Nothing Special   »   [go: up one dir, main page]

JP7226731B2 - Processing method of the object to be processed - Google Patents

Processing method of the object to be processed Download PDF

Info

Publication number
JP7226731B2
JP7226731B2 JP2018197802A JP2018197802A JP7226731B2 JP 7226731 B2 JP7226731 B2 JP 7226731B2 JP 2018197802 A JP2018197802 A JP 2018197802A JP 2018197802 A JP2018197802 A JP 2018197802A JP 7226731 B2 JP7226731 B2 JP 7226731B2
Authority
JP
Japan
Prior art keywords
water
treated
ppm
concentration
methane fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018197802A
Other languages
Japanese (ja)
Other versions
JP2020062631A (en
Inventor
清次 中塚
尊信 立川
義浩 藤原
智裕 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Dowa Eco Systems Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd, Dowa Eco Systems Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2018197802A priority Critical patent/JP7226731B2/en
Priority to PCT/JP2019/039971 priority patent/WO2020080244A1/en
Publication of JP2020062631A publication Critical patent/JP2020062631A/en
Application granted granted Critical
Publication of JP7226731B2 publication Critical patent/JP7226731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は被処理物の処理方法に関し、特に、有機物や溶解性塩類を含有する被処理物の処理方法に関する。 TECHNICAL FIELD The present invention relates to a method for treating an object to be treated, and more particularly to a method for treating an object to be treated containing organic substances and soluble salts.

廃棄物最終処分場からの浸出水、産業廃棄物等の埋立処分場からの浸出水、等の被処理物は様々な有機物や塩分を含有しているため、これを処理することは環境保護の観点から重要であり、当該処理方法について各種の提案がなされている。例えば特許文献1は、有機廃水をメタン発酵処理し、得られたメタン発酵処理水を好気性生物処理し、好気性生物処理後の混合液を固液分離することを提案している。固液分離は例えば、好気性生物処理を実施する沈殿池により実施される(固体成分が沈殿する)。また特許文献2は、アンモニア性窒素(環境基準により厳しい規制がなされている)および溶解性塩類を含有する有機廃水に対して硝化反応を用いた処理を実施し、得られた硝化処理水を蒸発濃縮することを提案している。 Materials to be treated, such as leachate from final waste disposal sites, leachate from landfill sites for industrial waste, etc., contain various organic matter and salt content. It is important from the point of view, and various proposals have been made for the processing method. For example, Patent Document 1 proposes methane fermentation treatment of organic wastewater, aerobic biological treatment of the resulting methane fermentation treated water, and solid-liquid separation of the mixed liquid after the aerobic biological treatment. Solid-liquid separation is carried out, for example, by means of settling tanks carrying out aerobic biological treatment (solid components settle). Further, Patent Document 2 discloses that organic wastewater containing ammoniacal nitrogen (which is strictly regulated by environmental standards) and soluble salts is treated using a nitrification reaction, and the resulting nitrified water is evaporated. I suggest concentrating.

特開2012-061435号公報JP 2012-061435 A 特開2006-239578号公報JP 2006-239578 A

本発明者らは各種の被処理物(廃棄物や廃水等)の成分について検討した結果、当該被処理物中に多量の有機物や塩分(溶解性塩類)が含有されている場合があることを知見した。ここで、有機物はBOD等として環境基準が規定されており、また塩分については、これを十分に除去しないまま処理して排水として放流すると、放流先での塩害の発生を引き起こす可能性がある。 The present inventors have investigated the components of various materials to be treated (waste, wastewater, etc.) and found that the materials to be treated sometimes contain a large amount of organic substances and salts (soluble salts). I found out. Here, environmental standards are stipulated for organic substances such as BOD, and salt content may cause salt damage at the discharge destination if it is treated and discharged as wastewater without sufficiently removing it.

ところが特許文献1には、有機廃水中に含有される塩分(例えば、塩素やフッ素のようなハロゲン元素)について記載が無い。具体的には、好気性生物処理の具体例として回分式活性汚泥法(本明細書において「SBR法」と記載する場合がある。)を挙げているものの、処理の原水である有機廃水の組成について、BOD、COD、アンモニア、リン等の例について開示するのみで、塩分についての記載が無く、塩分については着目していないと考えられる。特許文献1に記載の方法は微生物を利用した生物処理であるので、被処理物中に多量の塩分が含有されていた場合、これを十分に除去することが出来ない。 However, Patent Document 1 does not describe the salt content (for example, halogen elements such as chlorine and fluorine) contained in the organic wastewater. Specifically, as a specific example of aerobic biological treatment, the batch-type activated sludge method (which may be referred to as the "SBR method" in this specification) is cited, but the composition of the organic wastewater, which is the raw water for treatment, , only examples of BOD, COD, ammonia, phosphorus, etc. are disclosed, and there is no description of salinity, and it is considered that attention is not paid to salinity. Since the method described in Patent Document 1 is a biological treatment using microorganisms, when a large amount of salt is contained in the object to be treated, it cannot be sufficiently removed.

一方、特許文献2は、アンモニア性窒素および溶解性塩類を含有する有機廃水の処理について記載している。具体的には、前記有機廃水に対し好気性生物処理による硝化反応を実施して硝化処理水を得、得られた硝化処理水のpH値を4~6に調整して炭酸カルシウムスケールの発生を回避しながら、蒸発濃縮を行うことを提案している。しかし、被処理物中に有機物が多量に含まれている場合には、それに対して好気性生物処理を施すことになり、処理に使用する微生物への負荷が大きくなり、微生物の補充や交換といったプロセスが必要になる可能性がある。これは被処理物の処理の実操業において問題である。 On the other hand, US Pat. No. 6,200,000 describes the treatment of organic wastewaters containing ammoniacal nitrogen and soluble salts. Specifically, the organic wastewater undergoes a nitrification reaction by aerobic biological treatment to obtain nitrification-treated water, and the pH value of the obtained nitrification-treated water is adjusted to 4 to 6 to suppress the generation of calcium carbonate scale. It is proposed to carry out evaporative concentration while avoiding. However, if the material to be treated contains a large amount of organic matter, it must be subjected to aerobic biological treatment, which increases the load on the microorganisms used in the treatment, and requires the replenishment and replacement of microorganisms. process may be required. This is a problem in the actual operation of processing the material to be processed.

本発明は当該状況の下で為されたものであり、その解決しようとする課題は、有機物やアンモニア、さらに溶解性塩類を多量に含有する被処理物であっても、これらを適切に処理することが可能で、かつ低廉な操業コストで操業可能な被処理物の処理方法を提供することである。 The present invention has been made under such circumstances, and the problem to be solved is to appropriately treat even an object to be treated that contains a large amount of organic matter, ammonia, and soluble salts. To provide a method for treating an object to be treated, which can be operated at a low operating cost.

また本発明者らの研究によると、特許文献2記載の処理方法では、pHを4~6に調整した硝化処理水を蒸発濃縮することになり、塩化物イオン等の強酸の共役塩基を含む硝化処理水を、酸性状態かつ高温で蒸発濃縮装置内に保持することになり、この場合、前記共役塩基が腐食性を発現する。これでは、蒸発濃縮装置においてハステロイ(登録商標)等の耐腐食性に優れた高コスト材料を用いざるを得ず、設備コストの上昇につながる。そこで本発明は、望ましくは、被処理物が強酸の共役塩基を含有する場合であっても、高コスト材料を用いることなく処理装置を構成できる、被処理物の処理方法を提供することを課題とする。 According to the research of the present inventors, in the treatment method described in Patent Document 2, the nitrification-treated water adjusted to pH 4 to 6 is evaporated and concentrated, and nitrification containing a conjugate base of a strong acid such as chloride ions is performed. The treated water will be kept in the evaporator in an acidic state and at a high temperature, in which case the conjugate base becomes corrosive. This necessitates the use of high-cost materials with excellent corrosion resistance such as Hastelloy (registered trademark) in the evaporative concentration apparatus, leading to an increase in facility costs. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for treating an object to be treated, which is desirably capable of constructing a treatment apparatus without using high-cost materials even when the object to be treated contains a conjugate base of a strong acid. and

上述の課題を解決する為、本発明者らはさらに研究を行った。
そして従来の技術思想を転換し、有機物、アンモニアおよび溶解性塩類を含有する被処理物へ、消化工程(嫌気性生物によるメタン発酵処理)、硝化工程(好気性生物処理)、蒸発濃縮工程を順次に行うことで、上記課題を解決できることを見出し、本発明を完成した。
In order to solve the above-mentioned problems, the present inventors conducted further research.
Then, by changing the conventional technical concept, the digestion process (methane fermentation treatment by anaerobic organisms), the nitrification process (aerobic biological treatment), and the evaporative concentration process are sequentially performed on the material to be treated that contains organic matter, ammonia, and soluble salts. The present inventors have found that the above problems can be solved by performing

即ち、上述の課題を解決する第1の発明は、
有機物、アンモニア、および溶解性塩類を含有する被処理物の処理方法であって、
メタン発酵法により、前記被処理物中の有機物を分解してメタン発酵処理水を得るメタン発酵工程と、
好気性生物の作用により、前記メタン発酵処理水中のアンモニアを酸化して硝酸とすると共に、有機物を分解して硝化処理水を得る好気性生物処理工程と、
前記硝化処理水を蒸発濃縮して、濃縮水と凝縮水とを得る蒸発濃縮工程と
を有することを特徴とする被処理物の処理方法である。
第2の発明は、
回分式活性汚泥法により前記好気性生物処理工程を実施することを特徴とする第1の発明に記載の被処理物の処理方法である。
第3の発明は、
前記蒸発濃縮工程に供する、前記硝化処理水のpH値を8.5以上に調整することを特徴とする第1または第2の発明に記載の被処理物の処理方法である。
第4の発明は、
前記メタン発酵処理水中のアンモニア濃度は窒素換算で10~10000ppm、Cl濃度は1~50000ppm、CODは10~100000ppm、BODは10~10000ppmであることを特徴とする第1から第3の発明のいずれかに記載の被処理物の処理方法である。
第5の発明は、
前記好気性生物処理工程により、アンモニア濃度が窒素換算で10ppm以下の硝化処理水を得ることを特徴とする第1から第4の発明のいずれかに記載の被処理物の処理方法である。
第6の発明は、
前記硝化処理水へアルカリ物質を添加することで硝化処理水のpH値を8.5以上に調整することを特徴とする第3から第5の発明のいずれかに記載の被処理物の処理方法である。
第7の発明は、
アンモニア濃度が窒素換算で10~10000ppm、Cl濃度は1~50000ppm、CODは10~100000ppm、BODは10~10000ppmの被処理水の処理方法であって、
好気性生物の作用により、前記被処理水中のアンモニアを酸化して硝酸とすると共に、有機物を分解して硝化処理水を得る好気性生物処理工程と、
前記硝化処理水を蒸発濃縮して、濃縮水と凝縮水とを得る蒸発濃縮工程とを有し、
前記蒸発濃縮工程に供する前記硝化処理水のpH値を8.5以上に調整することを特徴とする被処理水の処理方法である。
That is, the first invention for solving the above problems is
A method for treating an object to be treated containing organic matter, ammonia, and soluble salts,
a methane fermentation step of decomposing organic matter in the material to be treated to obtain methane fermentation-treated water by a methane fermentation method;
an aerobic biological treatment step of oxidizing ammonia in the methane fermentation-treated water into nitric acid by the action of aerobic organisms and decomposing organic matter to obtain nitrification-treated water;
and an evaporative concentration step for obtaining concentrated water and condensed water by evaporatively concentrating the nitrification treated water.
The second invention is
The method for treating an object to be treated according to the first invention, characterized in that the aerobic biological treatment step is carried out by a batch activated sludge method.
The third invention is
The method for treating an object to be treated according to the first or second invention, characterized in that the pH value of the nitrification-treated water to be subjected to the evaporative concentration step is adjusted to 8.5 or higher.
The fourth invention is
The ammonia concentration in the methane fermentation treated water is 10 to 10000 ppm in terms of nitrogen, the Cl concentration is 1 to 50000 ppm, the COD is 10 to 100000 ppm, and the BOD is 10 to 10000 ppm. A method for processing an object to be processed according to any one of the above.
The fifth invention is
The method for treating an object to be treated according to any one of the first to fourth inventions, characterized in that the aerobic biological treatment step provides nitrified water having an ammonia concentration of 10 ppm or less in terms of nitrogen.
The sixth invention is
The method for treating an object to be treated according to any one of the third to fifth inventions, wherein the pH value of the nitrified water is adjusted to 8.5 or higher by adding an alkaline substance to the nitrified water. is.
The seventh invention is
A method for treating water to be treated having an ammonia concentration of 10 to 10,000 ppm in terms of nitrogen, a Cl concentration of 1 to 50,000 ppm, a COD of 10 to 100,000 ppm, and a BOD of 10 to 10,000 ppm,
an aerobic biological treatment step of oxidizing ammonia in the water to be treated into nitric acid by the action of aerobic organisms and decomposing organic matter to obtain nitrified water;
an evaporative concentration step of evaporatively concentrating the nitrification-treated water to obtain concentrated water and condensed water;
The method for treating water to be treated is characterized in that the pH value of the nitrification-treated water to be subjected to the evaporative concentration step is adjusted to 8.5 or higher.

本発明に依れば、有機物やアンモニア、および溶解性塩類を多量に含有する被処理物であっても、適切に処理することが可能になり、かつ低廉な操業コストで操業可能である。 According to the present invention, even an object to be treated containing a large amount of organic substances, ammonia, and soluble salts can be treated appropriately, and can be operated at a low operating cost.

本発明に係る処理方法の操作フロー図である。FIG. 2 is an operation flow diagram of a processing method according to the present invention; 硝化処理水試料、濃縮水試料、凝縮水試料の外観写真である。It is an appearance photograph of a nitrification-treated water sample, a concentrated water sample, and a condensed water sample. 実施例に使用した処理装置の模式図。The schematic diagram of the processing apparatus used for the Example.

上述したように本発明は、有機物やアンモニア、および溶解性塩類を多量に含有する被処理物であっても、適切に処理することが可能になり、かつ低廉な操業コストで操業可能な当該被処理物の処理方法を提供するものである。そこで、本発明に係る処理方法の操作フローを示す図1を参照しながら、本発明について説明する。 As described above, the present invention makes it possible to appropriately treat even an object to be treated containing a large amount of organic matter, ammonia, and soluble salts, and to operate at a low operating cost. Disclosed is a processing method for a processed material. Accordingly, the present invention will be described with reference to FIG. 1 showing the operation flow of the processing method according to the present invention.

図1に示すように本発明は、被処理物(10)へ、メタン発酵工程(20)、好気性生物処理工程(30)、そして蒸発濃縮工程(40)を実施して、放水可能な凝縮水(41)と汚染物が濃縮された濃縮水(42)とを得るものである。本発明においては好気性生物処理工程(30)で得られた硝化処理水(31)のpHに関して、必要に応じてpH調整(32)を実施してもよい。 As shown in FIG. 1, the present invention performs a methane fermentation step (20), an aerobic biological treatment step (30), and an evaporative concentration step (40) on an object to be treated (10) to produce condensation that can be discharged water. Water (41) and contaminant concentrated water (42) are obtained. In the present invention, the pH of the nitrified water (31) obtained in the aerobic biological treatment step (30) may be adjusted (32) as necessary.

以下、1.被処理物、2.メタン発酵工程、3.好気性生物処理工程、4.蒸発濃縮工程、5.異なる実施の形態、6.まとめ、の順で、本発明を詳細に説明する。 Below, 1. object to be processed;2. 3. methane fermentation process; 4. aerobic biological treatment process; 4. Evaporative concentration step; 6. different embodiments; In the following order, the present invention will be described in detail.

1.被処理物
本発明が処理対象とする、有機物やアンモニア、および溶解性塩類を含有する被処理物とは、例えばタンパク質、アミノ酸、核酸、糖類、脂肪酸等の有機物、アンモニア、溶解性塩類を含むものである。具体例としては、各種廃棄物等の固形状物、および、廃棄物埋立地からの浸出水、等の液状物が挙げられる。これらの被処理物は、環境中に放出されると当該環境を汚染する原因となるものである。
1. Object to be treated The object to be treated containing organic matter, ammonia, and soluble salts to be treated by the present invention includes, for example, organic matter such as proteins, amino acids, nucleic acids, sugars, and fatty acids, ammonia, and soluble salts. . Specific examples include solid materials such as various wastes, and liquid materials such as leachate from waste landfill sites. These materials to be treated cause pollution of the environment when released into the environment.

2.メタン発酵工程
本発明では、メタン細菌の作用を利用したメタン発酵法を用いるメタン発酵工程を実施する。メタン発酵により、被処理物中の有機物を分解する。この有機物には、次の好気性生物処理工程において好気性生物では分解が困難な有機物も含まれているが、メタン発酵によりこれが分解され、好気性生物でも分解可能な物質となって次の好気性生物処理工程に送られる。
2. Methane Fermentation Process In the present invention, a methane fermentation process using a methane fermentation method utilizing the action of methanogenic bacteria is carried out. Methane fermentation decomposes organic matter in the material to be treated. This organic matter includes organic matter that is difficult to decompose by aerobic organisms in the next aerobic biological treatment process, but it is decomposed by methane fermentation and becomes a substance that can be decomposed even by aerobic organisms. It is sent to the aerobic biological treatment process.

なお、埋設物として廃棄食品等が埋められた産業廃棄物処理場や埋立地等においては、埋設物中にメタン細菌が存在して、埋設物中の有機物がメタン発酵により分解されている場合もある。本発明においては、このような自発的なメタン発酵を、メタン発酵処理水(21)として消化液を産出するメタン発酵工程と考える場合がある。 In industrial waste disposal sites and landfill sites where waste food, etc., is buried as buried matter, methane bacteria may exist in the buried matter, and organic matter in the buried matter may be decomposed by methane fermentation. be. In the present invention, such spontaneous methane fermentation may be considered as a methane fermentation process that produces digestive juice as methane fermentation treated water (21).

メタン発酵処理水の性状や組成に関しては、本発明の効果が好適に奏される観点から、以下の通りである。 The properties and composition of the methane fermentation-treated water are as follows from the viewpoint that the effects of the present invention are favorably exhibited.

すなわち、本発明の効果が好適に奏される観点から、メタン発酵処理水のpH値は好ましくは4~11、より好ましくは4.2~10.8、さらに好ましくは4.5~10.5である。
同様な観点からメタン発酵処理水中の全溶解性固体(本明細書において「TDS」と記載する場合がある。)の量は、好ましくは10~100000ppm、より好ましくは500~100000ppm、さらに好ましくは8000~80000ppmである。
同様な観点からメタン発酵処理水中のアンモニアの濃度は、窒素換算で(すなわちアンモニア態の窒素(NH-N)の濃度)、好ましくは10~10000ppm、より好ましくは100~10000ppm、さらに好ましくは300~9000ppmである。
同様な観点からメタン発酵処理水の化学的酸素要求量(COD)は、好ましくは10~100000ppm、より好ましくは1000~100000ppm、さらに好ましくは5000~80000ppmである。
同様な観点からメタン発酵処理水の生物学的酸素要求量(BOD)は、好ましくは10~10000ppm、より好ましくは500~10000ppm、さらに好ましくは1000~9000ppmである。
同様な観点からメタン発酵処理水中の硫化水素(HS)の濃度は、好ましくは1~100ppm、より好ましくは2~95ppm、さらに好ましくは3~90ppmである。
同様な観点からメタン発酵処理水中の硫酸イオン(SO 2-)の濃度は、好ましくは10~10000ppm、より好ましくは300~10000ppm、さらに好ましくは1000~8000ppmである。
同様な観点からメタン発酵処理水中の塩化物イオン(Cl)濃度は、好ましくは1~50000ppm、より好ましくは500~50000ppm、さらに好ましくは6000~45000ppmである。
同様な観点からメタン発酵処理水中のカルシウムイオン(Ca2+)の濃度は、好ましくは1~10000ppm、より好ましくは2~9000ppm、さらに好ましくは3~8000ppmである。
同様な観点からメタン発酵処理水中のナトリウムイオン(Na)の濃度は、好ましくは1~10000ppm、より好ましくは2~9500ppm、さらに好ましくは3~9000ppmである。
That is, from the viewpoint of suitably exhibiting the effects of the present invention, the pH value of the methane fermentation-treated water is preferably 4 to 11, more preferably 4.2 to 10.8, and still more preferably 4.5 to 10.5. is.
From a similar point of view, the amount of total soluble solids in the methane fermentation-treated water (which may be referred to as "TDS" in this specification) is preferably 10 to 100,000 ppm, more preferably 500 to 100,000 ppm, and still more preferably 8,000 ppm. ~80000ppm.
From a similar point of view, the concentration of ammonia in the methane fermentation-treated water is preferably 10 to 10,000 ppm, more preferably 100 to 10,000 ppm, and still more preferably 300 ppm in terms of nitrogen (that is, the concentration of ammonia nitrogen (NH 3 —N)). ~9000ppm.
From a similar point of view, the chemical oxygen demand (COD) of methane fermentation treated water is preferably 10 to 100000 ppm, more preferably 1000 to 100000 ppm, still more preferably 5000 to 80000 ppm.
From the same point of view, the biological oxygen demand (BOD) of methane fermentation treated water is preferably 10 to 10000 ppm, more preferably 500 to 10000 ppm, still more preferably 1000 to 9000 ppm.
From a similar point of view, the concentration of hydrogen sulfide (H 2 S) in the methane fermentation-treated water is preferably 1-100 ppm, more preferably 2-95 ppm, and still more preferably 3-90 ppm.
From the same point of view, the concentration of sulfate ions (SO 4 2− ) in the methane fermentation-treated water is preferably 10-10000 ppm, more preferably 300-10000 ppm, still more preferably 1000-8000 ppm.
From the same point of view, the chloride ion (Cl ) concentration in the methane fermentation-treated water is preferably 1 to 50000 ppm, more preferably 500 to 50000 ppm, still more preferably 6000 to 45000 ppm.
From the same point of view, the concentration of calcium ions (Ca 2+ ) in the methane fermentation-treated water is preferably 1 to 10000 ppm, more preferably 2 to 9000 ppm, still more preferably 3 to 8000 ppm.
From the same point of view, the sodium ion (Na + ) concentration in the methane fermentation-treated water is preferably 1 to 10000 ppm, more preferably 2 to 9500 ppm, and still more preferably 3 to 9000 ppm.

3.好気性生物処理工程およびpH調整
好気性生物処理工程(30)は上記メタン発酵工程(20)で得られたメタン発酵処理水(消化液)(21)中のアンモニアを、微生物の作用により亜硝酸経由で硝酸へ酸化する(硝化)とともに、前記処理水中の有機物を分解して、硝化処理水(31)を得る工程である。このような反応を実施する方法として、連続式や循環式等の各種の方法が公知であるが、SBR法は高能率な処理法として知られている。そこで、以下、硝化処理法の例としてSBR法を参照しながら、好気性生物処理工程(30)について説明する。
3. Aerobic biological treatment step and pH adjustment In the aerobic biological treatment step (30), ammonia in the methane fermentation-treated water (digestive juice) (21) obtained in the methane fermentation step (20) is converted to nitrite by the action of microorganisms. It is a step of oxidizing to nitric acid (nitrification) through the process and decomposing organic matter in the treated water to obtain nitrified water (31). Various methods such as a continuous method and a circulation method are known as methods for carrying out such a reaction, and the SBR method is known as a highly efficient treatment method. Therefore, the aerobic biological treatment step (30) will be described below with reference to the SBR method as an example of the nitrification treatment method.

SBR法は、エアレーションタンクと最終沈殿池の機能を1つの反応槽に集約して実施する好気性処理である。具体的には、活性汚泥の入った反応槽において、《1》処理対象であるメタン発酵処理水の導入、《2》ばっ気処理、《3》沈降分離、《4》上澄みである硝化処理水の排水、の各処理を順次行うものである。 The SBR method is an aerobic treatment that integrates the functions of an aeration tank and a final sedimentation tank into a single reaction tank. Specifically, in a reaction tank containing activated sludge, <<1>> introduction of methane fermentation treated water to be treated, <<2>> aeration treatment, <<3>> sedimentation separation, <<4>> nitrification treated water as supernatant wastewater, and each treatment is performed sequentially.

好気性生物処理工程(30)の次の蒸発濃縮工程(40)ではアンモニアを除去することができないため、SBR法によりアンモニアを十分に処理することが好ましい。具体的には、本工程で得られる硝化処理水(31)中のアンモニア濃度が窒素換算で10ppm以下となるように、十分に曝気処理を行うことが好ましい。このような低いアンモニア濃度を達成することと処理コスト低減の観点とから、一つの目安として、SBR法の曝気処理での滞留時間は6~30日間が好ましい。 Since ammonia cannot be removed in the evaporative concentration step (40) following the aerobic biological treatment step (30), it is preferable to sufficiently treat ammonia by the SBR method. Specifically, it is preferable to perform a sufficient aeration treatment so that the ammonia concentration in the nitrified water (31) obtained in this step is 10 ppm or less in terms of nitrogen. From the viewpoint of achieving such a low ammonia concentration and reducing the treatment cost, as a guideline, the residence time in the aeration treatment by the SBR method is preferably 6 to 30 days.

当該SBR工程の実施により、メタン発酵処理水(21)中のBOD、COD、TDSといった各数値、および、アンモニア濃度が低減される。その上、本工程でアンモニア濃度を十分に低減させれば、その後においてアンモニアを除去するためにストリッピングや逆浸透膜処理等といった高コストなプロセスを実施することが不要となる点でも好ましい。 By performing the SBR process, the numerical values such as BOD, COD, and TDS in the methane fermentation treated water (21) and the ammonia concentration are reduced. In addition, if the ammonia concentration is sufficiently reduced in this step, it is preferable in that it becomes unnecessary to perform expensive processes such as stripping and reverse osmosis membrane treatment in order to remove ammonia thereafter.

本発明者らの検討によると、硝化処理水(31)のpH値が8.5未満の場合、適宜アルカリ物質を添加する等によりpH調整(32)を行い、pH値を8.5以上とすることが好ましい。また、得られる硝化処理水(31)のpHが8.5以上になるように、メタン発酵工程(20)で得られたメタン発酵処理水(21)や、これが好気性生物処理工程(30)で処理を受けている途中においてアルカリ物質を添加してもよい。これは後述する「4.蒸発濃縮工程」において、当該硝化処理水(31)に含有されるCl等の強酸の共役塩基が、蒸発濃縮装置内部を腐食させることを回避する観点からである。尚、当該アルカリ物質としては、安価であり汎用性が高いことから、水酸化ナトリウムが好ましい。 According to the studies of the present inventors, when the pH value of the nitrification treated water (31) is less than 8.5, the pH value is adjusted to 8.5 or higher by adjusting the pH value (32) by adding an appropriate alkaline substance or the like. preferably. In addition, the methane fermentation-treated water (21) obtained in the methane fermentation step (20) or the You may add an alkaline substance in the middle of receiving a process by. This is from the viewpoint of avoiding corrosion of the inside of the evaporative concentration apparatus by the strong acid conjugate base such as Cl 2 - contained in the nitrification treated water (31) in "4. Evaporative concentration step" described later. As the alkaline substance, sodium hydroxide is preferable because it is inexpensive and highly versatile.

好気性生物処理工程(30)としてSBR法を例示して実施の形態を説明したが、連続式活性汚泥法等を好気性生物処理工程(30)の一部または全部に採用することも可能である。 Although the embodiment has been described by exemplifying the SBR method as the aerobic biological treatment process (30), it is also possible to adopt a continuous activated sludge method or the like for part or all of the aerobic biological treatment process (30). be.

4.蒸発濃縮工程
蒸発濃縮工程(40)は、硝化処理水(31)を減圧下の密閉容器(蒸発缶)内にて加熱蒸留して、例えば2体積倍以上40体積倍以下に濃縮された濃縮水(42)と、蒸発後の凝縮水(41)とを得る工程である。
4. Evaporative Concentration Step In the evaporative concentration step (40), the nitrification treated water (31) is thermally distilled in a closed vessel (evaporator) under reduced pressure to concentrate, for example, 2 times or more and 40 times or less by volume. (42) and a step of obtaining condensed water (41) after evaporation.

当該工程において使用する蒸発濃縮装置は特に限定されない。例えば、特開昭59-26184号公報に記載の水蒸気圧縮式塩水蒸留器(水平伝熱管と水蒸気圧縮機とを備えた水蒸気圧縮式塩水蒸留器)、特開平10-57702号公報に記載の自己蒸発圧縮式濃縮装置(2つの圧縮手段により2段圧縮が可能な濃縮装置)、特開2011-185192号公報に記載の真空蒸発装置(ルーツブロワを備えた真空蒸発装置)、等を、当該工程における蒸発濃縮装置として使用することができる。 The evaporative concentration apparatus used in the process is not particularly limited. For example, the steam compression brine distiller described in JP-A-59-26184 (a steam compression brine distiller equipped with a horizontal heat transfer tube and a steam compressor), the self described in JP-A-10-57702 An evaporative compression type concentrator (a concentrator capable of two-stage compression by two compression means), a vacuum evaporator described in JP 2011-185192 A (a vacuum evaporator equipped with a roots blower), etc. are used in the process. Can be used as an evaporator.

蒸発濃縮工程(40)における蒸発条件については、蒸発缶内の液温は60~70℃、蒸発缶内圧力は5~50kPaabsに設定することが操業コスト低廉化の観点から好ましい。当該工程で得られる濃縮水(42)の濃縮倍率は、2~20体積倍とすることが操業コスト低廉化の観点から好ましい。 Regarding the evaporation conditions in the evaporative concentration step (40), it is preferable to set the liquid temperature in the evaporator to 60 to 70° C. and the pressure in the evaporator to 5 to 50 kPaabs from the viewpoint of reducing the operating cost. The concentration ratio of the concentrated water (42) obtained in this step is preferably 2 to 20 times by volume from the viewpoint of reducing operating costs.

硝化処理水(31)の着色成分(例えばアゾ化合物)を除去する為、無機凝集剤+高分子凝集剤を用いた脱色工程を実施する場合もあるが、蒸発濃縮により、硝化処理水(31)のTDS、CODの削減のみならず、着色成分も同時に除去可能となり、操業コストの低廉化が図れる。また、硝化処理水(31)に含まれていた溶解性塩類は蒸発しないので、凝縮水(41)に移行することなく濃縮水(42)中に残留する。 In order to remove coloring components (e.g., azo compounds) from the nitrified water (31), a decolorization process using an inorganic flocculant and a polymer flocculant may be carried out. Not only can TDS and COD be reduced, but also coloring components can be removed at the same time, and the operating cost can be reduced. In addition, since the soluble salts contained in the nitrification treated water (31) do not evaporate, they remain in the concentrated water (42) without being transferred to the condensed water (41).

以上より、有機物、アンモニアおよび溶解性塩類を含有する被処理物から、BOD、TDS、CODの値が削減され、溶解性塩類を含有せず外観は無色透明で、環境に放出可能な凝縮水(41)と、適宜な廃棄処分とすべき濃縮水(42)とを、低廉な設備コストおよび操業コストによって得ることが出来た。 From the above, the values of BOD, TDS, and COD are reduced from the object to be treated containing organic matter, ammonia, and soluble salts, and the condensed water ( 41) and a concentrated water (42) to be disposed of appropriately could be obtained at low equipment and operating costs.

ここで前記「pH調整」にて説明したように、本発明では好ましくは硝化処理水(31)のpHをアルカリ性、好ましくは8.5以上にpH調整(32)した後に蒸発濃縮工程(40)を実施する為、蒸発濃縮装置内部において、生成した濃縮水(42)のpH値が9以上13以下となる。この結果、濃縮水(42)においてCl等の強酸の共役塩基が腐食性を発現しなくなるので、蒸発濃縮装置について耐腐食性に優れた高価な材質のものを使う必要がなくなり、装置コストの低廉化につながり好ましい。 Here, as explained in the above "pH adjustment", in the present invention, preferably the pH of the nitrification treated water (31) is adjusted to alkaline, preferably to 8.5 or higher (32), and then the evaporative concentration step (40). , the pH value of the generated concentrated water (42) becomes 9 or more and 13 or less inside the evaporative concentration device. As a result, in the concentrated water (42), the conjugate bases of strong acids such as Cl.sup.- do not exhibit corrosiveness, so there is no need to use expensive materials with excellent corrosion resistance for the evaporative concentration device, and the cost of the device can be reduced. This is preferable because it leads to cost reduction.

これに対し、炭酸カルシウムスケール防止のため蒸発濃縮に供する液のpHを特許文献2のように酸性とした場合、Cl等の強酸の共役塩基を含む水を、酸性状態且つ高温で(蒸発なので)蒸発濃縮装置内に保持することになり、Cl等が強い腐食性を発現する。この結果、蒸発濃縮装置にはハステロイなど耐腐食性に優れた高価な材質の装置を使う必要があり、装置コストの上昇につながる。 On the other hand, when the pH of the liquid to be subjected to evaporative concentration is made acidic as in Patent Document 2 to prevent calcium carbonate scale, water containing a conjugate base of a strong acid such as Cl - ) will be retained in the evaporative concentration apparatus, and Cl 2 − and the like will exhibit strong corrosiveness. As a result, it is necessary to use an expensive material such as Hastelloy for the evaporative concentration apparatus, which is highly resistant to corrosion, which leads to an increase in the cost of the apparatus.

本発明では硝化処理水(31)のpHは、前記装置コストの上昇に鑑み、好ましくは8.5以上とする。そして、蒸発濃縮工程(40)を実施する為、蒸発濃縮装置内部にスケールが発生する。当該スケールは炭酸カルシウムを主な成分としていると考えられる。当該スケールの蓄積は、蒸発濃縮装置の伝熱係数を低下させる為、当該スケールを除去するメンテナンスが求められる。 In the present invention, the pH of the nitrification-treated water (31) is preferably 8.5 or higher in view of the increase in equipment cost. In order to carry out the evaporative concentration step (40), scale is generated inside the evaporative concentration apparatus. The scale is considered to be mainly composed of calcium carbonate. Accumulation of the scale lowers the heat transfer coefficient of the evaporative concentration apparatus, requiring maintenance to remove the scale.

本発明者らの検討によると、本発明において、蒸発濃縮装置内部に発生したスケールは、薬品で容易に溶解出来てメンテナンスが容易であり、殆ど操業コストの上昇につながらないことも判明した。 According to the studies of the present inventors, it was found that the scale generated inside the evaporative concentration apparatus in the present invention can be easily dissolved with chemicals, maintenance is easy, and it hardly leads to an increase in operating costs.

本発明において蒸発濃縮装置内部に発生したスケールが容易に溶解出来る理由は、次のように推察される。 The reason why the scale generated inside the evaporative concentration apparatus can be easily dissolved in the present invention is presumed as follows.

即ち、本発明では硝化処理水(31)のpHを、好ましくは8.5以上のアルカリ性へpH調整(32)している為、硝化処理水(31)中のCO 2-は、COとなって揮散することなく留まっている。この為、スケール成分であるCa2+はCO 2-と反応して炭酸カルシウムが生成する。そして、生成した炭酸カルシウムは、硝化処理水(31)中のCO 2-と化合・反応[CaCO→Ca(HCO]して重炭酸カルシウムになり、生成したスケールが容易に溶解・除去されるのではないかと考えている。 That is, in the present invention, the pH of the nitrified water (31) is preferably adjusted (32) to an alkalinity of 8.5 or higher, so CO 3 2− in the nitrified water (31) is converted to CO 2 It stays without volatilizing. Therefore, Ca 2+ which is a scale component reacts with CO 3 2- to produce calcium carbonate. The produced calcium carbonate then combines and reacts with CO 3 2− in the nitrification treated water (31) [CaCO 3 →Ca(HCO 3 ) 2 ] to become calcium bicarbonate, and the produced scale is easily dissolved.・I think it will be removed.

なお、被処理物(10)がSO 2-を含む場合には、硝化処理水(31)はSO 2-を含んでおり、Ca2+がスケールを形成する際、強固なスケールとなる石膏(CaSO)が生じうる。しかし上述の通りpH値が8.5以上の硝化処理水(31)はCO 2-を豊富に含んでおり、Ca2+はこれと優先的に反応する為、石膏の生成は抑制される。このようにスケールを容易に除去できる観点からは、硝化処理水(31)のCO 2-の量は、全無機炭素(TIC)として、好ましくは180~900ppm、より好ましくは200~800ppmである。 When the object to be treated (10) contains SO 4 2- , the nitrification treated water (31) contains SO 4 2- , and when Ca 2+ forms scale, the gypsum becomes a strong scale. (CaSO 4 ) can occur. However, as described above, the nitrified water (31) having a pH value of 8.5 or more contains abundant CO 3 2− , and Ca 2+ preferentially reacts with this, thus suppressing the formation of gypsum. From the viewpoint of easily removing the scale in this way, the amount of CO 3 2- in the nitrification treated water (31) is preferably 180 to 900 ppm, more preferably 200 to 800 ppm, as total inorganic carbon (TIC). .

被処理物(10)やメタン発酵処理水(21)が含有する溶解性塩類の濃度が高い場合(結果として硝化処理水(31)中の溶解性塩類の濃度も高い)においても、同様に、容易にスケール除去が達成可能である。 When the concentration of soluble salts contained in the material to be treated (10) or the methane fermentation treated water (21) is high (as a result, the concentration of soluble salts in the nitrification treated water (31) is also high), Easy descaling is achievable.

一方、硝化処理水(31)中へ種晶として、予め炭酸カルシウムの微結晶を添加しておくことも好ましい構成である。予め種晶を添加しておくことで、生成してくる炭酸カルシウムを当該種晶の周囲に析出させることで、蒸発濃縮装置の内壁等に析出する炭酸カルシウム量を低減出来るからである。 On the other hand, it is also preferable to previously add fine crystals of calcium carbonate as seed crystals to the nitrification-treated water (31). This is because the amount of calcium carbonate deposited on the inner wall of the evaporative concentration apparatus can be reduced by preliminarily adding the seed crystals so that the generated calcium carbonate is deposited around the seed crystals.

5.異なる実施の形態
以上、被処理物(10)に対してメタン発酵工程(20)、好気性生物処理工程(30)、蒸発濃縮工程(40)を行い(適宜硝化処理水(31)のpHに関してpH調整(32)を実施する)、浄化された処理水(凝縮水(41))と濃縮水(42)とを得る、被処理物(10)の処理方法について説明した。
5. Different Embodiments As described above, the methane fermentation step (20), the aerobic biological treatment step (30), and the evaporative concentration step (40) are performed on the material to be treated (10) (suitable for the pH of the nitrification treated water (31). The method for treating the object (10) has been described, in which the pH adjustment (32) is performed), purified treated water (condensed water (41)) and concentrated water (42) are obtained.

本発明の技術的思想は、例えば、図1においてバイオガス発電、等(22)として示す、メタン発酵を経て発生した廃水(23)等に対しても適用可能である。この場合は、当該廃水(23)等へ、好気性生物処理工程(30)、蒸発濃縮工程(40)を行う実施の形態をとればよい。 The technical idea of the present invention is also applicable to, for example, wastewater (23) generated through methane fermentation, shown as biogas power generation, etc. (22) in FIG. In this case, the waste water (23) or the like may be subjected to an aerobic biological treatment process (30) and an evaporative concentration process (40).

また硝化処理水のpH値を好ましくは8.5以上とすることに着目した、さらに異なる本発明の実施の形態は以下のとおりである。 Further, a still different embodiment of the present invention focusing on preferably setting the pH value of the nitrification-treated water to 8.5 or more is as follows.

「有機物、アンモニア、および溶解性塩類を含有する被処理水の処理方法であって、
好気性生物の作用により、前記被処理水中のアンモニアを酸化して硝酸とすると共に、有機物を分解して硝化処理水を得る好気性生物処理工程と、
前記硝化処理水のpH値を8.5以上とするpH調整工程と、
pH値が調整された前記硝化処理水を蒸発濃縮して、濃縮水と凝縮水とを得る蒸発濃縮工程と
を有することを特徴とする被処理水の処理方法。」
"A method for treating water to be treated containing organic matter, ammonia, and soluble salts,
an aerobic biological treatment step of oxidizing ammonia in the water to be treated into nitric acid by the action of aerobic organisms and decomposing organic matter to obtain nitrified water;
a pH adjustment step of setting the pH value of the nitrification-treated water to 8.5 or higher;
A method for treating water to be treated, characterized by comprising an evaporative concentration step of evaporatively concentrating the nitrification-treated water whose pH value has been adjusted to obtain concentrated water and condensed water. "

この実施の形態の構成では、所定の被処理水(廃水)に対し硝化処理(好気性生物処理工程)を行い、そして得られた硝化処理水のpH値を8.5以上とする。この構成においても蒸発濃縮装置内に発生した炭酸カルシウムスケールは、適宜な方法によって容易に除去が可能であり、操業コスト上昇には殆どつながらない。しかもこれは、被処理水中に含有される溶解性塩類の濃度が高い場合においても達成可能である。 In the configuration of this embodiment, predetermined water to be treated (wastewater) is subjected to nitrification treatment (aerobic biological treatment process), and the obtained nitrification treated water has a pH value of 8.5 or higher. Even in this configuration, the calcium carbonate scale generated in the evaporative concentration apparatus can be easily removed by an appropriate method, and it hardly leads to an increase in operating costs. Moreover, this can be achieved even when the concentration of soluble salts contained in the water to be treated is high.

以上説明したように、アンモニアおよび溶解性塩類を含有する被処理物(10)、または、メタン発酵を利用したプロセスから発生した廃水(23)等から、TDS、CODの値が削減され、溶解性塩類を含有せず外観は無色透明で、環境に放出可能な凝縮水(41)と、適宜な廃棄処分とすべき濃縮水(42)とを、低廉な設備コストおよび操業コストによって得ることが出来た。 As described above, the TDS and COD values are reduced from the object to be treated (10) containing ammonia and soluble salts, or the wastewater (23) generated from the process using methane fermentation, and the solubility is reduced. It is possible to obtain condensed water (41) that does not contain salts and has a colorless and transparent appearance and that can be released to the environment and concentrated water (42) that should be properly disposed of at low equipment and operating costs. rice field.

以上の効果に焦点をあてた、異なる発明の実施の形態は以下のとおりである。 Different embodiments of the invention focusing on the above effects are as follows.

「アンモニア濃度が窒素換算で10~10000ppm、Cl濃度は1~50000ppm、CODは10~100000ppm、BODは10~10000ppmの被処理水の処理方法であって、
好気性生物の作用により、前記被処理水中のアンモニアを酸化して硝酸とすると共に、有機物を分解して硝化処理水を得る好気性生物処理工程と、
前記硝化処理水を蒸発濃縮して、濃縮水と凝縮水とを得る蒸発濃縮工程とを有し、
前記蒸発濃縮工程に供する、前記硝化処理水のpH値を8.5以上に調整することを特徴とする被処理水の処理方法。」
"Ammonia concentration is 10 to 10000 ppm in terms of nitrogen, Cl concentration is 1 to 50000 ppm, COD is 10 to 100000 ppm, BOD is 10 to 10000 ppm.
an aerobic biological treatment step of oxidizing ammonia in the water to be treated into nitric acid by the action of aerobic organisms and decomposing organic matter to obtain nitrified water;
an evaporative concentration step of evaporatively concentrating the nitrification-treated water to obtain concentrated water and condensed water;
A method for treating water to be treated, wherein the pH value of the nitrified water to be subjected to the evaporative concentration step is adjusted to 8.5 or higher. "

尚、上記の異なる発明の実施の形態の構成の各々に対し、本発明の実施の形態にて記載した構成を適宜組み合わせてもよい。 Note that the configurations described in the embodiments of the present invention may be appropriately combined with each of the configurations of the different embodiments of the invention described above.

6.まとめ
以上、詳細に説明したように本発明によれば、有機物、アンモニアおよび溶解性塩類を含有する被処理物を、低廉な設備コストおよび操業コストで処理可能である。
6. Summary As described in detail above, according to the present invention, it is possible to treat an object containing organic substances, ammonia and soluble salts at low equipment and operating costs.

以下、実施例を参照しながら本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples.

(実施例1)
ごみ処理埋立地の浸出水を実施例試料として得た。前記ごみ処理埋立地中にはメタン細菌が存在することを確認しており、前記浸出水は、メタン発酵を受けた消化液である。当該消化液試料の性状および組成を表1の「実施例消化液欄」に示す。
(Example 1)
Landfill leachate was obtained as an example sample. The presence of methanobacteria has been confirmed in the landfill site, and the leachate is digestive fluid that has undergone methane fermentation. The properties and composition of the digestive juice sample are shown in Table 1, "Column of Example Digestive Juice".

当該消化液試料を、図3に模式図を示すSBR槽50、蒸発濃縮設備用清澄池60、および蒸発濃縮設備70を有する一連の装置により処理した。以下、図3に示す装置を参照しながら、実施例1を説明する。 The digested liquid sample was processed by a series of apparatuses having an SBR tank 50, a clarification pond 60 for an evaporative concentration facility, and an evaporative concentration facility 70, the schematic diagram of which is shown in FIG. The first embodiment will be described below with reference to the apparatus shown in FIG.

80mの消化液試料51を、容積1000mのSBR槽50(スラッジボリューム40%)に供した。当該供給直後におけるSBR槽50中の液体中の溶存酸素濃度は0ppmだった。 A digested liquid sample 51 of 80 m 3 was supplied to an SBR tank 50 having a volume of 1000 m 3 (sludge volume 40%). The dissolved oxygen concentration in the liquid in the SBR tank 50 immediately after the supply was 0 ppm.

前記SBR槽50へ、ブロワー(ポンプ)52を用いて大気53を吹き込んで曝気処理を開始した。当該曝気の終点は、溶存酸素濃度で管理した。処理完了時の溶存酸素濃度は5ppmとした。 Air 53 was blown into the SBR tank 50 using a blower (pump) 52 to start the aeration treatment. The end point of the aeration was controlled by dissolved oxygen concentration. The dissolved oxygen concentration at the completion of treatment was 5 ppm.

曝気処理完了後、曝気を停止して硝化処理水を含む活性汚泥55を沈降させた後、上澄み(硝化処理水試料61)を得た。当該硝化処理水試料61をポンプ54で蒸発濃縮設備用清澄池60に送液した。そして硝化処理水試料61のpH値を測定したところ、8.5であった。なお、pH値の測定には(HORIBA製pH meter F-16)を使用し、測定時の温度が25℃の場合は実測定値を採用し、25℃でない場合はpH測定装置内蔵の校正機能により25℃でのpH値を求めた。 After the aeration treatment was completed, the aeration was stopped to allow the activated sludge 55 containing the nitrification treated water to settle, and then the supernatant (nitrification treated water sample 61) was obtained. The nitrification-treated water sample 61 was sent by the pump 54 to the clear pond 60 for evaporative concentration equipment. When the pH value of the nitrified water sample 61 was measured, it was 8.5. The pH value is measured using a HORIBA pH meter F-16. If the temperature at the time of measurement is 25°C, the actual measured value is used. The pH value at 25°C was determined.

当該曝気処理によりアンモニアが硝酸に変換されることから、硝化処理水試料61のpH値は元の8.3から低下すると考えられるが、反対に上昇した。このpH上昇の原因として、曝気処理に付した消化液試料51中の何らかの成分や、SBR槽50中の微生物の影響による(硝酸から窒素への変換が起きた)ことが考えられる。 Since ammonia is converted to nitric acid by the aeration treatment, the pH value of the nitrification-treated water sample 61 is considered to decrease from the original 8.3, but on the contrary, it increased. This pH increase may be caused by some component in the aerated digestive fluid sample 51 or by the influence of microorganisms in the SBR tank 50 (conversion from nitric acid to nitrogen).

当該硝化処理水試料61の性状を表1の「硝化処理水欄」に示す。当該硝化処理水試料61の外観を図2に示す。なお、表1及び表2における硝化処理水等の性状に関する各特性は、以下のように測定した。 The properties of the nitrified water sample 61 are shown in Table 1, "Nitrified water column". The appearance of the nitrified water sample 61 is shown in FIG. In addition, each characteristic regarding the properties of the nitrification-treated water, etc. in Tables 1 and 2 was measured as follows.

TDSは、OrionTM Versa Star ProTM pH/導電率デスクトップ型マルチパラメーターメーターにより、全溶存性固体を測定した。
アンモニア態窒素(NH-N)の濃度は,イオン電極法(OrionTM Versa Star ProTM,Thermo fisher製)で測定した。
CODは,ニクロム酸法(CODCr)により測定した。
全無機炭素(TIC)は,TOC計(TOC-L,島津製作所製)により全炭素及び全有機炭素を測定し、これらの差分をとることで求めた。
BODは、JIS K 0102に定める方法に準拠して測定した。
硫化水素は、酢酸カドミウム法により測定した。
硫酸イオン及び塩化物イオンは、イオンクロマトグラフィー法により測定した。
金属元素(カルシウムイオン及びナトリウムイオン)は,誘導結合プラズマ発光分光装置(ICP-AES, Thermo fisher製 ICAP-7000)により測定した。
TDS was measured on total dissolved solids with an Orion Versa Star Pro pH/Conductivity desktop multi-parameter meter.
The concentration of ammonium nitrogen (NH 3 —N) was measured by an ion electrode method (Orion TM Versa Star Pro TM , manufactured by Thermo Fisher).
COD was measured by the Nichromic acid method (COD Cr ).
Total inorganic carbon (TIC) was obtained by measuring total carbon and total organic carbon with a TOC meter (TOC-L, manufactured by Shimadzu Corporation) and taking the difference between them.
BOD was measured according to the method defined in JIS K 0102.
Hydrogen sulfide was measured by the cadmium acetate method.
Sulfate and chloride ions were determined by ion chromatography.
Metal elements (calcium ions and sodium ions) were measured by an inductively coupled plasma emission spectrometer (ICP-AES, ICAP-7000 manufactured by Thermo fisher).

本実施例において、蒸発濃縮設備70として株式会社ササクラ製のVVCC-90を用いた。本装置の伝熱管71はチタン製、蒸発缶72はSUS316L製である。加えて、本装置にはヒートポンプ73が搭載されており、蒸発した蒸気を圧縮し、潜熱回収可能である。回収された熱は、再度上澄み液の加熱あるいは蒸発熱として再利用される。 In this example, VVCC-90 manufactured by Sasakura Co., Ltd. was used as the evaporative concentration equipment 70 . The heat transfer tube 71 of this device is made of titanium, and the evaporator 72 is made of SUS316L. In addition, the device is equipped with a heat pump 73 to compress the evaporated vapor and recover latent heat. The recovered heat is reused for heating the supernatant again or as evaporation heat.

本装置の運転条件に関して、蒸発缶72内の真空度は20kPa abs、保有液74の温度は65℃~70℃とした。保有液74の成分が濃縮されることによる沸点上昇を8℃以内で管理した。濃縮水試料75の抜き出しは保有液74の比重で管理し、比重1.1kg/Lとなった時点で濃縮液を排出し、連続的に処理を行なった。
本装置により得られた凝縮水試料76の組成を、表1の「凝縮水欄」に示す。
Regarding the operating conditions of this apparatus, the degree of vacuum in the evaporator 72 was set to 20 kPa abs, and the temperature of the retained liquid 74 was set to 65°C to 70°C. The increase in boiling point due to the concentration of the components of the retained liquid 74 was controlled within 8°C. The extraction of the concentrated water sample 75 was controlled by the specific gravity of the retained liquid 74, and when the specific gravity reached 1.1 kg/L, the concentrated liquid was discharged and treated continuously.
The composition of the condensed water sample 76 obtained by this apparatus is shown in Table 1, "Condensed water column".

当該凝縮水試料76の平均的な濃縮倍率は12体積倍であった。そして、凝縮水試料76のTDSは233ppm、CODは100ppm未満に減少した。また、凝縮水試料76のpH値は7.3であり、凝縮水試料76は付加的な後処理を施すことなく、放流可能な水質まで浄化された。当該凝縮水試料76の外観を図2に示す。硝化処理水試料61の着色成分は濃縮水試料75側に固定され、凝縮水試料76は無色透明であった。 The average concentration ratio of the condensed water sample 76 was 12 times by volume. The TDS of the condensed water sample 76 was then reduced to 233 ppm and the COD to less than 100 ppm. Also, the pH value of the condensed water sample 76 was 7.3, and the condensed water sample 76 was purified to a water quality capable of being discharged without additional post-treatment. The appearance of the condensed water sample 76 is shown in FIG. The colored components of the nitrified water sample 61 were fixed on the concentrated water sample 75 side, and the condensed water sample 76 was colorless and transparent.

一方、本装置により浄化されたTDS、アンモニア、COD成分は濃縮水試料75中に固定された。本装置により得られた濃縮水試料75の組成を、表1の「濃縮水欄」に示す。 On the other hand, the TDS, ammonia, and COD components purified by this device were fixed in the concentrated water sample 75 . The composition of the concentrated water sample 75 obtained by this apparatus is shown in the "concentrated water column" in Table 1.

表1に示す結果より、濃縮水試料75のpH値は9.6まで上昇していた。当該濃縮水試料75のpHが常に中性以上、特に9.0以上に維持されている結果、濃縮水試料75に含まれるClイオンによる本装置内の腐食は確認されなかった。 From the results shown in Table 1, the pH value of the concentrated water sample 75 increased to 9.6. As a result of maintaining the pH of the concentrated water sample 75 at a neutral level or higher, particularly at 9.0 or higher, no corrosion in the apparatus due to Cl - ions contained in the concentrated water sample 75 was confirmed.

当該濃縮水試料75の外観を図2に示す。 The appearance of the concentrated water sample 75 is shown in FIG.

本装置により、上述した濃縮操作を連続的に行なうと伝熱管71表面へのスケール沈着と総括伝熱係数の低下を確認した。しかし、当該スケールの成分は炭酸カルシウムであり、10重量%スルファミン酸水溶液で容易に洗浄除去することが可能であった。 It was confirmed that scale deposition on the surface of the heat transfer tube 71 and reduction in the overall heat transfer coefficient were observed when the concentration operation described above was continuously performed using this apparatus. However, the component of the scale was calcium carbonate, which could be easily removed by washing with a 10% by weight sulfamic acid aqueous solution.

(比較例1)
ごみ処理埋立地の浸出水を比較例試料として得た。前記ごみ処理埋立地中にはメタン細菌が存在することを確認しており、前記浸出水は、メタン発酵を受けた消化液である。当該消化液試料の性状および組成を表2の「比較例消化液欄」に示す。
(Comparative example 1)
Landfill leachate was obtained as a comparative sample. The presence of methanobacteria has been confirmed in the landfill site, and the leachate is digestive fluid that has undergone methane fermentation. The properties and composition of the digestive juice sample are shown in Table 2, "Comparative Digestive Juice Column".

比較例1の消化液試料をSBR汚泥槽に供することなく、直接、実施例1にて説明した蒸発濃縮装置へ供した。 The digestive fluid sample of Comparative Example 1 was directly supplied to the evaporative concentration apparatus described in Example 1 without being supplied to the SBR sludge tank.

本装置の運転条件は、実施例1と同様とした。 The operating conditions of this device were the same as in Example 1.

得られた凝縮水試料の組成を、表2の「凝縮水欄」に示す。平均的な濃縮倍率は13体積倍であった。 The composition of the obtained condensed water sample is shown in Table 2, "Condensed water column". The average concentration ratio was 13 times by volume.

本装置により、凝縮水のTDSは95%、CODは96%減少した。しかし、アンモニアは凝縮水中に300ppm程度残存し、アンモニアの除去率は42%であった。凝縮水のpH値は9.4であった。 This device reduced the TDS of the condensed water by 95% and the COD by 96%. However, about 300 ppm of ammonia remained in the condensed water, and the removal rate of ammonia was 42%. The pH value of the condensed water was 9.4.

以上より、凝縮水試料は放流可能な水質まで浄化されなかったことが判明した。一方、濃縮水試料の組成を、表2の「濃縮水欄」に示す。 From the above, it was found that the condensed water sample was not purified to a water quality that could be discharged. On the other hand, the composition of the concentrated water sample is shown in the "concentrated water column" in Table 2.

表2に示す結果より、濃縮水試料のpH値は6.0まで減少していた。濃縮水試料のpHがこのような酸性領域の場合、腐食性が発現するので、蒸発濃縮装置の材質を耐食性の素材とする必要があることも判明した。 From the results shown in Table 2, the pH value of the concentrated water sample decreased to 6.0. When the pH of the concentrated water sample is in such an acidic range, corrosiveness develops, so it was found that the material of the evaporative concentration device must be a corrosion-resistant material.

Figure 0007226731000001
Figure 0007226731000001
Figure 0007226731000002
Figure 0007226731000002

10:被処理物
20:メタン発酵工程
21:メタン発酵処理水
22:バイオガス発電、等
23:廃水
30:好気性生物処理工程
31:硝化処理水
32:pH調整
40:蒸発濃縮工程
41:凝縮水
42:濃縮水
50:SBR槽
51:消化液
52:ブロワー
53:大気
54:ポンプ
55:活性汚泥
60:蒸発濃縮設備用清澄池
61:硝化処理水
70:蒸発濃縮設備
71:伝熱管
72:蒸発缶
73:ヒートポンプ
74:保有液
75:濃縮水
76:凝縮水
P :ポンプ
pH:ペーハー測定
DO:溶存酸素測定
10: Material to be treated 20: Methane fermentation process 21: Methane fermentation treated water 22: Biogas power generation, etc. 23: Waste water 30: Aerobic biological treatment process 31: Nitrified water 32: pH adjustment 40: Evaporative concentration process 41: Condensation Water 42: Concentrated water 50: SBR tank 51: Digestive liquid 52: Blower 53: Air 54: Pump 55: Activated sludge 60: Evaporative concentration facility clarifier 61: Nitrified water 70: Evaporative concentration facility 71: Heat transfer tube 72: Evaporator 73: Heat pump 74: Retained liquid 75: Concentrated water 76: Condensed water P: Pump pH: pH measurement DO: Dissolved oxygen measurement

Claims (9)

有機物、アンモニア、および溶解性塩類を含有する被処理物の処理方法であって、
メタン発酵法により、前記被処理物中の有機物を分解して、Cl - 濃度が6000~50000ppmであるメタン発酵処理水を得るメタン発酵工程と、
好気性生物の作用により、前記メタン発酵処理水中のアンモニアを酸化して硝酸とすると共に、有機物を分解して硝化処理水を得る好気性生物処理工程と、
前記硝化処理水を蒸発濃縮して、濃縮水と凝縮水とを得る蒸発濃縮工程と、
を有することを特徴とする被処理物の処理方法。
A method for treating an object to be treated containing organic matter, ammonia, and soluble salts,
a methane fermentation step of decomposing organic matter in the material to be treated by a methane fermentation method to obtain methane fermentation-treated water having a Cl concentration of 6000 to 50000 ppm;
an aerobic biological treatment step of oxidizing ammonia in the methane fermentation-treated water into nitric acid by the action of aerobic organisms and decomposing organic matter to obtain nitrification-treated water;
an evaporative concentration step of evaporatively concentrating the nitrification-treated water to obtain concentrated water and condensed water;
A processing method for an object to be processed, comprising:
前記メタン発酵処理水中の硫酸イオン濃度が300~10000ppmであり、The sulfate ion concentration in the methane fermentation treated water is 300 to 10000 ppm,
前記硝化処理水中のCOCO in the nitrified water 33 2-2- の量が全無機炭酸(TIC)として180~900ppmであることを特徴とする請求項1に記載の被処理物の処理方法。The method for treating an object to be treated according to claim 1, wherein the amount of is 180 to 900 ppm as total inorganic carbonic acid (TIC).
回分式活性汚泥法により前記好気性生物処理工程を実施することを特徴とする請求項1または2に記載の被処理物の処理方法。 3. The method for treating an object to be treated according to claim 1, wherein the aerobic biological treatment step is performed by a batch activated sludge method. 前記蒸発濃縮工程に供する、前記硝化処理水のpH値を8.5以上に調整することを特徴とする請求項1から3のいずれかに記載の被処理物の処理方法。 4. The method for treating an object to be treated according to any one of claims 1 to 3, wherein the pH value of said nitrification treated water to be subjected to said evaporative concentration step is adjusted to 8.5 or higher. 前記メタン発酵処理水中のアンモニア濃度は窒素換算で10~10000ppm、Cl-濃度は6000~50000ppm、CODは10~100000ppm、BODは10~10000ppmであることを特徴とする請求項1から4のいずれかに記載の被処理物の処理方法。 5. The methane fermentation treated water has an ammonia concentration of 10 to 10,000 ppm in terms of nitrogen, a Cl - concentration of 6,000 to 50,000 ppm, a COD of 10 to 100,000 ppm, and a BOD of 10 to 10,000 ppm. 3. The method for processing the object to be processed according to . 前記好気性生物処理工程により、アンモニア濃度が窒素換算で10ppm以下の硝化処理水を得ることを特徴とする請求項1から5のいずれかに記載の被処理物の処理方法。 6. The method for treating an object to be treated according to any one of claims 1 to 5, wherein the aerobic biological treatment step obtains nitrified water having an ammonia concentration of 10 ppm or less in terms of nitrogen. 前記硝化処理水へアルカリ物質を添加することで硝化処理水のpH値を8.5以上に調整することを特徴とする請求項4から6のいずれかに記載の被処理物の処理方法。 7. The method for treating an object to be treated according to any one of claims 4 to 6, wherein the pH value of the nitrified water is adjusted to 8.5 or higher by adding an alkaline substance to the nitrified water. アンモニア濃度が窒素換算で10~10000ppm、Cl-濃度は6000~50000ppm、CODは10~100000ppm、BODは10~10000ppmの被処理水の処理方法であって、
好気性生物の作用により、前記被処理水中のアンモニアを酸化して硝酸とすると共に、有機物を分解して硝化処理水を得る好気性生物処理工程と、
前記硝化処理水を蒸発濃縮して、濃縮水と凝縮水とを得る蒸発濃縮工程とを有し、
前記蒸発濃縮工程に供する前記硝化処理水のpH値を8.5以上に調整することを特徴とする被処理水の処理方法。
A method for treating water to be treated having an ammonia concentration of 10 to 10,000 ppm in terms of nitrogen, a Cl - concentration of 6,000 to 50,000 ppm, a COD of 10 to 100,000 ppm, and a BOD of 10 to 10,000 ppm,
an aerobic biological treatment step of oxidizing ammonia in the water to be treated into nitric acid by the action of aerobic organisms and decomposing organic matter to obtain nitrified water;
an evaporative concentration step of evaporatively concentrating the nitrification-treated water to obtain concentrated water and condensed water;
A method for treating water to be treated, wherein the pH value of the nitrification-treated water to be subjected to the evaporative concentration step is adjusted to 8.5 or higher.
前記被処理水中の硫酸イオン濃度が300~10000ppmであり、The sulfate ion concentration in the water to be treated is 300 to 10000 ppm,
前記硝化処理水中のCOCO in the nitrified water 33 2-2- の量が全無機炭酸(TIC)として180~900ppmであることを特徴とする請求項8に記載の被処理水の処理方法。The method for treating water to be treated according to claim 8, wherein the amount of is 180 to 900 ppm as total inorganic carbonic acid (TIC).
JP2018197802A 2018-10-19 2018-10-19 Processing method of the object to be processed Active JP7226731B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018197802A JP7226731B2 (en) 2018-10-19 2018-10-19 Processing method of the object to be processed
PCT/JP2019/039971 WO2020080244A1 (en) 2018-10-19 2019-10-10 Method for treating object to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018197802A JP7226731B2 (en) 2018-10-19 2018-10-19 Processing method of the object to be processed

Publications (2)

Publication Number Publication Date
JP2020062631A JP2020062631A (en) 2020-04-23
JP7226731B2 true JP7226731B2 (en) 2023-02-21

Family

ID=70283385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018197802A Active JP7226731B2 (en) 2018-10-19 2018-10-19 Processing method of the object to be processed

Country Status (2)

Country Link
JP (1) JP7226731B2 (en)
WO (1) WO2020080244A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021002091T5 (en) 2020-03-31 2023-05-25 Denso Corporation PRESENTATION CONTROL DEVICE AND PRESENTATION CONTROL PROGRAM
CN114671519B (en) * 2022-03-09 2023-06-06 南京大学 Method for repairing acidification system of anaerobic reactor under high-inflow COD concentration condition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025051A (en) 2002-06-26 2004-01-29 Toshiba Corp Organic wastewater treatment method and organic wastewater treatment apparatus
JP2007098272A (en) 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
JP2008136958A (en) 2006-12-04 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment system
JP2008173614A (en) 2007-01-22 2008-07-31 Asahi Breweries Ltd Wastewater treatment method and apparatus
JP2012061435A (en) 2010-09-16 2012-03-29 Swing Corp Organic wastewater treatment apparatus and treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834112B1 (en) * 1970-08-10 1973-10-18
JPS58112092A (en) * 1981-12-25 1983-07-04 Kubota Ltd Treatment of excretion
JPS59392A (en) * 1982-06-25 1984-01-05 Ebara Infilco Co Ltd Treatment of organic waste liquor
JPS60139398A (en) * 1983-12-28 1985-07-24 Nishihara Environ Sanit Res Corp Treatment of high concentration waste water
JPH10328696A (en) * 1997-05-30 1998-12-15 Mitsubishi Electric Corp Method of suppressing production of scale on part for heating water and heating device utilizing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025051A (en) 2002-06-26 2004-01-29 Toshiba Corp Organic wastewater treatment method and organic wastewater treatment apparatus
JP2007098272A (en) 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus
JP2008136958A (en) 2006-12-04 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation treatment system
JP2008173614A (en) 2007-01-22 2008-07-31 Asahi Breweries Ltd Wastewater treatment method and apparatus
JP2012061435A (en) 2010-09-16 2012-03-29 Swing Corp Organic wastewater treatment apparatus and treatment method

Also Published As

Publication number Publication date
WO2020080244A1 (en) 2020-04-23
JP2020062631A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
Ye et al. A critical review on ammonium recovery from wastewater for sustainable wastewater management
Xiong et al. Recovery of NH3-N from mature leachate via negative pressure steam-stripping pretreatment and its benefits on MBR systems: A pilot scale study
Ye et al. Full-scale treatment of landfill leachate by using the mechanical vapor recompression combined with coagulation pretreatment
Tałałaj et al. Treatment of young and stabilized landfill leachate by integrated sequencing batch reactor (SBR) and reverse osmosis (RO) process
EP2998277B1 (en) Method for treating biological materials associated with the wastewater purification cycle
EP2699519A1 (en) Methods and systems for treating water streams comprising ammonium
US20140157846A1 (en) Methods and systems for treating bioreactor wastewater streams
CN110835199A (en) Electroplating wastewater zero-discharge treatment system and treatment process thereof
CN107055927A (en) A kind of high saliferous difficult degradation saccharin industrial wastewater waste gas processing method and device
CN105198175A (en) Treatment method of dimethoate pesticide production wastewater
JP7226731B2 (en) Processing method of the object to be processed
CN108218155A (en) A kind of concentrate with high salt divides salt processing method and system
CN210620514U (en) Flexible landfill leachate treatment system
CN202449962U (en) System for treating high-salinity wastewater from chemical industry
CN112707379A (en) Method for treating high ammonia nitrogen wastewater and recovering ammonia and magnesium ammonium phosphate reactor suitable for method
CN112919709A (en) Process for treating high-salt high-concentration organic wastewater
CN107814461A (en) The processing unit and method of a kind of cyanide containing wastewater
KR101948185B1 (en) Treatment of reverse osmosis concentrated water using Electro-Dialysis system and vacuum evaporation drying system
CN112010513A (en) High-salt-content organic wastewater recycling treatment system and treatment method
Huang et al. Complex treatment of the ammonium nitrogen wastewater from rare-earth separation plant
CN107352744A (en) Kitchen garbage slurry fermentation waste water processing method
CN111170554A (en) A processing apparatus for waste water of high organic matter of high salt
RU2207987C2 (en) Method for purifying drain water of solid domestic waste polygons
CN107365013B (en) Cyanide-containing wastewater treatment method, treatment system and application
CN115259518A (en) System and method for treating percolate concentrated solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230201

R150 Certificate of patent or registration of utility model

Ref document number: 7226731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150