JP7119609B2 - シート及びシートの製造方法 - Google Patents
シート及びシートの製造方法 Download PDFInfo
- Publication number
- JP7119609B2 JP7119609B2 JP2018111899A JP2018111899A JP7119609B2 JP 7119609 B2 JP7119609 B2 JP 7119609B2 JP 2018111899 A JP2018111899 A JP 2018111899A JP 2018111899 A JP2018111899 A JP 2018111899A JP 7119609 B2 JP7119609 B2 JP 7119609B2
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- cellulose
- fiber
- cellulose fibers
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Paper (AREA)
Description
そこで本発明は、繊維幅が10μm以上の繊維状セルロース(パルプ)と、繊維幅が1μm以下の微細繊維状セルロースを含むシートであって、撚れの発生が抑制されたシートを提供することを目的とする。
具体的に、本発明は、以下の構成を有する。
[2] 第2のセルロース繊維は、イオン性置換基を有する[1]に記載のシート。
[3] 第1のセルロース繊維の含有量が、セルロース繊維の全質量に対して10質量%以上である[1]又は[2]に記載のシート。
[4] ヘーズが20%以上である[1]~[3]のいずれかに記載のシート。
[5] 全光線透過率が80%以上である[1]~[4]のいずれかに記載のシート。
[6] 坪量が40g/m2以下である[1]~[5]のいずれかに記載のシート。
[7] 透気度が10000秒以上である[1]~[6]のいずれかに記載のシート。
[8] 第1のセルロース繊維のイオン性置換基の導入量は0.3mmol/g以上である[1]~[7]のいずれかに記載のシート。
[9] 第1のセルロース繊維の保水度が220%以上である[1]~[8]のいずれかに記載のシート。
[10] 保水度が220%以上であり、かつ繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維と、を含むスラリーからシートを形成する工程を含むシートの製造方法。
[11] 第2のセルロース繊維は、イオン性置換基を有する[10]に記載のシートの製造方法。
本発明は、イオン性置換基を有し、かつ繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維と、を含むシートに関する。なお、本明細書において、繊維幅が1000nm以下のセルロース繊維を微細繊維状セルロースと呼ぶこともある。
本発明のシートの全光線透過率は、80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。ここで、シートのヘーズは、JIS K 7136に準拠し、たとえばヘーズメータ(村上色彩技術研究所社製、HM-150)を用いて測定される値である。また、シートの全光線透過率は、JIS K 7361に準拠し、たとえばヘーズメータ(村上色彩技術研究所社製、HM-150)を用いて測定される値である。
本発明のシートは、第1のセルロース繊維を含む。ここで、第1のセルロース繊維は、イオン性置換基を有し、かつ繊維幅が10μm以上のセルロース繊維である。第1のセルロース繊維の繊維幅は10μm以上であればよいが、15μm以上であることが好ましく、20μm以上であることがより好ましい。なお、第1のセルロース繊維の繊維幅は100μm以下であることが好ましい。本明細書では、第1のセルロース繊維を粗大セルロース繊維ともいう。
リン酸基又はリン酸基に由来する置換基は、たとえば下記式(1)で表される置換基である。
図1は、リン酸基を有する第1のセルロース繊維に対するNaOH滴下量とpHの関係を示すグラフである。第1のセルロース繊維に対するリン酸基の導入量は、たとえば次のように測定される。まず、第1のセルロース繊維をイオン交換水で希釈し、攪拌しながら、1N塩酸を添加する。その後、濾過脱水により第1のセルロース繊維を回収する。この操作を、適宜1N塩酸の添加量を変えながら繰り返し、第1のセルロース繊維が有するリン酸基を完全に酸型へ変換する。そして、リン酸基の酸型への変換工程の後には、得られた第1のセルロース繊維をイオン交換水で希釈した後、濾過脱水して脱水シートを得る操作を繰り返すことにより、余剰の塩酸を十分に洗い流す。次いで、得られた第1のセルロース繊維(酸型)をイオン交換水で希釈した懸濁液に、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1に示すような滴定曲線を得る。図1に示すように、pHの増分(pHのアルカリ滴下量に対する微分値)が極大となる点が2つ得られる(増分が最大となる点と、二番目に大きくなる点)。このうち、アルカリを加えはじめて先に得られる増分の極大点(以下、第1終点と呼ぶ)までの領域を第1領域と呼び、第1終点から次に得られる増分の極大点(以下、第2終点と呼ぶ)までの領域を第2領域と呼び、第2領域の後には第3領域がある。第1終点はpHが4から7を示す間に得られ、第2終点はpHが9から10を示す間に得られる。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致する。このため、単にリン酸基導入量(またはリン酸基量)または置換基導入量(または置換基量)と言った場合は、強酸性基量のことを表す。したがって、上記で得られた滴定曲線の第1領域で必要としたアルカリ量(mmol)を滴定対象の第1のセルロース繊維懸濁液中の固形分(g)で除して得られる値が、リン酸基導入量(mmol/g)となる。
まず、第1のセルロース繊維をイオン交換水で希釈し、攪拌しながら、1N塩酸を添加する。その後、濾過脱水により第1のセルロース繊維を回収する。この操作を、適宜1N塩酸の添加量を変えながら繰り返し、第1のセルロース繊維が有するカルボキシル基を完全に酸型へ変換する。そして、カルボキシル基の酸型への変換工程の後には、得られた第1のセルロース繊維をイオン交換水で希釈した後、濾過脱水して脱水シートを得る操作を繰り返すことにより、余剰の塩酸を十分に洗い流す。次いで、得られた第1のセルロース繊維(酸型)をイオン交換水で希釈した懸濁液に、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図2に示すような滴定曲線を得る。なお、必要に応じて、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。滴定曲線は、図2に示すように、電気伝導度が減少した後、伝導度の増分(傾き)がほぼ一定となるまでの第1領域と、その後に伝導度の増分(傾き)が増加する第2領域に区分される。なお、第1領域、第2領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の第1のセルロース繊維含有スラリー中の固形分(g)で除して得られる値が、カルボキシル基の導入量(mmol/g)となる。
なお、上述のカルボキシル基導入量(mmol/g)は、分母が酸型の第1のセルロース繊維の質量であることから、酸型の第1のセルロース繊維が有するカルボキシル基量(以降、カルボキシル基量(酸型)と呼ぶ)を示している。一方で、カルボキシル基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの第1のセルロース繊維の質量に変換することで、陽イオンCが対イオンである第1のセルロース繊維が有するカルボキシル基量(以降、カルボキシル基量(C型))を求めることができる。
すなわち、下記計算式によってカルボキシル基導入量を算出する。
カルボキシル基量(C型)=カルボキシル基量(酸型)/{1+(W-1)×(カルボキシル基量(酸型))/1000}
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
なお、滴定法による置換基量の測定においては、水酸化ナトリウム水溶液の滴定間隔が短すぎる場合、本来より低い置換基量となることがあるため、適切な滴定間隔、例えば、0.1N水酸化ナトリウム水溶液を30秒間に50μLずつ滴定するなどが望ましい。
<リン酸基導入工程>
第1のセルロース繊維がイオン性置換基としてリン酸基を有する場合、第1のセルロース繊維の製造工程は、リン酸基導入工程を含む。リン酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リン酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リン酸基導入繊維が得られることとなる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
第1のセルロース繊維がイオン性置換基としてカルボキシル基を有する場合、第1のセルロース繊維の製造工程は、カルボキシル基導入工程を含む。カルボキシル基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
本実施形態における第1のセルロース繊維の製造方法においては、必要に応じてイオン性置換基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶剤によりイオン性置換基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、とくに限定されない。
本実施形態における第1のセルロース繊維の製造方法においては、必要に応じて洗浄後のイオン性置換基導入繊維に対して、アルカリ処理を行ってもよい。この場合、洗浄後のイオン性置換基導入繊維を10Lのイオン交換水で希釈した後、撹拌しながら1Nのアルカリ溶液を少しずつ添加することにより、pHが12以上13以下に調整することが好ましい。アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶剤のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶剤などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
なお、アルカリ処理工程の後には、さらに上述した洗浄工程を設けてもよい。
本発明のシートは、繊維幅が1000nm以下の第2のセルロース繊維(微細繊維状セルロース)を含む。第2のセルロース繊維の繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。なお、第2のセルロース繊維は、たとえば単繊維状のセルロースである。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。
すなわち、下記計算式によってカルボキシル基導入量を算出する。
カルボキシル基導入量(C型)=カルボキシル基量(酸型)/[1+(W-1)×(カルボキシル基量(酸型))/1000]
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
<繊維原料>
微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、とくに限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、とくに限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、とくに限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、とくに限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。
微細繊維状セルロースがリン酸基を有する場合、微細繊維状セルロースの製造工程は、リン酸基導入工程を含む。リン酸基導入工程は、第1のセルロース繊維の製造工程におけるリン酸基導入工程と同様の工程である。
微細繊維状セルロースがカルボキシル基を有する場合、微細繊維状セルロースの製造工程は、カルボキシル基導入工程を含む。カルボキシル基導入工程は、第1のセルロース繊維の製造工程におけるカルボキシル基導入工程と同様の工程である。
本実施形態における微細繊維状セルロースの製造方法においては、必要に応じてリン酸基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、第1のセルロース繊維の製造工程における洗浄工程と同様の工程である。
微細繊維状セルロースを製造する場合、イオン性置換基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法は、第1のセルロース繊維の製造工程におけるアルカリ処理の方法と同様である。
なお、アルカリ処理工程の後には、さらに上述した洗浄工程を設けてもよい。
繊維を解繊処理工程で解繊処理することにより、微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
第1のセルロース繊維と第2のセルロース繊維の質量比率(第1のセルロース繊維:第2のセルロース繊維)は、30:70~90:10であることが好ましく、40:60~90:10であることがより好ましい。ここで、シート中の第1のセルロース繊維は、たとえば走査電子顕微鏡(日立ハイテクノロジーズ社製、S-3600N)にて観察することが可能である。また、第2のセルロース繊維は、たとえば高分解能電界放出型走査電子顕微鏡(日立製作所製、S-5200)にて観察することが可能である。このような観察により、各繊維の体積比率から質量比率を算出してもよい。但し、後述するようなシートの製造工程における、各セルロース繊維の混合比は、シートにおける第1のセルロース繊維と第2のセルロース繊維の比率と同等である。
本発明のシートは第1のセルロース繊維と第2のセルロース繊維以外に、その他のセルロース繊維を含んでいてもよい。その他のセルロース繊維としては、たとえば第1のセルロース繊維を叩解して繊維幅を1μmより大きく10μm未満とした、高叩解パルプを挙げることができる。ここで、その他の繊維の繊維幅とは、セルロース繊維の幹繊維における繊維幅である。たとえば、その他の繊維がフィブリル化セルロース繊維である場合には、フィブリル化して分枝化した繊維の繊維幅ではなく、幹繊維の繊維幅をその他の繊維の繊維幅という。
本発明のシートは、水溶性高分子をさらに含んでいてもよい。水溶性高分子としては、たとえばカルボキシビニルポリマー、ポリビニルアルコール、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレンオキサイド、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、およびポリアクリルアミドなどに例示される合成水溶性高分子;キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、およびペクチンなどに例示される増粘多糖類;カルボキシメチルセルロース、メチルセルロース、およびヒロドキシエチルセルロースなどに例示されるセルロース誘導体;カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、およびアミロースなどに例示されるデンプン類;グリセリン、ジグリセリン、およびポリグリセリンなどに例示されるグリセリン類;ヒアルロン酸、ヒアルロン酸の金属塩等を挙げることができる。
本発明のシートは、紙力増強剤をさらに含むものであることが好ましい。これにより、シートの強度をさらに向上させることが可能となる。紙力増強剤としては、乾燥紙力剤及び湿潤紙力剤を挙げることができる。乾燥紙力剤としては、例えば、カチオン化澱粉、ポリアクリルアミド(PAM)、カルボキシメチルセルロース(CMC)、アクリル樹脂等を挙げることができる。湿潤紙力剤としては、ポリアミドエピハロヒドリン、尿素、メラミン、熱架橋性ポリアクリルアミド等を挙げることができる。中でも、本発明のシートは、ポリアミンポリアミドエピハロヒドリンを含有することが好ましい。
本発明のシートには、上述した成分以外の任意成分が含まれていてもよい。任意成分としては、たとえば、防腐剤、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、サイズ剤、凝結剤、歩留まり向上剤、嵩高剤、濾水性向上剤、pH調整剤、蛍光増白剤、ピッチコントロール剤、スライムコントロール剤、消泡剤、保水剤、分散剤等を挙げることができる。
本発明のシートの製造方法は、繊維幅が10μm以上の第1のセルロース繊維と、繊維幅が1000nm以下の第2のセルロース繊維と、を含むスラリーからシートを形成する工程を含む。ここで、第1のセルロース繊維の保水度は220%以上である。また、第2のセルロース繊維は、イオン性置換基を有するセルロース繊維であることが好ましい。
塗工工程では、たとえば繊維状セルロースを含むスラリー(塗工液)を基材上に塗工し、これを乾燥して形成されたシートを基材から剥離することによりシートを得ることができる。また、塗工装置と長尺の基材を用いることで、シートを連続的に生産することができる。
スラリーを基材に塗工する塗工機としては、とくに限定されないが、たとえばロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。シートの厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターがとくに好ましい。
抄紙工程は、抄紙機によりスラリーを抄紙することにより行われる。抄紙工程で用いられる抄紙機としては、とくに限定されないが、たとえば長網式、円網式、傾斜式等の連続抄紙機、またはこれらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等の公知の抄紙方法を採用してもよい。
本発明のシートの用途は特に限定されない。例えば、シートは、包装紙、トレーシングペーパー、クッキングシート、薬包紙、電池用セパレータ、フィルター、全熱交換用ライナー、振動板、プレス成形用部材、フレキシブル基板、樹脂複合材、強化繊維プラスチック積層体、等の用途に適している。
<第1のセルロース繊維(1)の作製>
[リン酸化パルプの作製]
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。
次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。これにより得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。また、後述する測定方法で測定される繊維幅は29μmであった。後述する測定方法で測定されるリン酸基量(強酸性基量)は、1.2mmol/gだった。得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%の第1のセルロース繊維(1)を含む、第1のセルロース繊維分散液(1)を得た。
[微細化]
上記方法にて得られた第1のセルロース繊維分散液(1)を、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて2回処理し、第2のセルロース繊維(1)を含む、第2のセルロース繊維分散液(1)を得た。X線回折により、この第2のセルロース繊維(1)がセルロースI型結晶を維持していることが確認された。また、後述する測定方法で測定される繊維幅は3~5nmであった。後述する測定方法で測定されるリン酸基量(強酸性基量)は、1.2mmol/gだった。
第1のセルロース繊維のリン酸基量は、中和滴定法により測定した。まず、第1のセルロース繊維をイオン交換水で希釈し、攪拌しながら、1N塩酸を添加し、その後、濾過脱水により第1のセルロース繊維を回収した。この操作を、繰り返し、第1のセルロース繊維が有するリン酸基を完全に酸型へ変換した。次いで、得られた第1のセルロース繊維をイオン交換水で希釈した後、濾過脱水して脱水シートを得る操作を繰り返すことにより、余剰の塩酸を十分に洗い流した。その後、得られた第1のセルロース繊維(酸型)をイオン交換水で希釈した懸濁液に、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1に示すような滴定曲線を得た。得られた滴定曲線の第1領域で必要としたアルカリ量(mmol)を滴定対象の第1のセルロース繊維懸濁液中の固形分(g)で除して、リン酸基導入量(mmol/g)とした。
第2のセルロース繊維のリン酸基量は、伝導度滴定法により測定した。まず、対象となる微細繊維状セルロースを含む第2のセルロース繊維分散液(1)をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。リン酸基量(mmol/g)は、計測結果のうち図3に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
第1のセルロース繊維の繊維幅は、カヤーニオートメーション社のカヤーニ繊維長測定器(FS-200形)を用いて測定することにより求めた。
第2のセルロース繊維の繊維幅を下記の方法で測定した。湿式微粒化装置にて処理をして得られた上記微細繊維状セルロース分散液の上澄み液を、微細繊維状セルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、親水化処理したカーボングリッド膜に滴下した。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(日本電子社製、JEOL-2000EX)により観察した。
第1のセルロース繊維(1)が50質量部、第2のセルロース繊維(1)が50質量部、ポリビニルアルコールが10質量部、ポリアミンポリアミド・エピクロロヒドリンが5質量部となるように、第1のセルロース繊維分散液(1)と、第2のセルロース繊維分散液(1)と、ポリビニルアルコール溶液(日本合成化学工業製、ゴーセネックス Z-200)と、ポリアミンポリアミド・エピクロロヒドリン溶液(荒川化学工業製、アラフィックス 255)を混合して塗工液1を得た。塗工液1の固形分濃度は0.5質量%に調製した。
次いで、得られるシート(上記塗工液の固形分から構成される層)の坪量が10g/m2になるように塗工液1を計量して、市販のアクリル板に塗工し、50℃の恒温乾燥機にて乾燥した。なお、所定の坪量となるようアクリル板上には堰止用の金枠(内寸が180mm×180mm、高さ5cmの金枠)を配置した。次いで、上記アクリル板から乾燥後のシートを剥離し、第1のセルロース繊維と第2のセルロース繊維を含有するシートを得た。
シート化工程において、シートの坪量が15g/m2になるように塗工液1を計量した以外は、実施例1と同様にしてシートを得た。
シート化工程において、シートの坪量が25g/m2になるように塗工液1を計量した以外は、実施例1と同様にしてシートを得た。
シート化工程において、シートの坪量が30g/m2になるように塗工液1を計量した以外は、実施例1と同様にしてシートを得た。
第1のセルロース繊維(1)が75質量部、第2のセルロース繊維(1)が25質量部、ポリビニルアルコールが10質量部、ポリアミンポリアミド・エピクロロヒドリンが5質量部となるように各液を混合して、塗工液2を得た。シート化工程で用いられる塗工液1を塗工液2とした以外は、実施例1と同様にしてシートを得た。
シート化工程において、シートの坪量が25g/m2になるように塗工液2を計量した以外は、実施例5と同様にしてシートを得た。
第1のセルロース繊維(1)が90質量部、第2のセルロース繊維(1)が10質量部、ポリビニルアルコールが10質量部、ポリアミンポリアミド・エピクロロヒドリンが5質量部となるように各液を混合して、塗工液3を得た。シート化工程で用いられる塗工液1を塗工液3とした以外は、実施例1と同様にしてシートを得た。
シート化工程において、シートの坪量が25g/m2になるように塗工液3を計量した以外は、実施例7と同様にしてシートを得た。
<第1のセルロース繊維(2)の作製>
実施例1の[リン酸化パルプの作製]において、薬液含浸パルプを熱風乾燥機で150秒加熱し、リン酸化パルプを得た以外は、第1のセルロース繊維(1)と同様にして第1のセルロース繊維(2)を得た。得られた第1のセルロース繊維(2)の繊維幅は29μmであり、リン酸基量(強酸性基量)は、0.7mmol/gだった。
[微細化]
実施例1の[微細化]において、第1のセルロース繊維(2)を用いた以外は、同様の方法で第2のセルロース繊維(2)を得た。得られた第2のセルロース繊維(2)の繊維幅は3~5nmであり、リン酸基量(強酸性基量)は、0.7mmol/gだった。
シート化工程において、上記で得られた第1のセルロース繊維(2)と第2のセルロース繊維(2)を使用した以外は、実施例4と同様にしてシートを得た。
第1のセルロース繊維(2)が80質量部、第2のセルロース繊維(2)が20質量部、ポリビニルアルコールが10質量部、ポリアミンポリアミド・エピクロロヒドリンが5質量部となるように各液を混合して、塗工液4を得た。シート化工程で用いられる塗工液を塗工液4とし、シートの坪量が25g/m2になるように塗工液4を計量した以外は、実施例9と同様にしてシートを得た。
<第1のセルロース繊維(3)の作製>
リン酸化パルプの作製において、薬液含浸パルプを熱風乾燥機で125秒加熱し、リン酸化パルプを得た以外は、第1のセルロース繊維(1)と同様にして第1のセルロース繊維(3)を得た。得られた第1のセルロース繊維(3)の繊維幅は29μmであり、リン酸基量(強酸性基量)は、0.5mol/gだった。
[微細化]
実施例1の[微細化]において、第1のセルロース繊維(3)を用いた以外は、同様の方法で第2のセルロース繊維(3)を得た。得られた第2のセルロース繊維(3)の繊維幅は3~5nmであり、リン酸基量(強酸性基量)は、0.5mmol/gだった。
シート化工程において、上記で得られた第1のセルロース繊維(3)と第2のセルロース繊維(3)を使用し、坪量が30g/m2になるように塗工液を計量した以外は、実施例4と同様にしてシートを得た。
第1のセルロース繊維(3)が80質量部、第2のセルロース繊維(3)が20質量部、ポリビニルアルコールが10質量部、ポリアミンポリアミド・エピクロロヒドリンが5質量部となるように各液を混合して、塗工液5を得た。シート化工程で用いられる塗工液を塗工液5とし、シートの坪量が25g/m2になるように塗工液5を計量した以外は、実施例11と同様にしてシートを得た。
<第2のセルロース繊維(4)の作製>
針葉樹晒クラフトパルプ(NBKP)をダブルディスクリファイナーにて変則フリーネスが100mlになるまで叩解し、固形分濃度が2質量%のパルプ分散液を得た。パルプ分散液を固形分濃度が0.2質量%になるようにイオン交換水で希釈し、NiroSoavi社製高圧ホモジナイザー「Panda Plus2000」により処理圧力120MPaで3回の微細化処理を行い、第2のセルロース繊維(4)を含む、第2のセルロース繊維分散液(4)を得た。得られた第2のセルロース繊維(4)の繊維幅は130nmであり、リン酸基量(強酸性基量)は、0.03mmol/gだった。
シート化工程において、第2のセルロース繊維として第2のセルロース繊維(4)を使用した以外は、実施例3と同様にしてシートを得た。
第1のセルロース繊維(1)が50質量部、第2のセルロース繊維(1)が50質量部、ポリアミンポリアミド・エピクロロヒドリンが5質量部となるように各液を混合して、塗工液6を得た。シート化工程で用いられる塗工液1を塗工液6とした以外は、実施例3と同様にしてシートを得た。
第1のセルロース繊維として、何らの化学変性処理も行っていない未変性のパルプである針葉樹晒クラフトパルプを使用した。第1のセルロース繊維(4)の繊維幅は29μmであった。
シート化工程において、第1のセルロース繊維として第1のセルロース繊維(4)を使用した以外は、実施例3と同様にしてシートを得た。
シート化工程において、第1のセルロース繊維として上記で得られた第1のセルロース繊維(4)を使用した以外は、実施例6と同様にしてシートを得た。
<第1のセルロース繊維(5)の作製>
固形分濃度が4.0質量%になるように針葉樹晒クラフトパルプに水を加えて、分散した後、ダブルディスクリファイナーで1回処理をし、第1のセルロース繊維(5)を得た。第1のセルロース繊維(5)の繊維幅は16μmであった。
シート化工程において、第1のセルロース繊維として第1のセルロース繊維(5)を使用した以外は、実施例2と同様にしてシートを得た。
シート化工程において、第1のセルロース繊維として第1のセルロース繊維(5)を使用した以外は、実施例3と同様にしてシートを得た。
シート化工程において、第1のセルロース繊維として第1のセルロース繊維(5)を使用した以外は、実施例5と同様にしてシートを得た。
シート化工程において、第1のセルロース繊維として第1のセルロース繊維(5)を使用した以外は、実施例6と同様にしてシートを得た。
(坪量)
JIS P 8124に準拠して坪量を測定した。
JIS P 8118に準拠してシートの厚みを測定した。
JIS P 8124に準拠して坪量を測定し、JIS P 8118に準拠してシートの厚みを測定し、これらの値から密度を算出した。
J.TAPPI-5の王研式透気度法に準拠して透気度を測定した。
JIS K 7136に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150 )を用いてヘーズを測定した。また、JIS K 7361に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM-150)を用いて全光線透過率を測定した。
作製したシート(サイズ縦18cm、横18cm)20枚(総面積0.648m2分)、における撚れ個数を目視にて確認した。1m2あたりの撚れの個数に換算し、以下の基準で評価した。なお、「撚れ」とは、図4の点線枠内に示されるようなシート表面に確認される白い塊部分のことをいう。
◎:撚れなし(0個/m2)
○:撚れ個数 1個/m2以上、2個/m2未満
△:撚れ個数 2個/m2以上、10個/m2未満
×:撚れ個数 10個/m2以上
シート中の第1のセルロース繊維は、走査電子顕微鏡(日立ハイテクノロジーズ社製、S-3600N)にて確認した。また、シート中の第2のセルロース繊維は、高分解能電界放出型走査電子顕微鏡(日立製作所製、S-5200)にて確認した。
J.TAPPI-26に準拠して保水度を測定した。
Claims (9)
- リン酸基又はリン酸基に由来する置換基を有し、かつ繊維幅が10μm以上の第1のセルロース繊維と、リン酸基又はリン酸基に由来する置換基を有し、かつ繊維幅が1000nm以下の第2のセルロース繊維と、を含むシート。
- 前記第1のセルロース繊維の含有量が、セルロース繊維の全質量に対して10質量%以上である請求項1に記載のシート。
- ヘーズが20%以上である請求項1又は2に記載のシート。
- 全光線透過率が80%以上である請求項1~3のいずれか1項に記載のシート。
- 坪量が40g/m2以下である請求項1~4のいずれか1項に記載のシート。
- 透気度が10000秒以上である請求項1~5のいずれか1項に記載のシート。
- 前記第1のセルロース繊維のリン酸基又はリン酸基に由来する置換基の導入量は0.3mmol/g以上である請求項1~6のいずれか1項に記載のシート。
- 前記第1のセルロース繊維の保水度が220%以上である請求項1~7のいずれか1項に記載のシート。
- 保水度が220%以上であり、リン酸基又はリン酸基に由来する置換基を有し、かつ繊維幅が10μm以上の第1のセルロース繊維と、
リン酸基又はリン酸基に由来する置換基を有し、かつ繊維幅が1000nm以下の第2のセルロース繊維と、を含むスラリーからシートを形成する工程を含むシートの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018111899A JP7119609B2 (ja) | 2018-06-12 | 2018-06-12 | シート及びシートの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018111899A JP7119609B2 (ja) | 2018-06-12 | 2018-06-12 | シート及びシートの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019214806A JP2019214806A (ja) | 2019-12-19 |
JP7119609B2 true JP7119609B2 (ja) | 2022-08-17 |
Family
ID=68918361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018111899A Active JP7119609B2 (ja) | 2018-06-12 | 2018-06-12 | シート及びシートの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7119609B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021002273A1 (ja) * | 2019-07-01 | 2021-01-07 | 王子ホールディングス株式会社 | シート及び積層体 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015200033A (ja) | 2014-04-07 | 2015-11-12 | 王子ホールディングス株式会社 | 耐水性セルロース繊維及びその製造方法、セルロースシート及びその製造方法 |
JP2017082071A (ja) | 2015-10-27 | 2017-05-18 | 王子ホールディングス株式会社 | シート及び成形体 |
JP2017132612A (ja) | 2016-01-29 | 2017-08-03 | 日本製紙クレシア株式会社 | 巻芯紙管、及びそれを備えたシートロール |
WO2018062501A1 (ja) | 2016-09-30 | 2018-04-05 | 王子ホールディングス株式会社 | 組成物 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0832995B2 (ja) * | 1987-01-21 | 1996-03-29 | ダイセル化学工業株式会社 | イオン交換性ろ紙の製法 |
-
2018
- 2018-06-12 JP JP2018111899A patent/JP7119609B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015200033A (ja) | 2014-04-07 | 2015-11-12 | 王子ホールディングス株式会社 | 耐水性セルロース繊維及びその製造方法、セルロースシート及びその製造方法 |
JP2017082071A (ja) | 2015-10-27 | 2017-05-18 | 王子ホールディングス株式会社 | シート及び成形体 |
JP2017132612A (ja) | 2016-01-29 | 2017-08-03 | 日本製紙クレシア株式会社 | 巻芯紙管、及びそれを備えたシートロール |
WO2018062501A1 (ja) | 2016-09-30 | 2018-04-05 | 王子ホールディングス株式会社 | 組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP2019214806A (ja) | 2019-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7259226B2 (ja) | シート | |
JP7294395B2 (ja) | パルプ、スラリー、シート、積層体及びパルプの製造方法 | |
JP5783253B2 (ja) | 微細繊維および微細繊維含有シートの製造方法 | |
JP6822420B2 (ja) | 樹脂複合体及び樹脂複合体の製造方法 | |
JP7443769B2 (ja) | 繊維状セルロース含有樹脂組成物、シート及び成形体 | |
TWI798181B (zh) | 片材 | |
US20210275407A1 (en) | Sheet | |
JP7044067B2 (ja) | 組成物 | |
JP7327340B2 (ja) | 繊維状セルロースの製造方法、繊維状セルロース分散液及びシート | |
JP7119609B2 (ja) | シート及びシートの製造方法 | |
JP6617843B1 (ja) | シート | |
JP7346873B2 (ja) | シートの製造方法 | |
JP7230327B2 (ja) | シート | |
JP7167528B2 (ja) | シート | |
CN113227492A (zh) | 纤维状纤维素、含有纤维状纤维素的物质、成型体及纤维状纤维素的制造方法 | |
JP6607327B1 (ja) | シート | |
JP2020172738A (ja) | シート及びシートの製造方法 | |
JP7346874B2 (ja) | 微細繊維状セルロース含有分散液の製造方法及び微細繊維状セルロース含有シートの製造方法 | |
JP7395836B2 (ja) | 微細繊維状セルロース含有分散液の製造方法 | |
JP6741106B1 (ja) | シート及びシートの製造方法 | |
JP7452542B2 (ja) | シート及び積層体 | |
JP7346870B2 (ja) | シートの製造方法及びシート | |
JP7327236B2 (ja) | 繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法 | |
JP7338776B2 (ja) | 繊維状セルロース含有スラリーの製造方法 | |
JP7480744B2 (ja) | パルプ繊維含有プレシート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210430 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220208 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220718 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7119609 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |