excellent.

水溶性高分子の質量平均分子量は、ポリエチレンオキサイド換算で、0.1mol/LのNaCl溶液を移動相とする条件で、サイズ排除クロマトグラフィーにより測定する。 The mass average molecular weight of the water-soluble polymer is measured by size exclusion chromatography using a 0.1 mol/L NaCl solution as the mobile phase, in terms of polyethylene oxide.

研磨組成物中の水溶性高分子の含有率は、研磨組成物全量100質量%中、0.02質量%~10質量%が好ましく、0.05質量%~5質量%がより好ましい。研磨組成物中の水溶性高分子の含有率が0.02質量%以上であると、研磨組成物の親水性が向上する。また、研磨組成物中の水溶性高分子の含有率が10質量%以下であると、研磨組成物調製時のシリカ粒子の凝集を抑制することができる。 The content of the water-soluble polymer in the polishing composition is preferably 0.02% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass, based on 100% by mass of the total amount of the polishing composition. When the content of the water-soluble polymer in the polishing composition is 0.02% by mass or more, the hydrophilicity of the polishing composition is improved. Furthermore, when the content of the water-soluble polymer in the polishing composition is 10% by mass or less, aggregation of silica particles during preparation of the polishing composition can be suppressed.

研磨組成物は、シリカゾル及び水溶性高分子以外に、その性能を損なわない範囲において、必要に応じて、塩基性化合物、研磨促進剤、界面活性剤、親水性化合物、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌殺生物剤等の他の成分を含んでもよい。
特に、シリコンウェハに代表される被研磨体の表面に化学的な作用を与えて化学的研磨(ケミカルエッチング)ができ、シリカ粒子の表面シラノール基との相乗効果により、シリコンウェハに代表される被研磨体の研磨速度を向上させることができることから、研磨組成物中に塩基性化合物を含ませることが好ましい。
In addition to the silica sol and the water-soluble polymer, the polishing composition may contain other components, such as a basic compound, a polishing accelerator, a surfactant, a hydrophilic compound, a preservative, an antifungal agent, a pH adjuster, a pH buffer, a surfactant, a chelating agent, and an antibacterial and biocide, as necessary, within the range that does not impair the performance of the polishing composition.
In particular, it is preferable to include a basic compound in the polishing composition, since it is possible to perform chemical polishing (chemical etching) by applying a chemical action to the surface of an object to be polished, such as a silicon wafer, and because a synergistic effect with the surface silanol groups of the silica particles can be achieved, the polishing rate of an object to be polished, such as a silicon wafer, can be improved.

塩基性化合物としては、例えば、有機塩基性化合物、アルカリ金属水酸化物、アルカリ金属炭酸水素塩、アルカリ金属炭酸塩、アンモニア等が挙げられる。これらの塩基性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの塩基性化合物の中でも、水溶性が高く、シリカ粒子や水溶性高分子との親和性に優れることから、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウムが好ましく、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムがより好ましく、アンモニアが更に好ましい。 Examples of basic compounds include organic basic compounds, alkali metal hydroxides, alkali metal hydrogen carbonates, alkali metal carbonates, and ammonia. These basic compounds may be used alone or in combination of two or more. Among these basic compounds, ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogen carbonate, and ammonium carbonate are preferred because they are highly water-soluble and have excellent affinity with silica particles and water-soluble polymers, with ammonia, tetramethylammonium hydroxide, and tetraethylammonium hydroxide being more preferred, and ammonia being even more preferred.

研磨組成物中の塩基性化合物の含有率は、研磨組成物全量100質量%中、0.001質量%~5質量%が好ましく、0.01質量%~3質量%がより好ましい。研磨組成物中の塩基性化合物の含有率が0.001質量%以上であると、シリコンウェハに代表される被研磨体の研磨速度を向上させることができる。また、研磨組成物中の塩基性化合物の含有率が5質量%以下であると、研磨組成物の安定性に優れる。 The content of the basic compound in the polishing composition is preferably 0.001% by mass to 5% by mass, and more preferably 0.01% by mass to 3% by mass, based on 100% by mass of the total amount of the polishing composition. If the content of the basic compound in the polishing composition is 0.001% by mass or more, the polishing speed of the object to be polished, such as a silicon wafer, can be improved. Furthermore, if the content of the basic compound in the polishing composition is 5% by mass or less, the stability of the polishing composition is excellent.

研磨組成物のpHは、8.0~12.0が好ましく、9.0~11.0がより好ましい。研磨組成物のpHが8.0以上であると、研磨組成物中のシリカ粒子の凝集を抑制することができ、研磨組成物の分散安定性に優れる。また、研磨組成物のpHが12.0以下であると、シリカ粒子の溶解を抑制することができ、研磨組成物の安定性に優れる。
研磨組成物のpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the polishing composition is preferably 8.0 to 12.0, more preferably 9.0 to 11.0. When the pH of the polishing composition is 8.0 or more, the aggregation of silica particles in the polishing composition can be suppressed, and the dispersion stability of the polishing composition is excellent. When the pH of the polishing composition is 12.0 or less, the dissolution of silica particles can be suppressed, and the stability of the polishing composition is excellent.
The pH of the polishing composition can be adjusted to a desired range by adding a pH adjuster.

研磨組成物は、本発明のシリカゾルの製造方法で得られたシリカゾル、水溶性高分子、及び、必要に応じて、他の成分を混合することで得られるが、保管、運搬を考慮し、一旦高濃度で調製し、研磨直前に水等で希釈してもよい。 The polishing composition can be obtained by mixing the silica sol obtained by the silica sol manufacturing method of the present invention, the water-soluble polymer, and, if necessary, other components. However, taking into consideration storage and transportation, it may be prepared at a high concentration first and then diluted with water or the like immediately before polishing.

(研磨方法)
本発明の研磨方法は、本発明のシリカゾルの製造方法で得られたシリカゾルを含む研磨組成物を用いて研磨する方法である。
研磨組成物は、前述した研磨組成物を用いることが好ましい。
具体的な研磨の方法としては、例えば、シリコンウェハの表面を研磨パッドに押し付け、研磨パッド上に本発明の研磨組成物を滴下し、シリコンウェハの表面を研磨する方法が挙げられる。
(Polishing method)
The polishing method of the present invention is a method of polishing using a polishing composition containing the silica sol obtained by the method for producing a silica sol of the present invention.
As the polishing composition, it is preferable to use the above-mentioned polishing composition.
A specific example of the polishing method is a method in which the surface of a silicon wafer is pressed against a polishing pad, the polishing composition of the present invention is dropped onto the polishing pad, and the surface of the silicon wafer is polished.

(半導体ウェハの製造方法)
本発明の半導体ウェハの製造方法は、本発明の研磨方法を含む方法であり、具体的な研磨方法は、前述した通りである。
半導体ウェハとしては、例えば、シリコンウェハ、化合物半導体ウェハ等が挙げられる。
(Method of manufacturing semiconductor wafer)
The method for producing a semiconductor wafer of the present invention includes the polishing method of the present invention, and the specific polishing method is as described above.
Examples of semiconductor wafers include silicon wafers and compound semiconductor wafers.

(半導体デバイスの製造方法)
本発明の半導体デバイスの製造方法は、本発明の研磨方法を含む方法であり、具体的な研磨方法は、前述した通りである。
(Method of manufacturing semiconductor devices)
The method for producing a semiconductor device of the present invention includes the polishing method of the present invention, and the specific polishing method is as described above.

(用途)
本発明のシリカ粒子の製造方法で得られたシリカ粒子、本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができる。中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。
(Application)
The silica particles obtained by the method for producing silica particles of the present invention and the silica sol obtained by the method for producing silica sol of the present invention can be suitably used for polishing purposes, for example, polishing semiconductor materials such as silicon wafers, polishing electronic materials such as hard disk substrates, polishing in the planarization process in manufacturing integrated circuits (chemical mechanical polishing), polishing synthetic quartz glass substrates used for photomasks and liquid crystals, polishing magnetic disk substrates, etc. Among them, they can be particularly suitably used for polishing silicon wafers and chemical mechanical polishing.

以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to the description of the following examples as long as it does not deviate from the gist of the invention.

(平均1次粒子径の測定)
実施例及び比較例で得られたシリカ粒子の分散液を150℃で乾燥し、比表面積自動測定装置「BELSORP-MR1」(機種名、マイクロトラック・ベル株式会社)を用いて、シリカ粒子の比表面積を測定し、下記式(1)を用い、密度を2.2g/cmとして平均1次粒子径を算出した。
平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm))
・・・ (1)
(Measurement of average primary particle size)
The dispersions of silica particles obtained in the examples and comparative examples were dried at 150°C, and the specific surface area of the silica particles was measured using an automatic specific surface area measuring device "BELSORP-MR1" (model name, Microtrack BEL Co., Ltd.), and the average primary particle size was calculated using the following formula (1) with the density being 2.2 g/ cm3 .
Average primary particle size (nm) = 6000/(specific surface area ( m2 /g) x density (g/ cm3 ))
... (1)

(平均2次粒子径、cv値の測定)
実施例及び比較例で得られたシリカ粒子の分散液を、動的光散乱粒子径測定装置「ゼーターサイザーナノZS」(機種名、マルバーン社製)を用いて、シリカ粒子の平均2次粒子径を測定し、下記式(2)を用いてcv値を算出した。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
(Measurement of average secondary particle size and cv value)
The average secondary particle diameter of the silica particles in the dispersions of the silica particles obtained in the examples and comparative examples was measured using a dynamic light scattering particle size measurement device "Zetersizer Nano ZS" (model name, manufactured by Malvern Instruments), and the cv value was calculated using the following formula (2).
cv value=(standard deviation (nm)/average secondary particle diameter (nm))×100 (2)

(会合比の算出)
測定した平均1次粒子径と平均2次粒子径とから、下記式(3)を用いて会合比を算出した。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
(Calculation of Association Ratio)
The association ratio was calculated from the measured average primary particle size and average secondary particle size using the following formula (3).
Association ratio = average secondary particle size / average primary particle size (3)

(シリカ粒子同士が接合した凝集粒子量の測定)
実施例及び比較例で得られたシリカ粒子の分散液を超純水で5000倍に希釈し、希釈したシリカ粒子の分散液5μLをシリコン基板上に滴下し乾燥させた。次いで、電界放出型走査電子顕微鏡(機種名「S-5200型」、株式会社日立ハイテクノロジーズ製、FE-SEM)を用いて、シリコン基板に加速電圧5kVで電子線を照射し、倍率5万倍で観測される二次電子像を撮影した。撮影した写真を、画像解析式粒度分布測定ソフト(ソフト名「Mac-View Ver.4」、株式会社マウンテック製)に取り込み、同一視野に含まれる全シリカ粒子(80個~120個)の面積を測定した。シリカ粒子が2個以上接合した粒子を凝集粒子と定義し、全粒子の面積の総和に対する凝集粒子の面積の割合(面積%)を算出した。
(Measurement of the amount of aggregated particles formed by bonding of silica particles together)
The dispersion of silica particles obtained in the examples and comparative examples was diluted 5000 times with ultrapure water, and 5 μL of the diluted dispersion of silica particles was dropped onto a silicon substrate and dried. Next, a field emission scanning electron microscope (model name "S-5200 type", manufactured by Hitachi High-Technologies Corporation, FE-SEM) was used to irradiate the silicon substrate with an electron beam at an acceleration voltage of 5 kV, and a secondary electron image observed at a magnification of 50,000 times was taken. The photograph was imported into an image analysis type particle size distribution measurement software (software name "Mac-View Ver. 4", manufactured by Mountec Co., Ltd.), and the area of all silica particles (80 to 120 particles) contained in the same field of view was measured. A particle in which two or more silica particles are bonded together was defined as an agglomerated particle, and the ratio (area %) of the area of the agglomerated particles to the sum of the areas of all particles was calculated.

(反応槽の壁面状態の測定)
実施例及び比較例でシリカ粒子を得るために用いた反応槽の壁面を目視で観察し、以下のような指標で評価した。
A:反応槽の壁面へのシリカ粒子の付着がほぼ確認できなかった。
B:反応槽の壁面への少量のシリカ粒子の付着が確認された。
C:反応槽の壁面への多量のシリカ粒子の付着が確認された。
(Measurement of reactor wall condition)
The wall surface of the reaction vessel used to obtain silica particles in the examples and comparative examples was visually observed and evaluated according to the following indices.
A: Almost no adhesion of silica particles to the wall surface of the reaction vessel was observed.
B: A small amount of silica particles was found to adhere to the wall of the reaction vessel.
C: A large amount of silica particles was found to adhere to the wall of the reaction vessel.

[実施例1]
反応槽に供給した純水3.9質量部、メタノール77.8質量部及び10質量%アンモニア水11.1質量部を混合した溶液(A-1)に、テトラメトキシシラン100質量部及びメタノール25.0質量部を混合した溶液(B-1)(テトラメトキシシランの濃度80質量%)と、純水29.1質量部及び10質量%アンモニア水15.6質量部を混合した溶液(C-1)とを、253分かけてそれぞれ等速で滴下した(溶液(B-1)の添加速度:100gシリカ/時/kg溶液、溶液(C-1)の添加速度:4gアルカリ触媒/時/kg溶液)。滴下中、反応液の温度を37℃に保ったまま、反応液を撹拌動力78W/mで撹拌した。滴下終了後、反応液の温度を37℃に保ったまま、更に反応液を同じ撹拌動力で30分間撹拌した。反応液を濾過し、シリカ粒子濃度16質量%のシリカ粒子の分散液を得た。
得られたシリカ粒子の評価結果を、表1に示す。
[Example 1]
A solution (B-1) (tetramethoxysilane concentration 80% by mass) of 100 parts by mass of tetramethoxysilane and 25.0 parts by mass of methanol was added dropwise to the solution (A-1) of 3.9 parts by mass of pure water, 77.8 parts by mass of methanol, and 11.1 parts by mass of 10% by mass aqueous ammonia supplied to the reaction tank, and a solution (C-1) of 29.1 parts by mass of pure water and 15.6 parts by mass of 10% by mass aqueous ammonia were added dropwise at a constant rate over 253 minutes (addition rate of solution (B-1): 100 g silica/hour/kg solution, addition rate of solution (C-1): 4 g alkali catalyst/hour/kg solution). During the dropwise addition, the reaction solution was stirred at a stirring power of 78 W/m 3 while maintaining the temperature of the reaction solution at 37 ° C. After the dropwise addition, the reaction solution was further stirred at the same stirring power for 30 minutes while maintaining the temperature of the reaction solution at 37 ° C. The reaction liquid was filtered to obtain a dispersion liquid of silica particles having a silica particle concentration of 16 mass %.
The evaluation results of the obtained silica particles are shown in Table 1.

[比較例1]
撹拌動力を12W/mとした以外は、実施例1と同様に操作した。
得られたシリカ粒子の評価結果を、表1に示す。
[Comparative Example 1]
The same operation as in Example 1 was carried out except that the stirring power was 12 W/ m3 .
The evaluation results of the obtained silica particles are shown in Table 1.

[比較例2]
撹拌動力を403W/mとした以外は、実施例1と同様に操作した。
得られたシリカ粒子の評価結果を、表1に示す。
[Comparative Example 2]
The same operation as in Example 1 was carried out except that the stirring power was 403 W/ m3 .
The evaluation results of the obtained silica particles are shown in Table 1.

Figure 0007491081000001
Figure 0007491081000001

表1から分かるように、実施例1のシリカ粒子の製造方法は、比較例1~2のシリカ粒子の製造方法と比較して、反応槽の壁面に付着するシリカ粒子を抑制すると共に、シリカ粒子同士が凝集した粗大粒子の発生を抑制することができた。 As can be seen from Table 1, the method for producing silica particles in Example 1 was able to suppress the adhesion of silica particles to the walls of the reaction vessel and also suppress the generation of coarse particles formed by agglomeration of silica particles, compared to the methods for producing silica particles in Comparative Examples 1 and 2.

本発明のシリカ粒子の製造方法で得られたシリカ粒子、本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができる。中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。 The silica particles obtained by the method for producing silica particles of the present invention and the silica sol obtained by the method for producing silica sol of the present invention can be suitably used for polishing purposes, for example, polishing semiconductor materials such as silicon wafers, polishing electronic materials such as hard disk substrates, polishing in the planarization process when manufacturing integrated circuits (chemical mechanical polishing), polishing synthetic quartz glass substrates used in photomasks and liquid crystals, polishing magnetic disk substrates, etc. Among these, they can be particularly suitably used for polishing silicon wafers and chemical mechanical polishing.

Claims (11)

20W/m~200W/mの撹拌動力でテトラアルコキシシランを加水分解反応及び縮合反応させる工程を含む、平均2次粒子径が100nm以下である、研磨用シリカ粒子の製造方法。 A method for producing silica particles for polishing, the method comprising the step of subjecting tetraalkoxysilane to a hydrolysis reaction and a condensation reaction at a stirring power of 20 W/m 3 to 200 W/m 3 , the average secondary particle size of which is 100 nm or less . アルカリ触媒を含む溶液(A)に、テトラアルコキシシランを含む溶液(B)及びアルカリ触媒を含む溶液(C)を添加し、撹拌下にテトラアルコキシシランを加水分解反応及び縮合反応させる、請求項1に記載の研磨用シリカ粒子の製造方法。 2. The method for producing silica particles for polishing according to claim 1, comprising adding a solution (B) containing tetraalkoxysilane and a solution (C) containing an alkali catalyst to a solution (A) containing an alkali catalyst, and allowing the tetraalkoxysilane to undergo hydrolysis and condensation reactions under stirring. 加水分解反応及び縮合反応の反応温度が、20℃~50℃である、請求項1又は2に記載の研磨用シリカ粒子の製造方法。 3. The method for producing silica particles for polishing according to claim 1, wherein the reaction temperature of the hydrolysis reaction and the condensation reaction is 20°C to 50°C. 加水分解反応及び縮合反応の反応系内の水の濃度を、3質量%~30質量%に維持する、請求項1~3のいずれか1項に記載の研磨用シリカ粒子の製造方法。 The method for producing silica particles for polishing according to any one of claims 1 to 3, wherein the concentration of water in the reaction system for the hydrolysis reaction and the condensation reaction is maintained at 3 mass % to 30 mass %. 更に、以下の工程(1)を含む、請求項1~4のいずれか1項に記載の研磨用シリカ粒子の製造方法。
工程(1):得られたシリカ粒子の分散液を濃縮し、分散媒を添加する工程
The method for producing silica particles for polishing according to any one of claims 1 to 4, further comprising the following step (1):
Step (1): A step of concentrating the obtained dispersion liquid of silica particles and adding a dispersion medium
更に、以下の工程(2)を含む、請求項5に記載の研磨用シリカ粒子の製造方法。
工程(2):工程(1)で得られたシリカ粒子の分散液を加圧加熱処理する工程
The method for producing silica particles for polishing according to claim 5, further comprising the following step (2):
Step (2): A step of subjecting the dispersion of silica particles obtained in step (1) to a pressurized and heated treatment.
請求項1~6のいずれか1項に記載の研磨用シリカ粒子の製造方法を含む、シリカゾルの製造方法。 A method for producing a silica sol, comprising the method for producing silica particles for polishing according to any one of claims 1 to 6. シリカゾル中のシリカ粒子の含有率が、3質量%~50質量%である、請求項7に記載のシリカゾルの製造方法。 The method for producing a silica sol according to claim 7, wherein the content of silica particles in the silica sol is 3% by mass to 50% by mass. 請求項7又は8に記載のシリカゾルの製造方法で得られたシリカゾルを含む研磨組成物を用いて研磨する、研磨方法。 A polishing method using a polishing composition containing a silica sol obtained by the method for producing a silica sol according to claim 7 or 8. 請求項9に記載の研磨方法を含む、半導体ウェハの製造方法。 A method for manufacturing a semiconductor wafer, comprising the polishing method according to claim 9. 請求項9に記載の研磨方法を含む、半導体デバイスの製造方法。 A method for manufacturing a semiconductor device, comprising the polishing method according to claim 9.
JP2020107122A 2020-06-22 2020-06-22 Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device Active JP7491081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020107122A JP7491081B2 (en) 2020-06-22 2020-06-22 Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020107122A JP7491081B2 (en) 2020-06-22 2020-06-22 Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device

Publications (2)

Publication Number Publication Date
JP2022001545A JP2022001545A (en) 2022-01-06
JP7491081B2 true JP7491081B2 (en) 2024-05-28

Family

ID=79244045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020107122A Active JP7491081B2 (en) 2020-06-22 2020-06-22 Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device

Country Status (1)

Country Link
JP (1) JP7491081B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116864A (en) 2009-12-03 2011-06-16 Nippon Shokubai Co Ltd Method for producing fine particle
JP2014043364A (en) 2012-08-24 2014-03-13 Fuji Xerox Co Ltd Silica particles and method for manufacturing the same
JP2014214061A (en) 2013-04-26 2014-11-17 株式会社トクヤマ Hydrophobic inorganic oxide powder, and method of producing the same
WO2016159167A1 (en) 2015-03-31 2016-10-06 日揮触媒化成株式会社 Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion
JP2016190769A (en) 2015-03-31 2016-11-10 日揮触媒化成株式会社 Method for producing silica particle
WO2019131874A1 (en) 2017-12-27 2019-07-04 日揮触媒化成株式会社 Method for producing chain-like particle dispersion, and dispersion of chain-like particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116864A (en) 2009-12-03 2011-06-16 Nippon Shokubai Co Ltd Method for producing fine particle
JP2014043364A (en) 2012-08-24 2014-03-13 Fuji Xerox Co Ltd Silica particles and method for manufacturing the same
JP2014214061A (en) 2013-04-26 2014-11-17 株式会社トクヤマ Hydrophobic inorganic oxide powder, and method of producing the same
WO2016159167A1 (en) 2015-03-31 2016-10-06 日揮触媒化成株式会社 Silica-based composite fine-particle dispersion, method for producing same, and polishing slurry including silica-based composite fine-particle dispersion
JP2016190769A (en) 2015-03-31 2016-11-10 日揮触媒化成株式会社 Method for producing silica particle
WO2019131874A1 (en) 2017-12-27 2019-07-04 日揮触媒化成株式会社 Method for producing chain-like particle dispersion, and dispersion of chain-like particles

Also Published As

Publication number Publication date
JP2022001545A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP7552669B2 (en) Silica sol, polishing composition, method for polishing silicon wafer, method for manufacturing silicon wafer, chemical mechanical polishing composition, and method for manufacturing semiconductor device
JP2021147267A (en) Method for producing silica particle, method for producing silica sol, polishing process, method for producing semiconductor wafer, and method for producing semiconductor device
CN115023408B (en) Silica particles, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7443857B2 (en) Silica particle manufacturing method, silica sol manufacturing method, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP2021116225A (en) Silica particle manufacturing method, silica sol manufacturing method, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP7552019B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP2024177258A (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7491081B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7331437B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP6756422B1 (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP7622444B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7622443B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP2023043024A (en) Method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP7516763B2 (en) Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing
JP7581910B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7552145B2 (en) Silica sol, method for producing silica sol, polishing composition, polishing method, and method for producing semiconductor device
JP7505304B2 (en) Silica particle manufacturing apparatus, silica particle manufacturing method, silica sol manufacturing method, method for suppressing intermediate products in silica sol, and polishing method
JP7596881B2 (en) Method for producing silica sol, method for polishing, method for producing semiconductor wafer, and method for producing semiconductor device
JP2020132478A (en) Method for producing silica particle, method for producing silica sol and polishing method
JP2024141877A (en) Method for producing silica particles, method for producing silica sol, method for producing polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7331436B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP7565671B2 (en) Method for producing silica sol and method for suppressing intermediate products in silica sol
JP2024131533A (en) Method for producing silica sol, method for producing polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
WO2024122583A1 (en) Silica particle, production method for silica particle, silica sol, polishing composition, polishing method, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device
KR20250024936A (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240429

R150 Certificate of patent or registration of utility model

Ref document number: 7491081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150