Nothing Special   »   [go: up one dir, main page]

JP7284205B2 - Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board - Google Patents

Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board Download PDF

Info

Publication number
JP7284205B2
JP7284205B2 JP2021033670A JP2021033670A JP7284205B2 JP 7284205 B2 JP7284205 B2 JP 7284205B2 JP 2021033670 A JP2021033670 A JP 2021033670A JP 2021033670 A JP2021033670 A JP 2021033670A JP 7284205 B2 JP7284205 B2 JP 7284205B2
Authority
JP
Japan
Prior art keywords
resin composition
photosensitive resin
component
epoxy resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021033670A
Other languages
Japanese (ja)
Other versions
JP2021103307A (en
Inventor
健一 岩下
貴子 江尻
彰宏 中村
正幸 小島
伸仁 古室
真治 入澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2021033670A priority Critical patent/JP7284205B2/en
Publication of JP2021103307A publication Critical patent/JP2021103307A/en
Application granted granted Critical
Publication of JP7284205B2 publication Critical patent/JP7284205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Photolithography (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Description

本開示は、感光性樹脂組成物、それを用いたドライフィルム、半導体装置、及びプリント配線板の製造方法に関する。 TECHNICAL FIELD The present disclosure relates to a photosensitive resin composition, a dry film using the same, a semiconductor device, and a method for manufacturing a printed wiring board.

近年、電子機器の高性能化(小型化、軽量化及び多機能化)に伴い、LSI、チップ等の半導体部品の高集積化が進んでいる。それに伴い、半導体部品の形態が多ピン化、小型化へと急速に変化している。また、半導体部品の高集積化に伴い、半導体部品を構成する半導体素子、半導体パッケージ、プリント配線板、フレキシブル配線板等の高密度化及び高精細化が進んでおり、チップ・チップコンデンサー等を基板内に埋め込んだ部品内臓基板が検討されている。半導体部品に用いられる表面保護膜又は層間絶縁膜としては、層間接続用のビア開口パターンを形成できること、また基板材料、銅パターン(導体パターン)と接着するだけでなく、チップ部品と接着できることが要求されている。 2. Description of the Related Art In recent years, semiconductor components such as LSIs and chips have been highly integrated as electronic devices have become more sophisticated (smaller, lighter, and multifunctional). Along with this, the form of semiconductor components is rapidly changing toward multi-pin and miniaturization. In addition, along with the high integration of semiconductor parts, the semiconductor elements, semiconductor packages, printed wiring boards, flexible wiring boards, etc. that make up the semiconductor parts are becoming higher density and higher definition. Substrates with built-in components are being considered. The surface protective film or interlayer insulating film used for semiconductor parts is required to be able to form a via opening pattern for interlayer connection, and to be able to adhere not only to substrate materials and copper patterns (conductor patterns) but also to chip parts. It is

プリント配線板の製造方法として、従来から採用される方法として、ビルドアップ方式が挙げられる。このビルドアップ方式は、まず、内層回路板(第一の導体パターンを有する基材)上に絶縁樹脂フィルムをラミネートし、加熱により硬化させ、層間絶縁膜を形成した後、レーザー加工によってビアホールを形成する。次いで、層間絶縁膜をアルカリ過マンガン酸処理等によって粗化処理とスミア処理とを行った後、無電解銅めっきを行い、第二の導体パターンと層間接続可能とするビアホールとを形成するという方式である(例えば、特許文献1参照)。 As a method for manufacturing a printed wiring board, a build-up method can be mentioned as a conventional method. In this build-up method, first, an insulating resin film is laminated on the inner layer circuit board (base material having the first conductor pattern), cured by heating to form an interlayer insulating film, and then via holes are formed by laser processing. do. Next, the interlayer insulating film is subjected to roughening treatment and smear treatment by alkali permanganate treatment or the like, and then electroless copper plating is performed to form a second conductor pattern and a via hole that enables interlayer connection. (See Patent Document 1, for example).

近年、導体パターンの高密度化に伴い、表面保護膜には高解像性が求められており、フォトリソグラフィー法でパターン形成できる感光性樹脂組成物が盛んに用いられるようになっている。中でも炭酸ナトリウム水溶液等の弱アルカリ水溶液で現像可能なアルカリ現像型の感光性樹脂組成物が、作業環境保全、地球環境保全の点から主流になっている。 In recent years, with the increasing density of conductor patterns, surface protective films are required to have high resolution, and photosensitive resin compositions that can be patterned by photolithography have been widely used. Among them, an alkali-developable photosensitive resin composition that can be developed with a weakly alkaline aqueous solution such as an aqueous sodium carbonate solution has become mainstream from the viewpoint of working environment conservation and global environment conservation.

特開平7-304931号公報JP-A-7-304931

一方、従来のレーザー加工による、ビルドアップ方式におけるビアホールの形成は、それぞれのビアを一つずつ形成する必要があり、高密度化によって多数のビアを設ける必要がある場合、多大な時間を要するという問題がある。そこで、多数のビアを一括で形成可能な方法として、フォトリソグラフィー法による表面保護膜の形成が検討されるようになっている。しかし、該表面保護膜と無電解めっき銅との十分な接着強度が得られているとはいえない状況にある。 On the other hand, the formation of via holes in the build-up method using conventional laser processing requires that each via be formed one by one. There's a problem. Therefore, as a method capable of forming a large number of vias at once, the formation of a surface protective film by photolithography has been studied. However, it cannot be said that sufficient adhesive strength is obtained between the surface protective film and the electroless plated copper.

そこで、本開示が解決しようとする課題は、めっき銅との接着強度に優れ、かつ、優れた解像性、シリコンウエハ等のシリコン素材の基板、チップ部品との密着性に優れる感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法(以下、「感光性樹脂組成物等」と称することがある。)を提供することである。 Therefore, the problem to be solved by the present disclosure is a photosensitive resin composition that has excellent adhesive strength with plated copper, excellent resolution, silicon material substrates such as silicon wafers, and excellent adhesion to chip parts. The object of the present invention is to provide a product, a dry film using the same, a printed wiring board, and a method for manufacturing a printed wiring board (hereinafter sometimes referred to as "photosensitive resin composition, etc.").

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、下記の発明により解決できることを見出した。すなわち本開示は、下記の感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法を提供するものである。 The present inventors have made intensive studies to solve the above problems, and as a result, have found that the problems can be solved by the following inventions. That is, the present disclosure provides the following photosensitive resin composition, a dry film using the same, a printed wiring board, and a method for producing a printed wiring board.

[1](A)酸変性ビニル基含有エポキシ樹脂、(B)光重合性化合物、(C)光重合開始剤、(D)無機フィラ、及び(E)シラン化合物を含有し、前記(D)無機フィラの含有量が、感光性樹脂組成物中の固形分全量基準として10~80質量%である感光性樹脂組成物。
[2]キャリアフィルムと、上記[1]に記載の感光性樹脂組成物を用いた感光層とを有する、ドライフィルム。
[3]上記[1]に記載の感光性樹脂組成物により形成される表面保護膜及び層間絶縁膜の少なくとも一方を具備するプリント配線板
[4]基板上に上記[1]に記載の感光性樹脂組成物、又は上記[2]に記載のドライフィルムを用いて感光層を設ける工程、該感光層を用いて樹脂パターンを形成する工程、及び該樹脂パターンを硬化して表面保護膜及び層間絶縁膜の少なくとも一方を形成する工程を順に有する、プリント配線板の製造方法。
[1] (A) an acid-modified vinyl group-containing epoxy resin, (B) a photopolymerizable compound, (C) a photopolymerization initiator, (D) an inorganic filler, and (E) a silane compound, and containing (D) A photosensitive resin composition having an inorganic filler content of 10 to 80% by mass based on the total solid content in the photosensitive resin composition.
[2] A dry film comprising a carrier film and a photosensitive layer using the photosensitive resin composition described in [1] above.
[3] Printed wiring board comprising at least one of a surface protective film and an interlayer insulating film formed from the photosensitive resin composition described in [1] above [4] Photosensitivity according to [1] above on a substrate A step of providing a photosensitive layer using the resin composition or the dry film described in [2] above, a step of forming a resin pattern using the photosensitive layer, and curing the resin pattern to form a surface protective film and interlayer insulation A method of manufacturing a printed wiring board, comprising, in order, the steps of forming at least one of the films.

本開示によれば、めっき銅との接着強度に優れ、かつ、優れた解像性、シリコンウエハ等のシリコン素材の基板、チップ部品との密着性に優れる感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法を提供することができる。 According to the present disclosure, a photosensitive resin composition having excellent adhesive strength with plated copper, excellent resolution, excellent adhesion to silicon material substrates such as silicon wafers, and chip parts, and using it A dry film, a printed wiring board, and a method for manufacturing a printed wiring board can be provided.

本実施形態の感光性樹脂組成物の硬化物を表面保護膜及び層間絶縁膜の少なくとも一方として用いる多層プリント配線板の製造工程の一態様を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows one aspect|mode of the manufacturing process of the multilayer printed wiring board which uses the hardened|cured material of the photosensitive resin composition of this embodiment as at least one of a surface protective film and an interlayer insulation film.

[感光性樹脂組成物]
本開示における実施形態に係る(以後、単に本実施形態と称する場合がある。)の感光性樹脂組成物は、(A)酸変性ビニル基含有エポキシ樹脂、(B)光重合性化合物、(C)光重合開始剤、(D)無機フィラ、及び(E)シラン化合物を含有し、前記(D)無機フィラの含有量が、感光性樹脂組成物中の固形分全量基準として10~80質量%という樹脂組成物である。本明細書において、これらの成分は、単に(A)成分、(B)成分、(C)成分等と称することがある。本明細書において、「固形分」とは、感光性樹脂組成物に含まれる水、溶媒等の揮発する物質を除いた不揮発分のことであり、該樹脂組成物を乾燥させた際に、揮発せずに残る成分を示し、また25℃付近の室温で液状、水飴状、及びワックス状のものも含む。
各成分について、以下説明する。
[Photosensitive resin composition]
A photosensitive resin composition according to an embodiment of the present disclosure (hereinafter sometimes simply referred to as this embodiment) comprises (A) an acid-modified vinyl group-containing epoxy resin, (B) a photopolymerizable compound, (C ) contains a photopolymerization initiator, (D) an inorganic filler, and (E) a silane compound, and the content of the (D) inorganic filler is 10 to 80% by mass based on the total solid content in the photosensitive resin composition. It is a resin composition. In this specification, these components may be simply referred to as (A) component, (B) component, (C) component, and the like. As used herein, the term “solid content” refers to non-volatile content excluding volatile substances such as water and solvents contained in the photosensitive resin composition, and when the resin composition is dried, It also includes those that are liquid, syrup-like, and wax-like at room temperature around 25°C.
Each component is explained below.

<(A)酸変性ビニル基含有エポキシ樹脂>
本実施形態の感光性樹脂組成物は、(A)成分として酸変性ビニル基含有エポキシ樹脂を含む。(A)成分は、エポキシ樹脂をビニル基含有の有機酸で変性した化合物、例えば、エポキシ樹脂とビニル基含有モノカルボン酸とを反応させてなる樹脂に、飽和基又は不飽和基含有多塩基酸無水物を反応させてなるエポキシ樹脂が挙げられる。
<(A) Acid-modified vinyl group-containing epoxy resin>
The photosensitive resin composition of the present embodiment contains an acid-modified vinyl group-containing epoxy resin as component (A). Component (A) is a compound obtained by modifying an epoxy resin with a vinyl group-containing organic acid, for example, a resin obtained by reacting an epoxy resin and a vinyl group-containing monocarboxylic acid with a saturated or unsaturated group-containing polybasic acid. Epoxy resins obtained by reacting anhydrides can be mentioned.

(A)成分としては、アルカリ現像が可能であり、かつ解像性、接着強度を向上させる観点から、例えば、ビスフェノールノボラック型エポキシ樹脂(a1)(以後、(a1)成分と称する場合がある。)を用いてなる酸変性ビニル基含有エポキシ樹脂(A1)(以、(A1)成分と称する場合がある。)、該エポキシ樹脂(a1)以外のエポキシ樹脂(a2)(以後、(a2)成分と称する場合がある。)を用いてなる酸変性ビニル基含有エポキシ樹脂(A2)(以後、(A2)成分と称する場合がある。)等が挙げられ、これらを単独で、又は複数種を組み合わせて用いることができる。また、特に密着強度向上の観点から、(A)成分は、(a1)成分を用いてなる少なくとも1種の(A1)成分と、(a2)成分を用いてなる少なくとも1種の(A2)成分とを含有するものであってもよい。 Component (A) is, for example, a bisphenol novolac type epoxy resin (a1) (hereinafter sometimes referred to as component (a1)) from the viewpoint of enabling alkali development and improving resolution and adhesive strength. ) using an acid-modified vinyl group-containing epoxy resin (A1) (hereinafter sometimes referred to as the (A1) component), an epoxy resin (a2) other than the epoxy resin (a1) (hereinafter, the (a2) component (hereinafter sometimes referred to as the (A2) component) using an acid-modified vinyl group-containing epoxy resin (A2) (hereinafter sometimes referred to as the (A2) component). can be used In particular, from the viewpoint of improving the adhesion strength, the (A) component includes at least one (A1) component using the (a1) component and at least one (A2) component using the (a2) component. and may contain.

(エポキシ樹脂(a1))
(A)成分として、アルカリ現像が可能であり、かつ解像性、密着強度を向上させる観点から、(a1)成分を用いてなる(A1)成分を含有することが好ましい。これと同様の観点から、(a1)成分としては、下記一般式(I)又は(II)で表される構造単位を有するビスフェノールノボラック型エポキシ樹脂から選らばれる1種が好ましく、下記一般式(II)で表される構造単位を有するビスフェノールノボラック型エポキシ樹脂がより好ましく挙げられる。
(Epoxy resin (a1))
As the component (A), it is preferable to contain the component (A1) obtained by using the component (a1) from the viewpoint of enabling alkali development and improving the resolution and adhesion strength. From the same point of view, the component (a1) is preferably one selected from bisphenol novolak type epoxy resins having a structural unit represented by the following general formula (I) or (II). ) is more preferably a bisphenol novolak type epoxy resin having a structural unit represented by

〔一般式(I)で表される構造単位を有するエポキシ樹脂〕
(a1)成分の好ましい態様の一つは、下記一般式(I)で表される構造単位を有するエポキシ樹脂である。
[Epoxy Resin Having Structural Unit Represented by Formula (I)]
One of preferred embodiments of component (a1) is an epoxy resin having a structural unit represented by the following general formula (I).

Figure 0007284205000001
Figure 0007284205000001

一般式(I)中、R11は水素原子又はメチル基を示し、Yはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR11は同一でも異なっていてもよく、Yの少なくとも一方はグリシジル基を示す。 In general formula (I), R 11 represents a hydrogen atom or a methyl group, and Y 1 each independently represents a hydrogen atom or a glycidyl group. Plural R 11 may be the same or different, and at least one of Y 1 represents a glycidyl group.

11は、解像性、接着強度を向上させる観点から、水素原子であることが好ましい。また、これと同様の観点から、Yは、グリシジル基であることが好ましい。 From the viewpoint of improving resolution and adhesive strength, R 11 is preferably a hydrogen atom. From the same point of view, Y1 is preferably a glycidyl group.

一般式(I)で表される構造単位を有するエポキシ樹脂(a1)中の該構造単位の構造単位数は、1以上の数であり、10~100、15~80、又は、15~70から適宜選択することができる。構造単位数が上記範囲内であると、解像性、及び接着強度が向上する。ここで、構造単位の構造単位数は、単一の分子においては整数値を示し、複数種の分子の集合体においては平均値である有理数を示す。以下、構造単位の構造単位数については同様である。 The number of structural units in the epoxy resin (a1) having a structural unit represented by general formula (I) is 1 or more, and is 10 to 100, 15 to 80, or 15 to 70. It can be selected as appropriate. When the number of structural units is within the above range, resolution and adhesive strength are improved. Here, the number of structural units of a structural unit represents an integer value for a single molecule, and represents a rational number, which is an average value, for an aggregate of multiple types of molecules. Hereinafter, the number of structural units of the structural units is the same.

〔一般式(II)で表される構造単位を有するエポキシ樹脂〕
また、(a1)成分の好ましい態様の一つは、下記一般式(II)で表される構造単位を有するエポキシ樹脂である。
[Epoxy Resin Having Structural Unit Represented by Formula (II)]
Moreover, one of preferred embodiments of the component (a1) is an epoxy resin having a structural unit represented by the following general formula (II).

Figure 0007284205000002
Figure 0007284205000002

一般式(II)中、R12は水素原子又はメチル基を示し、Yはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR12は同一でも異なっていてもよく、Yの少なくとも一方はグリシジル基を示す。 In general formula (II), R 12 represents a hydrogen atom or a methyl group, and Y 2 each independently represents a hydrogen atom or a glycidyl group. Plural R 12 may be the same or different, and at least one of Y 2 represents a glycidyl group.

12は、解像性、接着強度を向上させる観点から、水素原子であることが好ましい。
また、これと同様の観点から、Yは、グリシジル基であることが好ましい。
From the viewpoint of improving resolution and adhesive strength, R 12 is preferably a hydrogen atom.
From the same point of view, Y2 is preferably a glycidyl group.

一般式(II)で表される構造単位を有する(A2)成分中の該構造単位の構造単位数は、1以上の数であり、10~100、15~80、又は、15~70から適宜選択すればよい。構造単位数が上記範囲内であると、接着強度、耐熱性、及び電気絶縁性が向上する。 The number of structural units of the structural unit in component (A2) having the structural unit represented by general formula (II) is 1 or more, and is suitably from 10 to 100, 15 to 80, or 15 to 70. You can choose. When the number of structural units is within the above range, adhesive strength, heat resistance, and electrical insulation are improved.

一般式(II)において、R12が水素原子であり、Yがグリシジル基のものは、EXA-7376シリーズ(DIC(株)製、商品名)として、また、R12がメチル基であり、Yがグリシジル基のものは、EPON SU8シリーズ(三菱化学(株)製、商品名)として商業的に入手可能である。 In general formula (II), those in which R 12 is a hydrogen atom and Y 2 is a glycidyl group are referred to as EXA-7376 series (manufactured by DIC Corporation, trade name), and R 12 is a methyl group, Those in which Y2 is a glycidyl group are commercially available as the EPON SU8 series (manufactured by Mitsubishi Chemical Corporation, trade name).

(エポキシ樹脂(a2))
(a2)成分は、(a1)成分とは異なるエポキシ樹脂であれば特に制限はないが、接着強度、及び解像性を向上させる観点から、ノボラック型エポキシ樹脂であってもよく、例えば、下記一般式(III)で表される構造単位を有するものであってもよい。
(Epoxy resin (a2))
Component (a2) is not particularly limited as long as it is an epoxy resin different from component (a1), but from the viewpoint of improving adhesive strength and resolution, it may be a novolak type epoxy resin. It may have a structural unit represented by general formula (III).

(a2)成分は、特に解像性を向上させる観点から、(a1)成分の中でも前記一般式(I)又は(II)で表される構造単位を含有するビスフェノールノボラック型エポキシ樹脂と組み合わせて用いることが好ましい。 Component (a2) is used in combination with a bisphenol novolak type epoxy resin containing a structural unit represented by general formula (I) or (II) among component (a1), particularly from the viewpoint of improving resolution. is preferred.

〔一般式(III)で表される構造単位を有するエポキシ樹脂〕
(a2)成分としては、下記一般式(III)で表される構造単位を有するノボラック型エポキシ樹脂が好ましく挙げられ、このような構造単位を有するノボラック型エポキシ樹脂としては、例えば、下記一般式(III’)で表されるノボラック型エポキシ樹脂が挙げられる。
[Epoxy Resin Having Structural Unit Represented by Formula (III)]
Component (a2) is preferably a novolak type epoxy resin having a structural unit represented by the following general formula (III). As a novolac type epoxy resin having such a structural unit, for example, the following general formula ( III') includes a novolac type epoxy resin.

Figure 0007284205000003
Figure 0007284205000003

一般式(III)及び(III’)中、R13は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示す。また、一般式(III’)中、nは1以上の数であり、複数のR13及びYは、同一でも異なっていてもよく、Yの少なくとも一つはグリシジル基を示す。 In general formulas (III) and (III'), R13 represents a hydrogen atom or a methyl group, and Y3 represents a hydrogen atom or a glycidyl group. Further, in general formula (III'), n 1 is a number of 1 or more, a plurality of R 13 and Y 3 may be the same or different, and at least one of Y 3 represents a glycidyl group.

13は、解像性を向上させる観点から、水素原子が好ましい。
は、一般式(III’)中、水素原子であるYとグリシジル基であるYとのモル比は、解像性を向上させる観点から、0/100~30/70、又は、0/100~10/90から適宜選択すればよい。このモル比からも分かるように、Yの少なくとも一つはグリシジル基である。
From the viewpoint of improving resolution, R 13 is preferably a hydrogen atom.
In the general formula (III′), the molar ratio of Y 3 that is a hydrogen atom and Y 3 that is a glycidyl group is 0/100 to 30/70 from the viewpoint of improving resolution, or It may be appropriately selected from 0/100 to 10/90. As can be seen from this molar ratio, at least one of Y3 is a glycidyl group.

は1以上の数であり、10~200、30~150、又は、30~100から適宜選択すればよい。nが上記範囲内であると、レジストパターン輪郭の直線性が向上したレジスト形状を形成でき、接着強度、耐熱性、及び電気絶縁性が向上する。 n1 is a number of 1 or more, and may be appropriately selected from 10-200, 30-150, or 30-100. When n1 is within the above range, a resist shape with improved linearity of the resist pattern contour can be formed, and adhesive strength, heat resistance, and electrical insulation are improved.

一般式(III’)で表されるノボラック型エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が挙げられる。これらのノボラック型エポキシ樹脂は、例えば、公知の方法でフェノールノボラック樹脂、クレゾールノボラック樹脂とエピクロルヒドリンとを反応させることにより得ることができる。 Examples of the novolak-type epoxy resin represented by the general formula (III') include phenol novolak-type epoxy resins and cresol novolak-type epoxy resins. These novolak-type epoxy resins can be obtained, for example, by reacting a phenol novolac resin or cresol novolac resin with epichlorohydrin by a known method.

水酸基とエピクロルヒドリンとの反応を促進するためには、反応温度50~120℃でアルカリ金属水酸化物存在下、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の極性有機溶剤中で反応を行うことが好ましい。反応温度が上記範囲内であると、反応が遅くなりにくく、副反応をより抑制することができる。 In order to accelerate the reaction between hydroxyl groups and epichlorohydrin, the reaction is preferably carried out in a polar organic solvent such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, etc. in the presence of an alkali metal hydroxide at a reaction temperature of 50 to 120°C. When the reaction temperature is within the above range, the reaction is less likely to slow down, and side reactions can be further suppressed.

一般式(III’)で表されるフェノールノボラック型エポキシ樹脂又はクレゾールノボラック型エポキシ樹脂としては、例えば、YDCN-701、YDCN-702、YDCN-703、YDCN-704、YDCN-704L、YDPN-638、YDPN-602(以上、新日鉄住金化学(株)製、商品名)、DEN-431、DEN-439(以上、ダウケミカル(株)製、商品名)、EOCN-120、EOCN-102S、EOCN-103S、EOCN-104S、EOCN-1012、EOCN-1025、EOCN-1027、BREN(以上、日本化薬(株)製、商品名)、EPN-1138、EPN-1235、EPN-1299(以上、BASF社製、商品名)、N-730、N-770、N-865、N-665、N-673、VH-4150、VH-4240(以上、DIC(株)製、商品名)等が商業的に入手可能である。 Examples of the phenol novolak type epoxy resin or cresol novolak type epoxy resin represented by the general formula (III′) include YDCN-701, YDCN-702, YDCN-703, YDCN-704, YDCN-704L, YDPN-638, YDPN-602 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name), DEN-431, DEN-439 (manufactured by Dow Chemical Co., Ltd., trade name), EOCN-120, EOCN-102S, EOCN-103S , EOCN-104S, EOCN-1012, EOCN-1025, EOCN-1027, BREN (manufactured by Nippon Kayaku Co., Ltd., trade name), EPN-1138, EPN-1235, EPN-1299 (manufactured by BASF) , trade names), N-730, N-770, N-865, N-665, N-673, VH-4150, VH-4240 (manufactured by DIC Corporation, trade names), etc. are commercially available. It is possible.

また、(a2)成分としては、上記のノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びトリフェノールメタン型エポキシ樹脂から選ばれる少なくとも1種であってもよい。 The component (a2) may be at least one selected from the above novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, and triphenolmethane type epoxy resins.

〔一般式(IV)で表される構造単位を有するエポキシ樹脂〕
ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂としては、例えば、下記一般式(IV)で表される構造単位を有するビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂から選ばれる少なくとも1種が好ましく、このような構造単位を有するエポキシ樹脂としては、例えば、下記一般式(IV’)で表されるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂が挙げられ、ビスフェノールF型エポキシ樹脂が好ましい。
[Epoxy Resin Having Structural Unit Represented by Formula (IV)]
As the bisphenol A type epoxy resin and the bisphenol F type epoxy resin, for example, at least one selected from bisphenol A type epoxy resins and bisphenol F type epoxy resins having a structural unit represented by the following general formula (IV) is preferable. Examples of epoxy resins having such a structural unit include bisphenol A epoxy resins and bisphenol F epoxy resins represented by the following general formula (IV'), with bisphenol F epoxy resins being preferred.

Figure 0007284205000004
Figure 0007284205000004

一般式(IV)及び(IV’)中、R14は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示す。また、複数存在するR14は同一でも異なっていてもよい。また、一般式(IV’)中、nは1以上の数を示し、nが2以上の場合、複数のYは同一でも異なっていてもよく、少なくとも一つのYはグリシジル基である。 In general formulas (IV) and (IV'), R 14 represents a hydrogen atom or a methyl group, and Y 4 represents a hydrogen atom or a glycidyl group. Moreover, multiple R 14 may be the same or different. In general formula (IV′), n 2 represents a number of 1 or more, and when n 2 is 2 or more, a plurality of Y 4 may be the same or different, and at least one Y 4 is a glycidyl group. be.

14は、アンダーカット及びレジスト上部の欠落が発生しにくくなり、レジストパターン輪郭の直線性、解像性を向上させる観点から、水素原子が好ましい。
また、これと同様の観点から、Yは、グリシジル基であることが好ましい。
R 14 is preferably a hydrogen atom from the viewpoint of less occurrence of undercuts and voids in the upper portion of the resist, and from the viewpoint of improving the linearity of the contour of the resist pattern and the resolution.
From the same point of view, Y4 is preferably a glycidyl group.

は1以上の数を示し、10~100、10~80、又は、15~60から適宜選択すればよい。nが上記範囲内であると、レジストパターン輪郭の直線性が向上したレジスト形状を形成でき、銅基板との密着性、耐熱性、及び電気絶縁性が向上する。 n2 represents a number of 1 or more, and may be appropriately selected from 10-100, 10-80, or 15-60. When n2 is within the above range, a resist shape with improved linearity of the resist pattern contour can be formed, and adhesion to the copper substrate, heat resistance, and electrical insulation are improved.

一般式(IV)で表され、Yがグリシジル基であるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂は、例えば、一般式(IV)で示され、Yが水素原子であるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂の水酸基(-OY)とエピクロルヒドリンとを反応させることにより得ることができる。 A bisphenol A type epoxy resin or a bisphenol F type epoxy resin represented by the general formula (IV) in which Y4 is a glycidyl group is, for example, a bisphenol A type epoxy resin represented by the general formula (IV) in which Y4 is a hydrogen atom It can be obtained by reacting a hydroxyl group (-OY 4 ) of an epoxy resin or a bisphenol F type epoxy resin with epichlorohydrin.

水酸基とエピクロルヒドリンとの反応を促進するためには、反応温度50~120℃でアルカリ金属水酸化物存在下、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の極性有機溶剤中で反応を行うことが好ましい。反応温度が上記範囲内であると、反応が遅くなりにくく、副反応をより抑制することができる。 In order to accelerate the reaction between hydroxyl groups and epichlorohydrin, the reaction is preferably carried out in a polar organic solvent such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, etc. in the presence of an alkali metal hydroxide at a reaction temperature of 50 to 120°C. When the reaction temperature is within the above range, the reaction is less likely to slow down, and side reactions can be further suppressed.

一般式(IV’)で表されるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂としては、例えば、エピコート807、815、825、827、828、834、1001、1004、1007及び1009(以上、三菱化学(株)製、商品名)、DER-330、DER-301、DER-361(以上、ダウケミカル(株)製、商品名)、YD-8125、YDF-170、YDF-170、YDF-175S、YDF-2001、YDF-2004、YDF-8170(以上、新日鉄住金化学(株)製、商品名)等が商業的に入手可能である。 Examples of the bisphenol A type epoxy resin or bisphenol F type epoxy resin represented by the general formula (IV′) include Epicoat 807, 815, 825, 827, 828, 834, 1001, 1004, 1007 and 1009 (Mitsubishi Chemical Co., Ltd., trade name), DER-330, DER-301, DER-361 (manufactured by Dow Chemical Co., Ltd., trade name), YD-8125, YDF-170, YDF-170, YDF-175S , YDF-2001, YDF-2004, YDF-8170 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade names), etc. are commercially available.

〔一般式(V)で表される構造単位を有するエポキシ樹脂〕
(a2)成分のトリフェノールメタン型エポキシ樹脂としては、下記一般式(V)で表される構造単位を有するトリフェノールメタン型エポキシ樹脂が好ましく挙げられ、このような構造単位を有するトリフェノールメタン型エポキシ樹脂としては、例えば、下記一般式(V’)で表されるトリフェノールメタン型エポキシ樹脂が好ましく挙げられる。
[Epoxy Resin Having Structural Unit Represented by Formula (V)]
As the triphenolmethane-type epoxy resin as the component (a2), a triphenolmethane-type epoxy resin having a structural unit represented by the following general formula (V) is preferable. As the epoxy resin, for example, a triphenolmethane type epoxy resin represented by the following general formula (V') is preferably used.

Figure 0007284205000005

式(V)及び(V’)中、Yは水素原子又はグリシジル基を示し、複数のYは同一でも異なっていてもよく、少なくとも一つのYはグリシジル基である。また、一般式(V’)中、nは1以上の数を示す。
Figure 0007284205000005

In formulas (V) and (V'), Y 5 represents a hydrogen atom or a glycidyl group, multiple Y 5 may be the same or different, and at least one Y 5 is a glycidyl group. Further, in general formula (V'), n3 represents a number of 1 or more.

は、水素原子であるYとグリシジル基であるYとのモル比が、アンダーカット及びレジスト上部の欠落が発生しにくくなり、レジストパターン輪郭の直線性、解像性を向上させる観点から、0/100~30/70から適宜選択すればよい。このモル比からも分かるように、Yの少なくとも一つはグリシジル基である。
は1以上の数を示し、10~100、15~80、又は、15~70から適宜選択すればよい。nが上記範囲内であると、レジストパターン輪郭の直線性が向上したレジスト形状を形成でき、銅基板との密着性、耐熱性、及び電気絶縁性が向上する。
Y 5 is the molar ratio of Y 5 , which is a hydrogen atom and Y 5 , which is a glycidyl group, so that undercuts and missing parts of the upper part of the resist are less likely to occur, and the linearity and resolution of the resist pattern contour are improved. from 0/100 to 30/70. As can be seen from this molar ratio, at least one of Y5 is a glycidyl group.
n3 represents a number of 1 or more, and may be appropriately selected from 10-100, 15-80, or 15-70. When n3 is within the above range, a resist shape with improved linearity of the resist pattern contour can be formed, and adhesion to a copper substrate, heat resistance, and electrical insulation are improved.

一般式(V’)で表されるトリフェノールメタン型エポキシ樹脂としては、例えば、FAE-2500、EPPN-501H、EPPN-502H(以上、日本化薬(株)製、商品名)等が商業的に入手可能である。 As the triphenolmethane type epoxy resin represented by the general formula (V′), for example, FAE-2500, EPPN-501H, EPPN-502H (manufactured by Nippon Kayaku Co., Ltd., trade names) and the like are commercially available. available at

(A1)成分及び(A2)成分は、解像性を向上させる観点から、(a1)成分及び(a2)成分(以下、「(a)成分」と称する場合がある。)と、ビニル基含有モノカルボン酸(b)(以下、(b)成分と称する場合がある。)とを反応させてなる樹脂(A1’)及び(A2’)(以下、まとめて「(A’)成分」と称する場合がある。)に、飽和又は不飽和基含有多塩基酸無水物(c)(以下、(c)成分と称する場合がある。)を反応させてなる樹脂であることが好ましい。 The (A1) component and the (A2) component are, from the viewpoint of improving resolution, the (a1) component and the (a2) component (hereinafter sometimes referred to as "(a) component") and a vinyl group-containing Resins (A1′) and (A2′) obtained by reacting monocarboxylic acid (b) (hereinafter sometimes referred to as component (b)) (hereinafter collectively referred to as “(A′) component”) ) with saturated or unsaturated group-containing polybasic acid anhydride (c) (hereinafter sometimes referred to as component (c)).

〔ビニル基含有モノカルボン酸(b)〕
(b)成分としては、例えば、アクリル酸、アクリル酸の二量体、メタクリル酸、β-フルフリルアクリル酸、β-スチリルアクリル酸、桂皮酸、クロトン酸、α-シアノ桂皮酸等のアクリル酸誘導体、水酸基含有アクリレートと二塩基酸無水物との反応生成物である半エステル化合物、ビニル基含有モノグリシジルエーテル又はビニル基含有モノグリシジルエステルと二塩基酸無水物との反応生成物である半エステル化合物などが好ましく挙げられる。
[Vinyl group-containing monocarboxylic acid (b)]
Component (b) includes, for example, acrylic acid, dimers of acrylic acid, methacrylic acid, β-furfurylacrylic acid, β-styrylacrylic acid, cinnamic acid, crotonic acid, and α-cyanocinnamic acid. Derivatives, half-ester compounds that are reaction products of hydroxyl group-containing acrylates and dibasic acid anhydrides, vinyl group-containing monoglycidyl ethers or half esters that are reaction products of vinyl group-containing monoglycidyl esters and dibasic acid anhydrides Compounds and the like are preferably exemplified.

半エステル化合物は、例えば、水酸基含有アクリレート、ビニル基含有モノグリシジルエーテル又はビニル基含有モノグリシジルエステルと二塩基酸無水物とを等モル比で反応させることで得られる。これらの(b)成分は、単独で、又は複数種を組み合わせて用いることができる。 The semi-ester compound can be obtained, for example, by reacting a hydroxyl group-containing acrylate, a vinyl group-containing monoglycidyl ether, or a vinyl group-containing monoglycidyl ester with a dibasic acid anhydride in an equimolar ratio. These (b) components can be used individually or in combination of multiple types.

(b)成分の一例である上記半エステル化合物の合成に用いられる水酸基含有アクリレート、ビニル基含有モノグリシジルエーテル、ビニル基含有モノグリシジルエステルとしては、例えば、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、ポリエチレングリコールモノアクリレート、ポリエチレングリコールモノメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタクリレート、ペンタエリスルトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールペンタアクリレート、ペンタエリスリトールペンタメタクリレート、グリシジルアクリレート、グリシジルメタクリレート等が挙げられる。 Examples of hydroxyl group-containing acrylates, vinyl group-containing monoglycidyl ethers, and vinyl group-containing monoglycidyl esters used for synthesizing the above half-ester compounds, which are examples of component (b), include hydroxyethyl acrylate, hydroxyethyl methacrylate, and hydroxypropyl acrylate. , hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate, trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol pentaacrylate, pentaerythritol pentamethacrylate, glycidyl acrylate, glycidyl methacrylate and the like.

上記半エステル化合物の合成に用いられる二塩基酸無水物としては、飽和基を含有するもの、不飽和基を含有するものが挙げられる。二塩基酸無水物の具体例としては、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸等が挙げられる。 Dibasic acid anhydrides used in the synthesis of the above half-ester compounds include those containing saturated groups and those containing unsaturated groups. Specific examples of dibasic acid anhydrides include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. acid, ethylhexahydrophthalic anhydride, itaconic anhydride, and the like.

上記(a)成分と(b)成分との反応において、(a)成分のエポキシ基1当量に対して、(b)成分が0.6~1.05当量となる比率で反応させてもよく、0.8~1.0当量となる比率で反応させてもよい。このような比率で反応させることで、光重合性が向上する、すなわち光感度が大きくなるので、解像性が向上する。 In the reaction of the component (a) and the component (b), the reaction may be carried out at a ratio of 0.6 to 1.05 equivalents of the component (b) with respect to 1 equivalent of the epoxy group of the component (a). , 0.8 to 1.0 equivalents. By reacting in such a ratio, the photopolymerizability is improved, that is, the photosensitivity is increased, so that the resolution is improved.

(a)成分及び(b)成分は、有機溶剤に溶かして反応させることができる。
有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤などが好ましく挙げられる。
The components (a) and (b) can be dissolved in an organic solvent and reacted.
Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene; glycol ethers such as glycol monoethyl ether, dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate and carbitol acetate; aliphatic hydrocarbons such as octane and decane petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha;

更に、(a)成分と(b)成分との反応を促進させるために触媒を用いることが好ましい。触媒としては、例えば、トリエチルアミン、ベンジルメチルアミン、メチルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド、トリフェニルホスフィン等が挙げられる。
触媒の使用量は、(a)成分と(b)成分との合計100質量部に対して、0.01~10質量部、0.05~2質量部、又は、0.1~1質量部から適宜選択すればよい。上記の使用量とすると、(a)成分と(b)成分との反応が促進される。
Furthermore, it is preferable to use a catalyst in order to accelerate the reaction between components (a) and (b). Examples of catalysts include triethylamine, benzylmethylamine, methyltriethylammonium chloride, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium iodide, triphenylphosphine and the like.
The amount of catalyst used is 0.01 to 10 parts by mass, 0.05 to 2 parts by mass, or 0.1 to 1 part by mass with respect to 100 parts by mass of components (a) and (b) in total. can be selected as appropriate. The amount used promotes the reaction between the components (a) and (b).

また、反応中の重合を防止する目的で、重合禁止剤を使用することが好ましい。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等が挙げられる。
重合禁止剤の使用量は、組成物の貯蔵安定性を向上させる観点から、(a)成分と(b)成分との合計100質量部に対して、0.01~1質量部、0.02~0.8質量部、又は、0.04~0.5質量部から適宜選択すればよい。
Moreover, it is preferable to use a polymerization inhibitor for the purpose of preventing polymerization during the reaction. Polymerization inhibitors include, for example, hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol, and pyrogallol.
From the viewpoint of improving the storage stability of the composition, the amount of the polymerization inhibitor used is 0.01 to 1 part by mass, 0.02 parts per 100 parts by mass of the components (a) and (b). 0.8 parts by mass, or 0.04 to 0.5 parts by mass.

(a)成分と(b)成分との反応温度は、生産性の観点から、60~150℃、80~120℃、又は、90~110℃から適宜選択すればよい。 The reaction temperature of the components (a) and (b) may be appropriately selected from 60 to 150°C, 80 to 120°C, or 90 to 110°C from the viewpoint of productivity.

このように、(a)成分と、(b)成分とを反応させてなる(A’)成分は、(a)成分のエポキシ基と(b)成分のカルボキシル基との開環付加反応により形成される水酸基を有するものになっていると推察される。
上記で得られた(A’)成分に、更に飽和又は不飽和基含有の(c)成分を反応させることにより、(A’)成分の水酸基((a)成分中に元来存在する水酸基も含む)と(c)成分の酸無水物基とが半エステル化された、酸変性ビニル基含有エポキシ樹脂になっていると推察される。
Thus, component (A'), which is obtained by reacting component (a) and component (b), is formed by a ring-opening addition reaction between the epoxy group of component (a) and the carboxyl group of component (b). It is presumed that it has a hydroxyl group that is
By further reacting the (A') component obtained above with the (c) component containing a saturated or unsaturated group, the hydroxyl groups of the (A') component (the hydroxyl groups originally present in the (a) component containing) and the acid anhydride group of component (c) are semi-esterified to form an acid-modified vinyl group-containing epoxy resin.

〔多塩基酸無水物(c)〕
(c)成分としては、飽和基を含有するもの、不飽和基を含有するものを用いることができる。(c)成分の具体例としては、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸等が挙げられる。これらの中でも、解像性に優れたパターンを形成できる感光性樹脂組成物を得る観点から、好ましくはテトラヒドロ無水フタル酸である。
[Polybasic acid anhydride (c)]
As the component (c), one containing a saturated group or one containing an unsaturated group can be used. Specific examples of component (c) include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. , ethylhexahydrophthalic anhydride, and itaconic anhydride. Among these, tetrahydrophthalic anhydride is preferred from the viewpoint of obtaining a photosensitive resin composition capable of forming a pattern with excellent resolution.

(A’)成分と(c)成分との反応において、例えば、(A’)成分中の水酸基1当量に対して、(c)成分を0.1~1.0当量反応させることで、酸変性ビニル基含有エポキシ樹脂の酸価を調整することができる。 In the reaction between the component (A') and the component (c), for example, 0.1 to 1.0 equivalent of the component (c) is reacted with respect to 1 equivalent of the hydroxyl group in the component (A') to obtain an acid The acid value of the modified vinyl group-containing epoxy resin can be adjusted.

(A)成分の酸価は、30~150mgKOH/g、40~120mgKOH/g、又は、50~100mgKOH/gであってもよい。酸価が30mgKOH/g以上であると感光性樹脂組成物の希アルカリ溶液への溶解性に優れ、150mgKOH/g以下であると硬化膜の電気特性が向上する。 The acid value of component (A) may be 30-150 mgKOH/g, 40-120 mgKOH/g, or 50-100 mgKOH/g. When the acid value is 30 mgKOH/g or more, the solubility of the photosensitive resin composition in a dilute alkaline solution is excellent, and when it is 150 mgKOH/g or less, the electrical properties of the cured film are improved.

(A’)成分と(c)成分との反応温度は、生産性の観点から、50~150℃、60~120℃、又は、70~100℃から適宜選択すればよい。 The reaction temperature of component (A') and component (c) may be appropriately selected from 50 to 150°C, 60 to 120°C, or 70 to 100°C from the viewpoint of productivity.

また、必要に応じて、(a)成分として、例えば、水添ビスフェノールA型エポキシ樹脂を一部併用することもできる。更に、(A)成分として、スチレン-無水マレイン酸共重合体のヒドロキシエチル(メタ)アクリレート変性物等のスチレン-マレイン酸系樹脂を一部併用することもできる。 Moreover, as the component (a), for example, a hydrogenated bisphenol A type epoxy resin can be partially used in combination, if necessary. Further, as the component (A), a styrene-maleic acid resin such as a styrene-maleic anhydride copolymer modified with hydroxyethyl (meth)acrylate can be partially used in combination.

((A)成分の分子量)
(A)成分の重量平均分子量は、3,000~30,000、4,000~25,000、又は、5,000~18,000であってもよい。上記範囲内であると、接着強度、耐熱性、及び電気絶縁性が向上する。ここで、重量平均分子量は、テトラヒドロフランを溶媒としたゲルパーミエーションクロマトグラフィ(GPC)法により測定する、ポリエチレン換算の重量平均分子量である。より具体的には、例えば、下記のGPC測定装置及び測定条件で測定し、標準ポリスチレンの検量線を使用して換算した値を重量平均分子量とすることができる。また、検量線の作成は、標準ポリスチレンとして5サンプルセット(「PStQuick MP-H」及び「PStQuick B」,東ソー(株)製)を用いる。
(GPC測定装置)
GPC装置:高速GPC装置「HCL-8320GPC」、検出器は示差屈折計又はUV、東ソー(株)製
カラム :カラムTSKgel SuperMultipore HZ-H(カラム長さ:15cm、カラム内径:4.6mm)、東ソー(株)製
(測定条件)
溶媒 :テトラヒドロフラン(THF)
測定温度 :40℃
流量 :0.35ml/分
試料濃度 :10mg/THF5ml
注入量 :20μl
(Molecular weight of component (A))
The weight average molecular weight of component (A) may be 3,000 to 30,000, 4,000 to 25,000, or 5,000 to 18,000. Within the above range, adhesive strength, heat resistance, and electrical insulation are improved. Here, the weight-average molecular weight is a polyethylene-equivalent weight-average molecular weight measured by a gel permeation chromatography (GPC) method using tetrahydrofuran as a solvent. More specifically, for example, the weight-average molecular weight can be obtained by measuring with the following GPC measurement apparatus and measurement conditions and converting using a standard polystyrene calibration curve. A calibration curve is prepared using a set of 5 samples (“PStQuick MP-H” and “PStQuick B” manufactured by Tosoh Corporation) as standard polystyrene.
(GPC measuring device)
GPC apparatus: high-speed GPC apparatus "HCL-8320GPC", detector is differential refractometer or UV, manufactured by Tosoh Corporation Column: column TSKgel SuperMultipore HZ-H (column length: 15 cm, column inner diameter: 4.6 mm), Tosoh Co., Ltd. (measurement conditions)
Solvent: Tetrahydrofuran (THF)
Measurement temperature: 40°C
Flow rate: 0.35 ml/min Sample concentration: 10 mg/THF5 ml
Injection volume: 20 μl

((A)成分の含有量)
(A)成分の含有量は、耐熱性、電気特性及び耐薬品性を向上させる観点から、感光性樹脂組成物の固形分全量を基準として、5~60質量%、10~50質量%、又は、15~40質量%から適宜選択すればよい。
(Content of component (A))
From the viewpoint of improving heat resistance, electrical properties and chemical resistance, the content of component (A) is 5 to 60% by mass, 10 to 50% by mass, or , 15 to 40% by mass.

((A)成分中の(A1)成分及び(A2)成分の合計含有量)
(A)成分として、(A1)成分と(A2)成分とを組み合わせて用いる場合、(A)成分中の(A1)成分と(A2)成分との合計含有量は、解像性、耐熱性を向上させる観点から、80~100質量%、90~100質量%、95~100質量%、又は、100質量%の範囲から適宜選択すればよい。また、(A1)成分、(A2)成分のいずれかを単独で用いる場合も、上記範囲から適宜選択すればよい。
(Total content of component (A1) and component (A2) in component (A))
When using a combination of the (A1) component and the (A2) component as the component (A), the total content of the (A1) component and the (A2) component in the (A) component is the resolution and heat resistance. From the viewpoint of improving, it may be appropriately selected from the range of 80 to 100% by mass, 90 to 100% by mass, 95 to 100% by mass, or 100% by mass. Moreover, when either the (A1) component or the (A2) component is used alone, it may be appropriately selected from the above range.

((A1)成分と(A2)成分との質量比)
(A)成分として、(A1)成分と(A2)成分とを組み合わせて用いる場合、その質量比(A1/A2)は、解像性、耐熱性を向上させる観点から、30/70~90/10、40/60~80/20、又は、50/50~80/20から適宜選択すればよい。
(mass ratio of (A1) component and (A2) component)
When the component (A1) and the component (A2) are used in combination as the component (A), the mass ratio (A1/A2) is 30/70 to 90/ from the viewpoint of improving resolution and heat resistance. It may be appropriately selected from 10, 40/60 to 80/20, or 50/50 to 80/20.

<(B)光重合性化合物>
(B)成分は、光重合可能な化合物、光架橋可能な化合物であれば特に制限はなく、例えば、光重合性を示す官能基、例えばビニル基、アリル基、プロパギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、(メタ)アクリロイル基等のエチレン性不飽和結合を有する官能基を有する化合物が好ましく挙げられる。
<(B) Photopolymerizable compound>
Component (B) is not particularly limited as long as it is a photopolymerizable compound or a photocrosslinkable compound. , a phenylethynyl group, a maleimide group, a nadimide group, a (meth)acryloyl group, and other functional groups having an ethylenically unsaturated bond are preferred.

(B)成分としては、光感度の観点から、分子量が1000以下の化合物が好ましく、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール等のグリコールのモノ又はジ(メタ)アクリレート類;N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド類;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレート等の多価アルコール又はこれらのエチレンオキサイドあるいはプロピレンオキサイド付加物の多価(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ビスフェノールAのポリエトキシジ(メタ)アクリレート等のフェノール類のエチレンオキサイドあるいはプロピレンオキサイド付加物の(メタ)アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレート等のグリシジルエーテルの(メタ)アクリレート類;メラミン(メタ)アクリレートなどが好ましく挙げられる。これらの(B)成分は、単独で、又は複数種を組み合わせて用いることができる。
感度を向上させる観点から、前記多価アルコール又はこれらのエチレンオキサイドあるいはプロピレンオキサイド付加物の多価(メタ)アクリレート類を含んでもよい。
From the viewpoint of photosensitivity, the component (B) is preferably a compound having a molecular weight of 1000 or less, for example, hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate. ; Ethylene glycol, methoxytetraethylene glycol, glycol mono- or di(meth)acrylates such as polyethylene glycol; N,N-dimethyl(meth)acrylamide, N-methylol(meth)acrylamide and other (meth)acrylamides; N , N-dimethylaminoethyl (meth)acrylate and other aminoalkyl (meth)acrylates; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, tris-hydroxyethyl isocyanurate and other polyhydric alcohols or Polyvalent (meth)acrylates of these ethylene oxide or propylene oxide adducts; (meth)acrylates of ethylene oxide or propylene oxide adducts of phenols such as phenoxyethyl (meth)acrylate and polyethoxydi(meth)acrylate of bisphenol A; (meth)acrylates of glycidyl ethers such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, triglycidyl isocyanurate; and melamine (meth)acrylate. These (B) components can be used individually or in combination of multiple types.
From the viewpoint of improving sensitivity, the above polyhydric alcohols or polyhydric (meth)acrylates of ethylene oxide or propylene oxide adducts thereof may also be included.

また、光硬化による架橋密度を上げて、耐熱性、電気信頼性を向上させるため、(B)成分として、分子内にエチレン性不飽和結合を3つ以上有する化合物を選択することができる。そのような化合物としては、前記多価(メタ)アクリレート類が挙げられ、感度が向上する観点から、ジペンタエリスリトールトリ(メタ)アクリレートを選択することができる。 In addition, in order to increase the crosslink density by photocuring and improve heat resistance and electrical reliability, a compound having three or more ethylenically unsaturated bonds in the molecule can be selected as the component (B). Examples of such compounds include the above polyvalent (meth)acrylates, and from the viewpoint of improving sensitivity, dipentaerythritol tri(meth)acrylate can be selected.

((B)成分の含有量)
(B)成分の含有量は、感光性樹脂組成物中の固形分全量を基準として、2~50質量%、3~20質量%、又は、3~10質量%から適宜選択すればよい。(B)成分の含有量が2質量%以上であると、光感度が向上し、露光部が現像中に溶出しにくい傾向があり、50質量%以下であると耐熱性が向上する。
(Content of component (B))
The content of component (B) may be appropriately selected from 2 to 50% by mass, 3 to 20% by mass, or 3 to 10% by mass based on the total solid content in the photosensitive resin composition. When the content of the component (B) is 2% by mass or more, the photosensitivity is improved and the exposed portion tends to be less eluted during development, and when the content is 50% by mass or less, the heat resistance is improved.

<(C)光重合開始剤>
本実施形態で用いられる(C)成分としては、(B)成分を重合させることができるものであれば、特に制限は無く、通常用いられる光重合開始剤から適宜選択することができる。
(C)成分としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、ミヒラーズケトン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン類;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド類;1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)、1-フェニル-1,2-プロパンジオン-2-[O-(エトキシカルボニル)オキシム]等のオキシムエステル類、などが挙げられる。これらの(C)成分は、1種を単独で、又は2種以上を組み合わせて用いることができる。
<(C) Photoinitiator>
The component (C) used in the present embodiment is not particularly limited as long as it can polymerize the component (B), and can be appropriately selected from commonly used photopolymerization initiators.
Examples of component (C) include benzoins such as benzoin, benzoin methyl ether, and benzoin isopropyl ether; -dichloroacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-methyl-1-[4-(methylthio)phenyl]-2- Acetophenones such as morpholino-1-propanone and N,N-dimethylaminoacetophenone; 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone, 2-aminoanthraquinone thioxanthone such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone and 2,4-diisopropylthioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, methylbenzophenone , 4,4′-dichlorobenzophenone, 4,4′-bis(diethylamino)benzophenone, Michler’s ketone, benzophenones such as 4-benzoyl-4′-methyldiphenylsulfide; 9-phenylacridine, 1,7-bis(9, 9′-acridinyl)heptane and other acridines; 2,4,6-trimethylbenzoyldiphenylphosphine oxide and other acylphosphine oxides; 1,2-octanedione-1-[4-(phenylthio)phenyl]-2-( O-benzoyloxime), 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone 1-(O-acetyloxime), 1-phenyl-1,2-propanedione -2-[O-(ethoxycarbonyl)oxime] and other oxime esters, and the like. These (C) components can be used individually by 1 type or in combination of 2 or more types.

中でも、フォトブリーチングすることで、底部の硬化性を向上させる観点から、上記アシルホスフィンオキサイド類から適宜選択すればよく、揮発しにくく、アウトガスとして発生しにくい点で、上記アセトフェノン類から適宜選択すればよい。 Among them, from the viewpoint of improving the curability of the bottom portion by photobleaching, it may be appropriately selected from the above acylphosphine oxides, and from the point of being less likely to volatilize and less likely to generate outgas, it may be appropriately selected from the above acetophenones. Just do it.

((C)成分の含有量)
(C)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、0.2~15質量%、0.4~5質量%、又は、0.6~1質量%から適宜選択すればよい。(C)成分の含有量が、0.2質量%以上であると露光部が現像中に溶出しにくい傾向があり、15.0質量%以下であると耐熱性が向上する。
(Content of component (C))
The content of component (C) is appropriately selected from 0.2 to 15% by mass, 0.4 to 5% by mass, or 0.6 to 1% by mass based on the total solid content of the photosensitive resin composition. do it. When the content of component (C) is 0.2% by mass or more, the exposed portion tends to be difficult to elute during development, and when it is 15.0% by mass or less, the heat resistance is improved.

また、上記の(C)成分に加えて、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類などの(C’)光重合開始助剤を、単独で、又は複数種を組合せて用いることもできる。 In addition to the above component (C), there may be added three compounds such as N,N-dimethylaminobenzoic acid ethyl ester, N,N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, and triethanolamine. The (C') photopolymerization initiation aids such as class amines may be used alone or in combination.

<(D)無機フィラ>
本実施形態の感光性樹脂組成物は、主に接着強度、塗膜硬度等の諸特性を更に向上させる目的で、(D)成分を含む。
(D)成分としては、例えば、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、酸化タンタル(Ta)、ジルコニア(ZrO)、窒化ケイ素(Si)、チタン酸バリウム(BaO・TiO)、炭酸バリウム(BaCO)、炭酸マグネシウム(MgCO)、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、チタン酸鉛(PbO・TiO)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、酸化ガリウム(Ga)、スピネル(MgO・Al)、ムライト(3Al・2SiO)、コーディエライト(2MgO・2Al/5SiO)、タルク(3MgO・4SiO・HO)、チタン酸アルミニウム(TiO・Al)、イットリア含有ジルコニア(Y・ZrO)、ケイ酸バリウム(BaO・8SiO)、窒化ホウ素(BN)、炭酸カルシウム(CaCO)、硫酸バリウム(BaSO)、硫酸カルシウム(CaSO)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO)、ハイドロタルサイト、雲母、焼成カオリン、カーボン(C)等を使用することができる。これらの無機フィラは、単独で、又は複数種を組み合わせて使用することができる。
<(D) Inorganic filler>
The photosensitive resin composition of the present embodiment contains the component (D) mainly for the purpose of further improving various properties such as adhesive strength and coating film hardness.
Component (D) includes, for example, silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), barium titanate (BaO.TiO 2 ), barium carbonate (BaCO 3 ), magnesium carbonate (MgCO 3 ), aluminum hydroxide (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), titanium lead oxide ( PbO.TiO2 ), lead zirconate titanate (PZT), lead lanthanum zirconate titanate ( PLZT ), gallium oxide ( Ga2O3 ), spinel ( MgO.Al2O3 ) , mullite (3Al 2O3.2SiO2 ) , cordierite ( 2MgO.2Al2O3 / 5SiO2 ), talc ( 3MgO.4SiO2.H2O ) , aluminum titanate ( TiO2.Al2O3 ), yttria - containing Zirconia ( Y2O3.ZrO2 ), Barium Silicate ( BaO.8SiO2 ), Boron Nitride (BN ) , Calcium Carbonate ( CaCO3 ), Barium Sulfate ( BaSO4 ), Calcium Sulfate ( CaSO4 ), Zinc Oxide (ZnO), magnesium titanate (MgO.TiO 2 ), hydrotalcite, mica, calcined kaolin, carbon (C), and the like can be used. These inorganic fillers can be used individually or in combination of multiple types.

(D)成分の平均粒径は、解像性の観点から、0.01~5μm、0.1~3μm、又は、0.1~2μmから適宜選択すればよい。ここで、(D)成分の平均粒径は、感光性樹脂組成物中に分散した状態での無機フィラの平均粒径であり、以下のように測定して得られる値とする。まず、感光性樹脂組成物をメチルエチルケトンで1000倍に希釈(又は溶解)させた後、サブミクロン粒子アナライザ(ベックマン・コールター(株)製、商品名:N5)を用いて、国際標準規格ISO13321に準拠して、屈折率1.38で、溶剤中に分散した粒子を測定し、粒度分布における積算値50%(体積基準)での粒子径を平均粒径とする。また、キャリアフィルム上に設けられる感光層又は感光性樹脂組成物の硬化膜に含まれる(D)成分についても、上述のように溶剤を用いて1000倍(体積比)に希釈(又は溶解)をした後、上記サブミクロン粒子アナライザを用いてことにより測定できる。 The average particle diameter of component (D) may be appropriately selected from the viewpoint of resolution from 0.01 to 5 μm, 0.1 to 3 μm, or 0.1 to 2 μm. Here, the average particle size of the component (D) is the average particle size of the inorganic filler dispersed in the photosensitive resin composition, and is a value obtained by measuring as follows. First, after diluting (or dissolving) the photosensitive resin composition 1000-fold with methyl ethyl ketone, a submicron particle analyzer (manufactured by Beckman Coulter, Inc., trade name: N5) was used to measure according to the international standard ISO13321. Then, the particles dispersed in the solvent are measured at a refractive index of 1.38, and the particle diameter at 50% (volume basis) of the integrated value in the particle size distribution is defined as the average particle diameter. Further, the component (D) contained in the photosensitive layer provided on the carrier film or the cured film of the photosensitive resin composition is also diluted (or dissolved) to 1000 times (volume ratio) using a solvent as described above. After that, it can be measured by using the submicron particle analyzer described above.

(D)成分の中でも、耐熱性を向上できる観点から、シリカを含んでもよく、耐熱性、接着強度を向上できる観点から、硫酸バリウムを含んでもよく、シリカと硫酸バリウムとを組み合わせて含んでもよい。また、無機フィラは、凝集防止効果により樹脂組成物中における無機フィラの分散性を向上させる観点から、予めアルミナ又は有機シラン系化合物で表面処理しているものを適宜選択してもよい。 Among component (D), silica may be included from the viewpoint of improving heat resistance, barium sulfate may be included from the viewpoint of improving heat resistance and adhesive strength, and silica and barium sulfate may be combined. . Moreover, from the viewpoint of improving the dispersibility of the inorganic filler in the resin composition due to the anti-aggregation effect, the inorganic filler may be appropriately selected from those previously surface-treated with alumina or an organic silane compound.

アルミナ又は有機シラン系化合物で表面処理している無機フィラの表面におけるアルミニウムの元素組成は、0.5~10原子%、1~5原子%、又は、1.5~3.5原子%から適宜選択すればよい。また、無機フィラの表面におけるケイ素の元素組成は、0.5~10原子%、1~5原子%、又は、1.5~3.5原子%から適宜選択すればよい。また、無機フィラの表面における炭素の元素組成は、10~30原子%、15~25原子%、又は、18~23原子%から適宜選択すればよい。これらの元素組成は、XPSを用いて測定することができる。 The elemental composition of aluminum on the surface of the inorganic filler surface-treated with alumina or an organic silane compound is appropriately selected from 0.5 to 10 atomic %, 1 to 5 atomic %, or 1.5 to 3.5 atomic %. You can choose. Also, the elemental composition of silicon on the surface of the inorganic filler may be appropriately selected from 0.5 to 10 atomic %, 1 to 5 atomic %, or 1.5 to 3.5 atomic %. Also, the elemental composition of carbon on the surface of the inorganic filler may be appropriately selected from 10 to 30 atomic %, 15 to 25 atomic %, or 18 to 23 atomic %. These elemental compositions can be measured using XPS.

アルミナナ又は有機シラン系化合物で表面処理している無機フィラとしては、例えば、アルミナナ又は有機シラン系化合物で表面処理している硫酸バリウムが、NanoFine BFN40DC(日本ソルベイ(株)社製、商品名)として商業的に入手可能である。 As the inorganic filler surface-treated with alumina or an organic silane compound, for example, barium sulfate surface-treated with alumina or an organic silane compound is NanoFine BFN40DC (manufactured by Solvay Japan Co., Ltd., trade name). commercially available.

((D)成分の含有量)
(D)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、10~80質量%である。また、(D)成分の含有量としては、12~70質量%、15~65質量%、又は、18~60質量%から適宜選択してもよい。(D)成分の含有量が上記範囲内であると、感光性樹脂組成物の硬化物強度、耐熱性、解像性等を向上させることができる。
(Content of component (D))
The content of component (D) is 10 to 80% by mass based on the total solid content of the photosensitive resin composition. Also, the content of component (D) may be appropriately selected from 12 to 70% by mass, 15 to 65% by mass, or 18 to 60% by mass. When the content of the component (D) is within the above range, the cured product strength, heat resistance, resolution, etc. of the photosensitive resin composition can be improved.

(D)成分としてシリカを用いる場合の、シリカの含有量は、感光性樹脂組成物の固形分全量を基準として、5~60質量%、10~55質量%、又は、15~50質量%から適宜選択すればよい。また、(D)成分として硫酸バリウムを用いる場合の、硫酸バリウムの含有量は、感光性樹脂組成物の固形分全量を基準として、5~30質量%、5~25質量%、又は、10~20質量%から適宜選択すればよい。シリカ、硫酸バリウムの含有量が上記範囲内である場合、低熱膨張率、はんだ耐熱性、接着強度を向上させることができる。 When silica is used as component (D), the content of silica is 5 to 60% by mass, 10 to 55% by mass, or 15 to 50% by mass, based on the total solid content of the photosensitive resin composition. It can be selected as appropriate. Further, when barium sulfate is used as the component (D), the content of barium sulfate is 5 to 30% by mass, 5 to 25% by mass, or 10 to 30% by mass, based on the total solid content of the photosensitive resin composition. It may be appropriately selected from 20% by mass. When the content of silica and barium sulfate is within the above ranges, a low coefficient of thermal expansion, solder heat resistance, and adhesive strength can be improved.

<(E)>シラン化合物
(E)成分としては、アルキルシラン、アルコキシシラン、ビニルシラン、エポキシシラン、アミノシラン、アクリルシラン、メタクリルシラン、メルカプトシラン、スルフィドシラン、イソシアネートシラン、サルファーシラン、スチリルシラン、アルキルクロロシランから選ばれる少なくとも1種の有機シラン化合物が挙げられる。
<(E)> Silane compound Component (E) includes alkylsilanes, alkoxysilanes, vinylsilanes, epoxysilanes, aminosilanes, acrylsilanes, methacrylsilanes, mercaptosilanes, sulfidesilanes, isocyanatesilanes, sulfursilanes, styrylsilanes, and alkylchlorosilanes. at least one organic silane compound selected from

(E)成分としては、より具体的には、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソブチルトリメトキシシラン、ジイソブチルジメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-ドデシルメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、N-(1,3-ジメチルブチリデン)-3-アミノプロピルトリエトキシシラン等のシラン化合物が挙げられる。 Component (E) more specifically includes, for example, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, diisopropyldimethoxysilane, isobutyltrimethoxysilane, diisobutyldimethoxysilane, isobutyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, n-dodecylmethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, tetraethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, 3-(2-aminoethyl ) aminopropylmethyldimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycid Xypropylmethyldiethoxysilane, bis(3-(triethoxysilyl)propyl)disulfide, bis(3-(triethoxysilyl)propyl)tetrasulfide, vinyltriacetoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyl triisopropoxysilane, allyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyl Examples include silane compounds such as dimethoxysilane, 3-mercaptopropyltriethoxysilane, N-(1,3-dimethylbutylidene)-3-aminopropyltriethoxysilane.

(E)成分としては、上記(A)成分と反応しうる官能基を有するものであることが好ましい。(A)成分と反応しうる官能基としては、エポキシ基、アミノ基、メルカプト基、イソシアネート基等が挙げられる。中でも、感光性樹脂組成物の安定性を向上させる観点から、エポキシ基を選択でき、解像性を向上させる観点から、グリシジルエーテル基を選択でき、グリシジルエーテル基を少なくとも1つ有するエポキシシランを選択できる。 Component (E) preferably has a functional group capable of reacting with component (A). (A) Component and a reactive functional group include an epoxy group, an amino group, a mercapto group, an isocyanate group, and the like. Among them, an epoxy group can be selected from the viewpoint of improving the stability of the photosensitive resin composition, a glycidyl ether group can be selected from the viewpoint of improving resolution, and an epoxysilane having at least one glycidyl ether group is selected. can.

((E)成分の含有量)
(E)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、0.5~30質量%、又は、1~10質量%から適宜選択すればよい。(E)成分の含有量が上記範囲内であると、解像性を維持しつつ、シリコンウエハ等のチップ部品との密着性を向上させることができる。
(Content of component (E))
The content of component (E) may be appropriately selected from 0.5 to 30% by mass or 1 to 10% by mass based on the total solid content of the photosensitive resin composition. When the content of the component (E) is within the above range, it is possible to improve the adhesion to chip parts such as silicon wafers while maintaining the resolution.

<(F)顔料>
本実施形態の感光性樹脂組成物は、導体パターンを隠蔽する等の外観向上のため、所望の色に応じて(F)成分を更に含有してもよい。(F)成分としては、所望の色を発色する着色剤を適宜選択して用いればよく、例えば、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオディン・グリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の公知の着色剤が好ましく挙げられる。
<(F) Pigment>
The photosensitive resin composition of the present embodiment may further contain the component (F) depending on the desired color in order to improve the appearance such as concealing the conductor pattern. As component (F), a coloring agent that develops a desired color may be appropriately selected and used. Examples include phthalocyanine blue, phthalocyanine green, iodin green, diazo yellow, crystal violet, titanium oxide, carbon black, Known colorants such as naphthalene black are preferred.

((F)成分の含有量)
(F)成分の含有量は、製造装置を識別しやすくし、また導体パターンをより隠蔽させる観点から、感光性樹脂組成物中の固形分全量を基準として、0.01~5質量%、0.03~3質量%、又は0.05~2質量%から適宜選択すればよい。
(Content of component (F))
The content of component (F) is 0.01 to 5% by mass, based on the total solid content in the photosensitive resin composition, from the viewpoint of making it easier to identify the manufacturing equipment and more concealing the conductor pattern. 0.03 to 3% by mass, or 0.05 to 2% by mass.

<(G)硬化剤>
本実施形態の感光性樹脂組成物は、(G)成分を更に含有してもよい。(G)成分としては、それ自体が熱、紫外線等で硬化する化合物、又は(A)酸変性ビニル基含有エポキシ樹脂のカルボキシ基、若しくは水酸基と、熱、紫外線等で反応して硬化する化合物が挙げられる。(G)成分を用いることで、耐熱性、接着強度、耐薬品性等をより向上させることができる。
<(G) Curing agent>
The photosensitive resin composition of the present embodiment may further contain component (G). Component (G) is a compound that cures itself with heat, ultraviolet rays, etc., or a compound that reacts with the carboxy group or hydroxyl group of the acid-modified vinyl group-containing epoxy resin (A) and cures with heat, ultraviolet rays, etc. mentioned. By using the component (G), heat resistance, adhesive strength, chemical resistance, etc. can be further improved.

(G)成分としては、例えば、エポキシ化合物、メラミン化合物、尿素化合物、オキサゾリン化合物、ブロック型イソシアネート等の熱硬化性化合物が挙げられる。
エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリグリシジルイソシアヌレート等の複素環式エポキシ樹脂、ビキシレノール型エポキシ樹脂等が挙げられる。メラミン化合物としては、例えば、トリアミノトリアジン、ヘキサメトキシメラミン、ヘキサブトキシ化メラミン等が挙げられる。また、尿素化合物としては、例えば、ジメチロール尿素等が挙げられる。
Examples of component (G) include thermosetting compounds such as epoxy compounds, melamine compounds, urea compounds, oxazoline compounds, and blocked isocyanates.
Examples of epoxy compounds include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol S type epoxy resin, and biphenyl type epoxy resin. , heterocyclic epoxy resins such as triglycidyl isocyanurate, and bixylenol type epoxy resins. Melamine compounds include, for example, triaminotriazine, hexamethoxymelamine, hexabutoxylated melamine, and the like. Urea compounds include, for example, dimethylol urea.

(G)成分は、耐熱性をより向上させる観点から、エポキシ化合物(エポキシ樹脂)、及びブロック型イソシアネートから選ばれる少なくとも1種を含むことが好ましい。 From the viewpoint of further improving heat resistance, the component (G) preferably contains at least one selected from epoxy compounds (epoxy resins) and blocked isocyanates.

ブロック型イソシアネートとしては、ポリイソシアネート化合物とイソシアネートブロック剤との付加反応生成物が用いられる。このポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ナフチレンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等のポリイソシアネート化合物、並びにこれらのアダクト体、ビューレット体及びイソシアヌレート体等が挙げられる。 As the blocked isocyanate, an addition reaction product of a polyisocyanate compound and an isocyanate blocking agent is used. Examples of the polyisocyanate compound include tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, naphthylene diisocyanate, bis(isocyanatomethyl)cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, and the like. polyisocyanate compounds, and their adducts, burettes and isocyanurates.

((G)成分の含有量)
(G)成分は、単独で、又は複数種を組み合わせて用いられる。(G)硬化剤を用いる場合、その含有量は、感光性樹脂組成物の固形分全量を基準として、2~40質量%、3~30質量%、又は、5~20質量%から適宜選択すればよい。(G)成分の含有量を、上記範囲内にすることにより、良好な現像性を維持しつつ、形成される硬化膜の耐熱性をより向上することができる。
(Content of component (G))
(G) A component is used individually or in combination of multiple types. (G) When a curing agent is used, its content is appropriately selected from 2 to 40% by mass, 3 to 30% by mass, or 5 to 20% by mass based on the total solid content of the photosensitive resin composition. Just do it. By setting the content of the component (G) within the above range, it is possible to further improve the heat resistance of the formed cured film while maintaining good developability.

<(H)エラストマー>
本実施形態の感光性樹脂組成物は、(H)成分を更に含有してもよい。(H)成分は、特に、本実施形態の感光性樹脂組成物を半導体パッケージ基板に用いる場合に好適に使用することができる。本実施形態の感光性樹脂組成物に(H)成分を添加することにより、(A)成分の硬化収縮による、硬化物内部の歪み(内部応力)に起因した、可とう性、接着強度の低下を抑制することができる。すなわち、感光性樹脂組成物により形成される硬化膜の可とう性、接着強度等を向上させることができる。
<(H) Elastomer>
The photosensitive resin composition of the present embodiment may further contain component (H). Component (H) can be suitably used particularly when the photosensitive resin composition of the present embodiment is used for a semiconductor package substrate. By adding the (H) component to the photosensitive resin composition of the present embodiment, the flexibility and adhesive strength are reduced due to the distortion (internal stress) inside the cured product due to the cure shrinkage of the (A) component. can be suppressed. That is, it is possible to improve the flexibility, adhesive strength, etc. of the cured film formed from the photosensitive resin composition.

(H)成分としては、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、及びシリコーン系エラストマー等が挙げられる。これらのエラストマーは、ハードセグメント成分とソフトセグメント成分から成り立っており、一般に前者が耐熱性及び強度に、後者が柔軟性及び強靭性に寄与している。 Component (H) includes, for example, styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, acrylic-based elastomers, and silicone-based elastomers. These elastomers consist of a hard segment component and a soft segment component, the former generally contributing to heat resistance and strength, and the latter contributing to flexibility and toughness.

スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー等が挙げられる。 Styrenic elastomers include styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers, styrene-ethylene-propylene-styrene block copolymers, and the like.

オレフィン系エラストマーは、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-ペンテン等の炭素数2~20のα-オレフィンの共重合体である。その具体例としては、エチレン-プロピレン共重合体(EPR)、エチレン-プロピレン-ジエン共重合体(EPDM)、ジシクロペンタジエン、1,4-ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネン、ブタジエン、イソプレン等の炭素数2~20の非共役ジエンとα-オレフィン共重合体、ブタジエン-アクリロニトリル共重合体にメタクリル酸を共重合したカルボキシ変性NBR等が挙げられる。より具体的には、エチレン-α-オレフィン共重合体ゴム、エチレン-α-オレフィン-非共役ジエン共重合体ゴム、プロピレン-α-オレフィン共重合体ゴム、ブテン-α-オレフィン共重合体ゴムが挙げられる。更に具体的には、ミラストマ(三井化学(株)製)、EXACT(エクソン化学製)、ENGAGE(ダウケミカル製)、水添スチレン-ブタジエンラバー“DYNABON HSBR”(JSR(株)製)、ブタジエン-アクリロニトリル共重合体“NBRシリーズ”(JSR(株)製)、あるいは両末端カルボキシル基変性ブタジエン-アクリロニトリル共重合体の“XERシリーズ”(JSR(株)製)、ポリブタジエンを部分的にエポキシ化したエポキシ化ポリブダジエンのBF-1000(日本曹達(株)製)、PB-4700、PB-3600((株)ダイセル製)等を用いることができる。 Olefin elastomers are copolymers of α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-pentene. Specific examples include ethylene-propylene copolymer (EPR), ethylene-propylene-diene copolymer (EPDM), dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylenenorbornene, ethylidenenorbornene, butadiene, Carboxy-modified NBR obtained by copolymerizing a non-conjugated diene having 2 to 20 carbon atoms such as isoprene with an α-olefin copolymer, and a butadiene-acrylonitrile copolymer with methacrylic acid. More specifically, ethylene-α-olefin copolymer rubber, ethylene-α-olefin-nonconjugated diene copolymer rubber, propylene-α-olefin copolymer rubber, and butene-α-olefin copolymer rubber mentioned. More specifically, Milastoma (manufactured by Mitsui Chemicals), EXACT (manufactured by Exxon Chemicals), ENGAGE (manufactured by Dow Chemicals), hydrogenated styrene-butadiene rubber "DYNABON HSBR" (manufactured by JSR Corporation), butadiene- Acrylonitrile copolymer "NBR series" (manufactured by JSR Corporation), or both terminal carboxyl group-modified butadiene-acrylonitrile copolymer "XER series" (manufactured by JSR Corporation), epoxy obtained by partially epoxidizing polybutadiene Polybutadiene BF-1000 (manufactured by Nippon Soda Co., Ltd.), PB-4700, PB-3600 (manufactured by Daicel Co., Ltd.) and the like can be used.

ポリエステル系エラストマーとしては、ジカルボン酸又はその誘導体及びジオール化合物又はその誘導体を重縮合して得られるものが挙げられる。 Polyester-based elastomers include those obtained by polycondensation of dicarboxylic acids or derivatives thereof and diol compounds or derivatives thereof.

ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸及びこれらの芳香核の水素原子がメチル基、エチル基、フェニル基等で置換された芳香族ジカルボン酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の炭素数2~20の脂肪族ジカルボン酸、及びシクロヘキサンジカルボン酸などの脂環式ジカルボン酸が挙げられる。これらの化合物は、単独で、又は2種以上を組み合わせて用いることができる。 Specific examples of dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalene dicarboxylic acid, and aromatic dicarboxylic acids in which the hydrogen atoms of these aromatic nuclei are substituted with methyl groups, ethyl groups, phenyl groups, etc. Aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as adipic acid, sebacic acid and dodecanedicarboxylic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid are included. These compounds can be used individually or in combination of 2 or more types.

ジオール化合物の具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール、1,4-シクロヘキサンジオール等の脂肪族ジオール及び脂環式ジオール等が挙げられる。これらの化合物は、単独で、又は2種以上を組み合わせて用いることができる。 Specific examples of diol compounds include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,10-decanediol, and 1,4-cyclohexanediol. and alicyclic diols. These compounds can be used individually or in combination of 2 or more types.

また、上述したエラストマー以外に、ゴム変性したエポキシ樹脂もエラストマーとして用いることもできる。ゴム変性したエポキシ樹脂は、例えば、上述のビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂の一部又は全部のエポキシ基を両末端カルボン酸変性型ブタジエン-アクリロニトリルゴム、末端アミノ変性シリコーンゴム等で変性することによって得られる。これらのエラストマーの中で、せん断接着強度の点で、両末端カルボキシル基変性ブタジエン-アクリロニトリル共重合体、水酸基を有するポリエステル系エラストマーであるエスペル(日立化成(株)製、エスペル1108、1612、1620)等が好ましい。また、室温において液状であるエラストマーが特に好ましい。 In addition to the elastomers described above, rubber-modified epoxy resins can also be used as elastomers. Rubber-modified epoxy resins include, for example, the above-mentioned bisphenol F type epoxy resin, bisphenol A type epoxy resin, salicylaldehyde type epoxy resin, phenol novolac type epoxy resin, and cresol novolak type epoxy resin. It can be obtained by modification with terminal carboxylic acid-modified butadiene-acrylonitrile rubber, terminal amino-modified silicone rubber, or the like. Among these elastomers, carboxyl group-modified butadiene-acrylonitrile copolymer at both ends and Espel, a polyester-based elastomer having a hydroxyl group (Espel 1108, 1612, 1620, manufactured by Hitachi Chemical Co., Ltd.) are preferred in terms of shear adhesive strength. etc. are preferred. Elastomers that are liquid at room temperature are particularly preferred.

((H)成分の含有量)
(H)成分を用いる場合、その含有量は、(A)成分(固形分)100質量部に対して、1~20質量部、2~15質量部、又は、3~10質量部から適宜選択すればよい。上記範囲内とすることにより、良好な現像性を維持しつつ耐熱衝撃性及び接着強度をより向上させることができる。また、薄膜基板に用いる場合には、薄膜基板の反り性を低減させることができる。
(Content of component (H))
When component (H) is used, its content is appropriately selected from 1 to 20 parts by mass, 2 to 15 parts by mass, or 3 to 10 parts by mass with respect to 100 parts by mass of component (A) (solid content). do it. By setting the content within the above range, it is possible to further improve the thermal shock resistance and adhesive strength while maintaining good developability. Moreover, when used for a thin film substrate, the warpage of the thin film substrate can be reduced.

<(I)エポキシ樹脂硬化剤>
本実施形態の感光性樹脂組成物には、耐熱性、接着強度、耐薬品性等の諸特性を更に向上させる目的で、(I)成分を添加することもできる。
このような(I)成分としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体;アセトグアナミン、ベンゾグアナミン等のグアナミン類;ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルフォン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類;これらの有機酸塩又はエポキシアダクト;三フッ化ホウ素のアミン錯体;エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類などが挙げられる。
<(I) Epoxy resin curing agent>
Component (I) can also be added to the photosensitive resin composition of the present embodiment for the purpose of further improving various properties such as heat resistance, adhesive strength and chemical resistance.
Examples of such component (I) include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methyl-5- Imidazole derivatives such as hydroxymethylimidazole; guanamines such as acetoguanamine and benzoguanamine; polyamines such as diaminodiphenylmethane, m-phenylenediamine, m-xylylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, and polybasic hydrazides organic acid salts or epoxy adducts thereof; amine complexes of boron trifluoride; ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino-6-xylyl-S-triazine Examples include triazine derivatives.

((I)成分の含有量)
(I)成分は、単独で、又は複数種を組み合わせて用いることができ、(I)成分を用いる場合、その含有量は、感光特性への影響をより抑制する観点から、感光性樹脂組成物の固形分全量を基準として、0.01~20質量%、0.1~10質量%、又は、0.1~3質量%から適宜選択すればよい。
(Content of component (I))
Component (I) can be used alone or in combination of multiple types, and when component (I) is used, the content thereof should be adjusted from the viewpoint of further suppressing the effect on the photosensitive properties of the photosensitive resin composition. 0.01 to 20% by mass, 0.1 to 10% by mass, or 0.1 to 3% by mass based on the total solid content of .

<(J)熱可塑性樹脂>
本実施形態の感光性樹脂組成物には、硬化膜の可とう性をより向上させる目的で、(J)成分を添加することもできる。(J)成分としては、例えば、アクリル樹脂、ウレタン樹脂等が挙げられる。
<(J) Thermoplastic resin>
Component (J) can also be added to the photosensitive resin composition of the present embodiment for the purpose of further improving the flexibility of the cured film. Examples of component (J) include acrylic resins and urethane resins.

((J)成分の含有量)
(J)成分は、単独で、又は複数種を組み合わせて用いることができ、(J)成分を用いる場合、その含有量は、硬化膜の可とう性を向上させる観点から、感光性樹脂組成物の固形分全量を基準として、1~30質量%、又は、5~20質量%から適宜選択すればよい。
(Content of component (J))
Component (J) can be used alone or in combination of multiple types. When component (J) is used, the content thereof is determined from the viewpoint of improving the flexibility of the cured film. Based on the total solid content of , it may be appropriately selected from 1 to 30% by mass, or 5 to 20% by mass.

<希釈剤>
本実施形態の感光性樹脂組成物には、必要に応じて希釈剤を使用することができる。希釈剤としては、例えば、有機溶剤等が使用できる。有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤などが挙げられる。希釈剤は、これらを単独で、又は複数種を組み合わせて用いることができる。
<Diluent>
A diluent can be used for the photosensitive resin composition of this embodiment as needed. As a diluent, for example, an organic solvent or the like can be used. Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene; glycol ethers such as glycol monoethyl ether, dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate and carbitol acetate; aliphatic hydrocarbons such as octane and decane petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha and solvent naphtha; A diluent can use these individually or in combination of multiple types.

希釈剤の使用量は、感光性樹脂組成物中の固形分全量の含有量が50~90質量%、60~80質量%、又は、65~75質量%となる量から適宜選択すればよい。すなわち、希釈剤を用いる場合の感光性樹脂組成物中の希釈剤の含有量は、10~50質量%、20~40質量%、又は、25~35質量%から適宜選択すればよい。希釈剤の使用量を上記範囲内とすることで、感光性樹脂組成物の塗布性が向上し、より高精細なパターンの形成が可能となる。 The amount of the diluent to be used may be appropriately selected from an amount such that the total solid content in the photosensitive resin composition is 50 to 90% by mass, 60 to 80% by mass, or 65 to 75% by mass. That is, when a diluent is used, the content of the diluent in the photosensitive resin composition may be appropriately selected from 10 to 50% by mass, 20 to 40% by mass, or 25 to 35% by mass. By setting the usage amount of the diluent within the above range, the applicability of the photosensitive resin composition is improved, making it possible to form a higher definition pattern.

<その他の添加剤>
本実施形態の感光性樹脂組成物には、必要に応じて、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等の重合禁止剤、ベントン、モンモリロナイト等の増粘剤、シリコーン系、フッ素系、ビニル樹脂系の消泡剤、シランカップリング剤等の公知慣用の各種添加剤を用いることができる。更に、臭素化エポキシ化合物、酸変性臭素化エポキシ化合物、アンチモン化合物、及びリン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等の難燃剤を用いることができる。
<Other additives>
The photosensitive resin composition of the present embodiment may optionally contain polymerization inhibitors such as hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol and pyrogallol, thickeners such as bentone and montmorillonite, silicone-based, fluorine-based, Various known and commonly used additives such as vinyl resin antifoaming agents and silane coupling agents can be used. Furthermore, flame retardants such as brominated epoxy compounds, acid-modified brominated epoxy compounds, antimony compounds, phosphate compounds of phosphorus compounds, aromatic condensed phosphates, and halogen-containing condensed phosphates can be used.

本実施形態の感光性樹脂組成物は、配合成分をロールミル、ビーズミル等で均一に混練、混合することにより得ることができる。 The photosensitive resin composition of the present embodiment can be obtained by uniformly kneading and mixing the ingredients in a roll mill, bead mill, or the like.

[ドライフィルム]
本実施形態のドライフィルムは、キャリアフィルムと、本実施形態の感光性樹脂組成物を用いた感光層とを有する。
感光層の厚みは、10~50μm、15~40μm、又は、20~30μmから適宜選択すればよい。
[Dry film]
The dry film of this embodiment has a carrier film and a photosensitive layer using the photosensitive resin composition of this embodiment.
The thickness of the photosensitive layer may be appropriately selected from 10 to 50 μm, 15 to 40 μm, or 20 to 30 μm.

本実施形態のドライフィルムは、例えば、キャリアフィルム上に、本実施形態の感光性樹脂組成物を、リバースロールコート、グラビアロールコート、コンマコート、カーテンコート等の公知の方法で塗布及び乾燥して、感光層を形成し、製造することができる。
キャリアフィルムとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレン等のポリオレフィンなどが挙げられる。キャリアフィルムの厚さは、5~100μmの範囲から適宜選択すればよい。また、本実施形態のドライフィルムは、感光層のキャリアフィルムと接する面とは反対側の面に保護層を積層することもできる。保護層としては、例えば、ポリエチレン、ポリプロピレン等の重合体フィルムなどを用いてもよい。また、上述するキャリアフィルムと同様の重合体フィルムを用いてもよく、異なる重合体フィルムを用いてもよい。
塗膜の乾燥は、熱風乾燥や遠赤外線、又は、近赤外線を用いた乾燥機等を用いることができ、乾燥温度としては、60~120℃、70~110℃、又は、80~100℃から適宜選択すればよい。また、乾燥時間としては、1~60分、2~30分、又は、5~20分から適宜選択すればよい。
The dry film of the present embodiment can be obtained, for example, by coating and drying the photosensitive resin composition of the present embodiment on a carrier film by a known method such as reverse roll coating, gravure roll coating, comma coating, or curtain coating. , can be manufactured by forming a photosensitive layer.
Examples of carrier films include polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyolefins such as polypropylene and polyethylene. The thickness of the carrier film may be appropriately selected from the range of 5 to 100 μm. In addition, in the dry film of the present embodiment, a protective layer can be laminated on the surface of the photosensitive layer opposite to the surface in contact with the carrier film. As the protective layer, for example, a polymer film such as polyethylene or polypropylene may be used. Also, the same polymer film as the carrier film described above may be used, or a different polymer film may be used.
For drying the coating film, hot air drying, far infrared rays, or a dryer using near infrared rays can be used. It can be selected as appropriate. Moreover, the drying time may be appropriately selected from 1 to 60 minutes, 2 to 30 minutes, or 5 to 20 minutes.

[プリント配線板]
本実施形態のプリント配線板は、本実施形態の感光性樹脂組成物により形成される表面保護膜及び層間絶縁膜の少なくとも一方を具備する。
本実施形態のプリント配線板は、本実施形態の感光性樹脂組成物より形成される表面保護膜及び層間絶縁膜の少なくとも一方を具備するため、めっき銅との接着強度に優れ、かつ優れた耐熱性、低熱膨張率を有し、更に優れた解像性、チップ部品との密着性に優れたパターンを有する。また、このパターンは、近年の電子機器の小型化や高性能化に伴う微細化した穴径の大きさと穴間の間隔ピッチの形成安定性に優れたものとなる。
[Printed wiring board]
The printed wiring board of the present embodiment comprises at least one of a surface protective film and an interlayer insulating film formed from the photosensitive resin composition of the present embodiment.
Since the printed wiring board of the present embodiment includes at least one of the surface protective film and the interlayer insulating film formed from the photosensitive resin composition of the present embodiment, it has excellent adhesive strength with plated copper and excellent heat resistance. It has a low coefficient of thermal expansion, excellent resolution, and a pattern with excellent adhesion to chip parts. In addition, this pattern is excellent in formation stability of the size of the hole diameter and the interval pitch between the holes, which have been miniaturized due to the recent miniaturization and high performance of electronic devices.

[プリント配線板の製造方法]
本実施形態のプリント配線板の製造方法は、基板上に本実施形態の感光性樹脂組成物、又は本実施形態のドライフィルムを用いて感光層を設ける工程、該感光層を用いて樹脂パターンを形成する工程、及び該樹脂パターンを硬化して表面保護膜及び層間絶縁膜の少なくとも一方を形成する工程を順に有する。
具体的には、例えば、以下のようにして製造することができる。
まず、銅張り積層板等の金属張積層基板上に、スクリーン印刷法、スプレー法、ロールコート法、カーテンコート法、静電塗装法等の方法で、10~200μm、15~150μm、20~100μm、又は、23~50μmから適宜選択する膜厚で感光性樹脂組成物を塗布し、次に塗膜を60~110℃で乾燥させるか、又は保護層を剥がした本実施形態のドライフィルムを前記基板上にラミネーターを用いて熱ラミネートすることにより、基板上に感光層を設ける。
次に、該感光層にネガフィルムを直接接触(又はキャリアフィルム等の透明なフィルムを介して非接触)させて、活性光を、10~2,000mJ/cm、100~1,500mJ/cm、又は、300~1,000mJ/cmから適宜選択する露光量で照射し、その後、未露光部を希アルカリ水溶液で溶解除去(現像)してパターンを形成する。使用される活性光としては電子線、紫外線、X線等が挙げられ、好ましくは紫外線である。また、光源としては、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ等を使用することができる。
次に、該感光層の露光部分を後露光(紫外線露光)及び後加熱の少なくとも一方の処理によって十分硬化させて表面保護膜及び層間絶縁膜の少なくとも一方を形成する。
後露光の露光量は、100~5,000mJ/cm、500~2,000mJ/cm、又は、700~1,500J/cmから適宜選択すればよい。
後加熱の加熱温度は、100~200℃、120~180℃、又は、135~165℃から適宜選択すればよい。
後加熱の加熱時間は、5分~12時間、10分~6時間、又は、30分~2時間から適宜選択すればよい。
その後、エッチングにて、導体パターンを形成し、プリント配線板が作製される。
[Method for manufacturing printed wiring board]
The method for producing a printed wiring board of the present embodiment includes a step of providing a photosensitive layer using the photosensitive resin composition of the present embodiment or a dry film of the present embodiment on a substrate, and forming a resin pattern using the photosensitive layer. and a step of curing the resin pattern to form at least one of a surface protective film and an interlayer insulating film.
Specifically, for example, it can be manufactured as follows.
First, on a metal-clad laminate substrate such as a copper-clad laminate, by a method such as a screen printing method, a spray method, a roll coating method, a curtain coating method, or an electrostatic coating method, 10 to 200 μm, 15 to 150 μm, 20 to 100 μm Alternatively, the photosensitive resin composition is applied to a film thickness appropriately selected from 23 to 50 μm, and then the coating film is dried at 60 to 110 ° C., or the dry film of the present embodiment with the protective layer peeled off. A photosensitive layer is provided on the substrate by thermal lamination on the substrate using a laminator.
Next, a negative film is brought into direct contact with the photosensitive layer (or non-contact via a transparent film such as a carrier film), and actinic light is applied at 10 to 2,000 mJ/cm 2 , 100 to 1,500 mJ/cm 2 . 2 , or an exposure dose appropriately selected from 300 to 1,000 mJ/cm 2 , and then the unexposed area is dissolved and removed (developed) with a dilute alkaline aqueous solution to form a pattern. Actinic light to be used includes electron beams, ultraviolet rays, X-rays, etc., and ultraviolet rays are preferred. Moreover, as a light source, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a halogen lamp, or the like can be used.
Next, the exposed portion of the photosensitive layer is sufficiently hardened by at least one of post-exposure (ultraviolet exposure) and post-heating to form at least one of a surface protective film and an interlayer insulating film.
The exposure amount of the post-exposure may be appropriately selected from 100 to 5,000 mJ/cm 2 , 500 to 2,000 mJ/cm 2 , or 700 to 1,500 J/cm 2 .
The heating temperature for post-heating may be appropriately selected from 100 to 200°C, 120 to 180°C, or 135 to 165°C.
The heating time for post-heating may be appropriately selected from 5 minutes to 12 hours, 10 minutes to 6 hours, or 30 minutes to 2 hours.
Thereafter, a conductor pattern is formed by etching to produce a printed wiring board.

また、本実施形態の感光性樹脂組成物、又は本実施形態のドライフィルムを用いて、多層プリント配線板を製造することもできる。図1は、本実施形態の感光性樹脂組成物の硬化物を表面保護膜及び層間絶縁膜の少なくとも一方として用いる多層プリント配線板の製造工程の一態様を示す模式図である。図1(f)に示される多層プリント配線板100Aは、表面に導体パターン102を有する基板に、複数の導体パターン107を層状に備え、各層間には層間絶縁膜103を有し、また各層の導体パターン102は層間絶縁膜103と開口部104とに設けられた導体パターン107により接続されており、その表面には表面保護膜108が設けられており、表面保護膜108及び層間絶縁膜103の少なくとも一方は本実施形態の感光性樹脂組成物、又は本実施形態のドライフィルムを用いて形成されている。多層プリント配線板100Aは、例えば、銅張積層体、層間絶縁材料、金属箔等を積層するとともに、エッチング法又はセミアディティブ法によって導体パターンを適宜形成することによって得られる。以下、多層プリント配線板100Aの製造方法を図1に基づいて簡単に説明する。 A multilayer printed wiring board can also be produced using the photosensitive resin composition of the present embodiment or the dry film of the present embodiment. FIG. 1 is a schematic diagram showing one aspect of the manufacturing process of a multilayer printed wiring board using a cured product of the photosensitive resin composition of the present embodiment as at least one of a surface protective film and an interlayer insulating film. A multilayer printed wiring board 100A shown in FIG. The conductor pattern 102 is connected to the interlayer insulating film 103 by a conductor pattern 107 provided in the opening 104, and a surface protective film 108 is provided on the surface thereof. At least one of them is formed using the photosensitive resin composition of the present embodiment or the dry film of the present embodiment. The multilayer printed wiring board 100A is obtained, for example, by laminating a copper-clad laminate, an interlayer insulating material, a metal foil, etc., and appropriately forming a conductor pattern by an etching method or a semi-additive method. A method for manufacturing multilayer printed wiring board 100A will be briefly described below with reference to FIG.

まず、両表面に導体パターン102を有する銅張積層体101の、該両表面に層間絶縁層103を形成する(図1(a)参照)。層間絶縁膜103は、プリント配線板の製造方法で説明した方法、すなわち本実施形態の感光性樹脂組成物を塗布し、又は本実施形態のドライフィルムをラミネーターを用いて熱ラミネートすることにより、感光層を形成し、該感光層にネガフィルムを用いて、外部(他層の導体パターン)と電気的に接続することが必要な箇所以外の領域を露光し、硬化させて、更に未露光部を除去して形成される(図1(b)参照)。この層間絶縁膜103は、開口部104を有する膜となっている。ここで、開口部104周辺に存在するスミア(残渣)は、デスミア処理により除去すればよい。 First, an interlayer insulating layer 103 is formed on both surfaces of a copper-clad laminate 101 having conductor patterns 102 on both surfaces (see FIG. 1(a)). The interlayer insulating film 103 is formed by the method described in the printed wiring board manufacturing method, that is, by applying the photosensitive resin composition of the present embodiment or thermally laminating the dry film of the present embodiment using a laminator. A layer is formed, a negative film is used for the photosensitive layer, and areas other than those required to be electrically connected to the outside (conductor patterns of other layers) are exposed, cured, and the unexposed areas are removed. It is formed by removing (see FIG. 1(b)). This interlayer insulating film 103 is a film having an opening 104 . Here, the smear (residue) existing around the opening 104 may be removed by desmear processing.

次いで、導体パターン107を形成するが、導体パターン107は、例えば、薄い金属層(シード層)を形成し、樹脂パターン(めっきレジスト)を形成し、次いで電解めっき法により導体パターン107を形成し、該樹脂パターンを除去し、シード層をエッチングで除去するセミアディティブ法により形成することができる。具体的には、層間絶縁膜103上、及び開口部104では導体パターン102上に、無電解めっき法によりシード層105を形成する(図1(c)参照)。このシード層105は、例えば、無電解銅めっきによる、めっき銅により形成することができる。このシード層105上に、セミアディティブ用感光性樹脂組成物を用いて感光層を形成し、該感光層にネガフィルムを用い、所定の箇所を露光、現像処理して、所定のパターンを有する樹脂パターン106を形成する(図1(d)参照)。次に、シード層105の樹脂パターン106が形成されていない部分に、電解めっき法により導体パターン107を形成し、剥離液により樹脂パターン106を除去し、該シード層105をエッチングにより除去する(図1(e)参照)。図1(b)~(e)の作業を繰り返して行い、所望の層数に応じた導体パターン107を形成し、最表面に本実施形態に係る感光性樹脂組成物の硬化物により形成される表面保護膜(永久マスクレジスト)108を形成し、多層プリント配線板100Aを作製することができる(図1(f)参照)。ここで、上記セミアディティブ用感光性樹脂組成物として、例えば、本実施形態に係る感光性樹脂組成物を用いることができる。 Next, the conductor pattern 107 is formed. For example, the conductor pattern 107 is formed by forming a thin metal layer (seed layer), forming a resin pattern (plating resist), and then electroplating to form the conductor pattern 107, It can be formed by a semi-additive method in which the resin pattern is removed and the seed layer is removed by etching. Specifically, a seed layer 105 is formed by electroless plating on the interlayer insulating film 103 and on the conductor pattern 102 in the opening 104 (see FIG. 1C). This seed layer 105 can be formed of plated copper, for example by electroless copper plating. On the seed layer 105, a photosensitive layer is formed using a semi-additive photosensitive resin composition, a negative film is used for the photosensitive layer, and predetermined portions are exposed and developed to form a resin having a predetermined pattern. A pattern 106 is formed (see FIG. 1(d)). Next, a conductor pattern 107 is formed by electroplating on a portion of the seed layer 105 where the resin pattern 106 is not formed, the resin pattern 106 is removed by a peeling solution, and the seed layer 105 is removed by etching (Fig. 1(e)). 1B to 1E are repeated to form a conductor pattern 107 corresponding to the desired number of layers, and the outermost surface is formed with a cured product of the photosensitive resin composition according to the present embodiment. A surface protection film (permanent mask resist) 108 is formed, and a multilayer printed wiring board 100A can be produced (see FIG. 1(f)). Here, for example, the photosensitive resin composition according to the present embodiment can be used as the semi-additive photosensitive resin composition.

このようにして得られた多層プリント配線板100Aは、対応する箇所に半導体素子が実装され、電気的な接続を確保することが可能である。 In multilayer printed wiring board 100A obtained in this way, semiconductor elements are mounted at corresponding locations, and electrical connection can be ensured.

本実施形態に係るプリント配線板は、表面保護膜及び層間絶縁膜の少なくとも一方を、本実施形態に係る感光性樹脂組成物を用いていることから、該感光性樹脂組成物が有する特長、すなわちめっき銅との優れた接着強度、優れた解像性、チップ部品との密着性を享受することとなる。また、電子機器の小型化・高性能化の流れに伴い、半導体チップにおける、導体パターンの狭ピッチ化による高密度化の傾向が著しく、これに対応した半導体実装方法として、はんだバンプにより半導体チップと基板とを接合させるフリップチップ接続方式が主流となっているが、従来以下のような幾つかの問題が生じる場合があった。
このフリップチップ接続方式は、基板と半導体チップとの間にはんだボールを配置し全体を加熱して溶融接合させるリフロー方式による半導体実装方式である。そのため、はんだリフロー時に基板自体が高温環境に晒され、基板の熱収縮により、基板と半導体を接続するはんだボールに大きな応力が発生し、導体パターンの接続不良、表面保護膜又はアンダーフィルに割れ(クラック)を起こす場合があった。また、基板が高温環境に晒されることで、基板上に設けた表面保護膜等を形成する樹脂組成物の熱膨張により、接続界面に大きな応力が発生し、接続不良を起こす場合もあった。本実施形態に係る感光性樹脂組成物は、めっき銅との優れた接着強度、優れた解像性、チップ部品との密着性に加えて、優れた耐熱性、低熱膨張率も有しており、これらの問題を解決できる性能を充分に有するものである。よって、本実施形態に係るプリント配線板は、導体パターンの接続不良、表面保護膜等の割れ等が生じにくい、高い品質を有するものとなる。
Since the printed wiring board according to the present embodiment uses the photosensitive resin composition according to the present embodiment for at least one of the surface protective film and the interlayer insulating film, the features of the photosensitive resin composition, that is, You will enjoy excellent adhesive strength with plated copper, excellent resolution, and adhesion with chip parts. In addition, along with the trend toward smaller size and higher performance of electronic equipment, there is a remarkable trend toward higher density due to the narrower pitch of conductor patterns in semiconductor chips. A flip-chip connection method for bonding to a substrate has become mainstream, but there have been some problems in the past, such as those described below.
This flip chip connection method is a semiconductor mounting method based on a reflow method in which solder balls are placed between a substrate and a semiconductor chip and the whole is heated to melt and bond. As a result, the substrate itself is exposed to a high-temperature environment during solder reflow, and the thermal shrinkage of the substrate generates a large amount of stress in the solder balls that connect the substrate and the semiconductor, resulting in poor connection of the conductor pattern, cracks in the surface protective film or underfill ( cracks) may occur. In addition, when the substrate is exposed to a high-temperature environment, thermal expansion of the resin composition forming the surface protective film, etc. provided on the substrate generates a large stress at the connection interface, which may cause connection failure. The photosensitive resin composition according to the present embodiment has excellent adhesive strength with plated copper, excellent resolution, and adhesion with chip components, as well as excellent heat resistance and a low coefficient of thermal expansion. , has sufficient performance to solve these problems. Therefore, the printed wiring board according to the present embodiment has high quality in which poor connection of the conductor pattern and cracking of the surface protective film are unlikely to occur.

以下、実施例及び比較例に基づいて本実施態様の目的及び利点をより具体的に説明するが、本実施態様は以下の実施例に限定されるものではない。 EXAMPLES The purpose and advantages of the present embodiment will be described in more detail below based on examples and comparative examples, but the present embodiment is not limited to the following examples.

(合成例1;酸変性ビニル基含有エポキシ樹脂(A1)の合成)
ビスフェノールFノボラック型エポキシ樹脂(a)(EXA-7376、DIC(株)製、一般式(II)において、Yがグリシジル基、R12が水素原子である構造単位を含有するビスフェノールFノボラック型エポキシ樹脂)350質量部、アクリル酸(b)70質量部、メチルハイドロキノン0.5質量部、カルビトールアセテート120質量部を仕込み、90℃に加熱して攪拌することにより反応させ、混合物を完全に溶解した。次に、得られた溶液を60℃に冷却し、トリフェニルホスフィン2質量部を加え、100℃に加熱して、溶液の酸価が1mgKOH/gになるまで反応させた。反応後の溶液に、テトラヒドロ無水フタル酸(THPAC)(c)98質量部とカルビトールアセテート850質量部とを加え、80℃に加熱して、6時間反応させた。その後、室温まで冷却し、固形分の濃度が73質量%である(A1)成分としてのTHPAC変性ビスフェノールFノボラック型エポキシアクリレート(エポキシ樹脂(1))を得た。
(Synthesis Example 1; Synthesis of Acid-Modified Vinyl Group-Containing Epoxy Resin (A1))
Bisphenol F novolak type epoxy resin (a) (EXA-7376, manufactured by DIC Corporation, bisphenol F novolac type epoxy containing a structural unit in which Y2 is a glycidyl group and R12 is a hydrogen atom in the general formula (II) 350 parts by mass of resin), 70 parts by mass of acrylic acid (b), 0.5 parts by mass of methylhydroquinone, and 120 parts by mass of carbitol acetate are charged, heated to 90° C. and stirred to react to completely dissolve the mixture. bottom. Next, the obtained solution was cooled to 60° C., 2 parts by mass of triphenylphosphine was added, heated to 100° C., and reacted until the acid value of the solution reached 1 mgKOH/g. 98 parts by mass of tetrahydrophthalic anhydride (THPAC) (c) and 850 parts by mass of carbitol acetate were added to the solution after the reaction, heated to 80° C., and reacted for 6 hours. Thereafter, the mixture was cooled to room temperature to obtain a THPAC-modified bisphenol F novolac type epoxy acrylate (epoxy resin (1)) as the component (A1) having a solid content of 73% by mass.

(実施例1~6、比較例1~5)
表1に示す配合組成に従って組成物を配合し、3本ロールミルで混練し感光性樹脂組成物を調製した。固形分濃度が60質量%になるようにカルビトールアセテートを加えて、感光性樹脂組成物を得た。
(Examples 1 to 6, Comparative Examples 1 to 5)
A composition was blended according to the composition shown in Table 1 and kneaded in a three-roll mill to prepare a photosensitive resin composition. Carbitol acetate was added so that the solid content concentration was 60% by mass to obtain a photosensitive resin composition.

Figure 0007284205000006
Figure 0007284205000006

表1中の各材料の詳細は以下の通りである。
・エポキシ樹脂(1)は、合成例1で得られた酸変性ビニル基含有エポキシ樹脂(A1)である。
・エポキシ樹脂(2)は、一般式(III)中、R13が水素原子、Yがグリシジル基のノボラック型エポキシ樹脂(「UE-EXP-3165」、DIC(株)製、商品名)のグリシジル基をアクリレート化し、水酸基をテトラヒドロ無水フタル酸(THPAC)で変性した酸変性ビニル基含有エポキシ樹脂(A2)(重量平均分子量:3300、酸価:42.4mg/KOH)である。
・アロニックスM402:ジペンタエリスリトールヘキサアクリレート(東亞合成(株)製、商品名)
・イルガキュア819:ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド(BASF社製、商品名)
・イルガキュア907:2-メチル-[4-(メチルチオ)フェニル]モルホリノ-1-プロパノン(BASF社製、商品名)
・SC2050-LNF:シリカ粒子((株)アドマテックス製、商品名、平均粒径:0.5μm)
・ASA:硫酸バリウム粒子(日本ソルベイ(株)社製、商品名、平均粒径:1.0μm)
・KBM-403:3-グリシドキシプロピルトリメトキシシラン(信越シリコーン(株)製、商品名)
・X-12―984S:多官能エポキシシラン(信越シリコーン(株)製、商品名)
・フタロシアニン系顔料:フタロシアニン系顔料(山陽色素(株)製)
・YSLV-80XY:テトラメチルビスフェノールF型エポキシ樹脂(新日鉄住金化学(株)製、商品名)
・RE-306:ノボラック型多官能エポキシ樹脂(日本化薬(株)製、商品名)
・PB-3600:エポキシ化ポリブタジエン((株)ダイセル製、商品名)
・SP1108:ポリエステル樹脂(エスペル1108、日立化成(株)製)
・メラミン:日産化学工業(株)製
Details of each material in Table 1 are as follows.
- Epoxy resin (1) is the acid-modified vinyl group-containing epoxy resin (A1) obtained in Synthesis Example 1.
・ Epoxy resin (2) is a novolac type epoxy resin (“UE-EXP-3165”, manufactured by DIC Corporation, trade name) in which R 13 is a hydrogen atom and Y 3 is a glycidyl group in general formula (III). It is an acid-modified vinyl group-containing epoxy resin (A2) (weight average molecular weight: 3300, acid value: 42.4 mg/KOH) in which glycidyl groups are acrylated and hydroxyl groups are modified with tetrahydrophthalic anhydride (THPAC).
Aronix M402: Dipentaerythritol hexaacrylate (manufactured by Toagosei Co., Ltd., trade name)
- Irgacure 819: bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by BASF, trade name)
・Irgacure 907: 2-methyl-[4-(methylthio)phenyl]morpholino-1-propanone (manufactured by BASF, trade name)
・ SC2050-LNF: silica particles (manufactured by Admatechs Co., Ltd., trade name, average particle size: 0.5 μm)
・ ASA: barium sulfate particles (manufactured by Solvay Japan Co., Ltd., trade name, average particle size: 1.0 μm)
・ KBM-403: 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., trade name)
・X-12-984S: Polyfunctional epoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., trade name)
・Phthalocyanine pigment: Phthalocyanine pigment (manufactured by Sanyo Pigment Co., Ltd.)
・ YSLV-80XY: Tetramethylbisphenol F type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name)
・ RE-306: Novolac type polyfunctional epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name)
・ PB-3600: Epoxidized polybutadiene (manufactured by Daicel Co., Ltd., trade name)
・ SP1108: Polyester resin (Espel 1108, manufactured by Hitachi Chemical Co., Ltd.)
・Melamine: manufactured by Nissan Chemical Industries, Ltd.

次に、上記で得られた感光性樹脂組成物を用いて、下記に示す条件で各評価を行った。評価結果を表2に示す。 Next, each evaluation was performed on the conditions shown below using the photosensitive resin composition obtained above. Table 2 shows the evaluation results.

[ドライフィルムの作製]
16μm厚のポリエチレンテレフタレートフィルム(G2-16、帝人(株)製、商品名)をキャリアフィルムとし、該キャリアフィルム上に、実施例及び比較例の感光性樹脂組成物を、乾燥後の膜厚が25μmとなるように均一に塗布し、熱風対流式乾燥機を用いて75℃で30分間乾燥し、感光層を形成した。続いて、該感光層のキャリアフィルムと接している側とは反対側の表面上に、ポリエチレンフィルム(NF-15、タマポリ(株)製、商品名)(保護層)を貼り合わせ、ドライフィルムを作製した。
[Preparation of dry film]
A 16 μm thick polyethylene terephthalate film (G2-16, manufactured by Teijin Limited, trade name) was used as a carrier film, and the photosensitive resin compositions of Examples and Comparative Examples were applied onto the carrier film so that the film thickness after drying was It was applied uniformly to a thickness of 25 μm and dried at 75° C. for 30 minutes using a hot air convection dryer to form a photosensitive layer. Subsequently, a polyethylene film (NF-15, manufactured by Tamapoly Co., Ltd., trade name) (protective layer) is attached to the surface of the photosensitive layer opposite to the side in contact with the carrier film, and a dry film is attached. made.

[解像度の評価]
厚さ1.0mmの銅張積層基板(MCL-E-67、日立化成(株)製)に、上記作製のドライフィルムの保護層を剥離しながら、連プレス式真空ラミネーター(MVLP-500、(株)名機製作所製、品番)を用いて、所定のラミネート条件で(圧着圧力:0.4MPa、プレス熱板温度:80℃、真空引き時間:40秒間、ラミネートプレス時間:20秒間、気圧:4kPa以下)ラミネートして、感光層を有する積層体を得た。
次に、所定サイズのビアパターン(開口径サイズ:10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、及び200μmφ)を有するネガマスクを介して、i線露光装置(UX-2240SM-XJ-01、ウシオ(株)製、品番)を用いて100~500mJ/cmの範囲で50mJ/cmずつ変化させながら露光した。その後、1質量%の炭酸ナトリウム水溶液で30℃での最短現像時間(感光層の未露光部が除去される最短時間)の2倍に相当する時間、1.765×10Paの圧力でスプレー現像し、未露光部を溶解現像した。次に、紫外線露光装置を用いて2000mJ/cmの露光量で露光し、170℃で1時間加熱して、銅張積層基板上に感光性樹脂組成物の硬化物を所定サイズのビアパターンで有する試験片を作製した。
上記試験片を、金属顕微鏡を用いて観察し、以下の基準で評価した。評価結果を表2に示す。
A:開口部の最小径が50μm以下だった。
B:開口部の最小径が50μmを超え、100μm以下だった。
C:開口部の最小径が100μm超えた。
[Resolution evaluation]
While peeling off the protective layer of the dry film prepared above, a continuous press vacuum laminator (MVLP-500, ( (manufactured by Meiki Seisakusho Co., Ltd., product number) under predetermined lamination conditions (crimping pressure: 0.4 MPa, press hot plate temperature: 80 ° C., evacuation time: 40 seconds, lamination press time: 20 seconds, atmospheric pressure: 4 kPa or less) to obtain a laminate having a photosensitive layer.
Next, a negative mask having via patterns of predetermined sizes (opening diameter sizes: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, and 200 μmφ) was prepared. Using an i-ray exposure device (UX-2240SM-XJ-01, manufactured by Ushio Inc., product number), the film was exposed to light in the range of 100 to 500 mJ/cm 2 by increments of 50 mJ/cm 2 . Thereafter, a 1% by weight sodium carbonate aqueous solution was sprayed at 30° C. for a time corresponding to twice the shortest development time (shortest time for removing the unexposed portion of the photosensitive layer) at a pressure of 1.765×10 5 Pa. After development, the unexposed area was developed by dissolution. Next, using an ultraviolet exposure device, the exposure dose was 2000 mJ/cm 2 , followed by heating at 170° C. for 1 hour. A test piece having
The test piece was observed using a metallurgical microscope and evaluated according to the following criteria. Table 2 shows the evaluation results.
A: The minimum diameter of the opening was 50 μm or less.
B: The minimum diameter of the opening exceeded 50 µm and was 100 µm or less.
C: The minimum diameter of the opening exceeded 100 μm.

[めっき銅との接着強度の評価]
上記[解像度の評価]で作製した感光層を有する積層体を作製し、該積層体を、i線露光装置(UX-2240SM-XJ-01、ウシオ(株)製、品番)を用いて500mJ/cmで全面露光し、次いで紫外線露光装置を用いて2000mJ/cmの露光量で露光し、170℃で1時間加熱し、感光性樹脂組成物の硬化膜を有する銅張積層基板を得た。該硬化膜を化学粗化するため、膨潤液(ジエチレングリコールモノブチルエーテル:200ml/L、水酸化ナトリウム:5g/Lの水溶液)を調製し、70℃に加温して10分間浸漬処理した。次に、粗化液(過マンガン酸カリウム:60g/L、水酸化ナトリウム:40g/Lの水溶液)を調製し、70℃に加温して15分間浸漬処理した。引き続き、中和液(塩化スズ(SnCl):30g/L、塩化水素:300ml/L)の水溶液を調製し、40℃に加温して5分間浸漬処理し、過マンガン酸カリウムを還元して、硬化膜を化学粗化した。
次いで、塩化鉛(PdCl)を含む無電解めっき用触媒(アクチベーターネオガント834、アトテック・ジャパン(株)製、商品名)を35℃に加温して5分間浸漬処理し、無電解銅めっき用めっき液(プリントガントMSK-DK、アトテック・ジャパン(株)製、商品名)に室温で15分間浸漬し、更に硫酸銅電解めっきを行った。その後、アニール処理を180℃で60分間行い、厚さ35μmの導体層を形成し、試験片を得た。導体層に硫酸過水系エッチング液での処理によって、幅10mm、長さ50mmの領域を形成し、この領域の一端を導体層(銅層)と硬化した樹脂膜との界面で10mm剥がした。次いで、剥がした樹脂膜をつかみ具でつまみ、試験片の厚み方向(垂直方向)に引張り速度50mm/分、室温で引き剥がした時の荷重(ピール強度)を測定した。評価結果を表2に示す。ここで、本明細書において、室温とは25℃を示す。
[Evaluation of adhesive strength with plated copper]
A laminate having the photosensitive layer prepared in [Evaluation of Resolution] above was prepared, and the laminate was exposed to 500 mJ/min using an i-line exposure apparatus (UX-2240SM-XJ-01, manufactured by Ushio Inc., product number). cm 2 , followed by exposure with an ultraviolet exposure device at an exposure amount of 2000 mJ/cm 2 and heating at 170° C. for 1 hour to obtain a copper clad laminate having a cured film of a photosensitive resin composition. . In order to chemically roughen the cured film, a swelling liquid (diethylene glycol monobutyl ether: 200 ml/L, sodium hydroxide: 5 g/L aqueous solution) was prepared, heated to 70° C. and immersed for 10 minutes. Next, a roughening solution (potassium permanganate: 60 g/L, sodium hydroxide: 40 g/L aqueous solution) was prepared, heated to 70° C., and immersed for 15 minutes. Subsequently, an aqueous solution of neutralizing solution (tin chloride (SnCl 2 ): 30 g/L, hydrogen chloride: 300 ml/L) was prepared, heated to 40° C. and immersed for 5 minutes to reduce potassium permanganate. to chemically roughen the cured film.
Next, an electroless plating catalyst (Activator Neogant 834, manufactured by Atotech Japan Co., Ltd., trade name) containing lead chloride (PdCl 2 ) was heated to 35° C. and immersed for 5 minutes to obtain electroless copper. It was immersed in a plating solution for plating (Printgant MSK-DK, manufactured by Atotech Japan Co., Ltd., trade name) at room temperature for 15 minutes, and then subjected to copper sulfate electroplating. Annealing treatment was then performed at 180° C. for 60 minutes to form a conductor layer with a thickness of 35 μm to obtain a test piece. A region having a width of 10 mm and a length of 50 mm was formed on the conductor layer by treatment with a sulfuric acid-peroxide-based etchant, and one end of this region was peeled off by 10 mm at the interface between the conductor layer (copper layer) and the cured resin film. Next, the peeled resin film was gripped with a gripper, and the load (peel strength) when peeled off at room temperature at a speed of 50 mm/min in the thickness direction (perpendicular direction) of the test piece was measured. Table 2 shows the evaluation results. Here, in this specification, room temperature indicates 25°C.

[密着性の評価]
銅張積層基板を6インチのシリコンウエハ((株)エレクトロニクスエンドマテリアルズコーポレーション製)に代えた以外は、[解像度の評価]に記載の方法と同じ方法で、感光層を有する積層体を得た。該積層体を、i線露光装置(UX-2240SM-XJ-01、ウシオ(株)製、品番)を用いて500mJ/cmで全面露光し、次いで紫外線露光装置を用いて2000mJ/cmの露光量で露光し、170℃で1時間加熱し、感光性樹脂組成物の硬化膜を有するシリコンウエハを得た。その後、エポキシ接着剤のついたAl製スタッド(接着部直径:2.7mm、P/N901106、フォトテクニカ(株)製、商品名)を硬化膜上に垂直に設置し、オーブンで150℃、1時間加熱処理を行い、試験片を得た。試験片上のスタッドを薄膜密着強度測定装置(フォトテクニカ(株)製)のチャックへ固定し、硬化膜に対して垂直に力を加え、その後の様子を以下の基準で評価した。評価結果を表2に示す。
A:エポキシ接着剤が凝集破壊した。
B:硬化膜とシリコンウエハとの界面で剥離した。
[Evaluation of adhesion]
A laminate having a photosensitive layer was obtained in the same manner as described in [Evaluation of Resolution] except that the copper-clad laminate was replaced with a 6-inch silicon wafer (manufactured by Electronics End Materials Corporation). . The laminate was exposed entirely to 500 mJ/cm 2 using an i-ray exposure device (UX-2240SM-XJ-01, manufactured by Ushio Inc., product number), and then exposed to 2000 mJ/cm 2 using an ultraviolet exposure device. It was exposed to light and heated at 170° C. for 1 hour to obtain a silicon wafer having a cured film of the photosensitive resin composition. After that, an aluminum stud with an epoxy adhesive (adhesion part diameter: 2.7 mm, P/N 901106, manufactured by Phototechnica, trade name) was placed vertically on the cured film, and heated in an oven at 150°C for 1 hour. A time heat treatment was performed to obtain a test piece. A stud on the test piece was fixed to a chuck of a thin film adhesion strength measuring device (manufactured by Photo Technica Co., Ltd.), a force was applied perpendicularly to the cured film, and the state after that was evaluated according to the following criteria. Table 2 shows the evaluation results.
A: Cohesive failure occurred in the epoxy adhesive.
B: Peeling occurred at the interface between the cured film and the silicon wafer.

[熱膨張率及びガラス転移点の測定]
上記作製のドライフィルムを、i線露光装置(UX-2240SM-XJ-01、ウシオ(株)製、品番)を用いて500mJ/cmで全面露光し、常温(25℃)で1時間静置した後、ポリエチレンフィルムを剥離し、30℃の1質量%炭酸ナトリウム水溶液で、スプレー現像処理した。その後、紫外線照射装置((株)オーク製作所製)を使用して2J/cmの紫外線照射を行い、更に170℃、60分間で加熱処理した。次いで、カッターナイフで、幅3mm、長さ30mmに切り出した後、ポリエチレンテレフタレートフィルム(キャリアフィルム)を剥離し、熱膨張係数評価用の硬化物を得た。
TMA装置(SS6000、セイコー・インスツルメンル(株)製、品番)を用いて、引張りモードでの熱膨張係数の測定を行った。引張り荷重は5g、スパン(チャック間距離)は15mm、昇温速度は10℃/分である。まず、試験片を装置に装着し、室温(25℃)から160℃まで加熱し、15分間放置した。その後、-60℃まで冷却し、-60℃から250℃まで昇温速度10℃/分の条件で測定を行い、熱膨張率、ガラス転移点を算出した。熱膨張率、ガラス転移点を表2に示す。
[Measurement of thermal expansion coefficient and glass transition point]
The dry film prepared above was exposed entirely to 500 mJ/cm 2 using an i-ray exposure device (UX-2240SM-XJ-01, manufactured by Ushio Inc., product number), and allowed to stand at room temperature (25°C) for 1 hour. After that, the polyethylene film was peeled off, and the film was developed with a 1% by mass sodium carbonate aqueous solution at 30°C by spraying. After that, an ultraviolet irradiation device (manufactured by Oak Manufacturing Co., Ltd.) was used to irradiate ultraviolet rays at 2 J/cm 2 , followed by heat treatment at 170° C. for 60 minutes. Next, after cutting out with a cutter knife to a width of 3 mm and a length of 30 mm, the polyethylene terephthalate film (carrier film) was peeled off to obtain a cured product for thermal expansion coefficient evaluation.
A TMA device (SS6000, manufactured by Seiko Instruments Inc., product number) was used to measure the coefficient of thermal expansion in a tensile mode. The tensile load is 5 g, the span (distance between chucks) is 15 mm, and the heating rate is 10° C./min. First, the test piece was attached to the apparatus, heated from room temperature (25° C.) to 160° C., and left for 15 minutes. Then, it was cooled to -60°C, and measured from -60°C to 250°C at a heating rate of 10°C/min to calculate the coefficient of thermal expansion and the glass transition point. Table 2 shows the coefficient of thermal expansion and the glass transition point.

Figure 0007284205000007
Figure 0007284205000007

表2より、実施例1~6の本実施態様の感光性樹脂組成物は、解像性、接着強度、及び密着性において優れた性能を示しており、特にプリント配線板における表面保護膜、層間絶縁膜、及びシリコン素材と接する表面保護膜等として好適に用い得る組成物であることが確認された。これに対して、比較例1~5の樹脂組成物は、解像性、接着強度、及び密着性のいずれかの点で十分な効果が得られなかった。また、熱膨張率、ガラス転移点の結果から、本実施態様の感光性樹脂組成物は優れた耐熱性、低熱膨張率を有することも確認された。 From Table 2, the photosensitive resin compositions of this embodiment of Examples 1 to 6 show excellent performance in terms of resolution, adhesive strength, and adhesion. It was confirmed that the composition can be suitably used as an insulating film, a surface protective film in contact with a silicon material, and the like. On the other hand, the resin compositions of Comparative Examples 1 to 5 did not exhibit sufficient effects in terms of any one of resolution, adhesive strength and adhesion. It was also confirmed from the results of the coefficient of thermal expansion and the glass transition point that the photosensitive resin composition of this embodiment has excellent heat resistance and a low coefficient of thermal expansion.

100A.多層プリント配線板
102.導体パターン
103.層間絶縁膜
104.開口部
105.シード層
106.樹脂パターン
107.導体パターン
108.表面保護膜
100A. Multilayer printed wiring board 102 . conductor pattern 103 . Interlayer insulating film 104 . opening 105 . seed layer 106 . resin pattern 107 . conductor pattern 108 . Surface protection film

Claims (16)

(A)酸変性ビニル基含有エポキシ樹脂、(B)光重合性化合物、(C)光重合開始剤、(D)無機フィラ、(E)シラン化合物及び(I)エポキシ樹脂硬化剤を含有し、前記(D)無機フィラの含有量が、感光性樹脂組成物中の固形分全量基準として18~60質量%であり、前記(C)光重合開始剤が、アセトフェノン類及びアシルホスフィンオキサイド類から選ばれる少なくとも一種を含み、前記(D)無機フィラがシリカを含み、前記(E)シラン化合物がアルキルシラン、アルコキシシラン、ビニルシラン、エポキシシラン、アミノシラン、アクリルシラン、メタクリルシラン、メルカプトシラン、スルフィドシラン、サルファーシラン、スチリルシラン、アルキルクロロシランから選ばれる少なくとも1種である感光性樹脂組成物。 (A) an acid-modified vinyl group-containing epoxy resin, (B) a photopolymerizable compound, (C) a photopolymerization initiator, (D) an inorganic filler, (E) a silane compound and (I) an epoxy resin curing agent, The content of the inorganic filler (D) is 18 to 60% by mass based on the total solid content in the photosensitive resin composition, and the photopolymerization initiator (C) is selected from acetophenones and acylphosphine oxides. wherein the (D) inorganic filler contains silica, and the (E) silane compound contains alkylsilane, alkoxysilane, vinylsilane, epoxysilane, aminosilane, acrylicsilane, methacrylsilane, mercaptosilane, sulfidesilane , and A photosensitive resin composition comprising at least one selected from lufursilane, styrylsilane, and alkylchlorosilane. 前記(A)成分が、ビスフェノールノボラック型エポキシ樹脂(a1)を用いてなる少なくとも1種の酸変性ビニル基含有エポキシ樹脂(A1)と、該エポキシ樹脂(a1)とは異なるエポキシ樹脂(a2)を用いてなる少なくとも1種の酸変性ビニル基含有エポキシ樹脂(A2)とを含有するものである、請求項1に記載の感光性樹脂組成物。 The component (A) comprises at least one acid-modified vinyl group-containing epoxy resin (A1) obtained by using a bisphenol novolac type epoxy resin (a1) and an epoxy resin (a2) different from the epoxy resin (a1). 2. The photosensitive resin composition according to claim 1, which contains at least one acid-modified vinyl group-containing epoxy resin (A2) used. 前記エポキシ樹脂(a2)が、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及びトリフェノールメタン型エポキシ樹脂から選ばれる少なくとも1種である請求項2に記載の感光性樹脂組成物。 3. The photosensitive resin composition according to claim 2, wherein the epoxy resin (a2) is at least one selected from novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, and triphenolmethane type epoxy resins. thing. 前記酸変性ビニル基含有エポキシ樹脂(A1)及び(A2)が、各々前記エポキシ樹脂(a1)及び(a2)と、ビニル基含有モノカルボン酸(b)とを反応させてなる樹脂(A1’)及び(A2’)に、飽和又は不飽和基含有多塩基酸無水物(c)を反応させてなる樹脂である、請求項2又は3に記載の感光性樹脂組成物。 The acid-modified vinyl group-containing epoxy resins (A1) and (A2) are resins (A1′) obtained by reacting the epoxy resins (a1) and (a2), respectively, with the vinyl group-containing monocarboxylic acid (b). 4. The photosensitive resin composition according to claim 2, which is a resin obtained by reacting (A2') with a saturated or unsaturated group-containing polybasic acid anhydride (c). 前記ビスフェノールノボラック型エポキシ樹脂(a1)が、下記一般式(I)で表される構造単位、又は下記一般式(II)で表される構造単位を有するものである、請求項2~4のいずれか1項に記載の感光性樹脂組成物。
Figure 0007284205000008

〔式(I)中、R11は水素原子又はメチル基を示し、Yはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR11は同一でも異なっていてもよく、Yの少なくとも一方はグリシジル基を示す。〕
Figure 0007284205000009

〔式(II)中、R12は水素原子又はメチル基を示し、Yはそれぞれ独立に水素原子又はグリシジル基を示す。複数のR12は同一でも異なっていてもよく、Yの少なくとも一方はグリシジル基を示す。〕
Any one of claims 2 to 4, wherein the bisphenol novolak type epoxy resin (a1) has a structural unit represented by the following general formula (I) or a structural unit represented by the following general formula (II). 1. The photosensitive resin composition according to claim 1.
Figure 0007284205000008

[In formula (I), R 11 represents a hydrogen atom or a methyl group, and each Y 1 independently represents a hydrogen atom or a glycidyl group. Plural R 11 may be the same or different, and at least one of Y 1 represents a glycidyl group. ]
Figure 0007284205000009

[In formula (II), R 12 represents a hydrogen atom or a methyl group, and each Y 2 independently represents a hydrogen atom or a glycidyl group. Plural R 12 may be the same or different, and at least one of Y 2 represents a glycidyl group. ]
前記ビスフェノールノボラック型エポキシ樹脂(a1)が、前記一般式(I)で表される構造単位を有するものであり、かつ前記エポキシ樹脂(a2)が下記一般式(III)で表される構造単位を含有するノボラック型エポキシ樹脂である、請求項2~5のいずれか1項に記載の感光性樹脂組成物。
Figure 0007284205000010

〔式(III)中、R13は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示す。〕
The bisphenol novolak type epoxy resin (a1) has a structural unit represented by the general formula (I), and the epoxy resin (a2) has a structural unit represented by the following general formula (III). 6. The photosensitive resin composition according to any one of claims 2 to 5, which is a novolac type epoxy resin.
Figure 0007284205000010

[In formula (III), R 13 represents a hydrogen atom or a methyl group, and Y 3 represents a hydrogen atom or a glycidyl group. ]
前記(B)光重合性化合物が、分子内にエチレン性不飽和結合を3つ以上有する化合物を含む、請求項1~6のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 6, wherein the (B) photopolymerizable compound contains a compound having three or more ethylenically unsaturated bonds in the molecule. 前記(A)酸変性ビニル基含有エポキシ樹脂、(B)光重合性化合物、(C)光重合開始剤、(D)無機フィラ、(E)シラン化合物及び(I)エポキシ樹脂硬化剤の含有量が、感光性樹脂組成物中の固形分全量基準として、各々5~60質量%、0.2~15質量%、0.1~10質量%、20~60質量%、0.5~30質量%、及び0.1~3質量%である請求項1~7のいずれか1項に記載の感光性樹脂組成物。 Contents of (A) acid-modified vinyl group-containing epoxy resin, (B) photopolymerizable compound, (C) photopolymerization initiator, (D) inorganic filler, (E) silane compound and (I) epoxy resin curing agent However, based on the total solid content in the photosensitive resin composition, each 5 to 60% by mass, 0.2 to 15% by mass, 0.1 to 10% by mass, 20 to 60% by mass, 0.5 to 30% by mass %, and 0.1 to 3% by mass, the photosensitive resin composition according to any one of claims 1 to 7. 前記(I)エポキシ樹脂硬化剤が、メラミンを含む請求項1~8のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 8, wherein (I) the epoxy resin curing agent contains melamine. 更に、(F)顔料を含有する、請求項1~9のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 9, further comprising (F) a pigment. 更に、(G)硬化剤を含む、請求項1~10のいずれか1項に記載の感光性樹脂組成物。 The photosensitive resin composition according to any one of claims 1 to 10, further comprising (G) a curing agent. 前記(G)硬化剤が、エポキシ化合物を含む請求項11に記載の感光性樹脂組成物。 12. The photosensitive resin composition according to claim 11, wherein the (G) curing agent contains an epoxy compound. 前記エポキシ化合物が、ビスフェノールF型エポキシ樹脂及びノボラック型エポキシ樹脂から選ばれる少なくとも一種である請求項12に記載の感光性樹脂組成物。 13. The photosensitive resin composition according to claim 12, wherein the epoxy compound is at least one selected from bisphenol F type epoxy resins and novolac type epoxy resins. キャリアフィルムと、請求項1~13のいずれか1項に記載の感光性樹脂組成物を用いた感光層とを有する、ドライフィルム。 A dry film comprising a carrier film and a photosensitive layer using the photosensitive resin composition according to any one of claims 1 to 13. 請求項1~13のいずれか1項に記載の感光性樹脂組成物により形成される表面保護膜及び層間絶縁膜の少なくとも一方を具備するプリント配線板。 A printed wiring board comprising at least one of a surface protective film and an interlayer insulating film formed from the photosensitive resin composition according to any one of claims 1 to 13. 基板上に請求項1~13のいずれか1項に記載の感光性樹脂組成物、又は請求項14に記載のドライフィルムを用いて感光層を設ける工程、該感光層を用いて樹脂パターンを形成する工程、及び該樹脂パターンを硬化して表面保護膜及び層間絶縁膜の少なくとも一方を形成する工程を順に有する、プリント配線板の製造方法。 A step of providing a photosensitive layer on a substrate using the photosensitive resin composition according to any one of claims 1 to 13 or the dry film according to claim 14, and forming a resin pattern using the photosensitive layer. and curing the resin pattern to form at least one of a surface protective film and an interlayer insulating film.
JP2021033670A 2015-12-22 2021-03-03 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board Active JP7284205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021033670A JP7284205B2 (en) 2015-12-22 2021-03-03 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015249943A JP7018168B2 (en) 2015-12-22 2015-12-22 A photosensitive resin composition, a dry film using the photosensitive resin composition, a printed wiring board, and a method for manufacturing the printed wiring board.
JP2021033670A JP7284205B2 (en) 2015-12-22 2021-03-03 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015249943A Division JP7018168B2 (en) 2015-12-22 2015-12-22 A photosensitive resin composition, a dry film using the photosensitive resin composition, a printed wiring board, and a method for manufacturing the printed wiring board.

Publications (2)

Publication Number Publication Date
JP2021103307A JP2021103307A (en) 2021-07-15
JP7284205B2 true JP7284205B2 (en) 2023-05-30

Family

ID=59231779

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2015249943A Active JP7018168B2 (en) 2015-12-22 2015-12-22 A photosensitive resin composition, a dry film using the photosensitive resin composition, a printed wiring board, and a method for manufacturing the printed wiring board.
JP2021033670A Active JP7284205B2 (en) 2015-12-22 2021-03-03 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP2021033675A Active JP7261252B2 (en) 2015-12-22 2021-03-03 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP2021033682A Active JP7261253B2 (en) 2015-12-22 2021-03-03 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP2021033680A Active JP7070743B2 (en) 2015-12-22 2021-03-03 A photosensitive resin composition, a dry film using the photosensitive resin composition, a printed wiring board, and a method for manufacturing the printed wiring board.
JP2022075008A Active JP7461406B2 (en) 2015-12-22 2022-04-28 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP2024015973A Pending JP2024036514A (en) 2015-12-22 2024-02-05 Photosensitive resin composition, and dry film, printed wiring board and method for manufacturing printed wiring board using the composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015249943A Active JP7018168B2 (en) 2015-12-22 2015-12-22 A photosensitive resin composition, a dry film using the photosensitive resin composition, a printed wiring board, and a method for manufacturing the printed wiring board.

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2021033675A Active JP7261252B2 (en) 2015-12-22 2021-03-03 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP2021033682A Active JP7261253B2 (en) 2015-12-22 2021-03-03 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP2021033680A Active JP7070743B2 (en) 2015-12-22 2021-03-03 A photosensitive resin composition, a dry film using the photosensitive resin composition, a printed wiring board, and a method for manufacturing the printed wiring board.
JP2022075008A Active JP7461406B2 (en) 2015-12-22 2022-04-28 Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP2024015973A Pending JP2024036514A (en) 2015-12-22 2024-02-05 Photosensitive resin composition, and dry film, printed wiring board and method for manufacturing printed wiring board using the composition

Country Status (1)

Country Link
JP (7) JP7018168B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178305A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film composed of the composition, cured product and printed wiring board having the cured product
JP7263879B2 (en) * 2019-03-27 2023-04-25 株式会社レゾナック Photosensitive resin composition, wiring layer and semiconductor device
JP2020166030A (en) * 2019-03-28 2020-10-08 日立化成株式会社 Photosensitive resin composition, photosensitive resin film, multilayer printed board and semiconductor package, and method for manufacturing multilayer printed board
JP7363105B2 (en) 2019-05-31 2023-10-18 株式会社レゾナック Photosensitive resin composition, photosensitive resin film, printed wiring board and semiconductor package, and method for producing printed wiring board
JP7251323B2 (en) * 2019-05-31 2023-04-04 株式会社レゾナック Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board, semiconductor package, and method for producing multilayer printed wiring board
JP7476899B2 (en) * 2019-08-14 2024-05-01 株式会社レゾナック Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board and semiconductor package, and method for manufacturing multilayer printed wiring board
JP7415443B2 (en) * 2019-10-30 2024-01-17 株式会社レゾナック Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
KR20230047088A (en) 2020-08-04 2023-04-06 가부시끼가이샤 레조낙 Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board and semiconductor package, and manufacturing method of multilayer printed wiring board
JP7354963B2 (en) * 2020-08-25 2023-10-03 味の素株式会社 Photosensitive resin composition
KR20240036650A (en) 2021-08-30 2024-03-20 가부시끼가이샤 레조낙 Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board and semiconductor package, and method for producing multilayer printed wiring board
WO2023145973A1 (en) 2022-01-31 2023-08-03 太陽ホールディングス株式会社 Dry film, cured product, interlayer insulation layer comprising cured product, and wiring board
CN118613765A (en) 2022-02-09 2024-09-06 株式会社力森诺科 Photosensitive resin composition, photosensitive element, printed wiring board, and method for producing printed wiring board
JP2024154574A (en) * 2023-04-19 2024-10-31 株式会社レゾナック Printed wiring board manufacturing method, photosensitive resin composition, photosensitive resin film, printed wiring board, and semiconductor package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199491A (en) 2006-01-27 2007-08-09 Showa Denko Kk Solder resist ink composition, solder resist obtained by curing the composition and method for producing the solder resist
JP2015016362A (en) 2009-08-07 2015-01-29 株式会社 メドレックス Applicator device for pin-frog-shaped microneedle
JP2016145866A (en) 2015-02-06 2016-08-12 株式会社Adeka Photosensitive solder resist composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170277B2 (en) 2004-09-30 2008-10-22 住友ベークライト株式会社 Photosensitive resin composition and semiconductor device
JP4931079B2 (en) 2007-12-21 2012-05-16 パナソニック株式会社 Liquid thermosetting resin composition for underfill and semiconductor device using the same
JP5415923B2 (en) * 2009-12-14 2014-02-12 太陽ホールディングス株式会社 Photosensitive resin composition, dry film thereof, and printed wiring board using them
JP5661293B2 (en) * 2010-02-08 2015-01-28 太陽ホールディングス株式会社 Photocurable resin composition, dry film, cured product, and printed wiring board
JP2012212039A (en) * 2011-03-31 2012-11-01 Sekisui Chem Co Ltd Photosensitive composition and printed wiring board
JP5768495B2 (en) * 2011-05-19 2015-08-26 日立化成株式会社 Photosensitive resin composition, photosensitive element and permanent resist
JP6181907B2 (en) * 2011-11-15 2017-08-16 互応化学工業株式会社 Resin composition for carboxyl group-containing resin and solder resist
JP6003053B2 (en) * 2011-12-14 2016-10-05 日立化成株式会社 Photosensitive resin composition for protective film of printed wiring board for semiconductor package and semiconductor package
WO2013161756A1 (en) * 2012-04-23 2013-10-31 日立化成株式会社 Photosensitive resin composition, photosensitive film, permanent mask resist and process for producing permanent mask resist
CN104520768A (en) * 2012-08-06 2015-04-15 日立化成株式会社 Photosensitive resin composition for permanent mask resist, photosensitive element, method for forming resist pattern, and method for producing printed wiring board
JP5564144B1 (en) * 2013-01-15 2014-07-30 太陽インキ製造株式会社 Curable resin composition, dry film and cured product thereof, and printed wiring board using them
JP5458215B1 (en) * 2013-03-11 2014-04-02 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board having cured film formed using the same
JP2015031849A (en) * 2013-08-02 2015-02-16 日立化成株式会社 Photosensitive resin composition
KR20230124105A (en) 2013-08-02 2023-08-24 가부시끼가이샤 레조낙 Photosensitive-resin composition
JP6359814B2 (en) * 2013-09-17 2018-07-18 太陽インキ製造株式会社 Photosensitive resin composition, dry film, cured product, and printed wiring board
JP5990291B2 (en) * 2014-04-11 2016-09-14 太陽インキ製造株式会社 Photosensitive resin composition, dry film, cured product, and printed wiring board
KR20170073116A (en) * 2015-12-18 2017-06-28 삼성전기주식회사 Photosensitive resin composition, insulating film using the same and printed circuit board comprising the film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199491A (en) 2006-01-27 2007-08-09 Showa Denko Kk Solder resist ink composition, solder resist obtained by curing the composition and method for producing the solder resist
JP2015016362A (en) 2009-08-07 2015-01-29 株式会社 メドレックス Applicator device for pin-frog-shaped microneedle
JP2016145866A (en) 2015-02-06 2016-08-12 株式会社Adeka Photosensitive solder resist composition

Also Published As

Publication number Publication date
JP7261252B2 (en) 2023-04-19
JP2021103307A (en) 2021-07-15
JP7070743B2 (en) 2022-05-18
JP7261253B2 (en) 2023-04-19
JP2021096480A (en) 2021-06-24
JP2017116652A (en) 2017-06-29
JP7461406B2 (en) 2024-04-03
JP2022103237A (en) 2022-07-07
JP2024036514A (en) 2024-03-15
JP7018168B2 (en) 2022-02-10
JP2021096478A (en) 2021-06-24
JP2021096479A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP7284205B2 (en) Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
JP6402710B2 (en) Photosensitive resin composition, dry film using the same, printed wiring board, and method for producing printed wiring board
KR101323928B1 (en) Photosenstive resin composition for protective film of printed wiring board for semiconductor package
JP2013522687A (en) Photocurable and thermosetting resin composition, and dry film solder resist
JP6003053B2 (en) Photosensitive resin composition for protective film of printed wiring board for semiconductor package and semiconductor package
KR20210027205A (en) Photosensitive resin composition
US12103999B2 (en) Photosensitive resin composition, photosensitive resin film, printed wiring board, semiconductor package, and method for producing printed wiring board
JP6953758B2 (en) A photosensitive resin composition, a dry film using the photosensitive resin composition, a printed wiring board, and a method for manufacturing the printed wiring board.
JP6988126B2 (en) Method for forming photosensitive resin composition, photosensitive element, semiconductor device and resist pattern
WO2022107380A1 (en) Photosensitive resin composition, photosensitive resin film, multilayered printed wiring board, semiconductor package, and method for producing multilayered printed wiring board
JP7294389B2 (en) Photosensitive resin composition, photosensitive film using the same, method for forming resist pattern, and printed wiring board
JP2015031849A (en) Photosensitive resin composition
JP7582379B2 (en) Photosensitive resin composition, and photosensitive film, resist pattern forming method, and printed wiring board using the same
WO2024135741A1 (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for manufacturing printed wiring board
WO2023214540A1 (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for producing printed wiring board
JP2020052288A (en) Resin composition, photosensitive film, photosensitive film with support, printed wiring board and semiconductor device
WO2023139694A1 (en) Photosensitive resin composition, photosensitive element, printed circuit board, and method for manufacturing printed circuit board
JP7035304B2 (en) A photosensitive resin composition, a photosensitive film using the photosensitive resin composition, a method for forming a resist pattern, and a printed wiring board.
JP2024036366A (en) Photosensitive resin composition, patterned cured film and production method of the same, photosensitive element, and printed wiring board and production method of the same
TW202439023A (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210326

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220111

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220118

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220401

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220405

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220802

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220823

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221019

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20230317

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7284205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350