Nothing Special   »   [go: up one dir, main page]

JP7286980B2 - 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池 - Google Patents

多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池 Download PDF

Info

Publication number
JP7286980B2
JP7286980B2 JP2019013429A JP2019013429A JP7286980B2 JP 7286980 B2 JP7286980 B2 JP 7286980B2 JP 2019013429 A JP2019013429 A JP 2019013429A JP 2019013429 A JP2019013429 A JP 2019013429A JP 7286980 B2 JP7286980 B2 JP 7286980B2
Authority
JP
Japan
Prior art keywords
resin particles
less
polyimide precursor
porous polyimide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019013429A
Other languages
English (en)
Other versions
JP2020122051A (ja
Inventor
保伸 鹿島
耕作 吉村
啓 菅原
英一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2019013429A priority Critical patent/JP7286980B2/ja
Priority to US16/540,060 priority patent/US11584837B2/en
Publication of JP2020122051A publication Critical patent/JP2020122051A/ja
Application granted granted Critical
Publication of JP7286980B2 publication Critical patent/JP7286980B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

本発明は、多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池に関する。
ポリイミド樹脂は、機械的強度、化学的安定性、耐熱性に優れた特性を有する材料であり、これらの特性を有する多孔質のポリイミド膜が注目されている。
例えば、特許文献1には、「ポリアミド酸若しくはポリイミド、シリカ粒子及び溶媒を混合してワニスを製造する、又はシリカ粒子が分散した溶媒中でポリアミド酸若しくはポリイミドを重合してワニスを製造するワニス製造工程と、
前記ワニス製造工程で製造されたワニスを基板に製膜後、イミド化を完結させて、ポリイミド-シリカ複合膜を製造する複合膜製造工程と、
前記複合膜製造工程で製造されたポリイミド-シリカ複合膜のシリカを除去するシリカ除去工程を有する多孔質ポリイミド膜の製造方法において、
前記シリカ粒子として真球率が1.0~1.1、粒径分布指数(d25/d75)が1.5以下、平均直径が100~2000nmのシリカ粒子を用い、かつ
前記ポリイミド-シリカ複合膜中におけるシリカ/ポリイミドの質量比を2~6としたことを特徴とする多孔質ポリイミド膜の製造方法。」が記載されている。
特許文献2には、「樹脂粒子、及びポリイミド前駆体を含有し、ポリイミド前駆体溶液中での前記樹脂粒子の体積粒度分布が少なくとも1つの極大値を有し、前記極大値のうち、最も体積頻度が大きくなる極大値の体積頻度の占める割合が、前記体積粒度分布の有する全ての極大値の体積頻度に対して、90%以上100%以下であるポリイミド前駆体溶液。」が記載されている。
特許文献3には、「水性溶剤に、ポリイミド前駆体及び有機アミン化合物が溶解しているポリイミド前駆体溶液と、前記ポリイミド前駆体溶液に溶解しない樹脂粒子とを含む塗膜を形成した後、前記塗膜を乾燥して、前記ポリイミド前駆体及び前記樹脂粒子を含む被膜を形成する第1の工程と、
前記被膜を加熱して、前記ポリイミド前駆体をイミド化してポリイミドフィルムを形成する第2の工程であって、前記樹脂粒子を除去する処理を含む第2の工程と、
を有する多孔質ポリイミドフィルムの製造方法。」が記載されている。
特許2012-107144号公報 特開2018-138645号公報 特開2016-183332号公報
従来の多孔質ポリイミド膜を、例えば、リチウム二次電池のセパレータなどの用途に適用した場合、繰り返し充放電したときの電池容量(以下、「サイクル特性」と称する場合がある。)が低下することが分かってきた。
本発明の課題は、多孔質ポリイミド膜において、細孔分布幅が1.15を超える場合、空孔径が0.50μm未満である場合、又は透気速度が30秒を超える場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミド膜を提供することである。
前記課題を解決するための具体的手段には、下記の態様が含まれる。
<1>
水銀圧入法によって測定される細孔分布において、体積基準で、細孔の小径側から累積した16%になるときの細孔径D16に対する小径側から累積した84%になるときの細孔径D84の割合の平方根((D84/D161/2)で表される細孔分布幅が1.15以下であり、空孔径が0.50μm以上3.0μm以下であり、透気速度が30秒以下である多孔質ポリイミド膜。
<2>
前記細孔分布幅が1.13以下である、<1>に記載の多孔質ポリイミド膜。
<3>
前記細孔分布幅が1.12以下である、<2>に記載の多孔質ポリイミド膜。
<4>
前記空孔径が0.8μm以上2.5μm以下である、<1>~<3>のいずれか1項に記載の多孔質ポリイミド膜。
<5>
前記空孔径が0.8μm以上2.4μm以下である、<4>に記載の多孔質ポリイミド膜。
<6>
前記透気速度が20秒以下である、<1>~<5>のいずれか1項に記載の多孔質ポリイミド膜。
<7>
前記透気速度が15秒以下である、<6>に記載の多孔質ポリイミド膜。
<8>
空孔の円形度が0.85以上である、<1>~<7>のいずれか1項に記載の多孔質ポリイミド膜。
<9>
前記円形度が0.90以上である、<8>に記載の多孔質ポリイミド膜。
<10>
平均膜厚が10μm以上1000μm以下である、<1>~<9>のいずれか1項に記載の多孔質ポリイミド膜。
<11>
前記平均膜厚が20μm以上500μm以下である、<10>に記載の多孔質ポリイミド膜。
<12>
空隙率が50%以上80%以下である、<1>~<11>のいずれか1項に記載の多孔質ポリイミド膜。
<13>
空隙率が55%以上75%以下である、<12>に記載の多孔質ポリイミド膜。
<14>
<1>~<13>のいずれか1項に記載の多孔質ポリイミド膜を含むリチウムイオン二次電池用セパレータ。
<15>
<14>に記載のリチウムイオン二次電池用セパレータを備えるリチウムイオン二次電池。
<16>
<1>~<13>のいずれか1項に記載の多孔質ポリイミド膜を含む全固体電池。
<1>に係る発明によれば、多孔質ポリイミド膜において、細孔分布幅が1.15を超える場合、空孔径が0.50μm未満である場合、又は透気速度が30秒を超える場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミド膜が提供される。
<2>、<3>に係る発明によれば、細孔分布幅が1.13を超える場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミド膜が提供される。
<4>、<5>に係る発明によれば、空孔径が0.80μm未満である場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミド膜が提供される。
<6>、<7>に係る発明によれば、透気速度が20秒を超える場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミド膜が提供される。
<8>、<9>に係る発明によれば、円形度が0.85未満である場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミド膜が提供される。
<10>、<11>に係る発明によれば、細孔分布幅が1.15を超える場合、空孔径が0.50μm未満である場合、又は透気速度が30秒を超える場合に比べ、平均膜厚が10μm以上1000μm以下であって、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミド膜が提供される。
<12>、<13>に係る発明によれば、空隙率が50%未満又は80%を超える場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミド膜が提供される。
<14>に係る発明によれば、細孔分布幅が1.15を超える場合、空孔径が0.50μm未満である場合、又は透気速度が30秒を超える多孔質ポリイミド膜が適用された場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制されるリチウムイオン二次電池用セパレータが提供される。
<15>に係る発明によれば、細孔分布幅が1.15を超える場合、空孔径が0.50μm未満である場合、又は透気速度が30秒を超える多孔質ポリイミド膜が適用されたリチウムイオン二次電池用セパレータを備える場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制されるリチウムイオン二次電池が提供される。
<16>に係る発明によれば、細孔分布幅が1.15を超える場合、空孔径が0.50μm未満である場合、又は透気速度が30秒を超える多孔質ポリイミド膜が適用された場合に比べ、二次電池に適用したときの繰り返し充放電による電池容量の低下が抑制される全固体電池が提供される。
本実施形態に係る多孔質ポリイミド膜の形態の一例を示す模式図である。 本実施形態に係るリチウムイオン二次電池の一例を表す部分断面模式図である。 本実施形態に係る全固体電池の一例を示す部分断面模式図である。
以下、本発明の一例である多孔質ポリイミド膜の実施形態について説明する。
<多孔質ポリイミド膜>
本実施形態に係る多孔質ポリイミド膜は、水銀圧入法によって測定される細孔分布において、体積基準で、細孔の小径側から累積した16%になるときの細孔径D16に対する小径側から累積した84%になるときの細孔径D84の割合の平方根((D84/D161/2)で表される細孔分布幅が1.15以下である。また、空孔径が0.50μm以上3.0μm以下であり、透気速度が30秒以下である。
多孔質膜は、例えば、二次電池の用途(リチウム二次電池のセパレータ、全固体電池における固体電解質の保持体など)に適用される場合がある。多孔質膜のうち、多孔質ポリイミド膜は、二次電池の用途に適した材料として検討が進められている。
従来の多孔質ポリイミド膜を、例えば、リチウム二次電池のセパレータなどの用途に適用した場合、繰り返し充放電したときの電池容量(以下、「サイクル特性」と称する場合がある。)が低下することが分かってきた。この要因の一つとして、多孔質ポリイミド膜中を通して移動する、リチウムイオンの透過性が関係していると考えられる。つまり、リチウム二次電池に対し、繰り返し充放電していくうちに、リチウム金属がデンドライト状に成長する。それにより、多孔質ポリイミド膜中におけるリチウムイオンの透過性が低下し、繰り返し充放電したときの電池容量が低下すると考えられる。具体的には、以下のように考えられる。空孔径が小さすぎると、イオンの透過性が低く、デンドライトが成長しやすくなる。また、多孔質ポリイミド膜の空孔径のバラつきが大きいと、多孔質ポリイミド膜中を透過するリチウムイオンの透過速度にバラつきが生じ、デンドライトが成長しやすくなる。また、透気速度が低いと、リチウムイオンが透過しにくいため、デンドライトが成長しやすくなる。
これに対し、本実施形態に係る多孔質ポリイミド膜では、上記構成により、多孔質膜の空孔のバラつきが少なくなり、規則的に近い状態で配置されているため、多孔質ポリイミド膜中を透過するリチウムイオンの透過性にバラつきが少ない。また、多孔質ポリイミド膜中を透過するリチウムイオンが透過しやすい。このため、繰り返し充放電したときの多孔質ポリイミド膜中でのデンドライトの成長が抑制されることで、繰り返し充放電したときの電池容量の低下が抑制される(サイクル特性に優れる)と考えられる。
以下、本実施形態の多孔質ポリイミド膜について説明する。
本実施形態において、「膜」は、一般的に「膜」と呼ばれているものだけでなく、一般的に「フィルム」及び「シート」と呼ばれているものをも包含する概念である。
(多孔質ポリイミド膜の特性)
-細孔分布幅-
細孔分布幅は、水銀圧入法によって測定される細孔分布において、質量基準で、細孔の小径側から累積した16%になるときの細孔径D16に対する細孔の小径側から累積した84%になるときの細孔径D84の割合の平方根((D84/D161/2)によって算出される。本実施形態に係る多孔質ポリイミド膜の細孔分布幅は、体積基準で、1.15以下である。サイクル特性に優れる点で、細孔分布幅は、1.13以下であることが好ましく、1.12以下であることがより好ましく、1.11以下であることがさらに好ましい。細孔分布幅は、小さいほど、細孔径の幅がシャープ(鋭敏)になるため、サイクル特性に優れる。そのため、細孔分布幅の下限は、1.00以上であってもよく、1.01以上であってもよく、1.05以上であってもよい。
細孔分布幅の測定は、次のようにして測定する。まず、多孔質ポリイミド膜を、幅30mm×長さ60mmの大きさに2枚切り出す。次に、切り出した2枚の多孔質ポリイミド成形体を重ねて測定用の試験片とする。この試験片について、JIS R 1655(2003)に準拠して、水銀圧入法により細孔分布幅を測定する。測定精度を上げるため、10μm以上はカットする。
-空孔-
空孔径は平均値として表した値である。空孔径(空孔径の平均値)は、0.50μm以上3.0μm以下の範囲である。空孔径が0.50μm以上であることで、サイクル特性に優れる。また、空孔径が3.0μm以下であることで、短絡等の電池特性の低下が抑制される。空孔径は、サイクル特性がより優れる観点で、0.7μm以上がよく、0.75μm以上が好ましく、0.8μm以上がより好ましい。また、短絡等の電池特性の低下がより抑制される観点で、2.5μm以下がよく、2.45μm以下の範囲が好ましく、2.4μm以下がより好ましい。
空隙率は、サイクル特性に優れる観点で、50%以上80%以下であることがよい。空隙率の下限は55%以上であることがより好ましく、60%以上であることが好ましい。空孔率の上限は75%以下であることが好ましく、70%以下であることがより好ましい。
本実施形態に係る多孔質ポリイミド膜の空隙率は、多孔質ポリイミド膜の見かけ密度と真密度から求める値である。見かけの密度とは、多孔質ポリイミド膜の質量(g)を、空孔を含めた多孔質ポリイミド膜全体の体積(cm)で除した値である。真密度ρとは、多孔質ポリイミド膜の質量(g)を、空孔を除く多孔ポリイミド膜の体積(cm)で除した値である。多孔質ポリイミド膜の空隙率は、下記式で計算される。
(式) 空隙率(%)={1-(d/ρ)}×100=[1-{(w/t)/ρ)}]×100
d:多孔質ポリイミド膜の見かけ密度(g/cm
ρ:多孔質ポリイミド膜の真密度(g/cm
w:多孔質ポリイミド膜の重量(g/m
t:多孔質ポリイミド膜の厚み(μm)
空孔の円形度は特に限定されず、例えば、サイクル特性に優れる観点で0.85以上であることがよい。好ましくは0.9以上、より好ましくは0.92以上、さらに好ましくは0.95以上である。空孔の円形度が0.85以上であると、リチウムイオンの透過性の低下が抑制される。
空孔の円形度は、求める空孔の開口面積をAとし、その空孔の外形の長さをLとしたとき、以下の式により定義されるものである。円形度=(4πA)0.5/L。真円であると円形度は1となり、断面積Aに対して周長Lが長くなると円形度が小さくなる。
空孔の形状は、球状又は球状に近い形状であることが好ましい。また、空孔は、空孔どうしが互いに連結されて連なった形状であることが好ましい(図1参照)。空孔どうしが互いに連結されている部分の空孔径は、例えば、空孔の最大径の1/100以上1/2以下であることがよく、1/50以上1/3以下であることが好ましく、1/20以上1/4以下であることがより好ましい。具体的には、空孔どうしが互いに連結されて連なっている部分の空孔径の平均値は、5nm以上1500nm以下であることがよい。
空孔の最大径と最小径の比率(空孔径の最大値と最小値の比率)は特に限定されず、例えば、1以上2以下であることがよい。好ましくは1以上1.9以下、より好ましくは1以上1.8以下である。この範囲の中でも、1に近いほうがさらに好ましい。
空孔径(空孔径の平均値)、及び空孔どうしが互いに連結されている部分の空孔径の平均値、空孔の最大径と最小径の比率、及び空孔の円形度は、走査型電子顕微鏡(SEM)による観察及び計測される値である。具体的には、まず、多孔質ポリイミド膜を切り出し、測定用試料を準備する。そして、この測定用試料をキーエンス(KEYENCE)社製のVE SEMにより、標準装備されている画像処理ソフトにて観察及び計測を実施する。観察及び計測は、測定用試料断面のうち、空孔部分の100個について行い、空孔径の平均値(算術平均径)、空孔の最小径及び最大径を求める。また、空孔どうしが互いに連結されている部分の空孔径についても、空孔部分の100個について行い、空孔どうしが互いに連結されている部分の空孔径の平均値(算術平均径)を求める。また、空孔の形状(測定断面における空孔の形状)が円形でない場合には、最も長い部分を径とする。空孔の円形度は、空孔部分の100個について周長を測定し、その平均値(算術平均周長)を求め、上記定義に基づいて算出する。
空孔の最大径と最小径の比率、空孔の円形度が上記範囲であると、空孔径のバラつきが抑制される観点で好適である。また、本実施形態の多孔質ポリイミド膜を、例えば、リチウムイオン電池の電池セパレータに適用した場合に、イオン流に乱れを生じることが抑制されるため、リチウムデンドライトの形成が抑制されやすくなる。「空孔の最大径と最小径の比率」とは、空孔の最大径を最小径で除した値(つまり、空孔径の最大値/最小値)で表される比率である。
多孔質ポリイミド膜の膜厚は、特に限定されず、例えば、10μm以上1000μm以下であってもよい。膜厚は、20μm以上であってもよく、30μm以上であってもよい。また、500μm以下であってもよく、400μm以下であってもよい。
-透気速度-
本実施形態に係る多孔質ポリイミド膜は、サイクル特性に優れる観点で、透気速度が30秒以下である。同様の観点で、25秒以下が好ましく、20秒以下がより好ましい。透気速度は、小さいほどサイクル特性に優れるため、0秒に近い値(0秒超)であってもよく、5秒以上であってもよい。透気速度の測定方法については、後述の実施例で説明する。
(多孔質ポリイミド膜の製造方法)
以下、本実施形態に係る多孔質ポリイミド膜の好ましい製造方法の一例について説明する。
本実施形態に係る多孔質ポリイミド膜は、例えば、以下の工程を有する。
水を含む水性溶剤、前記水性溶剤に溶解しない樹脂粒子、有機アミン化合物、及びポリイミド前駆体を含有するポリイミド前駆体溶液を塗布して塗膜を形成した後、前記塗膜を乾燥して、前記ポリイミド前駆体及び前記樹脂粒子を含む被膜を形成する第1の工程。
前記被膜を加熱して、前記ポリイミド前駆体をイミド化してポリイミド膜を形成する第2の工程であって、前記樹脂粒子を除去する処理を含む第2の工程。
本明細書中において、「溶解しない」とは、25℃において、対象物質が対象液体に対して3質量%以下の範囲内で溶解することも含む。
なお、製造方法の説明において、参照する図1中では、同じ構成部分には、同じ符号を付している。図1中の符号において31は基板、51は剥離層、10Aは空孔、及び10は多孔質ポリイミド膜を表す。
[第1の工程]
第1の工程は、まず、水性溶剤、樹脂粒子、有機アミン化合物、及びポリイミド前駆体を含むポリイミド前駆体溶液(以下、「樹脂粒子分散ポリイミド前駆体溶液」とも称する。)を準備する。
次に、基板上に、樹脂粒子分散ポリイミド前駆体溶液を塗布し、ポリイミド前駆体溶液と、樹脂粒子とを含む塗膜を形成する。そして、基板上に形成された塗膜を乾燥して、ポリイミド前駆体及び前記樹脂粒子を含む被膜を形成する。
第1の工程のうち、ポリイミド前駆体溶液と、樹脂粒子とを含む塗膜を基板上に形成する方法としては、特に限定されず、例えば、次のような方法が挙げられる。
具体的には、まず、水性溶剤に樹脂粒子が分散された樹脂粒子分散液を準備する。そして、この樹脂粒子分散に有機アミン化合物とテトラカルボン酸二無水物とジアミン化合物とを混合し、テトラカルボン酸二無水物とジアミン化合物とを重合してポリイミド前駆体を形成した樹脂粒子分散ポリイミド前駆体溶液を準備する。次に、この樹脂粒子分散ポリイミド前駆体溶液を基板上に塗布し、ポリイミド前駆体溶液と樹脂粒子とを含む塗膜を形成する。この塗膜中の樹脂粒子は、凝集が抑制された状態で分布している。
樹脂粒子分散ポリイミド前駆体溶液を塗布する基板としては、特に制限されない。例えば、ポリスチレン、ポリエチレンテレフタレート等の樹脂製基板;ガラス製基板;セラミック製基板;鉄、ステンレス鋼(SUS)等の金属基板;これらの材料が組み合わされた複合材料基板等が挙げられる。また、基板には、必要に応じて、例えば、シリコーン系、フッ素系の剥離剤等による剥離処理を行って剥離層を設けてもよい。
基板上に、樹脂粒子分散ポリイミド前駆体溶液を塗布する方法としては、特に限定されない。例えば、スプレー塗布法、回転塗布法、ロール塗布法、バー塗布法、スリットダイ塗布法、インクジェット塗布法等の各種の方法が挙げられる。
ポリイミド前駆体溶液及び樹脂粒子を含む塗膜を得るためのポリイミド前駆体溶液の塗布量としては、予め定められた膜厚が得られる量に設定すればよい。
ポリイミド前駆体溶液及び樹脂粒子を含む塗膜を形成した後、乾燥して、ポリイミド前駆体及び樹脂粒子を含む被膜が形成される。具体的には、ポリイミド前駆体溶液と樹脂粒子とを含む塗膜を、例えば、加熱乾燥、自然乾燥、真空乾燥等の方法により乾燥させて、被膜を形成する。より具体的には、被膜に残留する溶剤が、被膜の固形分に対して50%以下、好ましくは30%以下となるように、塗膜を乾燥させて、被膜を形成する。この被膜は、ポリイミド前駆体が、水に溶解できる状態である。
[第2の工程]
第2の工程は、第1の工程で得られたポリイミド前駆体及び樹脂粒子を含む被膜を加熱して、ポリイミド前駆体をイミド化してポリイミド膜を形成する工程である。そして、第2の工程には、樹脂粒子を除去する処理を含んでいる。樹脂粒子を除去する処理を経て、多孔質ポリイミド膜が得られる。
第2の工程において、ポリイミド膜を形成する工程は、具体的に、第1の工程で得られたポリイミド前駆体及び樹脂粒子を含む被膜を加熱して、イミド化を進行させ、さらに加熱して、イミド化が進行したポリイミド膜が形成される。なお、イミド化が進行し、イミド化率が高くなるにしたがい、有機溶剤に溶解し難くなる。
そして、第2の工程において、樹脂粒子を除去する処理を行う。樹脂粒子の除去は、被膜を加熱して、ポリイミド前駆体をイミド化する過程において除去してもよく、イミド化が完了した後(イミド化後)のポリイミド膜から除去してもよい。
なお、本実施形態において、ポリイミド前駆体をイミド化する過程とは、第1の工程で得られたポリイミド前駆体及び樹脂粒子を含む被膜を加熱して、イミド化を進行させ、イミド化が完了した後のポリイミド膜となるよりも前の状態となる過程を示す。
樹脂粒子を除去する処理は、樹脂粒子の除去性等の点で、ポリイミド前駆体をイミド化する過程において、ポリイミド膜中のポリイミド前駆体のイミド化率が10%以上であるときに行うことが好ましい。イミド化率が10%以上になると、有機溶剤に溶解し難い状態となりやすく、形態を維持しやすい。
樹脂粒子を除去する処理としては、例えば、樹脂粒子を加熱により除去する方法、樹脂粒子を溶解する有機溶剤により除去する方法、樹脂粒子をレーザ等による分解により除去する方法等が挙げられる。これらのうち、樹脂粒子を加熱により除去する方法、樹脂粒子を溶解する有機溶剤により除去する方法が好ましい。
加熱により除去する方法としては、例えば、ポリイミド前駆体をイミド化する過程において、イミド化を進行させるための加熱によって、樹脂粒子を分解させることで除去してもよい。この場合には、溶剤により樹脂粒子を除去する操作がない点で、工程の削減に対して有利である。
樹脂粒子を溶解する有機溶剤により除去する方法としては、例えば、樹脂粒子が溶解する有機溶剤と接触(例えば、溶剤中に浸漬)させ、樹脂粒子を溶解して除去する方法が挙げられる。この状態のときに、溶剤中に浸漬すると、樹脂粒子の溶解効率が高くなる点で好ましい。
樹脂粒子を除去するための樹脂粒子を溶解する有機溶剤としては、イミド化が完了する前のポリイミド膜、及びイミド化が完了したポリイミド膜を溶解せず、樹脂粒子が可溶な有機溶剤であれば、特に限定されるものではない。例えば、テトラヒドロフラン等のエーテル類;トルエン等の芳香族類;アセトンなどのケトン類;酢酸エチルなどのエステル類;が挙げられる。
第2の工程において、第1の工程で得た被膜を加熱して、イミド化を進行させてポリイミド膜を得るための加熱方法としては、特に限定されない。例えば、2段階で加熱する方法が挙げられる。2段階で加熱する場合、具体的には、以下のような加熱条件が挙げられる。
第1段階の加熱条件としては、樹脂粒子の形状が保持される温度であることが望ましい。具体的には、例えば、50℃以上150℃以下の範囲がよく、60℃以上140℃以下の範囲が好ましい。また、加熱時間としては、10分間以上60分間以下の範囲がよい。加熱温度が高いほど加熱時間は短くてよい。
第2段階の加熱条件としては、例えば、150℃以上450℃以下(好ましくは200℃以上430℃以下)で、20分間以上120分間以下の条件で加熱することが挙げられる。この範囲の加熱条件とすることで、イミド化反応がさらに進行し、ポリイミド膜が形成され得る。加熱反応の際、加熱の最終温度に達する前に、温度を段階的、又は一定速度で徐々に上昇させて加熱することがよい。
なお、加熱条件は上記の2段階の加熱方法に限らず、例えば、1段階で加熱する方法を採用してもよい。1段階で加熱する方法の場合、例えば、上記の第2段階で示した加熱条件のみによってイミド化を完了させてもよい。
第2の工程において、開孔率を高める点で、樹脂粒子を露出させる処理を行って樹脂粒子を露出させた状態とすることが好ましい。第2の工程において、樹脂粒子を露出させる処理は、ポリイミド前駆体のイミド化を行う過程、又はイミド化後、且つ、樹脂粒子を除去する処理よりも前で行うことが好ましい。
この場合、例えば、樹脂粒子分散ポリイミド前駆体溶液を用いて基板上に被膜を形成する場合、樹脂粒子分散ポリイミド前駆体溶液を基板上に塗布し、樹脂粒子が埋没した塗膜を形成する。次に、塗膜を乾燥してポリイミド前駆体及び樹脂粒子を含む被膜を形成する。この方法によって形成された被膜は、樹脂粒子が埋没された状態となる。この被膜に対して、加熱を行い、樹脂粒子の除去処理を行う前に、ポリイミド前駆体をイミド化する過程、又はイミド化が完了した後(イミド化後)のポリイミド膜から樹脂粒子を露出させる処理を施してもよい。
第2の工程において、樹脂粒子を露出させる処理は、例えば、ポリイミド膜が次のような状態であるときに施すことが挙げられる。
ポリイミド膜中のポリイミド前駆体のイミド化率が10%未満であるとき(すなわち、ポリイミド膜が水に溶解できる状態)に樹脂粒子を露出させる処理を行う場合、上記のポリイミド膜中に埋没している樹脂粒子を露出させる処理としては、拭き取る処理、水に浸漬する処理等が挙げられる。
また、ポリイミド膜中のポリイミド前駆体のイミド化率が10%以上であるとき(すなわち、水、有機溶剤に溶解し難い状態)、及びイミド化が完了したポリイミド膜となった状態であるときに樹脂粒子を露出させる処理を行う場合には、紙やすり等の工具類で機械的に切削して樹脂粒子を露出させる方法、レーザ等で分解して樹脂粒子を露出させる方法が挙げられる。
例えば、機械的に切削する場合には、ポリイミド膜に埋没している樹脂粒子の上部の領域(つまり、樹脂粒子の基板から離れた側の領域)に存在する樹脂粒子の一部分が、樹脂粒子の上部に存在しているポリイミド膜とともに切削され、切削された樹脂粒子がポリイミド膜の表面から露出される。
その後、樹脂粒子が露出されたポリイミド膜から、既述の樹脂粒子の除去処理により樹脂粒子を除去する。そして、樹脂粒子が除去された多孔質ポリイミド膜が得られる(図1参照)。
なお、上記では、第2の工程において、樹脂粒子を露出させる処理を施した多孔質ポリイミド膜の製造工程について示したが、開孔率を高める点で、第1の工程で樹脂粒子を露出させる処理を施してもよい。この場合には、第1の工程において、塗膜を得た後、乾燥して被膜を形成する過程で、樹脂粒子を露出させる処理を行って、樹脂粒子を露出させた状態にしてもよい。この樹脂粒子を露出させる処理を行うことによって、多孔質ポリイミド膜の開孔率が高められる。
例えば、ポリイミド前駆体溶液及び樹脂粒子を含む塗膜を得た後、塗膜を乾燥して、ポリイミド前駆体及び樹脂粒子を含む被膜を形成する過程では、前述のように、被膜は、ポリイミド前駆体が、水に溶解できる状態である。被膜がこの状態のときに、例えば、拭き取る処理、又は水に浸漬する処理等により、樹脂粒子を露出させることができる。具体的には、樹脂粒子層の厚み以上の領域に存在するポリイミド前駆体溶液を、例えば、水拭きにより樹脂粒子層を露出させる処理を行うことで、樹脂粒子層の厚み以上の領域に存在していたポリイミド前駆体溶液が除去される。そして、樹脂粒子層の上部の領域(つまり、樹脂粒子層の基板から離れた側の領域)に存在する樹脂粒子が、被膜の表面から露出される。
なお、ガス分離膜のような用途に適用する場合、多孔質ポリイミド膜は、表面に開孔していないスキン層を持つことが好ましい。この場合には樹脂粒子を露出させる処理は行わないことがよい。
なお、第2の工程において、第1の工程で使用した上記の被膜を形成するための基板は、乾燥した被膜となったときに剥離してもよく、ポリイミド膜中のポリイミド前駆体が、有機溶剤に溶解し難い状態となったときに剥離してもよく、イミド化が完了したフィルムになった状態のときに剥離してもよい。
以上の工程を経て、多孔質ポリイミド膜が得られる。そして、多孔質ポリイミド膜は、使用目的によって後加工してもよい。
ここで、ポリイミド前駆体のイミド化率について説明する。
一部がイミド化したポリイミド前駆体は、例えば、下記一般式(I-1)、下記一般式(I-2)、及び下記一般式(I-3)で表される繰り返し単位を有する構造の前駆体が挙げられる。
Figure 0007286980000001
一般式(I-1)、一般式(I-2)、及び一般式(I-3)中、Aは4価の有機基を示し、Bは2価の有機基を示す。lは1以上の整数を示し、m及びnは、各々独立に0又は1以上の整数を示す。
なお、A及びBは、前述の一般式(I)中のA及びBと同義である。
ポリイミド前駆体のイミド化率は、ポリイミド前駆体の結合部(テトラカルボン酸二無水物とジアミン化合物との反応部)において、イミド閉環している結合部数(2n+m)の全結合部数(2l+2m+2n)に対する割合を表す。つまり、ポリイミド前駆体のイミド化率は、「(2n+m)/(2l+2m+2n)」で示される。
なお、ポリイミド前駆体のイミド化率(「(2n+m)/(2l+2m+2n)」の値)は、次の方法により測定される。
-ポリイミド前駆体のイミド化率の測定-
・ポリイミド前駆体試料の作製
(i)測定対象となるポリイミド前駆体組成物を、シリコーンウェハー上に、膜厚1μm以上10μm以下の範囲で塗布して、塗膜試料を作製する。
(ii)塗膜試料をテトラヒドロフラン(THF)中に20分間浸漬させて、塗膜試料中の溶媒をテトラヒドロフラン(THF)に置換する。浸漬させる溶媒は、THFに限定されることなく、ポリイミド前駆体を溶解せず、ポリイミド前駆体組成物に含まれている溶媒成分と混和し得る溶媒より選択できる。具体的には、メタノール、エタノールなどのアルコール溶媒、ジオキサンなどのエーテル化合物が使用できる。
(iii)塗膜試料を、THF中より取り出し、塗膜試料表面に付着しているTHFにN2ガスを吹き付け、取り除く。10mmHg以下の減圧下、5℃以上25℃以下の範囲にて12時間以上処理して塗膜試料を乾燥させ、ポリイミド前駆体試料を作製する。
・100%イミド化標準試料の作製
(iv)上記(i)と同様に、測定対象となるポリイミド前駆体組成物をシリコーンウェハー上に塗布して、塗膜試料を作製する。
(v)塗膜試料を380℃にて60分間加熱してイミド化反応を行い、100%イミド化標準試料を作製する。
・測定と解析
(vi)フーリエ変換赤外分光光度計(堀場製作所製FT-730)を用いて、100%イミド化標準試料、ポリイミド前駆体試料の赤外吸光スペクトルを測定する。100%イミド化標準試料の1500cm-1付近の芳香環由来吸光ピーク(Ab’(1500cm-1))に対する、1780cm-1付近のイミド結合由来の吸光ピーク(Ab’(1780cm-1))の比I’(100)を求める。
(vii)同様にして、ポリイミド前駆体試料について測定を行い、1500cm-1付近の芳香環由来吸光ピーク(Ab(1500cm-1))に対する、1780cm-1付近のイミド結合由来の吸光ピーク(Ab(1780cm-1))の比I(x)を求める。
そして、測定した各吸光ピークI’(100)、I(x)を使用し、下記式に基づき、ポリイミド前駆体のイミド化率を算出する。
・式: ポリイミド前駆体のイミド化率=I(x)/I’(100)
・式: I’(100)=(Ab’(1780cm-1))/(Ab’(1500cm-1))
・式: I(x)=(Ab(1780cm-1))/(Ab(1500cm-1))
なお、このポリイミド前駆体のイミド化率の測定は、芳香族系ポリイミド前駆体のイミド化率の測定に適用される。脂肪族ポリイミド前駆体のイミド化率を測定する場合、芳香環の吸収ピークに代えて、イミド化反応前後で変化のない構造由来のピークを内部標準ピークとして使用する。
次に、実施形態に係る多孔質ポリイミド膜を製造するためのポリイミド前駆体における各成分について説明する。
(ポリイミド前駆体溶液)
ポリイミド前駆体溶液は、水性溶剤、樹脂粒子、有機アミン化合物、およびポリイミド前駆体を含有する。ポリイミド前駆体溶液を製造する方法は特に限定されない。ポリイミド前駆体溶液の好ましい製造方法の一例としては、以下の方法が挙げられる。
まず、水性溶剤に、樹脂粒子が分散された樹脂粒子分散液を準備する。樹脂粒子は、表面に酸性基を有する樹脂粒子であることが好ましい。その後、前記樹脂粒子分散液中で、有機アミン化合物の存在下、テトラカルボン酸二無水物とジアミン化合物とを重合してポリイミド前駆体を形成する。
具体的には、樹脂粒子が分散された樹脂粒子分散液を準備する工程(以下「樹脂粒子分散液準備工程」と称することがある。)と、樹脂粒子分散液に対し、有機アミン化合物、テトラカルボン酸二無水物、及び、ジアミン化合物を混合して、テトラカルボン酸二無水物とジアミン化合物とを重合してポリイミド前駆体を形成する工程(以下、「ポリイミド前駆体形成工程」と称することがある。)と、を有する。なお、樹脂粒子として、表面に酸性基を有する樹脂粒子を用いた場合も同様の工程を有する。
-樹脂粒子分散液準備工程-
樹脂粒子分散液準備工程は、水性溶剤に、樹脂粒子が分散している樹脂粒子分散液が得られるのであれば、その方法は特に限定されない。
例えば、ポリイミド前駆体溶液に溶解しない、表面に酸性基を有する樹脂粒子、樹脂粒子分散液用の水性溶剤、をそれぞれ計量し、これらを混合、攪拌して得る方法が挙げられる。樹脂粒子と水性溶剤とを混合、攪拌する方法は特に制限されない。例えば、水性溶剤を攪拌しながら樹脂粒子を混合する方法などが挙げられる。また、樹脂粒子の分散性を高める点で、例えば、イオン性界面活性剤と非イオン性界面活性剤との少なくとも一方を混合してもよい。
また、樹脂粒子分散液は、前記水性溶剤中で樹脂粒子を造粒した樹脂粒子分散液であってもよい。水性溶剤中で樹脂粒子を造粒する場合、水性溶剤中で単量体成分を重合して形成された樹脂粒子分散液を作製してもよい。この場合、公知の重合法によって得られた分散液であってもよい。例えば、樹脂粒子が、ビニル樹脂粒子である場合には、公知の重合法(乳化重合、ソープフリー乳化重合、懸濁重合、ミニエマルション重合、マイクロエマルション重合等のラジカル重合法)が適用され得る。
例えば、ビニル樹脂粒子の製造に乳化重合法を適用する場合、過硫酸カリウム、過硫酸アンモニウム等の水溶性重合開始剤を溶解させた水中に、スチレン類、(メタ)アクリル酸類等のビニル基を有する単量体を加え、さらに必要に応じてドデシル硫酸ナトリウム、ジフェニルオキサイドジスルホン酸塩類等の界面活性剤を添加し、攪拌を行いながら加熱することにより重合を行い、ビニル樹脂粒子が得られる。スチレン類、(メタ)アクリル酸類等のビニル基を有する単量体は、一度に添加(一段添加)してもよく、複数回に分けて添加(多段添加)してもよい。本実施形態に係る多孔質ポリイミド膜の空孔径を得る観点で、上記多量体は、多段で添加されることが好ましい。また、単量体成分として酸性基を有する単量体を用いると、表面に酸性基を有するビニル樹脂が得られる。
なお、樹脂粒子分散液形成工程では、上記方法に限られず、水性溶剤に分散された市販品の樹脂粒子分散液を準備してもよい。また、市販品の樹脂粒子分散液を用いる場合、目的に応じて、水性溶剤で希釈等の操作を行ってもよい。さらに、分散性に影響のない範囲で、有機溶剤に分散している樹脂粒子分散液を水性溶剤に置換してもよい。
(樹脂粒子)
樹脂粒子としては、水性溶剤に溶解せず、ポリイミド前駆体溶液に溶解しないものであれば、特に限定されないが、ポリイミド以外の樹脂からなる樹脂粒子である。例えば、ポリエステル樹脂、ウレタン樹脂等の重合性単量体を重縮合して得られた樹脂粒子、ビニル樹脂、オレフィン樹脂、フッ素樹脂等の重合性単量体をラジカル重合して得られた樹脂粒子が挙げられる。ラジカル重合して得られた樹脂粒子としては、(メタ)アクリル樹脂、(メタ)アクリル酸エステル樹脂、スチレン・(メタ)アクリル樹脂、ポリスチレン樹脂、ポリエチレン樹脂の樹脂粒子等が挙げられる。
これらの中でも、樹脂粒子としては、(メタ)アクリル樹脂、(メタ)アクリル酸エステル樹脂、スチレン・(メタ)アクリル樹脂、及びポリスチレン樹脂からなる群から選択される少なくとも一つであることが好ましい。
また、樹脂粒子は、架橋されていてもよく、架橋されていなくてもよい。ポリイミド前駆体のイミド化工程において、残留応力の緩和に有効に寄与する点で、架橋されていない樹脂粒子が好ましい。さらに、樹脂粒子分散液は、樹脂粒子分散ポリイミド前駆体溶液を製造する工程を簡略化する点で、乳化重合によって得られたビニル樹脂粒子分散液であることがより好ましい。
なお、本実施形態において、「(メタ)アクリル」とは、「アクリル」および「メタクリル」のいずれをも含むことを意味するものである。
樹脂粒子がビニル樹脂粒子である場合、単量体を重合して得られる。ビニル樹脂の単量体としては、以下に示す単量体が挙げられる。例えば、スチレン、アルキル置換スチレン(例えば、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン等)、ハロゲン置換スチレン(例えば2-クロロスチレン、3-クロロスチレン、4-クロロスチレン等)、ビニルナフタレン等のスチレン骨格を有するスチレン類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸2-エチルヘキシル、トリメチロールプロパントリメタクリレート(TMPTMA)等のビニル基を有するエステル類;アクリロニトリル、メタクリロニトリル等のビニルニトリル類;ビニルメチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等のビニルケトン類;(メタ)アクリル酸、マレイン酸、ケイ皮酸、フマル酸、ビニルスルホン酸等の酸類;エチレンイミン、ビニルピリジン、ビニルアミン等の塩基類;等の単量体を重合体させたビニル樹脂単位が挙げられる。
その他の単量体として、酢酸ビニルなどの単官能単量体、エチレングリコールジメタクリレート、ノナンジアクリレート、デカンジオールジアクリレートなどの二官能単量体、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート等の多官能単量体を併用してもよい。
また、ビニル樹脂は、これらの単量体を単独で用いた樹脂でもよいし、2種以上の単量体を用いた共重合体である樹脂であってもよい。
樹脂粒子の表面に酸性基を導入する場合、樹脂粒子の表面に有する酸性基は、特に限定されない。この酸性基は、例えば、カルボキシ基、スルホン酸基、フェノール性水酸基からなる群から選ばれる少なくも一つであってもよい。これらの中でも、カルボキシ基が好ましい。
樹脂粒子の表面に酸性基を有するための単量体としては、酸性基を有する単量体であれば特に限定されない。例えば、カルボキシ基を有する単量体、スルホン酸基を有する単量体、フェノール性水酸基を有する単量体、及びそれらの塩が挙げられる。
具体的には、例えば、p-スチレンスルホン酸、4-ビニルベンゼンスルホン酸等のスルホン酸基を有する単量体;4-ビニルジヒドロケイヒ酸、4-ビニルフェノール、4-ヒドロキシ-3-メトキシ-1-プロペニルベンゼン等のフェノール性水酸基を有する単量体;アクリル酸、クロトン酸、メタクリル酸、3-メチルクロトン酸、フマル酸、マレイン酸、2-メチルイソクロトン酸、2,4-ヘキサジエン二酸、2-ペンテン酸、ソルビン酸、シトラコン酸、2-ヘキセン酸、フマル酸モノエチル等のカルボキシ基を有する単量体;及びそれらの塩;が挙げられる。これら酸性基を有する単量体は、酸性基を有さない単量体と混合して重合してもよいし、酸性基を有さない単量体を重合、粒子化した後に、表面に酸性基を有する単量体を重合してもよい。また、これらの単量体は1種単独、又は2種以上を併用してもよい。
これらの中でも、アクリル酸、クロトン酸、メタクリル酸、3-メチルクロトン酸、フマル酸、マレイン酸、2-メチルイソクロトン酸、2,4-ヘキサジエン二酸、2-ペンテン酸、ソルビン酸、シトラコン酸、2-ヘキセン酸、フマル酸モノエチル等、及びそれらの塩のカルボキシ基を有する単量体が好ましい。カルボキシ基を有する単量体は、1種単独でもよく、2種以上を併用してもよい。
つまり、表面に酸性基を有する樹脂粒子は、アクリル酸、クロトン酸、メタクリル酸、3-メチルクロトン酸、フマル酸、マレイン酸、2-メチルイソクロトン酸、2,4-ヘキサジエン二酸、2-ペンテン酸、ソルビン酸、シトラコン酸、2-ヘキセン酸、フマル酸モノエチル等、及びそれらの塩からなる群から選ばれる少なくとも一つのカルボキシ基を有する単量体に由来する骨格を持つことが好ましい。
酸性基を有する単量体と、酸性基を有さない単量体を混合して重合する場合、酸性基を有する単量体の量は特に限定されない。ポリイミド前駆体溶液での樹脂粒子の分散性向上の観点と、乳化重合するときにおける重合体の凝集体の発生を抑制する観点とから、酸性基を有する単量体は、単量体全体の0.3質量%以上20質量%以下が好ましく、0.5質量%以上15質量%以下がより好ましく、0.7質量%以上10質量%以下であることが特に好ましい。
酸性基を有さない単量体を乳化重合した後に、さらに酸性基を有する単量体を追加して、重合する場合、同様の観点で、酸性基を有する単量体の量は、単量体全体の0.01質量%以上10質量%以下が好ましく、0.05質量%以上7質量%以下がより好ましく、0.07質量%以上5質量%以下であることが特に好ましい。
前述のように、樹脂粒子は架橋されていないほうが好ましいが、樹脂粒子を架橋する場合、単量体成分の少なくとも一部として架橋剤を用いる場合には、全単量体成分に占める架橋剤の割合は、0質量%以上20質量%以下が好ましく、0質量%以上5質量%以下がより好ましく、0質量%であることが特に好ましい。
ビニル樹脂粒子を構成する樹脂に使用される単量体がスチレンを含有する場合、全単量体成分に占めるスチレンの割合は20質量%以上100質量%以下が好ましく、40質量%以上100質量%以下が更に好ましい。
樹脂粒子の平均粒径は、特に限定されない。樹脂粒子の平均粒径としては、例えば、0.50μm以上3.0μm以下の範囲であることがよい。樹脂粒子の平均粒径は、0.7μm以上がよく、0.75μm以上が好ましく、0.8μm以上がより好ましい。また、2.5μm以下がよく、2.45μm以下が好ましく、2.4μm以下がより好ましい。
樹脂粒子の平均粒径は、レーザ回折式粒度分布測定装置(例えば、既述のコールターカウンターLS13、ベックマン・コールター社製)の測定によって得られた粒度分布を用い、分割された粒度範囲(チャンネル)に対し、体積について小粒径側から累積分布を引き、全粒子に対して累積50%となる粒径を体積平均粒径D50vとして測定される。
なお、樹脂粒子は、市販品の表面にさらに酸性基を有するモノマーを重合したものでもよい。具体的には、架橋された樹脂粒子としては、例えば、架橋ポリメタクリル酸メチル(MBX-シリーズ、積水化成品工業社製)、架橋ポリスチレン(SBX-シリーズ、積水化成品工業社製)、メタクリル酸メチルとスチレンの共重合架橋樹脂粒子(MSX-シリーズ、積水化成品工業社製)等が挙げられる。
また、架橋されていない樹脂粒子としては、ポリメタクリル酸メチル(MB-シリーズ、積水化成品工業社製)、(メタ)アクリル酸エステル・スチレン共重合体(FS-シリーズ:日本ペイント社製)等が挙げられる。
ポリイミド前駆体溶液において、樹脂粒子の含有量としては、ポリイミド前駆体溶液中のポリイミド前駆体固形分100質量部に対して、20質量%以上120質量%以下(好ましくは25質量%以上100質量%以下、より好ましくは30質量%以上90質量%以下)の範囲であることがよい。
-ポリイミド前駆体形成工程-
次に、樹脂粒子分散液中で、有機アミン化合物の存在下、テトラカルボン酸二無水物とジアミン化合物とを重合して樹脂(ポリイミド前駆体)を生成してポリイミド前駆体溶液を得る。
この方法によれば、水性溶剤を適用するため、生産性が高い。また、ポリイミド前駆体溶液が1段階で製造される。このため、工程が簡略化される点で有利である。
具体的には、樹脂粒子分散液準備工程で準備した樹脂粒子分散液に、有機アミン化合物、テトラカルボン酸二無水物、及びジアミン化合物を混合する。そして、有機アミン化合物の存在下で、テトラカルボン酸二無水物とジアミン化合物とを重合して、樹脂粒子分散液中で、ポリイミド前駆体を形成する。樹脂粒子として、表面に酸性基を有する樹脂粒子を用いた場合も同様の工程を有する。なお、樹脂粒子分散液に、有機アミン化合物、テトラカルボン酸二無水物、及びジアミン化合物を混合する順序は特に限定されるものではない。
樹脂粒子を分散させた樹脂粒子分散液中で、テトラカルボン酸二無水物とジアミン化合物とを重合する際に、樹脂粒子分散液中の水性溶剤をそのまま利用してポリイミド前駆体を形成してもよい。また、必要に応じて、水性溶剤を新たに混合してもよい。水性溶剤を新たに混合する場合、水性溶剤は、非プロトン性極性溶剤を少量含む水性溶剤であってもよい。また、目的に応じて、その他の添加剤を混合してもよい。
以上の工程により、水性溶剤、樹脂粒子、有機アミン化合物、およびポリイミド前駆体を含有している、樹脂粒子が分散したポリイミド前駆体溶液(以下、「樹脂粒子分散ポリイミド前駆体溶液」と称する場合がある。)が得られる。
(水を含む水性溶剤)
水性溶剤は、樹脂粒子分散液中で、テトラカルボン酸二無水物とジアミン化合物とを重合する際に、樹脂粒子分散液の作製に用いた樹脂粒子分散液中の水性溶剤をそのまま利用してもよい。また、テトラカルボン酸二無水物とジアミン化合物とを重合する際に、水性溶剤を重合に適するように調製してもよい。
水性溶剤は、水を含む水性溶剤である。具体的には、水性溶剤は、全水性溶剤に対して水を50質量%以上含有する溶剤であることがよい。水としては、例えば、蒸留水、イオン交換水、限外濾過水、純水等が挙げられる。
水の含有量は、全水性溶剤に対して、50質量%以上100質量%以下が好ましく、70質量%以上100質量%以下がより好ましく、80質量%以上100質量%以下が更に好ましい。
樹脂粒子分散液を作製する際に用いる水性溶剤は、水を含む水性溶剤である。具体的には、樹脂粒子分散液用の水性溶剤は、全水性溶剤に対して水を50質量%以上含有する水性溶剤であることがよい。水としては、例えば、蒸留水、イオン交換水、限外濾過水、純水等が挙げられる。また、水以外の溶性の有機溶剤を含む場合には、例えば、水溶性アルコール系溶剤を用いてもよい。なお、水溶性とは、25℃において、対象物質が水に対して1質量%以上溶解することを意味する。
水性溶剤が水以外の溶剤を含む場合、水以外の溶剤としては、例えば、水溶性有機溶剤、非プロトン性極性溶剤が挙げられる。水以外の溶剤としては、ポリイミド成形体の透明性、機械的強度等の点から、水溶性の有機溶剤が好ましい。特に、透明性、機械的強度に加え、耐熱性、耐溶剤性等のポリイミド成形体の諸特性向上の点から、水性溶剤は、非プロトン性極性溶剤を含ませてもよい。この場合、樹脂粒子分散ポリイミド前駆体溶液中の樹脂粒子の溶解、膨潤を防ぐため、全水性溶剤に対して40質量%以下、好ましくは30質量%以下であることがよい。また、ポリイミド前駆体溶液を乾燥し、フィルム化する際の樹脂粒子の溶解、膨潤を防ぐため、ポリイミド前駆体溶液中のポリイミド前駆体固形分に対し、5質量%以上300質量%以下、好ましくは、5質量%以上250質量%以下、より好ましくは、5質量%以上200質量%以下で用いることがよい。ここで、水溶性とは、25℃において、対象物質が水に対して1質量%以上溶解することを意味する。
上記水溶性の有機溶剤は、1種単独で用いてもよく、2種以上併用してもよい。
上記水溶性の有機溶剤としては、後述の樹脂粒子が溶解しないものが好ましい。この理由は、例えば、水と水溶性の有機溶剤とを含む水性溶剤とした場合に、樹脂粒子分散液中で樹脂粒子を溶解していなくても、製膜の過程で樹脂粒子が溶解してしまう懸念があるためであるが、製膜の過程で樹脂粒子の溶解、膨潤が抑制できる範囲で使用してもよい。
水溶性エーテル系溶剤は、一分子中にエーテル結合を持つ水溶性の溶剤である。水溶性エーテル系溶剤としては、例えば、テトラヒドロフラン(THF)、ジオキサン、トリオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等が挙げられる。これらの中でも、水溶性エーテル系溶剤としては、テトラヒドロフラン、ジオキサンが好ましい。
水溶性ケトン系溶剤は、一分子中にケトン基を持つ水溶性の溶剤である。水溶性ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等が挙げられる。これらの中でも、水溶性ケトン系溶剤としては、アセトンが好ましい。
水溶性アルコール系溶剤は、一分子中にアルコール性水酸基を持つ水溶性の溶剤である。水溶性アルコール系溶剤は、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、tert-ブチルアルコール、エチレングリコール、エチレングリコールのモノアルキルエーテル、プロピレングリコール、プロピレングリコールのモノアルキルエーテル、ジエチレングリコール、ジエチレングリコールのモノアルキルエーテル、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-ブテン-1,4-ジオール、2-メチル-2,4-ペンタンジオール、グリセリン、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール、1,2,6-ヘキサントリオール等が挙げられる。これらの中でも、水溶性アルコール系溶剤としては、メタノール、エタノール、2-プロパノール、エチレングリコール、エチレングリコールのモノアルキルエーテル、プロピレングリコール、プロピレングリコールのモノアルキルエーテル、ジエチレングリコール、ジエチレングリコールのモノアルキルエーテルが好ましい。
水性溶剤として水以外の非プロトン性極性溶剤を含有する場合、併用される非プロトン性極性溶剤は、沸点150℃以上300℃以下で、双極子モーメントが3.0D以上5.0D以下の溶剤である。非プロトン性極性溶剤として具体的には、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、ヘキサメチレンホスホルアミド(HMPA)、N-メチルカプロラクタム、N-アセチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン(DMI)、N,N’-ジメチルプロピレン尿素、テトラメチル尿素、リン酸トリメチル、リン酸トリエチル等が挙げられる。
なお、水性溶剤として水以外の溶剤を含有する場合、併用される溶剤は、沸点が270℃以下であることがよく、好ましくは60℃以上250℃以下、より好ましくは80℃以上230℃以下である。併用される溶剤の沸点を上記範囲とすると、水以外の溶剤がポリイミド成形体に残留し難くなり、また、機械的強度の高いポリイミド成形体が得られ易くなる。
ここで、ポリイミド前駆体が溶剤に溶解する範囲は、水の含有量、有機アミン化合物の種類及び量によって制御される。水の含有量が低い範囲では、有機アミン化合物の含有量が少ない領域でポリイミド前駆体は溶解し易くなる。逆に、水の含有量が高い範囲では、有機アミン化合物の含有量が多い領域でポリイミド前駆体は溶解し易くなる。また、有機アミン化合物が水酸基を有するなど親水性が高い場合は、水の含有量が高い領域でポリイミド前駆体は溶解し易くなる。
(ポリイミド前駆体)
ポリイミド前駆体は、テトラカルボン酸二無水物とジアミン化合物とを重合して得られる。具体的には、ポリイミド前駆体一般式(I)で表される繰り返し単位を有する樹脂(ポリアミック酸)である。
Figure 0007286980000002
(一般式(I)中、Aは4価の有機基を示し、Bは2価の有機基を示す。)
ここで、一般式(I)中、Aが表す4価の有機基としては、原料となるテトラカルボン酸二無水物より4つのカルボキシ基を除いたその残基である。
一方、Bが表す2価の有機基としては、原料となるジアミン化合物から2つのアミノ基を除いたその残基である。
つまり、一般式(I)で表される繰り返し単位を有するポリイミド前駆体は、テトラカルボン酸二無水物とジアミン化合物との重合体である。
テトラカルボン酸二無水物としては、芳香族系、脂肪族系いずれの化合物も挙げられるが、芳香族系の化合物であることがよい。つまり、一般式(I)中、Aが表す4価の有機基は、芳香族系有機基であることがよい。
芳香族系テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物等を挙げられる。
脂肪族テトラカルボン酸二無水物としては、例えば、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,5,6-トリカルボキシノルボナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物等の脂肪族又は脂環式テトラカルボン酸二無水物;1,3,3a,4,5,9b-ヘキサヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-5-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン等の芳香環を有する脂肪族テトラカルボン酸二無水物等が挙げられる。
これらの中でも、テトラカルボン酸二無水物としては、芳香族系テトラカルボン酸二無水物がよく、具体的には、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物がよく、更に、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物がよく、特に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物がよい。
なお、テトラカルボン酸二無水物は、1種単独で用いてもよいし、2種以上組み合わせて併用してもよい。
また、2種以上を組み合わせて併用する場合、芳香族テトラカルボン酸二無水物、又は脂肪族テトラカルボン酸を各々併用しても、芳香族テトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物とを組み合わせてもよい。
一方、ジアミン化合物は、分子構造中に2つのアミノ基を有するジアミン化合物である。ジアミン化合物としては、芳香族系、脂肪族系いずれの化合物も挙げられるが、芳香族系の化合物であることがよい。つまり、一般式(I)中、Bが表す2価の有機基は、芳香族系有機基であることがよい。
ジアミン化合物としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、1,5-ジアミノナフタレン、3,3-ジメチル-4,4’-ジアミノビフェニル、5-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン、6-アミノ-1-(4’-アミノフェニル)-1,3,3-トリメチルインダン、4,4’-ジアミノベンズアニリド、3,5-ジアミノ-3’-トリフルオロメチルベンズアニリド、3,5-ジアミノ-4’-トリフルオロメチルベンズアニリド、3,4’-ジアミノジフェニルエーテル、2,7-ジアミノフルオレン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-メチレン-ビス(2-クロロアニリン)、2,2’,5,5’-テトラクロロ-4,4’-ジアミノビフェニル、2,2’-ジクロロ-4,4’-ジアミノ-5,5’-ジメトキシビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)-ビフェニル、1,3’-ビス(4-アミノフェノキシ)ベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-(p-フェニレンイソプロピリデン)ビスアニリン、4,4’-(m-フェニレンイソプロピリデン)ビスアニリン、2,2’-ビス[4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-ビス[4-(4-アミノ-2-トリフルオロメチル)フェノキシ]-オクタフルオロビフェニル等の芳香族ジアミン;ジアミノテトラフェニルチオフェン等の芳香環に結合された2個のアミノ基と当該アミノ基の窒素原子以外のヘテロ原子を有する芳香族ジアミン;1,1-メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、4,4-ジアミノヘプタメチレンジアミン、1,4-ジアミノシクロヘキサン、イソフォロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ-4,7-メタノインダニレンジメチレンジアミン、トリシクロ[6,2,1,02.7]-ウンデシレンジメチルジアミン、4,4’-メチレンビス(シクロヘキシルアミン)等の脂肪族ジアミン及び脂環式ジアミン等が挙げられる。
これらの中でも、ジアミン化合物としては、芳香族系ジアミン化合物がよく、具体的には、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホンがよく、特に、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミンがよい。
なお、ジアミン化合物は、1種単独で用いてもよいし、2種以上組み合わせて併用してもよい。また、2種以上を組み合わせて併用する場合、芳香族ジアミン化合物、又は脂肪族ジアミン化合物を各々併用しても、芳香族ジアミン化合物と脂肪族ジアミン化合物とを組み合わせてもよい。
ポリイミド前駆体の数平均分子量は、1000以上150000以下であることがよく、より好ましくは5000以上130000以下、更に好ましくは10000以上100000以下である。
ポリイミド前駆体の数平均分子量を上記範囲とすると、ポリイミド前駆体の溶剤に対する溶解性の低下が抑制され、製膜性が確保され易くなる。
ポリイミド前駆体の数平均分子量は、下記測定条件のゲル・パーミエーション・クロマトグラフィー(GPC)法で測定される。
・カラム:東ソーTSKgelα-M(7.8mm I.D×30cm)
・溶離液:DMF(ジメチルホルムアミド)/30mMLiBr/60mMリン酸
・流速:0.6mL/min
・注入量:60μL
・検出器:RI(示差屈折率検出器)
ポリイミド前駆体の含有量(濃度)は、全ポリイミド前駆体溶液に対して、0.1質量%以上40質量%以下であることがよく、好ましくは0.5質量%以上25質量%以下、より好ましくは1質量%以上20質量%以下である。
(有機アミン化合物)
有機アミン化合物は、ポリイミド前駆体(そのカルボキシ基)をアミン塩化して、その水性溶剤に対する溶解性を高めると共に、イミド化促進剤としても機能する化合物である。具体的には、有機アミン化合物は、分子量170以下のアミン化合物であることがよい。有機アミン化合物は、ポリイミド前駆体の原料となるジアミン化合物を除く化合物であることがよい。
なお、有機アミン化合物は、水溶性の化合物であることがよい。水溶性とは、25℃において、対象物質が水に対して1質量%以上溶解することを意味する。
有機アミン化合物としては、1級アミン化合物、2級アミン化合物、3級アミン化合物が挙げられる。
これらの中でも、有機アミン化合物としては、2級アミン化合物、及び3級アミン化合物から選択される少なくとも一種(特に、3級アミン化合物)がよい。有機アミン化合物として、3級アミン化合物又は2級アミン化合物を適用すると(特に、3級アミン化合物)、ポリイミド前駆体の溶剤に対する溶解性が高まり易くなり、製膜性が向上し易くなり、また、ポリイミド前駆体溶液の保存安定性が向上し易くなる。
また、有機アミン化合物としては、1価のアミン化合物以外にも、2価以上の多価アミン化合物も挙げられる。2価以上の多価アミン化合物を適用すると、ポリイミド前駆体の分子間に疑似架橋構造を形成し易くなり、また、ポリイミド前駆体溶液の保存安定性が向上し易くなる。
1級アミン化合物としては、例えば、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、2-エタノールアミン、2-アミノ-2-メチル-1-プロパノール、などが挙げられる。
2級アミン化合物としては、例えば、ジメチルアミン、2-(メチルアミノ)エタノール、2-(エチルアミノ)エタノール、モルホリンなどが挙げられる。
3級アミン化合物としては、例えば、2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、2-ジメチルアミノプロパノール、ピリジン、トリエチルアミン、ピコリン、N-メチルモルホリン、N-エチルモルホリン、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾールなどが挙げられる。
ポリイミド前駆体溶液のポットライフ、フィルム膜厚均一性の観点で、3級アミン化合物が好ましい。この点で、2-ジメチルアミノエタノール、2-ジエチルアミノエタノール、2-ジメチルアミノプロパノール、ピリジン、トリエチルアミン、ピコリン、N-メチルモルホリン、N-エチルモルホリン、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、N-メチルピペリジン、N-エチルピペリジンからなる群から選択される少なくとも1種であることがより好ましい。
ここで、有機アミン化合物としては、製膜性の点から、窒素を含有する複素環構造を有するアミン化合物(特に、3級アミン化合物)も好ましい。窒素を含有する複素環構造を有するアミン化合物(以下、「含窒素複素環アミン化合物」と称する)としては、例えば、イソキノリン類(イソキノリン骨格を有するアミン化合物)、ピリジン類(ピリジン骨格を有するアミン化合物)、ピリミジン類(ピリミジン骨格を有するアミン化合物)、ピラジン類(ピラジン骨格を有するアミン化合物)、ピペラジン類(ピペラジン骨格を有するアミン化合物)、トリアジン類(トリアジン骨格を有するアミン化合物)、イミダゾール類(イミダゾール骨格を有するアミン化合物)、モルホリン類(モルホリン骨格を有するアミン化合物)、ポリアニリン、ポリピリジン、ポリアミンなどが挙げられる。
含窒素複素環アミン化合物としては、製膜性の点から、モルホリン類、ピリジン類、ピペリジン類、およびイミダゾール類よりなる群から選択される少なくとも一種であることが好ましく、モルホリン類(モルホリン骨格を有するアミン化合物)であることがより好ましい。これらの中でも、N-メチルモルホリン、N-メチルピペリジン、ピリジン、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、およびピコリンよりなる群から選択される少なくとも一種であることがより好ましく、N-メチルモルホリンであることがより好ましい。
これらの中でも、有機アミン化合物としては、沸点が60℃以上(好ましくは60℃以上200℃以下、より好ましくは70℃以上150℃以下)の化合物であることがよい。有機アミン化合物の沸点を60℃以上とすると、保管するときに、ポリイミド前駆体溶液から有機アミン化合物が揮発するのを抑制し、ポリイミド前駆体の溶剤に対する溶解性の低下が抑制され易くなる。
有機アミン化合物は、ポリイミド前駆体溶液中のポリイミド前駆体のカルボキシ基(-COOH)に対して、50モル%以上500モル%以下で含有することがよく、好ましくは80モル%以上250モル%以下、より好ましくは90モル%以上200モル%以下で含有することである。
有機アミン化合物の含有量を上記範囲とすると、ポリイミド前駆体の溶剤に対する溶解性が高まり易くなり、製膜性が向上し易くなる。また、ポリイミド前駆体溶液の保存安定性も向上し易くなる。
上記の有機アミン化合物は、1種単独で用いてもよいし、2種以上併用してもよい。
(その他の添加剤)
本実施形態に係る本実施形態のポリイミド前駆体溶液の製造方法において、ポリイミド前駆体溶液には、イミド化反応促進のための触媒や、製膜品質向上のためのレベリング材などを含んでもよい。
イミド化反応促進のための触媒には、酸無水物など脱水剤、フェノール誘導体、スルホン酸誘導体、安息香酸誘導体などの酸触媒などを使用してもよい。
また、ポリイミド前駆体溶液には、使用目的に応じて、例えば、導電性付与のために添加される導電材料(導電性(例えば、体積抵抗率10Ω・cm未満)もしくは半導電性(例えば、体積抵抗率10Ω・cm以上1013Ω・cm以下))を含有していてもよい。
導電剤としては、例えば、カーボンブラック(例えばpH5.0以下の酸性カーボンブラック);金属(例えばアルミニウムやニッケル等);金属酸化物(例えば酸化イットリウム、酸化錫等);イオン導電性物質(例えばチタン酸カリウム、LiCl等);等が挙げられる。これら導電材料は、1種単独で用いてもよいし、2種以上併用してもよい。
また、ポリイミド前駆体溶液には、使用目的に応じて、機械強度向上のため添加される無機粒子を含有していてもよい。無機粒子としては、シリカ粉、アルミナ粉、硫酸バリウム粉、酸化チタン粉、マイカ、タルクなどの粒子状材料が挙げられる。
[多孔質ポリイミド膜の用途]
本実施形態に係る多孔質ポリイミド膜が適用される用途としては、例えば、リチウム電池等の二次電池のセパレータ;全固体電池の固体電解質の保持体;電解コンデンサー用のセパレータ;燃料電池等の電解質膜;電池電極材;気体又は液体の分離膜;低誘電率材料;ろ過膜;等が挙げられる。
本実施形態に係る多孔質ポリイミド膜を、例えば、リチウム電池等の二次電池のセパレータ;全固体電池の固体電解質の保持体に適用した場合には、多孔質ポリイミド膜中のリチウムイオンの透過性にバラつきが少なく、多孔質ポリイミド膜中のリチウムイオンが透過性に優れる。このため、繰り返し充放電したときの多孔質ポリイミド膜中でのデンドライトの成長が抑制される作用により、繰り返し充放電による電池容量の低下が抑制される。
<リチウムイオン二次電池のセパレータ及びリチウムイオン二次電池>
次に、本実施形態に係る多孔質ポリイミド膜を適用した、リチウムイオン二次電池のセパレータとともに、リチウムイオン二次電池について説明する。
本実施形態に係るリチウムイオン二次電池のセパレータは、本実施形態に係る多孔質ポリイミド膜を含む。また、本実施形態に係るリチウムイオン二次電池は、本実施形態に係る多孔質ポリイミド膜を含む。以下、図2を参照して説明する。
図2は、本実施形態に係るリチウムイオン二次電池の一例を表す部分断面模式図である。図2に示すように、リチウムイオン二次電池100は、図示しない外装部材の内部に収容された、正極活物質層110と、セパレータ層510と、負極活物質層310と、を備えている。正極活物質層110は、正極集電体130上に設けられており、負極活物質層310は、負極集電体330上に設けられている。セパレータ層510は、正極活物質層110と負極活物質層310とを隔てるように設けられており、正極活物質層110及び負極活物質層310が互いに対向するように、正極活物質層110と負極活物質層310との間に配置されている。セパレータ層510は、セパレータ511とセパレータ511の空孔の内部に充填された電解液513とを備える。セパレータ511は、本実施形態に係る多孔質ポリイミド膜が適用されている。なお、正極集電体130及び負極集電体330は、必要に応じて設けられる部材である。
(正極集電体130及び負極集電体330)
正極集電体130及び負極集電体330に用いられる材料としては、特に限定されず、公知の導電性の材料であればよい。例えば、アルミニウム、銅、ニッケル、チタン等の金属を用いることができる。
(正極活物質層110)
正極活物質層110は、正極活物質を含む層である。必要に応じて、導電助剤、結着樹脂等の公知の添加剤を含んでいてもよい。正極活物質としては、特に限定されず、公知の正極活物質が用いられる。例えば、リチウムを含む複合酸化物(LiCoO、LiNiO、LiMnO、LiMn、LiFeMnO、LiV等)、リチウムを含む燐酸塩(LiFePO、LiCoPO、LiMnPO及びLiNiPO等)、導電性高分子(ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン等)などが挙げられる。正極活物質は1種単独で用いてもよく、2種以上を併用してもよい。
(負極活物質層310)
負極活物質層310は、負極活物質を含む層である。必要に応じて、結着樹脂等の公知の添加剤を含んでいてもよい。負極活物質としては、特に限定されず、公知の正極活物質が用いられる。例えば、炭素材料(黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、黒鉛化炭素、低温度焼成炭素等)、金属(アルミニウム、シリコン、ジルコニウム、チタン等)、金属酸化物(二酸化スズ、チタン酸リチウム等)などが挙げられる。負極活物質は1種単独で用いてもよく、2種以上を併用してもよい。
(電解液513)
電解液513は、例えば、電解質及び非水溶媒を含有する非水電解質溶液を挙げることができる。
電解質としては、例えば、リチウム塩の電解質(LiPF、LiBF、LiSbF、LiAsF、LiClO、LiN(FSO、LiN(CFSO2)、LiN(CSO)、LiC(CFSO等)が挙げられる。電解質は1種単独で用いてもよく、2種以上を併用してもよい。
非水溶媒としては、環状カーボネート(エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネート等)、鎖状カーボネート(ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)などが挙げられる。非水溶媒は1種単独で用いてもよく、2種以上を併用してもよい。
(リチウムイオン二次電池100の製造方法)
リチウムイオン二次電池100を製造する方法の一例について説明する。
正極活物質を含む正極活物質層110形成用塗布液を、正極集電体130に塗布及び乾燥して、正極集電体130上に設けられた正極活物質層110を備える正極を得る。
同様に、負極活物質を含む負極活物質層310形成用塗布液を、負極集電体330に塗布及び乾燥して、負極集電体330上に設けられた負極活物質層310を備える負極を得る。正極と負極とは、それぞれ必要に応じて圧縮加工を行ってもよい。
次に、正極の正極活物質層110と、負極の負極活物質層310とが、互いに対向するように、正極活物質層110と、負極の負極活物質層310との間にセパレータ511を配置して、積層構造体を得る。積層体構造は、正極(正極集電体130、正極活物質層110)、セパレータ層510、負極(負極活物質層310、負極集電体330)が、この順で積層されている。このとき、必要に応じて圧縮加工を行ってもよい。
次に、積層構造体を外装部材に収容した後、積層構造体の内部に、電解液513が注入される。注入された電解液513は、セパレータ511の空孔にも浸透する。
このようにして、リチウムイオン二次電池100が得られる。
以上、図2を参照して、本実施形態に係るリチウムイオン二次電池を説明したが、本実施形態に係るリチウムイオン二次電池は、これに限定されるものではない。本実施形態に係る多孔質ポリイミド膜が適用されるのであれば、その形態は特に限定されない。
<全固体電池>
次に、本実施形態に係る多孔質ポリイミド膜を適用した、全固体電池について説明する。以下、図3を参照して説明する。
図3は、本実施形態に係る全固体電池の一例を表す部分断面模式図である。図3に示すように、全固体電池200は、図示しない外装部材の内部に収容された、正極活物質層220と、固体電解質層620と、負極活物質層420と、を備えている。正極活物質層220は、正極集電体240上に設けられており、負極活物質層420は、負極集電体440上に設けられている。固体電解質層620は、正極活物質層220及び負極活物質層420が互いに対向するように、正極活物質層220と負極活物質層420との間に配置されている。固体電解質層620は、固体電解質624と、固体電解質624を保持する保持体622とを備えており、保持体622の空孔の内部に、固体電解質624が充填されている。固体電解質624を保持する保持体622は、本実施形態に係る多孔質ポリイミド膜が適用されている。なお、正極集電体240及び負極集電体440は、必要に応じて設けられる部材である。
(正極集電体240及び負極集電体440)
正極集電体240及び負極集電体440に用いられる材料としては、前述のリチウムイオン二次電池で説明した材料と同様の材料が挙げられる。
(正極活物質層220及び負極活物質層420)
正極活物質層220及び負極活物質層420に用いられる材料としては、前述のリチウムイオン二次電池で説明した材料と同様の材料が挙げられる。
(固体電解質624)
固体電解質624は、特に限定されず、公知の固体電解質が挙げられる。例えば、高分子固体電解質、酸化物固体電解質、硫化物固体電解質、ハロゲン化物固体電解質、窒化物固体電解質などが挙げられる。
高分子固体電解質としては、フッ素樹脂(ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン等の単独重合体、これらを構成単位として持つ共重合体等)、ポリエチレンオキサイド樹脂、ポリアクリロニトリル樹脂、ポリアクリレート樹脂などが挙げられる。リチウムイオン伝導性に優れる点で、硫化物固体電解質を含むことが好ましい。同様の点で、硫黄と、リチウム及びリンの少なくとも一方とを構成元素として含む硫化物固体電解質を含有することが好ましい。
酸化物固体電解質としては、リチウムを含む酸化物固体電解質粒子が挙げられる。例えば、LiO-B-P、LiO-SiOなどが挙げられる。
硫化物固体電解質としては、硫黄と、リチウム及びリンの少なくとも一方とを構成元素として含む硫化物固体電解質が挙げられる。例えば、8LiO・67LiS・25P、LiS、P、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiPO-P、LiI-LiS-P、LiI-LiS-Bなどが挙げられる。
ハロゲン化物固体電解質は、例えば、LiI等が挙げられる。
窒化物固体電解質は、例えば、LiN等が挙げられる。
(全固体電池200の製造方法)
全固体電池200を製造する方法の一例について説明する。
正極活物質を含む正極活物質層220形成用塗布液を、正極集電体240に塗布及び乾燥して、正極集電体240上に設けられた正極活物質層220を備える正極を得る。
同様に、負極活物質を含む負極活物質層420形成用塗布液を、負極集電体440に塗布及び乾燥して、負極集電体440上に設けられた負極活物質層420を備える負極を得る。
正極と負極とは、それぞれ必要に応じて圧縮加工を行ってもよい。
次に、固体電解質層620形成用の固体電解質624を含む塗布液を基材上に塗布、乾燥して、層状の固体電解質を形成する。
次に、正極の正極活物質層220上に、固体電解質層620形成用材料として、保持体622としての多孔質ポリイミド膜と、層状の固体電解質624とを重ね合わせる。さらに、固体電解質層620形成用材料上に、負極の負極活物質層420が、正極活物質層220側になるように、負極を重ね合わせて、積層構造体とする。積層体構造は、正極(正極集電体240、正極活物質層220)、固体電解質層620、負極(負極活物質層420、負極集電体440)が、この順で積層されている。
次に、積層構造体に圧縮加工を施して、保持体622である多孔質ポリイミド膜の空孔内に、固体電解質624を含浸させ、固体電解質624を保持させる。
次に、積層構造体を外装部材に収容する。
このようにして、全固体電池200が得られる。
以上、図3を参照して、本実施形態に係る全固体電池を説明したが、本実施形態に係る全固体電池は、これに限定されるものではない。本実施形態に係る多孔質ポリイミド膜が適用されるのであれば、その形態は特に限定されない。
以下に実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、以下の説明において、特に断りのない限り、「部」及び「%」はすべて質量基準である。
[樹脂粒子分散液の調製]
-樹脂粒子分散液(1)の調製-
スチレン1000質量部、アクリル酸20質量部、界面活性剤Dowfax2A1(47%溶液、ダウ・ケミカル社製)3.0質量部、イオン交換水576質量部を混合し、ディゾルバーにより、1,500回転で30分間攪拌、乳化を行い、単量体乳化液を作製した。
反応容器に、Dowfax2A1(47%溶液、ダウ・ケミカル社製)1.10質量部、イオン交換水1270質量部を投入した。窒素気流下、75℃に加熱した後、単量体乳化液のうち5質量部を添加した。その後、過硫酸アンモニウム15質量部をイオン交換水98質量部に溶解させた重合開始剤溶液を10分かけて滴下した。滴下後50分間反応させた後に、残りの単量体乳化液を180分かけて滴下し、さらに180分間反応させたのち、冷却して、スチレン(メタ)アクリル樹脂粒子の分散液である樹脂粒子分散液(1)を得た。
この樹脂粒子の平均粒径は0.55μmであった。なお、樹脂粒子の平均粒径は、既述の方法により測定した体積平均粒径である(以下同様)。
-樹脂粒子分散液(2)~(6)の調製-
表1にしたがって、単量体の量と種類を変更し、乳化液の量と種類を調整して、平均粒子径を変更した以外は、樹脂粒子分散液(1)と同様にして、樹脂粒子分散液(2)~(6)を調製した。なお、樹脂粒子分散液(2)の調製において、最初に添加する単量体乳化液の量を4質量部とし、樹脂粒子分散液(3)の調製において、最初に添加する単量体乳化液の量を3質量部とした。また、樹脂粒子分散液(4)~(6)の調製において、単量体乳化液の代わりに、樹脂粒子分散液(4)では、樹脂粒子分散液(1)を25質量部、樹脂粒子分散液(5)では、樹脂粒子分散液(1)を10質量部、樹脂粒子分散液(6)では、樹脂粒子分散液(1)を5質量部添加した。
-樹脂粒子分散液(7)の調製-
メタクリル酸メチル670質量部、界面活性剤Dowfax2A1(47%溶液、ダウ・ケミカル社製)2.0質量部、イオン交換水670質量部を混合し、ディゾルバーにより、1,500回転で30分間攪拌、乳化を行い、モノマー乳化液を作製した。
反応容器に、Dowfax2A1(47%溶液、ダウ・ケミカル社製)1.10質量部、イオン交換水1500質量部を投入した。窒素気流下、75℃に加熱した後、モノマー乳化液のうち1質量部を添加した後に、過硫酸アンモニウム15質量部をイオン交換水98質量部に溶解させた重合開始剤溶液を10分かけて滴下した。滴下後50分間反応させた後に、残りのモノマー乳化液を220分かけて滴下し、さらに50分間反応させた。次いで、メタクリル酸5質量部、イオン交換水10質量部混合した液を5分かけて滴下し、150分反応した後、冷却して、表面に酸性基を有するメタクリル樹脂粒子の分散液である樹脂粒子分散液(7)を得た。
この樹脂粒子の平均粒径は0.85μmであった。
-樹脂粒子分散液(8)の調製-
反応容器に、スチレン670質量部、界面活性剤Dowfax2A1(47%溶液、ダウ・ケミカル社製)25.0質量部、イオン交換水670質量部を混合し、ディゾルバーにより、1,500回転で30分間攪拌、乳化を行い、単量体乳化液を作製した。続いて、Dowfax2A1(47%溶液、ダウ・ケミカル社製)1.10質量部、イオン交換水1500質量部を投入した。窒素気流下、75℃に加熱した後、単量体乳化液のうち1質量部を添加した後に、過硫酸アンモニウム15質量部をイオン交換水98質量部に溶解させた重合開始剤溶液を10分かけて滴下した。滴下後50分間反応させた後に、残りのモノマー乳化液を220分かけて滴下し、さらに50分間反応させた。次いで、4-ビニルベンゼンスルホン酸ナトリウム(VBSと略す)5質量部、イオン交換水10質量部混合した液を5分かけて滴下し、150分反応した後、冷却して、表面に酸性基を有するスチレン樹脂粒子の分散液である樹脂粒子分散液(8)を得た。
この樹脂粒子の平均粒径は0.85μmであった。
-比較樹脂粒子分散液(C1)の調製-
スチレン1000質量部、界面活性剤Dowfax2A1(47%溶液、ダウ・ケミカル社製)4質量部、イオン交換水576質量部を混合し、ディゾルバーにより、1,500回転で30分間攪拌、乳化を行い、単量体乳化液を作製した。
続いて、Dowfax2A1(47%溶液、ダウ・ケミカル社製)1.10質量部、イオン交換水1270質量部を反応容器に投入した。窒素気流下、75℃に加熱した後、単量体乳化液のうち5質量部を添加した。その後、残りの単量体乳化液を180分かけて滴下し、さらに180分間反応させたのち、冷却して、スチレン樹脂粒子の分散液である樹脂粒子分散液(C1)を得た。
この樹脂粒子の平均粒径は0.48μmであった。
-比較樹脂粒子分散液(C2)の調製-
スチレン1000質量部、メタクリル酸60質量部、界面活性剤Dowfax2A1(47%溶液、ダウ・ケミカル社)3質量部、イオン交換水576質量部を混合し、ディゾルバーにより、1,500回転で30分間攪拌、乳化を行い、単量体乳化液を作製した。
続いて、Dowfax2A1(47%溶液、ダウ・ケミカル社製)1.10質量部、イオン交換水1270質量部を反応容器に投入した。窒素気流下、75℃に加熱した後、単量体乳化液のうち5質量部を添加した。その後、過硫酸アンモニウム15質量部をイオン交換水98質量部に溶解させた重合開始剤溶液を10分かけて滴下した。滴下後50分間反応させた後に、残りの単量体乳化液を180分かけて滴下し、さらに180分間反応させたのち、冷却して、スチレン(メタ)アクリル樹脂粒子の分散液である樹脂粒子分散液(C2)を得た。
この樹脂粒子の平均粒径は0.55μmであった。
-比較樹脂粒子分散液(C3)の調製-
スチレン1000質量部、界面活性剤Dowfax2A1(47%溶液、ダウ・ケミカル社)25.0質量部、イオン交換水576質量部を混合し、ディゾルバーにより、1,500回転で30分間攪拌、乳化を行い、単量体乳化液を作製した。
続いて、Dowfax2A1(47%溶液、ダウ・ケミカル社製)1.10質量部、イオン交換水1270質量部を反応容器に投入した。窒素気流下、75℃に加熱した後、樹脂粒子分散液(1)を3質量部添加した。その後、過硫酸アンモニウム15質量部をイオン交換水98質量部に溶解させた重合開始剤溶液を10分かけて滴下した。滴下後50分間反応させた後に、その後、残りの単量体乳化液を180分かけて滴下し、さらに180分間反応させたのち、冷却して、スチレン樹脂粒子の分散液である樹脂粒子分散液(C3)を得た。
この樹脂粒子の平均粒径は3.20μmであった。
Figure 0007286980000003

以下、表1中の略称の詳細について示す。
・「St」 :スチレン
・「MMA」:メタクリル酸メチル
・「AA」 :アクリル酸
・「MA」 :マレイン酸
・「MAA」:メタクリル酸
・「VBS」:4-ビニルベンゼンスルホン酸ナトリウム
[樹脂粒子分散ポリイミド前駆体溶液(PAA-1)の作製]
樹脂粒子分散液(1):固形分換算で樹脂粒子100gに、イオン交換水を添加し、樹脂粒子の固形分濃度を20質量%に調整した。この樹脂粒子分散液に、p-フェニレンジアミン(分子量108.14):9.59g(88.7ミリモル)と、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(分子量294.22):25.58g(86.9ミリモル)とを添加し、20℃で10分間攪拌して分散させた。ついで、N-メチルモルホリン(有機アミン化合物):25.0g(247.3ミリモル)を、ゆっくりと添加し、反応温度60℃に保持しながら、24時間攪拌して溶解、反応を行い、樹脂粒子分散ポリイミド前駆体溶液(PAA-1)を得た(樹脂粒子/ポリイミド前駆体=100/35.2(質量比)、ポリイミド前駆体の溶液中濃度:約6.6質量%)。
[樹脂粒子分散ポリイミド前駆体溶液(PAA-2)~(PAA-8)の作製]
表2にしたがって、樹脂粒子の種類を変更した以外は、樹脂粒子分散ポリイミド前駆体溶液(PAA-1)の作製と同様にして、各例の多孔質ポリイミド膜を得るための樹脂粒子分散ポリイミド前駆体溶液(PAA-2)~(PAA-8)を作製した。
[樹脂粒子分散ポリイミド前駆体溶液(PAA-9)の作製]
N-メチルモルホリン(有機アミン化合物):25.0g加えるところを、N-メチルピロリドン(非プロトン性極性溶剤):25.0gと、N-メチルモルホリン(有機アミン化合物):25.0gとを混合して加えた以外は、樹脂粒子分散ポリイミド前駆体溶液(PAA-1)と同様にして樹脂粒子分散ポリイミド前駆体溶液(PAA-9)を作製した。
[樹脂粒子分散ポリイミド前駆体溶液(PAA-10)~(PAA-16)の作製]
表2にしたがって、樹脂粒子の種類を変更した以外は、樹脂粒子分散ポリイミド前駆体溶液(PAA-9)の作製と同様にして、各例の多孔質ポリイミド膜を得るための樹脂粒子分散ポリイミド前駆体溶液(PAA-10)~(PAA-16)を作製した。
[樹脂粒子分散ポリイミド前駆体溶液(PAA-17)~(PAA-19)の作製]
表2にしたがって、樹脂粒子/ポリイミド前駆体の質量比を変更した以外は、樹脂粒子分散ポリイミド前駆体溶液(PAA-1)の作製、又は樹脂粒子分散ポリイミド前駆体溶液(PAA-9)の作製と同様にして、各例の多孔質ポリイミド膜を得るための樹脂粒子分散ポリイミド前駆体溶液(PAA-17)~(PAA-19)を作製した。
[樹脂粒子分散ポリイミド前駆体溶液(PAA-R1)~(PAA-R6)の作製]
表2にしたがって、樹脂粒子の種類を変更した以外は、樹脂粒子分散ポリイミド前駆体溶液(PAA-1)の作製と同様にして、各例の多孔質ポリイミド膜を得るための樹脂粒子分散ポリイミド前駆体溶液(PAA-R1)~(PAA-R3)を作製した。
また、表2にしたがって、樹脂粒子の種類を変更した以外は、樹脂粒子分散ポリイミド前駆体溶液(PAA-9)の作製と同様にして、各例の多孔質ポリイミド膜を得るための樹脂粒子分散ポリイミド前駆体溶液(PAA-R4)~(PAA-R6)を作製した
[樹脂粒子分散ポリイミド前駆体溶液(PAA-R7)~(PAA-R8)の作製]
樹脂粒子/ポリイミド前駆体の質量比を変更した以外は、樹脂粒子分散ポリイミド前駆体溶液(PAA-1)の作製、又は樹脂粒子分散ポリイミド前駆体溶液(PAA-2)の作製と同様にして、樹脂粒子分散ポリイミド前駆体溶液(PAA-R7)~(PAA-R8)を作製した。
<実施例1~19、比較例1~8>
[多孔質ポリイミド膜の作製]
まず、上記で作製した樹脂粒子分散ポリイミド前駆体溶液の塗膜を形成するためのアルミニウム板を準備した。アルミニウム板は、離型剤KS-700(信越化学工業社製)をトルエンに溶かした溶液を、乾燥後に約0.05μm程度の厚さになるように塗布し、400℃で加熱処理した離型層が設けられている。
次に、各例の樹脂粒子分散ポリイミド前駆体溶液を、アルミニウム基板の離型層上に、乾燥後の膜厚が30μmになるように塗布して塗膜を形成し、90℃で1時間乾燥した。その後、室温(25℃、以下同じ)から390℃まで10℃/分の速度で昇温し、390℃で1時間保持したのち、室温に冷却して膜厚約30μmの多孔質ポリイミド膜を得た。
Figure 0007286980000004
以下、表2中の略称の詳細について示す。
・「PI」 :ポリイミド
・「PDA」 :p-フェニレンジアミン
・「BPDA」:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
・「MMO」 :メチルモルホリン
・「NMP」 :N-メチルピロリドン
(細孔分布幅)
細孔分布幅は、既述のように、JIS R 1655(2003)に準拠して、水銀圧入法により細孔分布を測定し、細孔分布幅を求める。
(空孔径、空孔の円形度)
空孔径(空孔径の平均値)、空孔の円形度は、既述のように、走査型電子顕微鏡(SEM)により観察及び計測した。
(透気速度)
作製した多孔質ポリイミド膜を1cm角に切りだし、透気スピード測定用試料を採取した。試料を減圧濾過用フィルターホルダー(ADVANTEC社製、KGS-04)のファンネルとベース部との間に挟み込んでセットした。そして、試料を挟み込んだフィルターホルダーを逆さに向けて水中に漬け、ファンネル内の予め決められた位置まで水を満たした。ベース部のファンネルとベース部とが接していない側分から0.5気圧(0.05MPas)の空気圧を負荷し、50mlの空気が通過する時間(秒)を測定し、透気スピードとして評価した。
(空隙率)
作製した多孔質ポリイミド膜の重量を測定し、JIS K7130(1992)に準じて膜厚を測定した。真比重は文献値1.43を使用した。
(サイクル特性A)
各例で得られた多孔質ポリイミド膜を用いて、リチウムイオン二次電池を作製し、500回繰り返し充放電(25℃における1C充電と1C放電)したときの電池容量の低減率を調べた。低減率が小さいほどサイクル特性が良好である。低減率20%未満となったものを「良好」、低減率20%以上となったものを「不良」とした。
リチウムイオン二次電池を構成する各材料(正極活物質、負極活物質、電解液)は、以下のとおりである。
正極活物質:NMC111(日本化学工業):アセチレンブラック(キシダ化学)):バインダー(PVdF#1100株式会社クレハ製)=(94:3:3)
負極活物質:天然黒鉛(三菱ケミカル):CMC(MAC350HC 日本製紙グループ):バインダー(TRD2001 JSR株式会社):アセチレンブラック(キシダ化学)=( 97:1:1.5:0.5)
電解液 :1 mol/L LiPF6炭酸エチレン/ 炭酸エチルメチル( = 3/7 vol. ) + ビニレンカーボネート 1wt%(キシダ化学株式会社)
(サイクル特性B)
各例で得られた多孔質ポリイミド膜を用いて、全固体電池を作製し、500回繰り返し充放電(25℃における1C充電と1C放電)したときの電池容量の低減率を調べた。低減率が小さいほどサイクル特性が良好である。低減率20%未満となったものを「良好」、低減率20%以上となったものを「不良」とした。
全固体電池を構成する各材料(正極活物質、負極活物質、固体電解質)は、以下のとおりである。
正極活物質:NMC622:アセチレンブラック:バインダー(PVdF#1100)=(94:3:3)
負極活物質:天然黒鉛:CMC(MAC350HC):バインダー(TRD2001):アセチレンブラック=( 97:1:1.5:0.5)
固体電解質 :LiLaZr12(LLZ)
Figure 0007286980000005
上記結果から、本実施例では、比較例に比べ、サイクル特性が良好であることがわかる。
31 基板、51 剥離層、10A 空孔、10 多孔質ポリイミド膜、100 リチウムイオン二次電池、300 全固体電池

Claims (16)

  1. 水銀圧入法によって測定される細孔分布において、体積基準で、細孔の小径側から累積した16%になるときの細孔径D16に対する小径側から累積した84%になるときの細孔径D84の割合の平方根((D84/D161/2)で表される細孔分布幅が1.15以下であり、空孔径が0.50μm以上3.0μm以下であり、透気速度が30秒以下である多孔質ポリイミド膜。
  2. 前記細孔分布幅が1.13以下である、請求項1に記載の多孔質ポリイミド膜。
  3. 前記細孔分布幅が1.12以下である、請求項2に記載の多孔質ポリイミド膜。
  4. 前記空孔径が0.8μm以上2.5μm以下である、請求項1~3のいずれか1項に記載の多孔質ポリイミド膜。
  5. 前記空孔径が0.8μm以上2.4μm以下である、請求項4に記載の多孔質ポリイミド膜。
  6. 前記透気速度が20秒以下である、請求項1~5のいずれか1項に記載の多孔質ポリイミド膜。
  7. 前記透気速度が15秒以下である、請求項6に記載の多孔質ポリイミド膜。
  8. 空孔の円形度が0.85以上である、請求項1~7のいずれか1項に記載の多孔質ポリイミド膜。
  9. 前記円形度が0.90以上である、請求項8に記載の多孔質ポリイミド膜。
  10. 平均膜厚が10μm以上1000μm以下である、請求項1~9のいずれか1項に記載の多孔質ポリイミド膜。
  11. 前記平均膜厚が20μm以上500μm以下である、請求項10に記載の多孔質ポリイミド膜。
  12. 空隙率が50%以上80%以下である、請求項1~11のいずれか1項に記載の多孔質ポリイミド膜。
  13. 空隙率が55%以上75%以下である、請求項12に記載の多孔質ポリイミド膜。
  14. 請求項1~13のいずれか1項に記載の多孔質ポリイミド膜を含むリチウムイオン二次電池用セパレータ。
  15. 請求項14に記載のリチウムイオン二次電池用セパレータを備えるリチウムイオン二次電池。
  16. 請求項1~13のいずれか1項に記載の多孔質ポリイミド膜を含む全固体電池。
JP2019013429A 2019-01-29 2019-01-29 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池 Active JP7286980B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019013429A JP7286980B2 (ja) 2019-01-29 2019-01-29 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池
US16/540,060 US11584837B2 (en) 2019-01-29 2019-08-14 Porous polyimide film, lithium ion secondary battery, and all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013429A JP7286980B2 (ja) 2019-01-29 2019-01-29 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池

Publications (2)

Publication Number Publication Date
JP2020122051A JP2020122051A (ja) 2020-08-13
JP7286980B2 true JP7286980B2 (ja) 2023-06-06

Family

ID=71732252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013429A Active JP7286980B2 (ja) 2019-01-29 2019-01-29 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池

Country Status (2)

Country Link
US (1) US11584837B2 (ja)
JP (1) JP7286980B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041635B1 (fr) * 2015-09-30 2019-01-25 Arkema France Procede de production de mercaptans par hydrogenolyse enzymatique de disulfures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226777A (ja) 2016-06-23 2017-12-28 富士ゼロックス株式会社 多孔質フィルム、及びその製造方法
JP2018138645A (ja) 2017-02-24 2018-09-06 富士ゼロックス株式会社 ポリイミド前駆体溶液の製造方法、ポリイミド前駆体溶液、及び多孔質ポリイミドフィルムの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634372B2 (ja) * 2010-11-04 2014-12-03 三菱電機株式会社 電力貯蔵デバイスセル
JP5605566B2 (ja) 2010-11-18 2014-10-15 公立大学法人首都大学東京 多孔質ポリイミド膜の製造方法
JP6701833B2 (ja) 2015-03-26 2020-05-27 富士ゼロックス株式会社 多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
US11713383B2 (en) * 2018-12-25 2023-08-01 Tokyo Ohka Kogyo Co., Ltd. Method for producing porous film, method for producing composition for producing porous film, and porous film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226777A (ja) 2016-06-23 2017-12-28 富士ゼロックス株式会社 多孔質フィルム、及びその製造方法
JP2018138645A (ja) 2017-02-24 2018-09-06 富士ゼロックス株式会社 ポリイミド前駆体溶液の製造方法、ポリイミド前駆体溶液、及び多孔質ポリイミドフィルムの製造方法

Also Published As

Publication number Publication date
US11584837B2 (en) 2023-02-21
US20200239656A1 (en) 2020-07-30
JP2020122051A (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
JP6885107B2 (ja) 多孔質ポリイミドフィルム、ポリイミド前駆体溶液、および多孔質ポリイミドフィルムの製造方法
JP7069745B2 (ja) ポリイミド前駆体溶液、多孔質ポリイミドフィルムの製造方法、及び、多孔質ポリイミドフィルム
JP7358745B2 (ja) 全固体電池
US11958939B2 (en) Polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
JP7419815B2 (ja) 多孔質ポリイミドフィルム、二次電池用セパレータ、及び二次電池
JP7314524B2 (ja) 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池
JP2022151286A (ja) ポリイミド前駆体含有水性組成物、ポリイミド膜の製造方法、及び多孔質ポリイミド膜の製造方法
JP7532756B2 (ja) ポリイミド前駆体溶液、ポリイミド膜の製造方法、及びリチウムイオン二次電池用セパレータの製造方法
JP7286980B2 (ja) 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池
US20210070939A1 (en) Polyimide precursor solution and method for producing polyimide film
US20230079844A1 (en) Polyimide precursor solution, porous polyimide film, separator for secondary battery, and secondary battery
EP4063439B1 (en) Polyimide precursor film and method for producing polyimide film
JP7367424B2 (ja) ポリイミド前駆体溶液、ポリイミド膜の製造方法、及びリチウムイオン二次電池用セパレータの製造方法
JP2022148612A (ja) ポリイミド多孔質膜、非水系二次電池用セパレータ、二次電池、及び二次電池の製造方法
CN113201190A (zh) 含聚酰亚胺前体的水性组合物、聚酰亚胺膜的制造方法及多孔聚酰亚胺膜的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7286980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150