Nothing Special   »   [go: up one dir, main page]

JP7286932B2 - magnetic sensor - Google Patents

magnetic sensor Download PDF

Info

Publication number
JP7286932B2
JP7286932B2 JP2018168384A JP2018168384A JP7286932B2 JP 7286932 B2 JP7286932 B2 JP 7286932B2 JP 2018168384 A JP2018168384 A JP 2018168384A JP 2018168384 A JP2018168384 A JP 2018168384A JP 7286932 B2 JP7286932 B2 JP 7286932B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
magnetoresistive
generating conductor
field generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018168384A
Other languages
Japanese (ja)
Other versions
JP2020041869A (en
Inventor
圭 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018168384A priority Critical patent/JP7286932B2/en
Publication of JP2020041869A publication Critical patent/JP2020041869A/en
Application granted granted Critical
Publication of JP7286932B2 publication Critical patent/JP7286932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、複数の磁気抵抗効果素子を備える磁気センサに関する。 The present invention relates to a magnetic sensor including a plurality of magnetoresistive elements.

下記特許文献1は、微小な磁界の検出が可能な磁界検出センサを開示する。この磁界検出センサは、ブリッジ回路を成す4つの磁気抵抗効果素子と、磁性体とを備える。当該4つの磁気抵抗効果素子の固定磁化方向は互いに同じである。磁性体は、ブリッジ回路からみて垂直方向の検出対象磁界を集磁し、集磁された当該検出磁界を、当該ブリッジ回路を構成する4つの磁気抵抗効果素子が有する固定磁化方向と概ね平行になる方向へ変化させる。ブリッジ回路からの差動出力は、差動演算回路に入力され、差動演算回路は、磁界発生導体に帰還電流を流す。帰還電流が流れる磁界発生導体は、4つの磁気抵抗効果素子に対して、検出対象磁界の向きとは逆方向の磁界を発生させる。帰還電流を測定することにより、検出対象磁界が測定される。 Patent Literature 1 listed below discloses a magnetic field detection sensor capable of detecting minute magnetic fields. This magnetic field detection sensor includes four magnetoresistive elements forming a bridge circuit and a magnetic body. The fixed magnetization directions of the four magnetoresistive elements are the same. The magnetic body collects the magnetic field to be detected that is perpendicular to the bridge circuit, and makes the collected detection magnetic field substantially parallel to the fixed magnetization direction of the four magnetoresistive elements that constitute the bridge circuit. change direction. A differential output from the bridge circuit is input to the differential arithmetic circuit, and the differential arithmetic circuit causes a feedback current to flow through the magnetic field generating conductors. The magnetic field generating conductor through which the feedback current flows generates a magnetic field in the direction opposite to the direction of the magnetic field to be detected for the four magnetoresistive elements. The magnetic field to be detected is measured by measuring the feedback current.

特開2015-219061号公報JP 2015-219061 A

特許文献1の磁気センサでは、4つの磁気抵抗効果素子に同方向あるいは同相のバイアス磁界(外乱磁界等の非検出対象磁界)が印加されても、4つの磁気抵抗効果素子の抵抗変化が同じとなり、ブリッジ回路としてはバイアス磁界を検出しないようになっている。しかし、バイアス磁界は、磁気抵抗効果素子の動作点を変化させ、磁気センサの出力に影響を及ぼす。すなわち、磁気抵抗効果素子は、固定層磁化方向の磁界強度が一定値以上に大きくなると磁界変化に対する抵抗値変化(感度)が低下するため、バイアス磁界が大きくなると、磁気センサとしての感度が低下し、検出対象磁界に対して想定した出力が得られなくなるという問題があった(図17及び図18も参照)。 In the magnetic sensor of Patent Document 1, even if bias magnetic fields (non-detection target magnetic fields such as disturbance magnetic fields) are applied to the four magnetoresistive elements in the same direction or phase, the resistance changes of the four magnetoresistive elements are the same. , the bridge circuit does not detect the bias magnetic field. However, the bias magnetic field changes the operating point of the magnetoresistive element and affects the output of the magnetic sensor. That is, when the magnetic field strength in the magnetization direction of the pinned layer increases above a certain value, the magnetoresistive effect element loses its resistance value change (sensitivity) to changes in the magnetic field. , there is a problem that an expected output cannot be obtained with respect to the magnetic field to be detected (see also FIGS. 17 and 18).

本発明はこうした状況を認識してなされたものであり、その目的は、バイアス磁界の影響を抑制することの可能な磁気センサを提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in recognition of such circumstances, and an object of the present invention is to provide a magnetic sensor capable of suppressing the influence of a bias magnetic field.

本発明のある態様は、磁気センサである。この磁気センサは、
検出対象の第1磁界が印加される第1及び第2磁気抵抗効果素子であって固定層磁化方向が互いに等しい第1及び第2磁気抵抗効果素子を含む磁気検出部と、
高電圧端子と低電圧端子との間に前記磁気検出部と直列に接続された、前記磁気検出部に印加される磁界による抵抗値変化が抑制された又は前記磁気検出部に印加される磁界による抵抗値変化が無い抵抗素子と、
前記磁気検出部の抵抗値と前記抵抗素子の抵抗値との比率に応じた電流が流れる第1磁界発生導体と、を備え、
前記第1磁界が前記第1及び第2磁気抵抗効果素子の位置において前記固定層磁化方向と平行かつ互いに反対向きの磁界成分を持ち、
前記第1磁界発生導体に流れる電流により発生する磁界が前記第1及び第2磁気抵抗効果素子に印加され、前記第1及び第2磁気抵抗効果素子の位置において前記固定層磁化方向と平行かつ互いに同じ向きの磁界成分を持つバイアス磁界による前記第1及び第2磁気抵抗効果素子の抵抗値変化が抑制される。
One aspect of the present invention is a magnetic sensor. This magnetic sensor
a magnetic detection unit including first and second magnetoresistive effect elements to which the first magnetic field to be detected is applied and whose pinned layer magnetization directions are the same;
The magnetic field applied to the magnetic detection unit is connected in series between the high-voltage terminal and the low-voltage terminal, and the resistance value change due to the magnetic field applied to the magnetic detection unit is suppressed or due to the magnetic field applied to the magnetic detection unit. A resistive element whose resistance value does not change,
a first magnetic field generating conductor through which a current corresponding to a ratio between the resistance value of the magnetic detection unit and the resistance value of the resistance element flows,
the first magnetic field has magnetic field components parallel to the pinned layer magnetization direction and in opposite directions at the positions of the first and second magnetoresistive elements;
A magnetic field generated by a current flowing through the first magnetic field generating conductor is applied to the first and second magnetoresistive elements, and parallel to the magnetization direction of the pinned layer and to each other at the positions of the first and second magnetoresistive elements. A change in the resistance values of the first and second magnetoresistive elements due to a bias magnetic field having magnetic field components in the same direction is suppressed.

前記第1磁界発生導体は、前記磁気検出部と前記抵抗素子との相互接続点と中電圧端子との間に設けられてもよい。 The first magnetic field generating conductor may be provided between an interconnection point between the magnetic detection section and the resistive element and a medium voltage terminal.

前記磁気検出部と前記抵抗素子との相互接続点の電圧と、中電圧端子の電圧と、の差を増幅する第1差動増幅器を備え、
前記第1磁界発生導体は、前記第1差動増幅器の出力端子と前記中電圧端子との間に設けられてもよい
a first differential amplifier that amplifies a difference between a voltage at an interconnection point between the magnetic detection unit and the resistance element and a voltage at a medium voltage terminal;
The first magnetic field generating conductor may be provided between the output terminal of the first differential amplifier and the medium voltage terminal.

前記抵抗素子は、磁気シールドされた磁気抵抗効果素子であってもよい。 The resistive element may be a magnetically shielded magnetoresistive element.

前記抵抗素子は、固定抵抗であってもよい。 The resistive element may be a fixed resistor.

前記磁気検出部の出力電圧が入力される第2差動増幅器と、
前記第2差動増幅器が出力する第1負帰還電流が流れることにより、前記第1及び第2磁気検出素子が検出する前記第1磁界を相殺する第2磁界を前記第1及び第2磁気検出素子に印加する第2磁界発生導体と、を備えてもよい。
a second differential amplifier to which the output voltage of the magnetic detection unit is input;
The flow of the first negative feedback current output by the second differential amplifier causes the first and second magnetic detection elements to detect a second magnetic field that cancels the first magnetic field detected by the first and second magnetic detection elements. and a second magnetic field generating conductor for applying to the element.

検出対象の第1磁界が前記第1及び第2磁気抵抗効果素子の位置において互いに反対向きの磁界成分を持つように前記第1磁界の向きを変化させる磁性体を備えてもよい。 A magnetic body may be provided that changes the direction of the first magnetic field so that the first magnetic field to be detected has magnetic field components in opposite directions at the positions of the first and second magnetoresistive elements.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。 Any combination of the above constituent elements, and conversion of expressions of the present invention between methods and systems are also effective as embodiments of the present invention.

本発明によれば、バイアス磁界の影響を抑制することの可能な磁気センサを提供することができる。 According to the present invention, it is possible to provide a magnetic sensor capable of suppressing the influence of a bias magnetic field.

本発明の実施の形態1に係る磁気センサ1Aの概略断面図。1 is a schematic cross-sectional view of a magnetic sensor 1A according to Embodiment 1 of the present invention; FIG. 磁気センサ1Aの概略平面図。FIG. 2 is a schematic plan view of the magnetic sensor 1A; 磁気センサ1Aの第1磁界発生導体75の配線パターン説明図。Wiring pattern explanatory drawing of the 1st magnetic field generation conductor 75 of 1 A of magnetic sensors. 磁気センサ1Aの概略回路図。A schematic circuit diagram of the magnetic sensor 1A. 磁気検出部7に印加されるバイアス磁界、比較例における磁気検出部7の抵抗変化、及び磁気センサ1Aの磁気検出部7の抵抗変化の一例を示すグラフ。7 is a graph showing an example of the bias magnetic field applied to the magnetic detection section 7, the resistance change of the magnetic detection section 7 in the comparative example, and the resistance change of the magnetic detection section 7 of the magnetic sensor 1A. 本発明の実施の形態2に係る磁気センサ1Bの概略断面図。FIG. 2 is a schematic cross-sectional view of a magnetic sensor 1B according to Embodiment 2 of the present invention; 本発明の実施の形態3に係る磁気センサ1Cの概略回路図。The schematic circuit diagram of the magnetic sensor 1C based on Embodiment 3 of this invention. 本発明の実施の形態4に係る磁気センサ1Dの概略断面図。FIG. 10 is a schematic cross-sectional view of a magnetic sensor 1D according to Embodiment 4 of the present invention; 磁気センサ1Dの第2磁界発生導体70の配線パターン説明図。FIG. 4 is a wiring pattern explanatory diagram of the second magnetic field generating conductor 70 of the magnetic sensor 1D. 磁気センサ1Dの概略回路図。Schematic circuit diagram of magnetic sensor 1D. 本発明の実施の形態5に係る磁気センサ1Eの概略断面図。FIG. 10 is a schematic cross-sectional view of a magnetic sensor 1E according to Embodiment 5 of the present invention; 本発明の実施の形態6に係る磁気センサ1Fの概略回路図。FIG. 10 is a schematic circuit diagram of a magnetic sensor 1F according to Embodiment 6 of the present invention; 本発明の実施の形態7に係る磁気センサ1Gの概略回路図。FIG. 11 is a schematic circuit diagram of a magnetic sensor 1G according to Embodiment 7 of the present invention; 本発明の実施の形態8に係る磁気センサ1Hの概略断面図。FIG. 11 is a schematic cross-sectional view of a magnetic sensor 1H according to Embodiment 8 of the present invention; 本発明の実施の形態9に係る磁気センサ1Jの概略断面図。FIG. 11 is a schematic cross-sectional view of a magnetic sensor 1J according to Embodiment 9 of the present invention; 図14及び図15の磁気センサの概略回路図。16 is a schematic circuit diagram of the magnetic sensor of FIGS. 14 and 15; FIG. 磁気抵抗効果素子の固定層磁化方向の磁界強度に対する抵抗値の変化の一例を示す特性図。FIG. 4 is a characteristic diagram showing an example of change in resistance value with respect to magnetic field strength in the magnetization direction of the pinned layer of the magnetoresistive effect element; 磁気抵抗効果素子の固定層磁化方向の磁界強度に対する感度の変化の一例を示す特性図。FIG. 4 is a characteristic diagram showing an example of change in sensitivity of the magnetoresistive element with respect to the magnetic field strength in the magnetization direction of the pinned layer;

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。 Preferred embodiments of the present invention will be described in detail below with reference to the drawings. The same or equivalent constituent elements, members, etc. shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. Moreover, the embodiments are illustrative rather than limiting the invention, and not all features and combinations thereof described in the embodiments are necessarily essential to the invention.

(実施の形態1)
図1~図5を参照し、本発明の実施の形態1に係る磁気センサ1Aについて説明する。図1及び図2において、直交三軸であるXYZ軸を定義する。また、図1及び図2において、検出対象磁界の磁力線を併せて示している。磁気センサ1Aにおいて、第1磁気抵抗効果素子10、第2磁気抵抗効果素子20、第3磁気抵抗効果素子30、及び第4磁気抵抗効果素子40は、第1磁界発生導体75と共に、積層体5に設けられる。積層体5の表面上には、磁性体80が設けられる。図2に示すように、第1磁気抵抗効果素子10と第3磁気抵抗効果素子30は、X方向における位置が互いに等しい。同様に、第2磁気抵抗効果素子20と第4磁気抵抗効果素子40は、X方向における位置が互いに等しい。また、第1磁気抵抗効果素子10と第2磁気抵抗効果素子20は、Y方向における位置が互いに等しい。同様に、第3磁気抵抗効果素子30と第4磁気抵抗効果素子40は、Y方向における位置が互いに等しい。
(Embodiment 1)
A magnetic sensor 1A according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 5. FIG. In FIGS. 1 and 2, XYZ axes, which are three orthogonal axes, are defined. 1 and 2 also show the lines of magnetic force of the magnetic field to be detected. In the magnetic sensor 1</b>A, the first magnetoresistive element 10 , the second magnetoresistive element 20 , the third magnetoresistive element 30 , and the fourth magnetoresistive element 40 are connected together with the first magnetic field generating conductor 75 to the laminate 5 . provided in A magnetic body 80 is provided on the surface of the laminate 5 . As shown in FIG. 2, the positions of the first magnetoresistive element 10 and the third magnetoresistive element 30 in the X direction are equal to each other. Similarly, the second magnetoresistive element 20 and the fourth magnetoresistive element 40 have the same position in the X direction. In addition, the positions of the first magnetoresistive element 10 and the second magnetoresistive element 20 are equal to each other in the Y direction. Similarly, the positions of the third magnetoresistive element 30 and the fourth magnetoresistive element 40 are equal to each other in the Y direction.

図2において、第1磁気抵抗効果素子10及び第3磁気抵抗効果素子30の配置と、第2磁気抵抗効果素子20及び第4磁気抵抗効果素子40の配置と、が線対称となるX方向の中心線をAとする。また、第1磁気抵抗効果素子10及び第2磁気抵抗効果素子20の配置と、第3磁気抵抗効果素子30及び第4磁気抵抗効果素子40の配置と、が線対称となるY方向の中心線をBとする。磁性体80は、磁性体80のX方向の中心線とY方向の中心線がそれぞれAとBに合致する位置に配置されることが好ましい。また、磁性体80は、第1磁気抵抗効果素子10及び第2磁気抵抗効果素子20のY方向側に延在し、かつ、第3磁気抵抗効果素子30と第4磁気抵抗効果素子40の-Y方向側に延在することが好ましい。さらに、磁性体80は、積層体5側の端面がZ方向において第1から第4磁気抵抗効果素子(10、20、30、40)に最も近づいた配置、すなわち積層体5側の端面が積層体5の表面に接触していることが好ましい。このように配置にすることで、検出対象磁界の変化に応じた第1から第4磁気抵抗効果素子(10、20、30、40)の抵抗変化が、効率良く、さらに均等に発生することになる。 In FIG. 2, the arrangement of the first magnetoresistive effect element 10 and the third magnetoresistive effect element 30 and the arrangement of the second magnetoresistive effect element 20 and the fourth magnetoresistive effect element 40 are symmetrical in the X direction. Let A be the center line. Further, the center line in the Y direction where the arrangement of the first magnetoresistive effect element 10 and the second magnetoresistive effect element 20 and the arrangement of the third magnetoresistive effect element 30 and the fourth magnetoresistive effect element 40 are line symmetrical be B. The magnetic body 80 is preferably arranged at a position where the center line in the X direction and the center line in the Y direction of the magnetic body 80 coincide with A and B, respectively. In addition, the magnetic body 80 extends in the Y direction of the first magnetoresistive element 10 and the second magnetoresistive element 20, and also extends between the third magnetoresistive element 30 and the fourth magnetoresistive element . It preferably extends in the Y direction. Further, the magnetic body 80 is arranged such that the end face on the side of the laminated body 5 is closest to the first to fourth magnetoresistance effect elements (10, 20, 30, 40) in the Z direction, that is, the end face on the side of the laminated body 5 is the laminated body. It is preferably in contact with the surface of body 5 . By arranging in this way, the resistance change of the first to fourth magnetoresistive effect elements (10, 20, 30, 40) according to the change of the magnetic field to be detected is efficiently and evenly generated. Become.

積層体5内における、第1磁界発生導体75を形成する層は、第1から第4磁気抵抗効果素子(10、20、30、40)が形成される層よりも下層(-Z方向側の層)であることが好ましい。第1磁界発生導体75を第1から第4磁気抵抗効果素子(10、20、30、40)が形成される層より下層に配置することで、磁性体80と第1から第4磁気抵抗効果素子(10、20、30、40)のZ方向の距離を近づけることができ、これにより検出対象磁界の変化に第1から第4磁気抵抗効果素子(10、20、30、40)が効率良く応答可能になる。磁性体80は軟磁性体であってもよい。 The layer forming the first magnetic field generating conductor 75 in the laminate 5 is a lower layer (on the -Z direction side) than the layer forming the first to fourth magnetoresistive elements (10, 20, 30, 40). layer). By arranging the first magnetic field generating conductor 75 below the layer in which the first to fourth magnetoresistance effect elements (10, 20, 30, 40) are formed, the magnetic body 80 and the first to fourth magnetoresistance effects The distance of the elements (10, 20, 30, 40) in the Z direction can be shortened, so that the first to fourth magnetoresistive elements (10, 20, 30, 40) can efficiently respond to changes in the magnetic field to be detected. become responsive. The magnetic body 80 may be a soft magnetic body.

磁性体80は、Z方向の検出対象磁界を集磁し、集磁した検出対象磁界を、第1から第4磁気抵抗効果素子(10、20、30、40)が有する固定層磁化方向(X方向)と概ね平行になる方向へ変化させる。検出対象磁界は、磁性体80が存在しなければ全体的にZ方向と平行な磁界であり、磁性体80があることにより部分的に曲げられて、第1から第4磁気抵抗効果素子(10、20、30、40)の位置においてX方向の成分を持つようになっている。磁性体80により、第1磁気抵抗効果素子10及び第3磁気抵抗効果素子30の位置における検出対象磁界のX成分と、第2磁気抵抗効果素子20及び第4磁気抵抗効果素子40の位置における検出対象磁界のX成分とは、互いに反対向きとなり、検出対象磁界が交流の場合には互いに位相が180°異なる差動磁界となる(逆位相となる)。 The magnetic body 80 collects the magnetic field to be detected in the Z direction, and distributes the collected magnetic field to be detected in the magnetization direction (X direction). The magnetic field to be detected is a magnetic field parallel to the Z direction as a whole if the magnetic body 80 does not exist, and is partially bent by the presence of the magnetic body 80 to form the first to fourth magnetoresistive elements (10 , 20, 30, 40) have components in the X direction. By the magnetic body 80, the X component of the magnetic field to be detected at the positions of the first magnetoresistive effect element 10 and the third magnetoresistive effect element 30 and the detection at the positions of the second magnetoresistive effect element 20 and the fourth magnetoresistive effect element 40 The X component of the target magnetic field is in the opposite direction to each other, and when the magnetic field to be detected is an alternating current, a differential magnetic field with a phase difference of 180 degrees (opposite phase).

図3は、磁気センサ1Aの第1磁界発生導体75の配線パターン説明図である。図3において、積層体5内の第1磁界発生導体75の配線パターンを実線で示している。第1磁界発生導体75は、第1から第4磁気抵抗効果素子(10、20、30、40)と同じ積層体5内に形成される。図3の例では、第1磁界発生導体75は、ミアンダ状の導体パターンとしている。具体的には、第1磁界発生導体75は、第4磁気抵抗効果素子40と同じX方向位置かつ第4磁気抵抗効果素子40の-Y方向側を一端として+Y方向に延び、第2磁気抵抗効果素子20の+Y方向側に至り、そこから+X方向に延びて磁性体80と同じX方向位置に至り、そこから-Y方向に延びて磁性体80の-Y方向側に至り、そこから+X方向に延びて第3磁気抵抗効果素子30と同じX方向位置に至り、そこから+Y方向に延びて第1磁気抵抗効果素子10の+Y方向側に至る(第1磁気抵抗効果素子10と同じX方向位置かつ第1磁気抵抗効果素子10の+Y方向側を他端とする)。第1磁界発生導体75は、各磁気抵抗効果素子の位置におけるバイアス磁界のX方向成分(感磁方向成分)を相殺する磁界成分を有する補正磁界を発生する。本実施の形態では、バイアス磁界は、磁性体80が存在しなければ任意方向の一様磁界であるものとし、バイアス磁界のX方向成分を補正磁界により相殺する。ここで、相殺は、好ましくは略0にすることであるが、一部のみを打ち消すことであってもよい。 FIG. 3 is a wiring pattern explanatory diagram of the first magnetic field generating conductor 75 of the magnetic sensor 1A. In FIG. 3, the wiring pattern of the first magnetic field generating conductors 75 in the laminate 5 is indicated by solid lines. The first magnetic field generating conductor 75 is formed in the same laminate 5 as the first to fourth magnetoresistive elements (10, 20, 30, 40). In the example of FIG. 3, the first magnetic field generating conductor 75 has a meandering conductor pattern. Specifically, the first magnetic field generating conductor 75 extends in the +Y direction with one end at the same X direction position as the fourth magnetoresistive element 40 and the -Y direction side of the fourth magnetoresistive element 40, and the second magnetoresistive element It reaches the +Y direction side of the effect element 20, extends in the +X direction from there, reaches the same X direction position as the magnetic body 80, extends in the -Y direction from there, reaches the -Y direction side of the magnetic body 80, and from there +X. direction to reach the same X-direction position as the third magnetoresistive effect element 30, and then extend in the +Y direction to reach the +Y-direction side of the first magnetoresistive effect element 10 (the same X direction as the first magnetoresistive effect element 10). The direction position and the +Y direction side of the first magnetoresistive effect element 10 is the other end). The first magnetic field generating conductor 75 generates a correction magnetic field having a magnetic field component that cancels out the X direction component (magnetosensitive direction component) of the bias magnetic field at the position of each magnetoresistive effect element. In this embodiment, the bias magnetic field is assumed to be a uniform magnetic field in an arbitrary direction if the magnetic body 80 does not exist, and the X-direction component of the bias magnetic field is canceled by the correction magnetic field. Here, the cancellation is preferably approximately 0, but may be partial cancellation.

図4は、磁気センサ1Aの概略回路図である。磁気センサ1Aの磁気検出部7は、第1磁気抵抗効果素子10、第2磁気抵抗効果素子20、第3磁気抵抗効果素子30、及び第4磁気抵抗効果素子40からなるブリッジ回路である。第1から第4磁気抵抗効果素子(10、20、30、40)の固定層磁化方向は同じ(+X方向)である。固定層磁化方向と平行な方向が、各磁気抵抗効果素子の感磁方向である。抵抗Rは、磁気検出部に印加される磁界による抵抗値変化が抑制された又は前記磁気検出部に印加される磁界による抵抗値変化が無い抵抗素子である。抵抗Rは、固定抵抗であってもよいし、磁気シールドされた磁気抵抗効果素子であってもよい。抵抗Rは、磁気抵抗効果素子である場合、第1から第4磁気抵抗効果素子(10、20、30、40)と同じ温度特性のものであるとよい。抵抗Rの抵抗値は、バイアス磁界が存在しない場合における磁気検出部7の抵抗値、すなわち第1から第4磁気抵抗効果素子(10、20、30、40)の合成抵抗値と一致する。 FIG. 4 is a schematic circuit diagram of the magnetic sensor 1A. The magnetic detection unit 7 of the magnetic sensor 1A is a bridge circuit composed of a first magnetoresistive element 10, a second magnetoresistive element 20, a third magnetoresistive element 30, and a fourth magnetoresistive element 40. FIG. The pinned layer magnetization directions of the first to fourth magnetoresistive elements (10, 20, 30, 40) are the same (+X direction). A direction parallel to the magnetization direction of the pinned layer is the magnetosensitive direction of each magnetoresistive element. The resistor R is a resistive element whose resistance value change due to the magnetic field applied to the magnetic detection section is suppressed or whose resistance value change does not occur due to the magnetic field applied to the magnetic detection section. The resistor R may be a fixed resistor or a magnetically shielded magnetoresistive element. When the resistor R is a magnetoresistive element, it is preferable that it has the same temperature characteristics as those of the first to fourth magnetoresistive elements (10, 20, 30, 40). The resistance value of the resistor R matches the resistance value of the magnetic detection section 7 in the absence of a bias magnetic field, that is, the combined resistance value of the first to fourth magnetoresistive elements (10, 20, 30, 40).

抵抗Rの一端は、電源電圧Vccが供給される高電圧端子に接続される。抵抗Rの他端は、第1磁気抵抗効果素子10の一端と、第2磁気抵抗効果素子20の一端と、に接続される。第1磁気抵抗効果素子10の他端は、第4磁気抵抗効果素子40の一端に接続される。第2磁気抵抗効果素子20の他端は、第3磁気抵抗効果素子30の一端に接続される。第3磁気抵抗効果素子30の他端と、第4磁気抵抗効果素子40の他端は、電源電圧-Vccが供給される低電圧端子に接続される。抵抗Rの他端、第1磁気抵抗効果素子10の一端、及び第2磁気抵抗効果素子20の一端(図4の点P1)は、第1磁界発生導体75の一端に接続される。第1磁界発生導体75の他端は、中電圧端子としてのグランド端子に接続される。第1磁気抵抗効果素子10と第4磁気抵抗効果素子40の相互接続点に出力される電圧をVa、第2磁気抵抗効果素子20と第3磁気抵抗効果素子30の相互接続点に出力される電圧をVbとする。電圧Va、Vbの差が、磁気センサ1Aのセンサ出力電圧となる。 One end of the resistor R is connected to a high voltage terminal supplied with the power supply voltage Vcc. The other end of the resistor R is connected to one end of the first magnetoresistive element 10 and one end of the second magnetoresistive element 20 . The other end of the first magnetoresistive element 10 is connected to one end of the fourth magnetoresistive element 40 . The other end of the second magnetoresistive element 20 is connected to one end of the third magnetoresistive element 30 . The other end of the third magnetoresistive element 30 and the other end of the fourth magnetoresistive element 40 are connected to a low voltage terminal to which the power supply voltage -Vcc is supplied. The other end of the resistor R, one end of the first magnetoresistive element 10 and one end of the second magnetoresistive element 20 (point P1 in FIG. 4) are connected to one end of the first magnetic field generating conductor 75 . The other end of the first magnetic field generating conductor 75 is connected to a ground terminal as a medium voltage terminal. The voltage Va output to the interconnection point of the first magnetoresistive effect element 10 and the fourth magnetoresistive effect element 40 is output to the interconnection point of the second magnetoresistive effect element 20 and the third magnetoresistive effect element 30. Let the voltage be Vb. The difference between the voltages Va and Vb is the sensor output voltage of the magnetic sensor 1A.

検出対象磁界が図2に示す状態の場合、第1磁気抵抗効果素子10においては、検出対象磁界の方向は固定層磁化方向と同一方向となる成分を持つため、フリー層磁化方向が固定層磁化方向と一致し、第1磁気抵抗効果素子10の抵抗値は、無磁界時の抵抗値R0から-ΔRだけ変化する。一方、第2磁気抵抗効果素子20においては、検出対象磁界の方向は固定層磁化方向と逆方向となる成分を持つため、フリー層磁化方向が固定層磁化方向と逆になり、第2磁気抵抗効果素子20の抵抗値は、無磁界時の抵抗値R0から+ΔRだけ変化する。同様に、第3磁気抵抗効果素子30の抵抗値は無磁界時と比較して-ΔRだけ変化し、第4磁気抵抗効果素子40の抵抗値は無磁界時と比較して+ΔRだけ変化する。このような第1から第4磁気抵抗効果素子(10、20、30、40)の抵抗変化により、電圧Vaは無磁界時と比較して高くなり、電圧Vbは無磁界時と比較して低くなる。ゆえに、第1から第4磁気抵抗効果素子(10、20、30、40)のブリッジ回路は、差動出力、すなわち検出対象磁界の変化に応じて互いに逆の変化をする電圧Vaと電圧Vbの出力が可能となっている。 When the magnetic field to be detected is in the state shown in FIG. 2, in the first magnetoresistive effect element 10, the direction of the magnetic field to be detected has a component in the same direction as the magnetization direction of the fixed layer. The resistance value of the first magnetoresistive effect element 10 changes by -ΔR from the resistance value R0 in the absence of the magnetic field. On the other hand, in the second magnetoresistance effect element 20, the direction of the magnetic field to be detected has a component opposite to the magnetization direction of the pinned layer, so the magnetization direction of the free layer is opposite to the magnetization direction of the pinned layer. The resistance value of the effect element 20 changes by +ΔR from the resistance value R0 in the absence of the magnetic field. Similarly, the resistance value of the third magnetoresistive effect element 30 changes by -ΔR compared to when there is no magnetic field, and the resistance value of the fourth magnetoresistive effect element 40 changes by +ΔR compared to when there is no magnetic field. Due to such resistance changes of the first to fourth magnetoresistive elements (10, 20, 30, 40), the voltage Va becomes higher than in the absence of magnetic field, and the voltage Vb becomes lower than in the absence of magnetic field. Become. Therefore, the bridge circuit of the first to fourth magnetoresistive elements (10, 20, 30, 40) provides a differential output, that is, a voltage Va and a voltage Vb that change opposite to each other according to changes in the magnetic field to be detected. output is possible.

図4の回路において、バイアス磁界が存在しない場合、点P1はグランド電位となる。このため、第1磁界発生導体75に電流は流れない。+X方向の成分を持つバイアス磁界が磁気検出部7に印加された場合、第1から第4磁気抵抗効果素子(10、20、30、40)の各抵抗値が低下し、磁気検出部7の抵抗値が低下するため、点P1の電圧はマイナスとなる(グランド電位を下回る)。マイナスの程度は、バイアス磁界の+X方向の成分が大きいほど大きい。点P1の電圧がマイナスになると、グランド端子、第1磁界発生導体75、点P1という向きに電流が流れる。これにより第1磁界発生導体75は、各磁気抵抗効果素子の位置において-X方向成分を持つ、すなわち各磁気抵抗効果素子の位置におけるバイアス磁界を相殺する補正磁界を発生する。 In the circuit of FIG. 4, point P1 is at ground potential when no bias magnetic field is present. Therefore, no current flows through the first magnetic field generating conductor 75 . When a bias magnetic field having a component in the +X direction is applied to the magnetic detection section 7, the resistance values of the first to fourth magnetoresistive elements (10, 20, 30, 40) decrease, and the magnetic detection section 7 Since the resistance drops, the voltage at point P1 becomes negative (below ground potential). The negative degree increases as the component of the bias magnetic field in the +X direction increases. When the voltage at point P1 becomes negative, current flows in the direction of the ground terminal, first magnetic field generating conductor 75, and point P1. As a result, the first magnetic field generating conductor 75 generates a correction magnetic field having a -X direction component at the position of each magnetoresistive effect element, that is, canceling out the bias magnetic field at the position of each magnetoresistive effect element.

-X方向の成分を持つバイアス磁界が磁気検出部7に印加された場合、第1から第4磁気抵抗効果素子(10、20、30、40)の各抵抗値が上昇し、磁気検出部7の抵抗値が上昇するため、点P1の電圧はプラスとなる(グランド電位を上回る)。プラスの程度は、バイアス磁界の-X方向の成分が大きいほど大きい。点P1の電圧はプラスになると、点P1、第1磁界発生導体75、グランド端子という向きに電流が流れる。これにより第1磁界発生導体75は、各磁気抵抗効果素子の位置において+X方向成分を持つ、すなわち各磁気抵抗効果素子の位置におけるバイアス磁界を相殺する補正磁界を発生する。 When a bias magnetic field having a component in the −X direction is applied to the magnetic detection section 7, the resistance values of the first to fourth magnetoresistive elements (10, 20, 30, 40) increase, and the magnetic detection section 7 increases, the voltage at point P1 becomes positive (exceeds ground potential). The degree of plus increases as the component of the bias magnetic field in the -X direction increases. When the voltage at the point P1 becomes positive, current flows in the direction of the point P1, the first magnetic field generating conductor 75, and the ground terminal. As a result, the first magnetic field generating conductor 75 generates a correction magnetic field having a +X direction component at the position of each magnetoresistive effect element, that is, canceling out the bias magnetic field at the position of each magnetoresistive effect element.

第1磁界発生導体75が図3に示す電流経路を成すため、第1から第4磁気抵抗効果素子(10、20、30、40)の位置における補正磁界は、X方向と平行かつ向きが互いに等しい。第1磁界発生導体75に流れる電流(負帰還電流)は、バイアス磁界のX方向成分が大きいほど大きくなる。各磁気抵抗効果素子の位置において、バイアス磁界及び補正磁界の磁気平衡状態が成立する。 Since the first magnetic field generating conductor 75 forms the current path shown in FIG. equal. The current (negative feedback current) flowing through the first magnetic field generating conductor 75 increases as the X direction component of the bias magnetic field increases. At the position of each magnetoresistive element, a magnetic equilibrium state is established between the bias magnetic field and the correction magnetic field.

バイアス磁界及び補正磁界の磁気平衡状態が成立する動作点は、
・第1磁界発生導体75と各磁気抵抗効果素子との磁気的結合、
・第1磁界発生導体75単体での磁界発生効率(第1磁界発生導体75のインダクタンス値)、
・各磁気抵抗効果素子の分解能
の3条件によって決まる。3条件が理想的であれば、すなわち第1磁界発生導体75と各磁気抵抗効果素子との磁気的結合が十分に強く、第1磁界発生導体75単体での磁界発生効率が十分に高く、各磁気抵抗効果素子の分解能が十分に高ければ、僅かな電流が第1磁界発生導体75に流れるだけで磁気平衡状態となり、磁気平衡状態において各磁気抵抗効果素子の位置でバイアス磁界及び補正磁界のX成分の合計が実質的に0になる。
The operating point at which the magnetic equilibrium state of the bias magnetic field and correction magnetic field is established is
- magnetic coupling between the first magnetic field generating conductor 75 and each magnetoresistive effect element;
The magnetic field generation efficiency of the first magnetic field generating conductor 75 alone (inductance value of the first magnetic field generating conductor 75),
・Determined by three conditions of resolution of each magnetoresistive effect element. If the three conditions are ideal, that is, the magnetic coupling between the first magnetic field generating conductor 75 and each magnetoresistive effect element is sufficiently strong, the magnetic field generating efficiency of the first magnetic field generating conductor 75 alone is sufficiently high, and each If the resolution of the magneto-resistive effect element is sufficiently high, the magnetic equilibrium state will be established only by a slight current flowing through the first magnetic field generating conductor 75, and X The components sum to essentially zero.

図5は、磁気検出部7に印加されるバイアス磁界、比較例における磁気検出部7の抵抗変化、及び磁気センサ1Aの磁気検出部7の抵抗変化の一例を示すグラフである。比較例は、図1~図4の構成から抵抗Rを無くして短絡し、かつ第1磁界発生導体75を無くして開放とした構成である。図5より、比較例の構成では、バイアス磁界の変動により磁気検出部7の抵抗値が大きく変動している。これに対し、本実施の形態の磁気センサ1Aでは、バイアス磁界の変動に対する磁気検出部7の抵抗値の変動が大幅に抑制され、磁気検出部7の抵抗値はバイアス磁界が存在しない場合とほとんど変わらない値でほぼ一定となっている。すなわち、各磁気抵抗効果素子の位置においてバイアス磁界及び補正磁界のX成分の合計が実質的に0になっている。 FIG. 5 is a graph showing an example of the bias magnetic field applied to the magnetic detection section 7, the resistance change of the magnetic detection section 7 in the comparative example, and the resistance change of the magnetic detection section 7 of the magnetic sensor 1A. A comparative example is a configuration in which the resistor R is removed from the configuration of FIGS. As shown in FIG. 5, in the configuration of the comparative example, the resistance value of the magnetic detection section 7 fluctuates greatly due to fluctuations in the bias magnetic field. On the other hand, in the magnetic sensor 1A of the present embodiment, the variation of the resistance value of the magnetic detection section 7 with respect to the variation of the bias magnetic field is greatly suppressed, and the resistance value of the magnetic detection section 7 is almost the same as when there is no bias magnetic field. It is almost constant with a value that does not change. That is, the sum of the X components of the bias magnetic field and correction magnetic field is substantially zero at the position of each magnetoresistive element.

図17及び図18に示すように、磁気抵抗効果素子は、固定層磁化方向の磁界強度が一定値以内の場合は磁界強度と抵抗値とが直線的な関係となり高感度となるが、磁界強度が一定値以上になると磁界強度の変化に対する抵抗値の変化(傾き)が小さくなって感度が低下し、さらに磁界強度が高くなると磁界強度に対する抵抗値の変化が無くなる。したがって、磁気抵抗効果素子は、図17及び図18に示すバイアス磁界が0のときの動作点において、高感度であり、かつリニアな抵抗値変化を最大に取れる(リニア領域における出力電圧の振幅を最も大きく取れる)。一方、図17に示すバイアス磁界が小さいときの動作点では、バイアス磁界が0のときの動作点と比較して、感度が低下し、またリニアな抵抗値変化も大きく取れない。また、図17に示すバイアス磁界が大きいときの動作点では、飽和により磁気抵抗効果素子として動作できなくなる。 As shown in FIGS. 17 and 18, the magnetoresistive element exhibits a linear relationship between the magnetic field strength and the resistance value when the magnetic field strength in the magnetization direction of the pinned layer is within a certain value, resulting in high sensitivity. exceeds a certain value, the change (gradient) of the resistance value with respect to the change in the magnetic field intensity becomes small, resulting in a decrease in sensitivity. Therefore, the magnetoresistive element has high sensitivity at the operating point when the bias magnetic field shown in FIGS. the largest possible). On the other hand, at the operating point when the bias magnetic field is small as shown in FIG. 17, the sensitivity is lower than the operating point when the bias magnetic field is 0, and a large linear resistance value change cannot be obtained. Also, at the operating point when the bias magnetic field is large, as shown in FIG. 17, the magnetoresistive element cannot operate due to saturation.

本実施の形態では、磁気検出部7と直列に抵抗Rを接続し、抵抗R及び磁気検出部7の相互接続点とグランド端子との間に第1磁界発生導体75を接続し、抵抗Rの抵抗値と磁気検出部7の抵抗値との比率に応じた電流を第1磁界発生導体75に流す構成としている。ここで、抵抗Rの抵抗値と磁気検出部7の抵抗値との比率は、磁気検出部7に印加されるバイアス磁界のX方向成分によって変化する。第1磁界発生導体75に流れる電流により発生する補正磁界は、磁気検出部7に印加されるバイアス磁界のX方向成分を相殺し、抵抗Rの抵抗値と磁気検出部7の抵抗値との比率を、バイアス磁界が存在しない場合の比率に近づけ、好ましくは実質的に一致させる。 In this embodiment, a resistor R is connected in series with the magnetic detection section 7, a first magnetic field generating conductor 75 is connected between the interconnection point of the resistor R and the magnetic detection section 7, and a ground terminal. A current corresponding to the ratio between the resistance value and the resistance value of the magnetism detecting section 7 is caused to flow through the first magnetic field generating conductor 75 . Here, the ratio between the resistance value of the resistor R and the resistance value of the magnetic detection section 7 changes depending on the X direction component of the bias magnetic field applied to the magnetic detection section 7 . The correction magnetic field generated by the current flowing through the first magnetic field generating conductor 75 cancels the X-direction component of the bias magnetic field applied to the magnetic detection section 7, and the ratio of the resistance value of the resistor R to the resistance value of the magnetic detection section 7 is to approximate, and preferably substantially match, the ratio in the absence of the bias field.

本実施の形態によれば、下記の作用効果を奏することができる。 According to this embodiment, the following effects can be obtained.

(1) 磁気検出部7に印加されるバイアス磁界のX方向成分を、第1磁界発生導体75の発生する補正磁界により相殺するため、バイアス磁界の影響を抑制できる。具体的には、バイアス磁界による第1から第4磁気抵抗効果素子(10、20、30、40)の感度低下や飽和による動作不能リスクを抑制することができる。 (1) Since the X direction component of the bias magnetic field applied to the magnetic detection section 7 is canceled by the correction magnetic field generated by the first magnetic field generating conductor 75, the influence of the bias magnetic field can be suppressed. Specifically, it is possible to suppress the risk of inoperability due to desensitization or saturation of the first to fourth magnetoresistive elements (10, 20, 30, 40) due to the bias magnetic field.

(2) 補正磁界を発生させるための構成は、抵抗Rと第1磁界発生導体75だけで足りる。このため、バイアス磁界の影響を抑制するための回路構成がシンプルでコスト安である。 (2) Only the resistor R and the first magnetic field generating conductor 75 are sufficient for generating the correction magnetic field. Therefore, the circuit configuration for suppressing the influence of the bias magnetic field is simple and the cost is low.

(3) 抵抗Rを、第1から第4磁気抵抗効果素子(10、20、30、40)と同じ温度特性の磁気抵抗効果素子とした場合、温度変化がバイアス磁界の影響抑制効果に生じさせる変動を抑制できる。 (3) When the resistor R is a magnetoresistive element having the same temperature characteristics as those of the first to fourth magnetoresistive elements (10, 20, 30, 40), a change in temperature affects the effect of suppressing the influence of the bias magnetic field. Fluctuations can be suppressed.

(4) 抵抗Rの抵抗値をバイアス磁界が存在しない場合の磁気検出部7の抵抗値と一致させているため、バイアス磁界が存在しない場合の図4の点P1の電圧はグランド電位となる。このため、第1磁界発生導体75の他端を接続する中電圧端子としてグランド端子を利用でき、回路構成をシンプルにできる。 (4) Since the resistance value of the resistor R is matched with the resistance value of the magnetic detector 7 when no bias magnetic field exists, the voltage at the point P1 in FIG. 4 when no bias magnetic field exists is the ground potential. Therefore, the ground terminal can be used as a medium voltage terminal to which the other end of the first magnetic field generating conductor 75 is connected, and the circuit configuration can be simplified.

本実施の形態において、抵抗Rの抵抗値と、バイアス磁界が存在しない場合の磁気検出部7の抵抗値と、の比率は、1対1に限定されず、任意に設定できる。いずれの比率においても、第1磁界発生導体75の他端を接続する中電圧端子は、バイアス磁界が存在しない場合の図4の点P1の電圧と一致する電圧の端子とすればよい。例えば同比率を1対3とした場合、+Vcc×1/2の基準電源を設け、第1磁界発生導体75の他端を接続する中電圧端子として、+Vcc×1/2の基準電源端子を利用すればよい。この場合、基準電源を設ける必要があるが、抵抗Rによる電圧降下を小さくでき、磁気検出部7の出力電圧の振幅を大きく取ることができる。抵抗Rは、第3磁気抵抗効果素子30及び第4磁気抵抗効果素子40の他端同士の接続点と、電源電圧-Vccが供給される低電圧端子と、の間に接続されてもよい。 In the present embodiment, the ratio between the resistance value of the resistor R and the resistance value of the magnetic detection section 7 in the absence of a bias magnetic field is not limited to 1:1, and can be set arbitrarily. In any ratio, the medium voltage terminal to which the other end of the first magnetic field generating conductor 75 is connected should be a terminal with a voltage that matches the voltage at point P1 in FIG. 4 when no bias magnetic field exists. For example, if the ratio is 1:3, a reference power source of +Vcc×1/2 is provided, and the reference power source terminal of +Vcc×1/2 is used as a medium voltage terminal to which the other end of the first magnetic field generating conductor 75 is connected. do it. In this case, although it is necessary to provide a reference power source, the voltage drop due to the resistor R can be reduced, and the amplitude of the output voltage of the magnetic detection section 7 can be increased. The resistor R may be connected between a connection point between the other ends of the third magnetoresistive element 30 and the fourth magnetoresistive element 40 and a low voltage terminal to which the power supply voltage -Vcc is supplied.

(実施の形態2)
図6は、本発明の実施の形態2に係る磁気センサ1Bの概略断面図である。本実施の形態の磁気センサ1Bは、実施の形態1の磁気センサ1Aと比較して、磁気センサ1Aにおいて積層体5内に設けられていた第1磁界発生導体75が、積層体5の外部に設けられた第1磁界発生導体75a、75bに替わった点で相違し、その他の点で一致する。第1磁界発生導体75a、75bは、例えば巻軸方向がX方向と平行なコイル(ソレノイドコイル等)であって、積層体5のX方向両側にそれぞれ設けられる。第1磁界発生導体75a、75bは、第1から第4磁気抵抗効果素子(10、20、30、40)に対してX方向と平行な一様磁界を印加できる構成であるとよい。第1磁界発生導体75a、75bは、互いに直列接続されても並列接続されてもよい。本実施の形態も、実施の形態1と同様の効果を奏することができる。
(Embodiment 2)
FIG. 6 is a schematic cross-sectional view of a magnetic sensor 1B according to Embodiment 2 of the present invention. In the magnetic sensor 1B of the present embodiment, as compared with the magnetic sensor 1A of the first embodiment, the first magnetic field generating conductor 75 provided inside the laminate 5 in the magnetic sensor 1A is outside the laminate 5. The difference is that the provided first magnetic field generating conductors 75a and 75b are replaced, and the other points are the same. The first magnetic field generating conductors 75a and 75b are, for example, coils (solenoid coils or the like) whose winding axis direction is parallel to the X direction, and are provided on both sides of the laminate 5 in the X direction. The first magnetic field generating conductors 75a and 75b are preferably configured to apply a uniform magnetic field parallel to the X direction to the first to fourth magnetoresistive elements (10, 20, 30, 40). The first magnetic field generating conductors 75a and 75b may be connected in series or in parallel with each other. This embodiment can also achieve the same effect as the first embodiment.

(実施の形態3)
図7は、本発明の実施の形態3に係る磁気センサ1Cの概略回路図である。本実施の形態の磁気センサ1Cは、実施の形態1の磁気センサ1Aと比較して、第1差動増幅器としての第1演算増幅器76が追加されている。第1演算増幅器76の非反転入力端子は、抵抗R及び磁気検出部7の相互接続点(図7の点P1)に接続される。第1演算増幅器76の反転入力端子は、グランド端子に接続される。第1演算増幅器76の出力端子は、第1磁界発生導体75の一端に接続される。第1磁界発生導体75の他端は、グランド端子に接続される。
(Embodiment 3)
FIG. 7 is a schematic circuit diagram of a magnetic sensor 1C according to Embodiment 3 of the present invention. Compared to the magnetic sensor 1A of the first embodiment, the magnetic sensor 1C of the present embodiment additionally includes a first operational amplifier 76 as a first differential amplifier. A non-inverting input terminal of the first operational amplifier 76 is connected to an interconnection point (point P1 in FIG. 7) of the resistor R and the magnetic detection section 7 . The inverting input terminal of the first operational amplifier 76 is connected to the ground terminal. The output terminal of the first operational amplifier 76 is connected to one end of the first magnetic field generating conductor 75 . The other end of the first magnetic field generating conductor 75 is connected to the ground terminal.

+X方向の成分を持つバイアス磁界が磁気検出部7に印加されて点P1の電圧がマイナスになると、第1演算増幅器76の出力電圧はマイナスとなり、グランド端子、第1磁界発生導体75、第1演算増幅器76の出力端子という向きに電流が流れる。これにより第1磁界発生導体75は、各磁気抵抗効果素子の位置において-X方向成分を持つ、すなわち各磁気抵抗効果素子の位置におけるバイアス磁界を相殺する補正磁界を発生する。-X方向の成分を持つバイアス磁界が磁気検出部7に印加されて点P1の電圧がプラスになると、第1演算増幅器76の出力電圧はプラスとなり、第1演算増幅器76の出力端子、第1磁界発生導体75グランド端子という向きに電流が流れる。これにより第1磁界発生導体75は、各磁気抵抗効果素子の位置において+X方向成分を持つ、すなわち各磁気抵抗効果素子の位置におけるバイアス磁界を相殺する補正磁界を発生する。第1演算増幅器76の非反転入力端子、反転入力端子間に仮想ショートが成立するため、点P1の電圧は実質的にグランド端子の電圧と一致する。すなわち、バイアス磁界及び補正磁界の磁気平衡状態において各磁気抵抗効果素子の位置でバイアス磁界及び補正磁界のX成分の合計が実質的に0になる。 When a bias magnetic field having a component in the +X direction is applied to the magnetic detection section 7 and the voltage at the point P1 becomes negative, the output voltage of the first operational amplifier 76 becomes negative, and the ground terminal, the first magnetic field generating conductor 75, the first Current flows in the direction of the output terminal of operational amplifier 76 . As a result, the first magnetic field generating conductor 75 generates a correction magnetic field having a -X direction component at the position of each magnetoresistive effect element, that is, canceling out the bias magnetic field at the position of each magnetoresistive effect element. When a bias magnetic field having a component in the −X direction is applied to the magnetic detection section 7 and the voltage at the point P1 becomes positive, the output voltage of the first operational amplifier 76 becomes positive, and the output terminal of the first operational amplifier 76 and the first A current flows in the direction of the magnetic field generating conductor 75 ground terminal. As a result, the first magnetic field generating conductor 75 generates a correction magnetic field having a +X direction component at the position of each magnetoresistive effect element, that is, canceling out the bias magnetic field at the position of each magnetoresistive effect element. Since a virtual short is established between the non-inverting input terminal and the inverting input terminal of the first operational amplifier 76, the voltage at point P1 substantially matches the voltage at the ground terminal. That is, in the magnetic equilibrium state of the bias magnetic field and the correction magnetic field, the sum of the X components of the bias magnetic field and the correction magnetic field becomes substantially 0 at the position of each magnetoresistance effect element.

本実施の形態のその他の点は、実施の形態1と同様である。本実施の形態によれば、実施の形態1と比較して第1演算増幅器76の追加を要するものの、第1演算増幅器76の増幅作用により、バイアス磁界及び補正磁界の磁気平衡状態における各磁気抵抗効果素子の位置でのバイアス磁界及び補正磁界のX成分の合計をより0に近づけることができる。本実施の形態において、第1磁界発生導体75は、図6に示す実施の形態2と同様に積層体5の外部に設けられた第1磁界発生導体75a、75bに替えてもよい。 Other points of this embodiment are the same as those of the first embodiment. According to the present embodiment, although the addition of the first operational amplifier 76 is required as compared with the first embodiment, the amplifying action of the first operational amplifier 76 allows each magnetic resistance in the magnetic equilibrium state of the bias magnetic field and the correction magnetic field. The sum of the X components of the bias field and correction field at the location of the effect element can be brought closer to zero. In the present embodiment, the first magnetic field generating conductors 75 may be replaced with first magnetic field generating conductors 75a and 75b provided outside the laminate 5 as in the second embodiment shown in FIG.

(実施の形態4)
図8は、本発明の実施の形態4に係る磁気センサ1Dの概略断面図である。図9は、磁気センサ1Dの第2磁界発生導体70の配線パターン説明図である。図9において、積層体5内の第2磁界発生導体70の配線パターンを実線で示し、積層体5内の第1磁界発生導体75の図示を省略している。図10は、磁気センサ1Dの概略回路図である。実施の形態1~3の磁気センサが、磁気検出部7の出力端子間に検出対象磁界に応じた(比例した)センサ出力電圧が現れる磁気比例式であったのに対し、本実施の形態の磁気センサ1Dは、磁気平衡式である。磁気センサ1Dは、実施の形態1の磁気センサ1Aの構成に加え、第2磁界発生導体70と、第2差動増幅器としての第2演算増幅器50と、検出抵抗Rsと、を備える。
(Embodiment 4)
FIG. 8 is a schematic cross-sectional view of a magnetic sensor 1D according to Embodiment 4 of the present invention. FIG. 9 is a wiring pattern explanatory diagram of the second magnetic field generating conductor 70 of the magnetic sensor 1D. In FIG. 9, the wiring pattern of the second magnetic field generating conductor 70 in the laminated body 5 is indicated by a solid line, and the illustration of the first magnetic field generating conductor 75 in the laminated body 5 is omitted. FIG. 10 is a schematic circuit diagram of the magnetic sensor 1D. While the magnetic sensors of Embodiments 1 to 3 are of the magnetic proportional type in which the sensor output voltage corresponding to (proportional to) the magnetic field to be detected appears between the output terminals of the magnetic detection unit 7, the magnetic sensor of the present embodiment The magnetic sensor 1D is of a magnetic balance type. The magnetic sensor 1D includes, in addition to the configuration of the magnetic sensor 1A of the first embodiment, a second magnetic field generating conductor 70, a second operational amplifier 50 as a second differential amplifier, and a detection resistor Rs.

図8及び図9に示すように、第2磁界発生導体70は、第1から第4磁気抵抗効果素子(10、20、30、40)と同じ積層体5内の単一の層に形成される。図9の例では、第2磁界発生導体70は、1ターンに満たないU字状の平面コイルとしているが、スパイラル状に複数ターン周回する平面コイルであってもよい。なお、積層体5内における、第2磁界発生導体70が形成される層は、図8の例では第1磁界発生導体75が形成される層より上層としているが、第1磁界発生導体75が形成される層より下層としてもよい。第2磁界発生導体70は、後述のように、各磁気抵抗効果素子が検出する検出対象磁界(第1磁界)を相殺する(検出対象磁界の感磁方向成分を相殺する磁界成分を有する)第2磁界を発生する。ここで、相殺は、好ましくは略0にすることであるが、一部のみを打ち消すことであってもよい。 As shown in FIGS. 8 and 9, the second magnetic field generating conductor 70 is formed in a single layer within the same laminate 5 as the first to fourth magnetoresistive elements (10, 20, 30, 40). be. In the example of FIG. 9, the second magnetic field generating conductor 70 is a U-shaped planar coil with less than one turn, but it may be a planar coil with a plurality of spiral turns. Note that the layer in which the second magnetic field generating conductor 70 is formed in the laminate 5 is a layer above the layer in which the first magnetic field generating conductor 75 is formed in the example of FIG. It may be a layer below the layer to be formed. As will be described later, the second magnetic field generating conductor 70 has a magnetic field component that cancels the detection target magnetic field (first magnetic field) detected by each magnetoresistive effect element (has a magnetic field component that offsets the magnetosensitive direction component of the detection target magnetic field). 2 Generate a magnetic field. Here, the cancellation is preferably approximately 0, but may be partial cancellation.

図10に示すように、第2演算増幅器50は、反転入力端子が第1磁気抵抗効果素子10と第4磁気抵抗効果素子40の相互接続点に接続され、非反転入力端子が第2磁気抵抗効果素子20と第3磁気抵抗効果素子30の相互接続点に接続され、出力端子が第2磁界発生導体70の一端に接続される。第2演算増幅器50は、磁気検出部の出力電圧(電圧Va、Vb)が入力され、第2磁界発生導体70に負帰還電流を供給する。第2磁界発生導体70は、第2演算増幅器50が出力する負帰還電流が流れることにより、各磁気抵抗効果素子が検出する第1磁界(検出対象磁界)を相殺する第2磁界を発生する。換言すれば、第2演算増幅器50は、各磁気抵抗効果素子の位置において前記第1磁界の感磁方向成分を相殺する磁界成分を有する第2磁界を第2磁界発生導体70が発生するように、すなわち各磁気抵抗効果素子の位置において第1及び第2磁界の磁気平衡状態が成立するように、第2磁界発生導体70に負帰還電流を供給する。 As shown in FIG. 10, the second operational amplifier 50 has an inverting input terminal connected to the interconnection point of the first magnetoresistive element 10 and the fourth magnetoresistive element 40, and a non-inverting input terminal connected to the second magnetoresistive element. It is connected to the interconnection point of the effect element 20 and the third magnetoresistive effect element 30 , and its output terminal is connected to one end of the second magnetic field generating conductor 70 . The second operational amplifier 50 receives the output voltages (voltages Va, Vb) of the magnetic detection section and supplies a negative feedback current to the second magnetic field generating conductor 70 . The negative feedback current output from the second operational amplifier 50 flows through the second magnetic field generating conductor 70 to generate a second magnetic field that cancels out the first magnetic field (magnetic field to be detected) detected by each magnetoresistive effect element. In other words, the second operational amplifier 50 causes the second magnetic field generating conductor 70 to generate a second magnetic field having a magnetic field component that cancels the magnetosensitive direction component of the first magnetic field at the position of each magnetoresistive effect element. That is, a negative feedback current is supplied to the second magnetic field generating conductor 70 so that the magnetic equilibrium state of the first and second magnetic fields is established at the position of each magnetoresistive effect element.

第2磁界発生導体70が図9に示す電流経路を成すため、第1磁気抵抗効果素子10及び第3磁気抵抗効果素子30の位置における第2磁界と、第2磁気抵抗効果素子20及び第4磁気抵抗効果素子40の位置における第2磁界とは、共にX方向と平行かつ互いに反対向きとなる。検出抵抗Rsは、第2磁界発生導体70の他端とグランド端子との間に接続される。検出抵抗Rsの両端の電圧が、センサ出力電圧Voutとなる。図10に示すように負帰還電流をIとすると、出力電圧Voutは、Vout=Rs×Iとなる。負帰還電流は、検出対象磁界(第1磁界)の大きさに比例する。このため、出力電圧Voutも、検出対象磁界に比例することになり、出力電圧Voutにより、検出対象磁界を検出することができる。本実施の形態のその他の点は、実施の形態1と同様である。本実施の形態も、実施の形態1と同様の効果を奏することができる。 Since the second magnetic field generating conductor 70 forms the current path shown in FIG. The second magnetic field at the position of the magnetoresistive element 40 is parallel to the X direction and directed in opposite directions. The detection resistor Rs is connected between the other end of the second magnetic field generating conductor 70 and the ground terminal. The voltage across the detection resistor Rs is the sensor output voltage Vout. Assuming that the negative feedback current is I as shown in FIG. 10, the output voltage Vout is Vout=Rs×I. The negative feedback current is proportional to the magnitude of the magnetic field to be detected (first magnetic field). Therefore, the output voltage Vout is also proportional to the magnetic field to be detected, and the magnetic field to be detected can be detected from the output voltage Vout. Other points of this embodiment are the same as those of the first embodiment. This embodiment can also achieve the same effect as the first embodiment.

(実施の形態5)
図11は、本発明の実施の形態5に係る磁気センサ1Eの概略断面図である。本実施の形態の磁気センサ1Eは、実施の形態4の磁気センサ1Dと比較して、磁気センサ1Dにおいて積層体5内に設けられていた第1磁界発生導体75が、積層体5の外部に設けられた第1磁界発生導体75a、75bに替わった点で相違し、その他の点で一致する。第1磁界発生導体75a、75bの構成は、実施の形態2(図6)と同じである。本実施の形態も、実施の形態4と同様の効果を奏することができる。
(Embodiment 5)
FIG. 11 is a schematic cross-sectional view of a magnetic sensor 1E according to Embodiment 5 of the present invention. In the magnetic sensor 1E of the present embodiment, as compared with the magnetic sensor 1D of the fourth embodiment, the first magnetic field generating conductor 75 provided inside the laminate 5 in the magnetic sensor 1D is outside the laminate 5. The difference is that the provided first magnetic field generating conductors 75a and 75b are replaced, and the other points are the same. The configuration of the first magnetic field generating conductors 75a and 75b is the same as that of the second embodiment (FIG. 6). This embodiment can also achieve the same effects as those of the fourth embodiment.

(実施の形態6)
図12は、本発明の実施の形態6に係る磁気センサ1Fの概略回路図である。本実施の形態の磁気センサ1Fは、実施の形態4の磁気センサ1Dと比較して、第1差動増幅器としての第1演算増幅器76が追加されている。第1演算増幅器76の接続形態、及び補正磁界の発生原理は、実施の形態3(図7)と同じである。本実施の形態のその他の点は、実施の形態4と同様である。本実施の形態によれば、第1演算増幅器76の増幅作用により、バイアス磁界及び補正磁界の磁気平衡状態における各磁気抵抗効果素子の位置でのバイアス磁界及び補正磁界のX成分の合計をより0に近づけることができる。本実施の形態において、第1磁界発生導体75は、図11に示す実施の形態5と同様に積層体5の外部に設けられた第1磁界発生導体75a、75bに替えてもよい。
(Embodiment 6)
FIG. 12 is a schematic circuit diagram of a magnetic sensor 1F according to Embodiment 6 of the present invention. Compared to the magnetic sensor 1D of the fourth embodiment, the magnetic sensor 1F of the present embodiment additionally includes a first operational amplifier 76 as a first differential amplifier. The connection form of the first operational amplifier 76 and the principle of generation of the correction magnetic field are the same as in the third embodiment (FIG. 7). Other points of this embodiment are the same as those of the fourth embodiment. According to the present embodiment, the amplifying action of the first operational amplifier 76 reduces the sum of the X components of the bias magnetic field and the correction magnetic field at the position of each magnetoresistive element in the magnetic equilibrium state of the bias magnetic field and the correction magnetic field. can be brought closer to In the present embodiment, the first magnetic field generating conductors 75 may be replaced with first magnetic field generating conductors 75a and 75b provided outside the laminate 5 as in the fifth embodiment shown in FIG.

(実施の形態7)
図13は、本発明の実施の形態7に係る磁気センサ1Gの概略回路図である。前述の各実施の形態は、抵抗Rの抵抗値と磁気検出部7の抵抗値との比率により磁気検出部7に印加されるバイアス磁界のX成分を検出するものであった。これに対し本実施の形態では、磁気検出部7に流れる電流により磁気検出部7に印加されるバイアス磁界のX成分を検出する。以下、実施の形態1との相違点を中心に説明する。
(Embodiment 7)
FIG. 13 is a schematic circuit diagram of a magnetic sensor 1G according to Embodiment 7 of the present invention. In each of the above-described embodiments, the X component of the bias magnetic field applied to the magnetic detection section 7 is detected from the ratio between the resistance value of the resistor R and the resistance value of the magnetic detection section 7 . On the other hand, in the present embodiment, the X component of the bias magnetic field applied to the magnetic detection section 7 is detected by the current flowing through the magnetic detection section 7 . The following description focuses on differences from the first embodiment.

本実施の形態のバイアス磁界検出手段は、抵抗R、第1差動増幅器としての第1演算増幅器76、第1磁界発生導体75、第3差動増幅器としての第3演算増幅器77、及び基準電圧源78、を含む。抵抗Rは、磁気検出部7に流れる電流を電圧に変換する。磁気検出部7に流れる電流は、磁気検出部7の抵抗値に反比例する。磁気検出部7の抵抗値は、磁気検出部7に印加されるバイアス磁界のX方向成分によって変化する。抵抗Rの両端の電圧が特定されると、磁気検出部7に印加されるバイアス磁界のX方向成分が特定される関係にある。 The bias magnetic field detection means of this embodiment includes a resistor R, a first operational amplifier 76 as a first differential amplifier, a first magnetic field generating conductor 75, a third operational amplifier 77 as a third differential amplifier, and a reference voltage. source 78; The resistor R converts the current flowing through the magnetic detection section 7 into voltage. The current flowing through the magnetic detection section 7 is inversely proportional to the resistance value of the magnetic detection section 7 . The resistance value of the magnetic detection section 7 changes depending on the X direction component of the bias magnetic field applied to the magnetic detection section 7 . When the voltage across the resistor R is specified, the X direction component of the bias magnetic field applied to the magnetic detection section 7 is specified.

第1演算増幅器76の非反転入力端子は、抵抗Rの一端に接続される。第1演算増幅器76の反転入力端子は、抵抗Rの他端に接続される。第1演算増幅器76の出力端子は、第3演算増幅器77の反転入力端子に接続される。第3演算増幅器77の非反転入力端子とグランド端子との間に、基準電圧源78が接続される。第3演算増幅器77の出力端子は、第1磁界発生導体75の一端に接続される。第1磁界発生導体75の他端は、グランド端子に接続される。抵抗Rの抵抗値を、磁気検出部7の抵抗値と比較して十分に低くすることで、磁気検出部7の出力電圧の振幅を大きく取ることができる。 A non-inverting input terminal of the first operational amplifier 76 is connected to one end of the resistor R. An inverting input terminal of the first operational amplifier 76 is connected to the other end of the resistor R. The output terminal of the first operational amplifier 76 is connected to the inverting input terminal of the third operational amplifier 77 . A reference voltage source 78 is connected between the non-inverting input terminal of the third operational amplifier 77 and the ground terminal. An output terminal of the third operational amplifier 77 is connected to one end of the first magnetic field generating conductor 75 . The other end of the first magnetic field generating conductor 75 is connected to the ground terminal. By making the resistance value of the resistor R sufficiently lower than the resistance value of the magnetic detection section 7, the amplitude of the output voltage of the magnetic detection section 7 can be increased.

第1演算増幅器76は、抵抗Rの両端の電圧を増幅する。第1演算増幅器76の出力電圧は、磁気検出部7に流れる電流に比例する。第3演算増幅器77は、第1演算増幅器76の出力電圧と基準電圧源78の出力電圧との差が略0となるように第1磁界発生導体75に電流を供給する。基準電圧源78の出力電圧は、好ましくはバイアス磁界が無い場合の第1演算増幅器76の出力電圧(バイアス磁界が無い場合に磁気検出部7に流れる電流に対応)と等しい。これにより、各磁気抵抗効果素子の位置におけるバイアス磁界のX方向成分と補正磁界のX方向成分との合計が略0で一定となる(磁気検出部7に流れる電流はバイアス磁界が無い場合の電流と略等しくなる)。 A first operational amplifier 76 amplifies the voltage across resistor R. FIG. The output voltage of the first operational amplifier 76 is proportional to the current flowing through the magnetic detector 7 . The third operational amplifier 77 supplies current to the first magnetic field generating conductor 75 so that the difference between the output voltage of the first operational amplifier 76 and the output voltage of the reference voltage source 78 is substantially zero. The output voltage of the reference voltage source 78 is preferably equal to the output voltage of the first operational amplifier 76 in the absence of the bias magnetic field (corresponding to the current flowing through the magnetic detector 7 in the absence of the bias magnetic field). As a result, the sum of the X-direction component of the bias magnetic field and the X-direction component of the correction magnetic field at the position of each magnetoresistive element becomes substantially 0 and constant (the current flowing through the magnetic detection unit 7 is the current in the absence of the bias magnetic field). approximately equal to).

第1磁界発生導体75は、第3演算増幅器77が出力する電流(負帰還電流)が流れることにより、各磁気抵抗効果素子の位置におけるバイアス磁界を相殺する補正磁界を発生する。換言すれば、第3演算増幅器77は、各磁気抵抗効果素子の位置においてバイアス磁界の感磁方向成分を相殺する磁界成分を有する補正磁界を第1磁界発生導体75が発生するように、すなわち各磁気抵抗効果素子の位置においてバイアス磁界及び補正磁界の磁気平衡状態が成立するように、第1磁界発生導体75に電流を供給する。 The current (negative feedback current) output by the third operational amplifier 77 flows through the first magnetic field generating conductor 75, thereby generating a correction magnetic field that cancels out the bias magnetic field at the position of each magnetoresistive effect element. In other words, the third operational amplifier 77 operates so that the first magnetic field generating conductor 75 generates a correction magnetic field having a magnetic field component that cancels the magnetosensitive direction component of the bias magnetic field at the position of each magnetoresistive element. A current is supplied to the first magnetic field generating conductor 75 so that the magnetic equilibrium state of the bias magnetic field and the correction magnetic field is established at the position of the magnetoresistive element.

本実施の形態によれば、実施の形態1と比較して第1演算増幅器76、第3演算増幅器77、及び基準電圧源78の追加を要するものの、第1演算増幅器76及び第3演算増幅器77の増幅作用により、バイアス磁界及び補正磁界の磁気平衡状態における各磁気抵抗効果素子の位置でのバイアス磁界及び補正磁界のX成分の合計をより0に近づけることができる。 According to the present embodiment, although the addition of the first operational amplifier 76, the third operational amplifier 77, and the reference voltage source 78 is required as compared with the first embodiment, the first operational amplifier 76 and the third operational amplifier 77 can bring the sum of the X components of the bias magnetic field and the correction magnetic field closer to zero at the position of each magnetoresistive element in the magnetic equilibrium state of the bias magnetic field and the correction magnetic field.

(実施の形態8、9)
図14は、本発明の実施の形態8に係る磁気センサ1Hの概略断面図である。図15は、本発明の実施の形態9に係る磁気センサ1Jの概略断面図である。図16は、図14及び図15の磁気センサの概略回路図である。本実施の形態では、バイアス磁界検出用の磁気検出素子79によりバイアス磁界のX方向成分を検出する。図14の構成例では、磁気検出素子79を積層体5内かつ磁性体80の直下に配置する。図15の構成例では、磁気検出素子79を積層体5の外部に配置する。
(Embodiments 8 and 9)
FIG. 14 is a schematic cross-sectional view of a magnetic sensor 1H according to Embodiment 8 of the present invention. FIG. 15 is a schematic cross-sectional view of a magnetic sensor 1J according to Embodiment 9 of the present invention. 16 is a schematic circuit diagram of the magnetic sensor of FIGS. 14 and 15; FIG. In the present embodiment, the X-direction component of the bias magnetic field is detected by the magnetic detection element 79 for bias magnetic field detection. In the configuration example of FIG. 14 , the magnetic detection element 79 is arranged inside the laminate 5 and directly below the magnetic body 80 . In the configuration example of FIG. 15, the magnetic detection element 79 is arranged outside the laminate 5 .

図16では、磁気検出素子79を、2つの磁気抵抗効果素子79a、79bとしている。磁気抵抗効果素子79a、79bの固定層磁化方向は、例えば、共にX方向と平行かつ互いに反対向きである。磁気抵抗効果素子79a、79bは、電源電圧Vccが供給される高電圧端子と、電源電圧-Vccが供給される低電圧端子と、の間に直列接続される。磁気抵抗効果素子79a、79bの相互接続点が第3演算増幅器77の反転入力端子に接続される。第3演算増幅器77は、磁気抵抗効果素子79a、79bの相互接続点の電圧(磁気検出素子79の出力電圧)と基準電圧源78の出力電圧との差が略0になるように第1磁界発生導体75に負帰還電流を供給する。なお、第1から第4磁気抵抗効果素子(10、20、30、40)の動作点をバイアス磁界が0の場合の動作点にする場合、基準電圧源78の出力電圧は0(基準電圧源78は短絡)である。本実施の形態も、実施の形態7と同様の効果を奏することができる。 In FIG. 16, the magnetic detection element 79 is two magnetoresistive elements 79a and 79b. The fixed layer magnetization directions of the magnetoresistive elements 79a and 79b are, for example, both parallel to the X direction and opposite to each other. The magnetoresistive elements 79a and 79b are connected in series between a high voltage terminal to which the power supply voltage Vcc is supplied and a low voltage terminal to which the power supply voltage -Vcc is supplied. The interconnection point of the magnetoresistive elements 79 a and 79 b is connected to the inverting input terminal of the third operational amplifier 77 . The third operational amplifier 77 applies the first magnetic field so that the difference between the voltage at the interconnection point of the magnetoresistive elements 79a and 79b (the output voltage of the magnetic detection element 79) and the output voltage of the reference voltage source 78 is substantially zero. A negative feedback current is supplied to the generator conductor 75 . When the operating points of the first to fourth magnetoresistive elements (10, 20, 30, 40) are the operating points when the bias magnetic field is 0, the output voltage of the reference voltage source 78 is 0 (reference voltage source 78 is a short circuit). This embodiment can also achieve the same effect as the seventh embodiment.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。 Although the present invention has been described above with reference to the embodiments, it will be understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiments within the scope of the claims. By the way. Modifications will be discussed below.

実施の形態ではバイアス磁界のX方向成分に対応して補正磁界を発生させる場合を説明したが、バイアス磁界のX方向成分に替えて又はそれに加えて、バイアス磁界の非X方向成分(例えばY方向成分)に対応して補正磁界を発生させてもよい。磁気検出部7を構成する磁気抵抗効果素子の個数は、実施の形態で例示した4つに限定されず、2つ以上の任意の個数でよい。実施の形態では、磁気検出部7として、4つの磁気抵抗効果素子がフルブリッジ接続された例に説明したが、磁気検出部7は、2つの磁気抵抗効果素子がハーフブリッジ接続されたものであってもよい。両電源駆動とした各素子は、片電源駆動であってもよい。 In the embodiments, the case where the correction magnetic field is generated corresponding to the X-direction component of the bias magnetic field has been described, but instead of or in addition to the X-direction component of the bias magnetic field, a non-X-direction component of the bias magnetic field (for example, the Y-direction component) may be generated. The number of magnetoresistive elements forming the magnetic detection unit 7 is not limited to four as exemplified in the embodiment, and may be any number of two or more. In the embodiment, an example in which four magnetoresistive effect elements are connected in a full-bridge connection as the magnetic detection section 7 has been described. may Each element driven by a dual power supply may be driven by a single power supply.

第1から第4磁気抵抗効果素子(10、20、30、40)の検出精度をさらに向上させるために、磁性体80と第1から第4磁気抵抗効果素子(10、20、30、40)の間にヨークを形成してもよい。前記ヨークを形成することにより、第1から第4磁気抵抗効果素子(10、20、30、40)に、より多くの磁界を効率よく導くことが出来るため、微小な磁界を精度よく検出することが可能となる。また、前記ヨークは薄膜プロセスで形成することで、寸法、位置ともに精度よく配置できるだけでなく、同一の積層行程で形成できるため外部に付属させた部品より低コストとなり、製品の小型化や製造コストの削減が可能になる。 In order to further improve the detection accuracy of the first to fourth magnetoresistive elements (10, 20, 30, 40), the magnetic body 80 and the first to fourth magnetoresistive elements (10, 20, 30, 40) A yoke may be formed between By forming the yoke, more magnetic fields can be efficiently guided to the first to fourth magnetoresistive elements (10, 20, 30, 40), so that minute magnetic fields can be detected with high accuracy. becomes possible. In addition, by forming the yoke by a thin film process, not only can it be arranged with high precision in terms of dimensions and position, but it can also be formed in the same lamination process, so that the cost is lower than that of externally attached parts, and the product can be made smaller and the manufacturing cost can be reduced. can be reduced.

1A~1H、1J 磁気センサ、5 積層体、7 磁気検出部、10 第1磁気抵抗効果素子、20 第2磁気抵抗効果素子、30 第3磁気抵抗効果素子、40 第4磁気抵抗効果素子、50 第2演算増幅器(第2差動増幅器)、70 第2磁界発生導体、75 第1磁界発生導体、76 第1演算増幅器(第1差動増幅器)、77 第3演算増幅器(第3差動増幅器)、78 基準電圧源、79 磁気検出素子、80 磁性体 1A to 1H, 1J magnetic sensor, 5 laminate, 7 magnetic detection unit, 10 first magnetoresistive effect element, 20 second magnetoresistive effect element, 30 third magnetoresistive effect element, 40 fourth magnetoresistive effect element, 50 Second operational amplifier (second differential amplifier), 70 Second magnetic field generating conductor, 75 First magnetic field generating conductor, 76 First operational amplifier (first differential amplifier), 77 Third operational amplifier (third differential amplifier) ), 78 reference voltage source, 79 magnetic detection element, 80 magnetic body

Claims (7)

検出対象の第1磁界が印加される第1及び第2磁気抵抗効果素子であって固定層磁化方向が互いに等しい第1及び第2磁気抵抗効果素子を含む磁気検出部と、
高電圧端子と低電圧端子との間に前記磁気検出部と直列に接続された、前記磁気検出部に印加される磁界による抵抗値変化が抑制された又は前記磁気検出部に印加される磁界による抵抗値変化が無い抵抗素子と、
前記磁気検出部の抵抗値と前記抵抗素子の抵抗値との比率に応じた電流が流れる第1磁界発生導体と、を備え、
前記第1磁界が前記第1及び第2磁気抵抗効果素子の位置において前記固定層磁化方向と平行かつ互いに反対向きの磁界成分を持ち、
前記第1磁界発生導体に流れる電流により発生する磁界が前記第1及び第2磁気抵抗効果素子に印加され、前記第1及び第2磁気抵抗効果素子の位置において前記固定層磁化方向と平行かつ互いに同じ向きの磁界成分を持つバイアス磁界による前記第1及び第2磁気抵抗効果素子の抵抗値変化が抑制される、磁気センサ。
a magnetic detection unit including first and second magnetoresistive effect elements to which a first magnetic field to be detected is applied and whose pinned layer magnetization directions are the same;
The magnetic field applied to the magnetic detection unit is connected in series between the high-voltage terminal and the low-voltage terminal, and the resistance value change due to the magnetic field applied to the magnetic detection unit is suppressed or due to the magnetic field applied to the magnetic detection unit. A resistive element whose resistance value does not change,
a first magnetic field generating conductor through which a current corresponding to a ratio between the resistance value of the magnetic detection unit and the resistance value of the resistance element flows,
the first magnetic field has magnetic field components parallel to the pinned layer magnetization direction and in opposite directions at the positions of the first and second magnetoresistive elements;
A magnetic field generated by a current flowing through the first magnetic field generating conductor is applied to the first and second magnetoresistive elements, and parallel to the magnetization direction of the fixed layer and to each other at the positions of the first and second magnetoresistive elements. A magnetic sensor in which a change in the resistance values of the first and second magnetoresistive elements due to a bias magnetic field having magnetic field components in the same direction is suppressed.
前記第1磁界発生導体は、前記磁気検出部と前記抵抗素子との相互接続点と中電圧端子との間に設けられる、請求項1に記載の磁気センサ。 2. The magnetic sensor according to claim 1, wherein said first magnetic field generating conductor is provided between an interconnection point between said magnetic detecting portion and said resistive element and a medium voltage terminal. 前記磁気検出部と前記抵抗素子との相互接続点の電圧と、中電圧端子の電圧と、の差を増幅する第1差動増幅器を備え、
前記第1磁界発生導体は、前記第1差動増幅器の出力端子と前記中電圧端子との間に設けられる、請求項1に記載の磁気センサ。
a first differential amplifier that amplifies a difference between a voltage at an interconnection point between the magnetic detection unit and the resistance element and a voltage at a medium voltage terminal;
2. The magnetic sensor according to claim 1, wherein said first magnetic field generating conductor is provided between an output terminal of said first differential amplifier and said medium voltage terminal.
前記抵抗素子は、磁気シールドされた磁気抵抗効果素子である、請求項1から3のいずれか一項に記載の磁気センサ。 4. The magnetic sensor according to claim 1, wherein said resistance element is a magnetically shielded magnetoresistive element. 前記抵抗素子は、固定抵抗である、請求項1から3のいずれか一項に記載の磁気センサ。 4. The magnetic sensor according to claim 1, wherein said resistive element is a fixed resistor. 前記磁気検出部の出力電圧が入力される第2差動増幅器と、
前記第2差動増幅器が出力する第1負帰還電流が流れることにより、前記第1及び第2磁気検出素子が検出する前記第1磁界を相殺する第2磁界を前記第1及び第2磁気検出素子に印加する第2磁界発生導体と、を備える、請求項1から5のいずれか一項に記載の磁気センサ。
a second differential amplifier to which the output voltage of the magnetic detection unit is input;
The flow of the first negative feedback current output by the second differential amplifier causes the first and second magnetic detection elements to detect a second magnetic field that cancels the first magnetic field detected by the first and second magnetic detection elements. A magnetic sensor according to any one of claims 1 to 5, comprising a second magnetic field generating conductor for applying to the element.
検出対象の第1磁界が前記第1及び第2磁気抵抗効果素子の位置において互いに反対向きの磁界成分を持つように前記第1磁界の向きを変化させる磁性体を備える、請求項1からのいずれか一項に記載の磁気センサ。 7. The apparatus according to any one of claims 1 to 6 , comprising a magnetic body that changes the direction of the first magnetic field so that the first magnetic field to be detected has magnetic field components in opposite directions at the positions of the first and second magnetoresistive elements. A magnetic sensor according to any one of the preceding claims.
JP2018168384A 2018-09-08 2018-09-08 magnetic sensor Active JP7286932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018168384A JP7286932B2 (en) 2018-09-08 2018-09-08 magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018168384A JP7286932B2 (en) 2018-09-08 2018-09-08 magnetic sensor

Publications (2)

Publication Number Publication Date
JP2020041869A JP2020041869A (en) 2020-03-19
JP7286932B2 true JP7286932B2 (en) 2023-06-06

Family

ID=69798038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018168384A Active JP7286932B2 (en) 2018-09-08 2018-09-08 magnetic sensor

Country Status (1)

Country Link
JP (1) JP7286932B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468178B2 (en) * 2020-06-17 2024-04-16 Tdk株式会社 Magnetic Sensor Array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273528A (en) 2006-03-30 2007-10-18 Alps Electric Co Ltd Magnetic sensor
JP2007303891A (en) 2006-05-09 2007-11-22 Denso Corp Magnetometric sensor
WO2011111648A1 (en) 2010-03-12 2011-09-15 アルプス電気株式会社 Magnetism sensor and magnetic-balance current sensor using same
JP2015087228A (en) 2013-10-30 2015-05-07 Tdk株式会社 Magnetic field detection device
JP2015219061A (en) 2014-05-15 2015-12-07 Tdk株式会社 Magnetic field detection sensor and magnetic field detection device using the same
WO2017077870A1 (en) 2015-11-04 2017-05-11 Tdk株式会社 Magnetic field detection device and magnetic field detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273528A (en) 2006-03-30 2007-10-18 Alps Electric Co Ltd Magnetic sensor
JP2007303891A (en) 2006-05-09 2007-11-22 Denso Corp Magnetometric sensor
WO2011111648A1 (en) 2010-03-12 2011-09-15 アルプス電気株式会社 Magnetism sensor and magnetic-balance current sensor using same
JP2015087228A (en) 2013-10-30 2015-05-07 Tdk株式会社 Magnetic field detection device
JP2015219061A (en) 2014-05-15 2015-12-07 Tdk株式会社 Magnetic field detection sensor and magnetic field detection device using the same
WO2017077870A1 (en) 2015-11-04 2017-05-11 Tdk株式会社 Magnetic field detection device and magnetic field detection method

Also Published As

Publication number Publication date
JP2020041869A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2018190261A1 (en) Magnetic sensor
JP6255902B2 (en) Magnetic field detector
CA2733431C (en) Multi-axis fluxgate magnetic sensor
US20060232902A1 (en) Current sensor
WO2017077870A1 (en) Magnetic field detection device and magnetic field detection method
JP7140149B2 (en) Current sensors, magnetic sensors and circuits
JP6548868B2 (en) Magnetic inspection device and sheet processing device
JP2002243766A (en) Electric current sensor
JP2009210406A (en) Current sensor and watthour meter
JP2008215970A (en) Bus bar integrated current sensor
JP6384677B2 (en) Current sensor
JP7286932B2 (en) magnetic sensor
JP6394740B2 (en) Magnetic field detector
JP2007033222A (en) Current sensor
WO2018159776A1 (en) Magnetic sensor
JP2010286415A (en) Current sensor unit
JP7119633B2 (en) magnetic sensor
JPWO2013105451A1 (en) Current sensor
JP6446859B2 (en) Integrated circuit
JP7225694B2 (en) magnetic sensor
JP7119695B2 (en) magnetic sensor
JP2016115240A (en) Multiplication circuit and power sensor including the same
JP6644343B1 (en) Zero flux type magnetic sensor
JP2020041945A (en) Magnetic field detection sensor
WO2017141763A1 (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7286932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150