Nothing Special   »   [go: up one dir, main page]

JP7021485B2 - 発光部品、プリントヘッド及び画像形成装置 - Google Patents

発光部品、プリントヘッド及び画像形成装置 Download PDF

Info

Publication number
JP7021485B2
JP7021485B2 JP2017181727A JP2017181727A JP7021485B2 JP 7021485 B2 JP7021485 B2 JP 7021485B2 JP 2017181727 A JP2017181727 A JP 2017181727A JP 2017181727 A JP2017181727 A JP 2017181727A JP 7021485 B2 JP7021485 B2 JP 7021485B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
thyristor
light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017181727A
Other languages
English (en)
Other versions
JP2019057647A (ja
Inventor
崇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017181727A priority Critical patent/JP7021485B2/ja
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to US15/891,381 priority patent/US11043530B2/en
Priority to CN201810127278.3A priority patent/CN108428715B/zh
Priority to CN201810127584.7A priority patent/CN108427248B/zh
Priority to US15/891,384 priority patent/US10236321B2/en
Priority to CN201810127276.4A priority patent/CN108428714B/zh
Priority to US15/891,383 priority patent/US10438990B2/en
Priority to CN201810127280.0A priority patent/CN108428707B/zh
Priority to US15/891,385 priority patent/US10374002B2/en
Publication of JP2019057647A publication Critical patent/JP2019057647A/ja
Application granted granted Critical
Publication of JP7021485B2 publication Critical patent/JP7021485B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Heads (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Description

本発明は、発光部品、プリントヘッド及び画像形成装置に関する。
特許文献1には、しきい電圧もしくはしきい電流が外部から制御可能な発光素子多数個を、一次元、二次元、もしくは三次元的に配列し、各発光素子のしきい電圧もしくはしきい電流を制御する電極を互いに電気的手段にて接続し、各発光素子に、外部から電圧もしくは電流を印加させるクロックラインを接続した、発光素子アレイが記載されている。
特許文献2には、基板と基板上にアレイ状に配設された面発光型半導体レーザと基板上に配列され前記面発光型半導体レーザの発光を選択的にオン・オフさせるスイッチ素子としてのサイリスタとを備える自己走査型の光源ヘッドが記載されている。
特許文献3には、pnpnpn6層半導体構造の発光素子を構成し、両端のp型第1層とn型第6層、および中央のp型第3層およびn型第4層に電極を設け、pn層に発光ダイオード機能を担わせ、pnpn4層にサイリスタ機能を担わせた自己走査型発光装置が記載されている。
特開平1-238962号公報 特開2009-286048号公報 特開2001-308385号公報
ところで、例えば、発光部と駆動部とを備える自己走査型の発光素子アレイにおいて、発光部の発光素子を駆動部の駆動に用いる素子と同じ半導体多層膜から構成すると、発光素子の発光特性と、駆動に用いる素子の駆動特性とを独立に設定しにくかった。このため、駆動に用いる素子と発光部の発光素子とを積層して、発光素子の特性と駆動に用いる素子の特性とを独立して設定することが考えられる。しかし、駆動に用いる素子上に発光素子を積層すると、半導体層の成長時に発生する結晶欠陥などにより、発光素子の特性が低下するおそれがある。
そこで本発明は、駆動に用いる素子上に発光素子を積層する場合に比べ、発光素子の特性の低下を抑制した発光部品などを提供することを目的とする。
請求項1に記載の発明は、基板と、前記基板上に設けられた発光素子と、オン状態になることで前記発光素子を発光、又は、当該発光素子の発光量を増加させるサイリスタと、前記発光素子と前記サイリスタとの間に設けられ、当該サイリスタが出射する光の透過を抑制する光透過抑制層とを備え、前記発光素子と前記光透過抑制層と前記サイリスタとがこの並び順で積層される発光部品である。
請求項2に記載の発明は、前記発光素子の出射する光と、前記サイリスタの発光する光とは、波長が異なることを特徴とする請求項1に記載の発光部品である。
請求項3に記載の発明は、前記光透過抑制層は、バンドギャップエネルギが前記サイリスタの出射する光に相当するバンドギャップエネルギより小さい半導体層を含むことを特徴とする請求項1又は2に記載の発光部品である。
請求項4に記載の発明は、前記発光素子及び前記サイリスタは、それぞれ複数の半導体層が積層されて構成され、前記光透過抑制層は、前記発光素子側において接する当該発光素子を構成する半導体層と、前記サイリスタ側において接する当該サイリスタを構成する半導体層との、いずれか一方の半導体層と同じ導電型を有するとともに、当該いずれか一方の半導体層よりも不純物濃度が高い半導体層を含むことを特徴とする請求項1又は2に記載の発光部品である。
請求項5に記載の発明は、前記発光素子及び前記サイリスタは、それぞれ複数の半導体層が積層されて構成され、前記光透過抑制層は、前記発光素子側において接する当該発光素子を構成する半導体層と、前記サイリスタ側において接する当該サイリスタを構成する半導体層とを直接接合させた場合における電流の流れやすい方向が維持されるように構成されていることを特徴とする請求項1又は2に記載の発光部品である。
請求項6に記載の発明は、前記発光素子、前記サイリスタ及び前記光透過抑制層は、それぞれ複数の半導体層が積層されて構成され、前記サイリスタを構成する複数の半導体層のうち前記光透過抑制層に接する半導体層と、当該光透過抑制層を構成する複数の半導体層のうち当該サイリスタに接する層とは、同じ導電型を有し、前記発光素子を構成する複数の半導体層のうち前記光透過抑制層に接する半導体層と、当該光透過抑制層を構成する複数の半導体層のうち当該発光素子に接する半導体層とは、同じ導電型を有し、前記光透過抑制層を構成する複数の半導体層のそれぞれは、前記発光素子を構成する複数の半導体層のうち当該光透過抑制層に接する半導体層、及び、前記サイリスタを構成する複数の半導体層のうち当該光透過抑制層に接する半導体層よりも不純物濃度が高いことを特徴とする請求項1又は2に記載の発光部品である。
請求項7に記載の発明は、前記サイリスタは、当該サイリスタの立ち上がり電圧を低減する電圧低減層を備えることを特徴とする請求項1に記載の発光部品である。
請求項8に記載の発明は、前記電圧低減層は、前記サイリスタを構成する他の半導体層のいずれよりもバンドギャップエネルギが小さいことを特徴とする請求項7に記載の発光部品である。
請求項9に記載の発明は、基板と、前記基板上に設けられた複数の発光素子と、複数の前記発光素子上に光透過抑制層を介してそれぞれが積層され、オン状態になることで当該発光素子を発光、又は、当該発光素子の発光量を増加させる複数のサイリスタと、複数の前記発光素子と同一の構成の下部素子上に前記光透過抑制層を介してそれぞれが積層されるとともに、オン状態になることで、前記サイリスタをオン状態に移行が可能な状態にする複数の転送素子を、備え、前記転送素子は、接続配線により、前記下部素子を介さず、又は、当該下部素子を構成する半導体層の一部の半導体層を介して前記基板に接続されていることを特徴とする発光部品である。
請求項10に記載の発明は、基板と、当該基板上に設けられた発光素子と、オン状態になることで当該発光素子を発光、又は、当該発光素子の発光量を増加させるサイリスタと、当該発光素子と当該サイリスタとの間に設けられ、当該サイリスタが出射する光の透過を抑制する光透過抑制層と、を含み、当該発光素子と当該光透過抑制層と当該サイリスタとがこの並び順で積層される発光手段と、前記発光手段から出射される光を結像させる光学手段とを備えるプリントヘッドである。
請求項11に記載の発明は、像保持体と、前記像保持体を帯電する帯電手段と、基板と、当該基板上に設けられた発光素子と、オン状態になることで当該発光素子を発光、又は、当該発光素子の発光量を増加させるサイリスタと、当該発光素子と当該サイリスタとの間に設けられ、当該サイリスタが出射する光の透過を抑制する光透過抑制層と、を含み、当該発光素子と当該光透過抑制層と当該サイリスタとがこの並び順で積層され、光学手段を介して前記像保持体を露光する露光手段と、前記露光手段により露光され前記像保持体に形成された静電潜像を現像する現像手段と、前記像保持体に現像された画像を被転写体に転写する転写手段とを備える画像形成装置である。
請求項12に記載の発明は、基板上に設けられた発光素子と、前記発光素子上に積層され、前記発光素子を駆動する駆動素子と、前記発光素子と前記駆動素子との間に設けられ、当該駆動素子が出射する光の透過を抑制する光透過抑制層とを備え、前記発光素子と前記光透過抑制層と前記駆動素子とがこの並び順で積層される発光部品である。
請求項1の発明によれば、駆動に用いる素子上に発光素子を積層する場合に比べ、発光素子の特性の低下が抑制される。
請求項2の発明によれば、波長が同じ場合に比べ、発光素子の特性と駆動するサイリスタの特性とを別々に設定しやすい。
請求項3の発明によれば、バンドギャップが小さい半導体層を含まない場合に比べて、透過を抑制する光の波長を選択できる。
請求項4の発明によれば、不純物濃度が高い層を含まない場合に比べて、透過を抑制する光の波長依存性が小さくなる。
請求項5の発明によれば、電流の流れやすい方向が維持されない場合に比べ、駆動電圧が低くなる。
請求項6の発明によれば、接する層同士が異なる導電型で構成されている場合に比べ、駆動電圧が低くなる。
請求項7の発明によれば、電圧低減層を備えない場合に比べて、駆動するサイリスタのオン状態における消費電力が低減する。
請求項8の発明によれば、電圧低減層をバンドギャップエネルギで設定しない場合に比べ、電圧低減層の選定が容易になる。
請求項9の発明によれば、接続配線を備えない場合に比べて、低消費電力化が図れる。
請求項10の発明によれば、駆動に用いる素子上に発光素子を積層する場合に比べ、プリントヘッドの性能が向上する。
請求項11の発明によれば、駆動に用いる素子上に発光素子を積層する場合に比べ、画像形成装置の性能が向上する。
請求項12の発明によれば、駆動に用いる素子上に発光素子を積層する場合に比べ、発光素子の特性の低下が抑制される。
第1の実施の形態が適用される画像形成装置の全体構成の一例を示した図である。 プリントヘッドの構成の一例を示した断面図である。 発光装置の一例の上面図である。 発光チップの構成、発光装置の信号発生回路の構成及び回路基板上の配線(ライン)の構成の一例を示した図である。 第1の実施の形態に係る自己走査型発光素子アレイ(SLED)が搭載された発光チップの回路構成を説明する等価回路図である。 第1の実施の形態に係る発光チップの平面レイアウト図及び断面図の一例である。(a)は、発光チップの平面レイアウト図、(b)は、(a)のVIB-VIB線での断面図である。 発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 光透過抑制層を説明する図である。(a)は、光透過抑制層が単層のn型半導体層である場合、(b)は、光透過抑制層が単層のp型半導体層である場合、(c)は、光透過抑制層が複数のn型半導体層で構成されている場合、(d)は、光透過抑制層が複数のp型半導体層で構成されている場合、及び、(e)は、光透過抑制層がn型半導体層とp型半導体層とで構成されている場合である。 発光装置及び発光チップの動作を説明するタイミングチャートである。 発光チップの製造方法を説明する図である。(a)は、半導体積層体形成工程、(b)は、nオーミック電極を形成するnオーミック電極形成工程、(c)は、半導体積層体分離工程である。 発光チップの製造方法を説明する図である。(d)は、電流阻止部を形成する電流阻止部形成工程、(e)は、pゲート層を露出させるpゲート層出しエッチング工程、(f)は、pオーミック電極を形成するpオーミック電極形成工程である。 発光チップの製造方法を説明する図である。(g)は、保護層を形成する保護層形成工程、(h)は、配線及び裏面電極を形成する配線等形成工程である。 発光ダイオードと電圧低減層を備えた設定サイリスタとが積層されたアイランドの拡大断面図である。 サイリスタの構造とサイリスタの特性を説明する図である。(a)は、電圧低減層を備えないサイリスタの断面図、(b)は、電圧低減層を備えるサイリスタの断面図、(c)は、サイリスタ特性である。 半導体層を構成する材料のバンドギャップエネルギを説明する図である。 第1の実施の形態に係る発光チップの変形例1-1を説明する発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 第1の実施の形態に係る発光チップの変形例1-2を説明する発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 第1の実施の形態に係る発光チップの変形例1-3を説明する発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 第1の実施の形態に係る発光チップの変形例1-4を説明する発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 第1の実施の形態に係る発光チップの変形例1-5を説明する発光ダイオードと設定サイリスタとが積層されたアイランドの拡大断面図である。 第2の実施の形態に係る発光チップの垂直共振器面発光レーザと設定サイリスタとが積層されたアイランドの拡大断面図である。 第2の実施の形態に係る発光チップの変形例2-1を説明する垂直共振器面発光レーザと設定サイリスタとが積層されたアイランドの拡大断面図である。 第2の実施の形態に係る発光チップの変形例2-2を説明する垂直共振器面発光レーザと設定サイリスタとが積層されたアイランドの拡大断面図である。 第3の実施の形態に係る自己走査型発光素子アレイ(SLED)が搭載された発光チップの回路構成を説明する等価回路図である。 第3の実施の形態に係る発光チップのアイランドの断面図である。 第3の実施の形態に係る発光チップの動作を説明するタイミングチャートである。 第3の実施の形態に係る発光チップCの変形例3-1のアイランドの拡大断面図である。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
なお、以下では、アルミニウムをAlとするなど、元素記号を用いて表記する。
[第1の実施の形態]
ここでは、発光部品の一例である発光チップCを、一例として画像形成装置1に適用するとして説明する。
(画像形成装置1)
図1は、第1の実施の形態が適用される画像形成装置1の全体構成の一例を示した図である。図1に示す画像形成装置1は、一般にタンデム型と呼ばれる画像形成装置である。この画像形成装置1は、各色の画像データに対応して画像形成を行なう画像形成プロセス部10、画像形成プロセス部10を制御する画像出力制御部30、例えばパーソナルコンピュータ(PC)2や画像読取装置3に接続され、これらから受信された画像データに対して予め定められた画像処理を施す画像処理部40を備える。
画像形成プロセス部10は、予め定められた間隔を置いて並列に配置される画像形成ユニット11Y、11M、11C、11K(区別しない場合は、画像形成ユニット11と表記する。)を備える。画像形成ユニット11は、静電潜像を形成してトナー像を保持する像保持体の一例としての感光体ドラム12、感光体ドラム12の表面を予め定められた電位で帯電する帯電手段の一例としての帯電器13、帯電器13によって帯電された感光体ドラム12を露光するプリントヘッド14、プリントヘッド14によって得られた静電潜像を現像する現像手段の一例としての現像器15を備える。各画像形成ユニット11Y、11M、11C、11Kは、それぞれがイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)のトナー像を形成する。
また、画像形成プロセス部10は、各画像形成ユニット11Y、11M、11C、11Kの感光体ドラム12にて形成された各色のトナー像を被転写体の一例としての記録用紙25に多重転写させるために、この記録用紙25を搬送する用紙搬送ベルト21と、用紙搬送ベルト21を駆動させる駆動ロール22と、感光体ドラム12のトナー像を記録用紙25に転写させる転写手段の一例としての転写ロール23と、記録用紙25にトナー像を定着させる定着器24とを備える。
この画像形成装置1において、画像形成プロセス部10は、画像出力制御部30から供給される各種の制御信号に基づいて画像形成動作を行う。そして、画像出力制御部30による制御の下で、パーソナルコンピュータ(PC)2や画像読取装置3から受信された画像データは、画像処理部40によって画像処理が施され、画像形成ユニット11に供給される。そして、例えば黒(K)色の画像形成ユニット11Kでは、感光体ドラム12が矢印A方向に回転しながら、帯電器13により予め定められた電位に帯電され、画像処理部40から供給された画像データに基づいて発光するプリントヘッド14により露光される。これにより、感光体ドラム12上には、黒(K)色画像に関する静電潜像が形成される。そして、感光体ドラム12上に形成された静電潜像は現像器15により現像され、感光体ドラム12上には黒(K)色のトナー像が形成される。画像形成ユニット11Y、11M、11Cにおいても、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)の各色トナー像が形成される。
各画像形成ユニット11で形成された感光体ドラム12上の各色トナー像は、矢印B方向に移動する用紙搬送ベルト21の移動に伴って供給された記録用紙25に、転写ロール23に印加された転写電界により、順次静電転写され、記録用紙25上に各色トナーが重畳された合成トナー像が形成される。
その後、合成トナー像が静電転写された記録用紙25は、定着器24まで搬送される。定着器24に搬送された記録用紙25上の合成トナー像は、定着器24によって熱及び圧力による定着処理を受けて記録用紙25上に定着され、画像形成装置1から排出される。
(プリントヘッド14)
図2は、プリントヘッド14の構成の一例を示した断面図である。露光手段の一例としてのプリントヘッド14は、ハウジング61、感光体ドラム12を露光する複数の発光素子(第1の実施の形態では、発光素子は発光ダイオードLED)を備える光源部63を備えた発光手段の一例としての発光装置65、光源部63から出射された光を感光体ドラム12の表面に結像させる光学手段の一例としてのロッドレンズアレイ64を備える。
発光装置65は、前述した光源部63、光源部63を駆動する信号発生回路110(後述の図3参照)等を搭載する回路基板62を備える。
ハウジング61は、例えば金属で形成され、回路基板62及びロッドレンズアレイ64を支持し、光源部63の発光素子の発光面がロッドレンズアレイ64の焦点面となるように設定されている。また、ロッドレンズアレイ64は、感光体ドラム12の軸方向(主走査方向であって、後述する図3、図4(b)のX方向)に沿って配置されている。
(発光装置65)
図3は、発光装置65の一例の上面図である。
図3に例として示す発光装置65では、光源部63は、回路基板62上に、40個の発光部品の一例としての発光チップC1~C40(区別しない場合は、発光チップCと表記する。)が、主走査方向であるX方向に二列に千鳥状に配置して構成されている。発光チップC1~C40の構成は同じであってよい。
本明細書では、「~」は、番号によってそれぞれが区別された複数の構成要素を示すもので、「~」の前後に記載されたもの及びその間の番号のものを含むことを意味する。例えば、発光チップC1~C40は、発光チップC1から番号順に発光チップC40までを含む。
なお、第1の実施の形態では、発光チップCの数として、合計40個を用いたが、これに限定されない。
そして、発光装置65は、光源部63を駆動する信号発生回路110を搭載している。信号発生回路110は、例えば集積回路(IC)などで構成されている。なお、発光装置65が信号発生回路110を搭載していなくともよい。このときは、信号発生回路110は、発光装置65の外部に設けられ、発光チップCを制御する制御信号などを、ケーブルなどを介して供給する。ここでは、発光装置65は信号発生回路110を備えるとして説明する。
発光チップCの配列についての詳細は後述する。
図4は、発光チップCの構成、発光装置65の信号発生回路110の構成及び回路基板62上の配線(ライン)の構成の一例を示した図である。図4(a)は発光チップCの構成を示し、図4(b)は発光装置65の信号発生回路110の構成及び回路基板62上の配線(ライン)の構成を示す。なお、図4(b)では、発光チップC1~C40の内、発光チップC1~C9の部分を示している。
はじめに、図4(a)に示す発光チップCの構成を説明する。
発光チップCは、表面形状が矩形である基板80の表面において、長辺の一辺に近い側に長辺に沿って列状に設けられた複数の発光素子(第1の実施の形態では発光ダイオードLED1~LED128(区別しない場合は、発光ダイオードLEDと表記する。))を含んで構成される発光部102を備える。さらに、発光チップCは、基板80の表面の長辺方向の両端部に、各種の制御信号等を取り込むための複数のボンディングパッドである端子(φ1端子、φ2端子、Vga端子、φI端子)を備える。なお、これらの端子は、基板80の一端部からφI端子、φ1端子の順に設けられ、基板80の他端部からVga端子、φ2端子の順に設けられている。そして、発光部102は、φ1端子とφ2端子との間に設けられている。さらに、基板80の裏面にはVsub端子として裏面電極91(後述する図6参照)が設けられている。発光ダイオードLEDは、発光素子(発光に用いる素子)の一例である。ここで、基板80の表面において、発光ダイオードLED1~LED128の配列の方向をx方向、x方向と直交する方向をy方向とする。
なお、「列状」とは、図4(a)に示したように複数の発光素子(第1の実施の形態では、発光ダイオードLED)が一直線上に配置されている場合に限らず、複数の発光素子のそれぞれの発光素子が、列方向と直交する方向に対して、互いに異なるずれ量を有して配置されている状態でもよい。例えば、それぞれの発光素子が、列方向と直交する方向にずれ量をもって配置されていてもよい。また、隣接する発光素子間で交互に、又は複数の発光素子毎に、ジグザグに配置されていてもよい。
次に、図4(b)により、発光装置65の信号発生回路110の構成及び回路基板62上の配線(ライン)の構成を説明する。
前述したように、発光装置65の回路基板62には、信号発生回路110及び発光チップC1~C40が搭載され、信号発生回路110と発光チップC1~C40とを接続する配線(ライン)が設けられている。
まず、信号発生回路110の構成について説明する。
信号発生回路110には、画像出力制御部30及び画像処理部40(図1参照)より、画像処理された画像データ及び各種の制御信号が入力される。信号発生回路110は、これらの画像データ及び各種の制御信号に基づいて、画像データの並び替えや光量の補正等を行う。
そして、信号発生回路110は、各種の制御信号に基づき、発光チップC1~C40に、第1転送信号φ1、第2転送信号φ2を送信する転送信号発生部120を備える。
そしてまた、信号発生回路110は、各種の制御信号に基づき、発光チップC1~C40に、点灯信号φI1~φI40(区別しない場合は、点灯信号φIと表記する。)をそれぞれ送信する点灯信号発生部140を備える。
さらにまた、信号発生回路110は、発光チップC1~C40に電位の基準となる基準電位Vsubを供給する基準電位供給部160、発光チップC1~C40の駆動のための電源電位Vgaを供給する電源電位供給部170を備える。
次に、発光チップC1~C40の配列について説明する。
奇数番号の発光チップC1、C3、C5、…は、それぞれの基板80の長辺方向に間隔を設けて一列に配列されている。偶数番号の発光チップC2、C4、C6、…も、同様にそれぞれの基板80の長辺の方向に間隔を設けて一列に配列されている。そして、奇数番号の発光チップC1、C3、C5、…と偶数番号の発光チップC2、C4、C6、…とは、発光チップCに設けられた発光部102側の長辺が向かい合うように、互いに180°回転した状態で千鳥状に配列されている。そして、発光チップC間においても発光ダイオードLEDが主走査方向(X方向)に予め定められた間隔で並ぶように位置が設定されている。なお、図4(b)の発光チップC1~C40に、図4(a)に示した発光部102の発光ダイオードLEDの並び順(第1の実施の形態では発光ダイオードLED1~LED128の番号順)の方向を矢印で示している。
信号発生回路110と発光チップC1~C40とを接続する配線(ライン)について説明する。
回路基板62には、発光チップCの基板80の裏面に設けられたVsub端子である裏面電極91(後述の図6参照)に接続され、基準電位Vsubを供給する電源ライン200aが設けられている。
そして、回路基板62には、信号発生回路110の電源電位供給部170から、発光チップCに設けられたVga端子に接続され、駆動のための電源電位Vgaを供給する電源ライン200bが設けられている。
回路基板62には、信号発生回路110の転送信号発生部120から、発光チップC1~C40のφ1端子に第1転送信号φ1を送信するための第1転送信号ライン201、発光チップC1~C40のφ2端子に第2転送信号φ2を送信するための第2転送信号ライン202が設けられている。第1転送信号φ1、第2転送信号φ2は、発光チップC1~C40に共通(並列)に送信される。
そしてまた、回路基板62には、信号発生回路110の点灯信号発生部140から、各発光チップC1~C40のそれぞれのφI端子に、それぞれ電流制限抵抗RIを介して、点灯信号φI1~φI40を送信する点灯信号ライン204-1~204-40(区別しない場合は、点灯信号ライン204と表記する。)が設けられている。
以上説明したように、回路基板62上のすべての発光チップC1~C40に、基準電位Vsub、電源電位Vgaが共通に供給される。第1転送信号φ1、第2転送信号φ2も、発光チップC1~C40に共通(並列)に送信される。一方、点灯信号φI1~φI40は、発光チップC1~C40にそれぞれ個別に送信される。
(発光チップC)
図5は、第1の実施の形態に係る自己走査型発光素子アレイ(SLED:Self-Scanning Light Emitting Device)が搭載された発光チップCの回路構成を説明する等価回路図である。以下において説明する各素子は、端子(φ1端子、φ2端子、Vga端子、φI端子)を除き、発光チップC上のレイアウト(後述する図6参照)に基づいて配置されている。なお、端子(φ1端子、φ2端子、Vga端子、φI端子)の位置は、図4(a)と異なるが、信号発生回路110との接続の関係の説明のため、図中左端に示している。そして、基板80の裏面に設けられたVsub端子を、基板80の外に引き出して示している。
ここでは、信号発生回路110との関係において発光チップC1を例に、発光チップCを説明する。そこで、図5において、発光チップCを発光チップC1(C)と表記する。他の発光チップC2~C40の構成は、発光チップC1と同じである。
発光チップC1(C)は、列状に配列された発光ダイオードLED1~LED128で構成される発光部102(図4(a)参照)を備える。
そして、発光チップC1(C)は、設定サイリスタS1~S128(区別しない場合は、設定サイリスタSと表記する。)を備える。発光ダイオードLED1~LED128及び設定サイリスタS1~S128は、同じ番号の発光ダイオードLEDと設定サイリスタSとが直列接続されている。
なお、後述する図6(b)に示すように、設定サイリスタSは、基板80上に列状に配列された発光ダイオードLED上に積層されている。よって、設定サイリスタS1~S128も列状に配列されている。設定サイリスタSは、後述するように発光ダイオードLEDのオン/オフを設定(制御)することから、発光ダイオードLEDを駆動する素子である。なお、設定サイリスタSをサイリスタと表記することがある。
さらに、発光チップC1(C)は、発光ダイオードLED1~LED128、設定サイリスタS1~S128と同様に列状に配列された転送サイリスタT1~T128(区別しない場合は、転送サイリスタTと表記する。)を備える。
そして、発光チップC1(C)は、発光ダイオードLED1~LED128と同様な構造の下部ダイオードUD1~UD128(区別しない場合は、下部ダイオードUDと表記する。)を備える。下部ダイオードUD1~UD128及び転送サイリスタT1~T128は、同じ番号の下部ダイオードUDと転送サイリスタTとが直列接続されている。
なお、後述する図6(b)に示すように、転送サイリスタTは、基板80上に列状に配列された下部ダイオードUD上に積層されている。よって、下部ダイオードUD1~UD128も列状に配列されている。なお、下部ダイオードは、下部素子の一例である。
なお、ここでは転送素子の一例として転送サイリスタTを用いて説明するが、順にオン状態になる素子であれば他の回路素子であってもよく、例えば、シフトレジスタや複数のトランジスタを組み合わせた回路素子を用いてもよい。
また、発光チップC1(C)は、転送サイリスタT1~T128をそれぞれ番号順に2つをペアにして、それぞれのペアの間に結合ダイオードD1~D127(区別しない場合は、結合ダイオードDと表記する。)を備える。
さらに、発光チップC1(C)は、電源線抵抗Rg1~Rg128(区別しない場合は、電源線抵抗Rgと表記する。)を備える。
また、発光チップC1(C)は、1個のスタートダイオードSDを備える。そして、後述する第1転送信号φ1が送信される第1転送信号線72と第2転送信号φ2が送信される第2転送信号線73とに過剰な電流が流れるのを防止するために設けられた電流制限抵抗R1、R2を備える。
ここでは、設定サイリスタS1~S128、転送サイリスタT1~T128、下部ダイオードUD1~UD128、電源線抵抗Rg1~Rg128、結合ダイオードD1~D127、スタートダイオードSD、電流制限抵抗R1、R2により駆動部101が構成される。
発光部102の発光ダイオードLED1~LED128、駆動部101及び設定サイリスタS1~S128、転送サイリスタT1~T128、下部ダイオードUD1~UD128は、図5中において、左側から番号順に配列されている。さらに、結合ダイオードD1~D127、電源線抵抗Rg1~Rg128も、図中左側から番号順に配列されている。
そして、発光チップCは、電源電位Vgaが供給される電源線71、第1転送信号φ1が供給される第1転送信号線72、第2転送信号φ2が供給される第2転送信号線73、発光ダイオードLEDに点灯のための電流を供給する点灯信号線75を備える。
第1の実施の形態では、発光部102における発光ダイオードLED、駆動部101における設定サイリスタS、転送サイリスタT、下部ダイオードUD、電源線抵抗Rgはそれぞれ128個とした。なお、結合ダイオードDの数は、転送サイリスタTの数より1少ない127個である。
発光ダイオードLEDなどの数は、上記に限らず、予め定められた個数とすればよい。そして、転送サイリスタTの数は、発光ダイオードLEDの数より多くてもよい。
上記のダイオード(発光ダイオードLED、下部ダイオードUD、結合ダイオードD、スタートダイオードSD)は、アノード端子(アノード)、カソード端子(カソード)を備える2端子の半導体素子、サイリスタ(設定サイリスタS、転送サイリスタT)は、アノード端子(アノード)、ゲート端子(ゲート)、カソード端子(カソード)の3端子を有する半導体素子である。
なお、後述するように、ダイオード(発光ダイオードLED、下部ダイオードUD、結合ダイオードD、スタートダイオードSD)、サイリスタ(設定サイリスタS、転送サイリスタT)は、電極として構成されたアノード端子、ゲート端子、カソード端子を必ずしも備えない場合がある。よって、以下では、端子を略して( )内で表記する場合がある。
では次に、発光チップC1(C)における各素子の電気的な接続について説明する。
発光ダイオードLED、下部ダイオードUDのそれぞれのアノードは、発光チップC1(C)の基板80に接続されている(アノードコモン)。これらのアノードは、基板80の裏面に設けられたVsub端子である裏面電極91(後述の図6(b)参照)を介して電源ライン200a(図4(b)参照)に接続されている。この電源ライン200aは、基準電位供給部160から基準電位Vsubが供給される。
そして、発光ダイオードLEDのそれぞれのカソードは、設定サイリスタSのアノードに接続されている。また、下部ダイオードUDのそれぞれのカソードは、転送サイリスタTのアノードに接続されている。
なお、この接続はp型の基板80を用いた際の構成であり、n型の基板を用いる場合は極性が逆となり、不純物を添加していないイントリンシック(i)型の基板を用いる場合には、基板の駆動部101及び発光部102が設けられる側に、基準電位Vsubを供給する電源ライン200aと接続される端子が設けられる。
転送サイリスタTの配列に沿って、奇数番号の転送サイリスタT1、T3、…のカソードは、第1転送信号線72に接続されている。そして、第1転送信号線72は、電流制限抵抗R1を介してφ1端子に接続されている。このφ1端子には、第1転送信号ライン201(図4(b)参照)が接続され、転送信号発生部120から第1転送信号φ1が送信される。
一方、転送サイリスタTの配列に沿って、偶数番号の転送サイリスタT2、T4、…のカソードは、第2転送信号線73に接続されている。そして、第2転送信号線73は、電流制限抵抗R2を介してφ2端子に接続されている。このφ2端子には、第2転送信号ライン202(図4(b)参照)が接続され、転送信号発生部120から第2転送信号φ2が送信される。
設定サイリスタSのそれぞれのカソードは、点灯信号線75に接続されている。点灯信号線75は、φI端子に接続されている。発光チップC1では、φI端子は、発光チップC1(C)の外側に設けられた電流制限抵抗RIを介して点灯信号ライン204-1に接続され、点灯信号発生部140から点灯信号φI1が送信される(図4(b)参照)。点灯信号φI1は、発光ダイオードLED1~LED128に点灯のための電流を供給する。なお、他の発光チップC2~C40のφI端子には、それぞれ電流制限抵抗RIを介して点灯信号ライン204-2~204-40が接続され、点灯信号発生部140から点灯信号φI2~φI40が送信される(図4(b)参照)。
転送サイリスタT1~T128のそれぞれのゲートGt1~Gt128(区別しない場合は、ゲートGtと表記する。)は、同じ番号の設定サイリスタS1~S128のゲートGs1~Gs128(区別しない場合は、ゲートGsと表記する。)に、1対1で接続されている。よって、ゲートGt1~Gt128とゲートGs1~Gs128とは、同じ番号のものが電気的に同電位になっている。よって、例えばゲートGt1(ゲートGs1)などと表記して、電位が同じであることを示す。
転送サイリスタT1~T128のそれぞれのゲートGt1~Gt128を番号順に2個ずつペアとしたゲートGt間に、結合ダイオードD1~D127がそれぞれ接続されている。すなわち、結合ダイオードD1~D127はそれぞれがゲートGt1~Gt128のそれぞれの間に挟まれるように直列接続されている。そして、結合ダイオードD1の向きは、ゲートGt1からゲートGt2に向かって電流が流れる方向に接続されている。他の結合ダイオードD2~D127についても同様である。
転送サイリスタTのゲートGtは、転送サイリスタTのそれぞれに対応して設けられた電源線抵抗Rgを介して、電源線71に接続されている。電源線71はVga端子に接続されている。Vga端子には、電源ライン200b(図4(b)参照)が接続され、電源電位供給部170から電源電位Vgaが供給される。なお、設定サイリスタSのゲートGsは、転送サイリスタTのゲートGtに接続されているので、設定サイリスタSのゲートGsも、電源線抵抗Rgを介して、電源線71に接続されている。
そして、転送サイリスタT1のゲートGt1は、スタートダイオードSDのカソード端子に接続されている。一方、スタートダイオードSDのアノードは、第2転送信号線73に接続されている。
図6は、第1の実施の形態に係る発光チップCの平面レイアウト図及び断面図の一例である。図6(a)は、発光チップCの平面レイアウト図、図6(b)は、図6(a)のVIB-VIB線での断面図である。ここでは、発光チップCと信号発生回路110との接続関係を示さないので、発光チップC1を例とすることを要しない。よって、発光チップCと表記する。
図6(a)では、発光ダイオードLED1~LED128、設定サイリスタS1~S4、転送サイリスタT1~T4、下部ダイオードUD1~UD4を中心とした部分を示している。なお、端子(φ1端子、φ2端子、Vga端子、φI端子)の位置は、図4(a)と異なるが、説明の便宜上、図中左端部に示している。そして、基板80の裏面に設けられたVsub端子(裏面電極91)は、基板80の外に引き出して示している。図4(a)に対応させて端子を設けるとすると、φ2端子、φI端子、電流制限抵抗R2は、基板80の右端部に設けられる。また、スタートダイオードSDは基板80の右端部に設けられてもよい。
図6(a)のVIB-VIB線での断面図である図6(b)では、図中下より設定サイリスタS1/発光ダイオードLED1、転送サイリスタT1/下部ダイオードUD1、結合ダイオードD1、電源線抵抗Rg1が示されている。なお、設定サイリスタS1と発光ダイオードLED1とは積層されている。同様に、転送サイリスタT1と下部ダイオードUD1とは積層されている。
そして、図6(a)、(b)の図中には、主要な素子や端子を名前により表記している。
なお、基板80の表面において、発光ダイオードLED(発光ダイオードLED1~LED4)の配列の方向がx方向、x方向と直交する方向がy方向である。そして、基板80の裏面から表面に向かう方向をz方向とする。
まず、発光チップCの断面構造を、図6(b)により説明する。
p型の基板80(基板80)上に、発光ダイオードLED及び下部ダイオードUDを構成するp型のアノード層81(pアノード層81)、発光層82、n型のカソード層83(nカソード層83)が設けられている。
そして、nカソード層83上に、光透過抑制層84が設けられている。
さらに、光透過抑制層84上に、設定サイリスタS、転送サイリスタT、結合ダイオードD1、電源線抵抗Rg1を構成するp型のアノード層85(pアノード層85)、n型のゲート層86(nゲート層86)、p型のゲート層87(pゲート層87)、n型のカソード層88(nカソード層88)が順に設けられている。
後述するように、光透過抑制層84は、設定サイリスタS及び転送サイリスタTが発光した場合、設定サイリスタS及び転送サイリスタTから出射する光の強度(光量)を低減して、発光ダイオードLED側に透過することを抑制する。
なお、以下では、( )内の表記を用いる。他の場合も同様とする。
そして、これらのアイランドと電源線71、第1転送信号線72、第2転送信号線73、点灯信号線75などの配線とが、保護層90に設けられたスルーホール(図6(a)では○で示す。)を介して接続されている。以下の説明では、保護層90及びスルーホールについての説明を省略する。
また、図6(b)に示すように、基板80の裏面にはVsub端子となる裏面電極91が設けられている。
そして、発光チップCには、図6(b)に示すように、これらのアイランドの表面及び側面を覆うように設けられた透光性の絶縁材料で構成された保護層90が設けられている。
図6(b)では、矢印で発光ダイオードLEDの光が出射する方向(光出射方向)を示している。ここでは、基板80の裏面と交差する方向である。図6(b)では、一例として-z方向である。つまり、発光ダイオードLEDが出射する光は、基板80を透過して、基板80の裏面から出射される。なお、発光ダイオードLEDが出射する光が透過する基板80の裏面には、裏面電極91が設けられていない。
pアノード層81、発光層82、nカソード層83、光透過抑制層84、pアノード層85、nゲート層86、pゲート層87、nカソード層88は、それぞれが半導体層であって、エピタキシャル成長によりモノリシックに積層される。
そして、相互に分離された複数のアイランド(島)(後述するアイランド301、302、303、…)になるように、アイランド間の半導体層がエッチング(メサエッチング)により除去されている。また、pアノード層81が基板80を兼ねてもよい。
ここでは、pアノード層81、nカソード層83の表記は、発光ダイオードLED、下部ダイオードUDを構成する場合の機能(働き)に対応させている。すなわち、pアノード層81はアノード、nカソード層83はカソードとして機能する。
pアノード層85、nゲート層86、pゲート層87、nカソード層88の表記は、設定サイリスタS及び転送サイリスタTを構成する場合の機能(働き)に対応させている。すなわち、pアノード層85はアノード、nゲート層86、pゲート層87はゲート、nカソード層88はカソードとして機能する。
なお、結合ダイオードD、電源線抵抗Rgを構成する場合には、後述するように異なる機能を有する。
以下に説明するように、複数のアイランドは、pアノード層81、発光層82、nカソード層83、光透過抑制層84、pアノード層85、nゲート層86、pゲート層87、nカソード層88の複数の層の内、層の一部を備えていないものを含む。例えば、アイランド301、302は、nカソード層88の一部を備えない。
次に、発光チップCの平面レイアウトを、図6(a)により説明する。
アイランド301には、発光ダイオードLED1及び設定サイリスタS1が設けられている。アイランド302には、下部ダイオードUD1、転送サイリスタT1及び結合ダイオードD1が設けられている。アイランド303には、電源線抵抗Rg1が設けられている。アイランド304には、スタートダイオードSDが設けられている。アイランド305には電流制限抵抗R1が、アイランド306には電流制限抵抗R2が設けられている。
そして、発光チップCには、アイランド301、302、303と同様なアイランドが、並列して複数形成されている。これらのアイランドには、発光ダイオードLED2、LED3、LED4、…、設定サイリスタS2、S3、S4、…、転送サイリスタT2、T3、T4、…、下部ダイオードUD2、UD3、UD4、…、結合ダイオードD2、D3、D4、…等が、アイランド301、302、303と同様に設けられている。
ここで、図6(a)、(b)により、アイランド301~アイランド306について詳細に説明する。
図6(b)に示すように、アイランド301に設けられた発光ダイオードLED1は、pアノード層81、発光層82、nカソード層83で構成されている。設定サイリスタS1は、発光ダイオードLED1のnカソード層83上に積層された光透過抑制層84を介して積層されたpアノード層85、nゲート層86、pゲート層87、nカソード層88で構成されている。
発光ダイオードLEDのpアノード層81には、図6(b)に黒塗りで示すように、電流を狭窄する電流狭窄層(後述する図7における電流狭窄層81b)が含まれている。電流狭窄層は、発光ダイオードLEDに流れる電流が、発光ダイオードLEDの中央部を流れるように設けられている。すなわち、発光ダイオードLEDの周辺部は、メサエッチングに起因して欠陥が多い。このため、非発光再結合が起こりやすい。そこで、発光ダイオードLEDの中央部が電流の流れやすい電流通過部(領域)αとなり、周辺部が電流の流れにくい電流阻止部(領域)βとなるように、電流狭窄層が設けられている。図6(a)の発光ダイオードLED1に示すように、破線の内側が電流通過部α、破線の外側が電流阻止部βである。なお、電流阻止部βは、電流の流れを完全に阻止することを要せず、電流通過部αに電流を集中させられればよい。つまり、電流阻止部βは、電流通過部αより電流が流れにくければよい。
電流狭窄層を設けると非発光再結合に消費される電力が抑制されるので、低消費電力化及び光取り出し効率が向上する。なお、光取り出し効率とは、電力当たりに取り出すことができる光量である。
電流阻止部βを、後述するように酸化により形成する場合には、アイランド301、302の周囲から等距離の領域が電流阻止部βとなる。しかし、図6(a)では、アイランド301のみに、電流阻止部βを模式的に表記している。つまり、図6(a)のアイランド301の+y方向側の電流阻止部βの幅と、-y方向側及び±x方向側の電流阻止部βの幅とが異なるように表記し、アイランド301の周囲から等距離としてない。
なお、電流狭窄層については、後述する。
そして、nカソード層88の領域311上に設けられたn型のオーミック電極321(nオーミック電極321)をカソード端子とする。また、nカソード層88を除去して露出させたpゲート層87上に設けられたp型のオーミック電極331(pオーミック電極331)をゲートGs1の端子とする。
アイランド302に設けられた下部ダイオードUD1は、発光ダイオードLEDと同様に、pアノード層81、発光層82、nカソード層83で構成されている。転送サイリスタT1は、設定サイリスタS1と同様に、下部ダイオードUD1のnカソード層83上に積層された光透過抑制層84を介して積層されたpアノード層85、nゲート層86、pゲート層87、nカソード層88で構成されている。
そして、nカソード層88の領域313上に設けられたnオーミック電極323をカソード端子とする。さらに、nカソード層88を除去して露出させたpゲート層87上に設けられたpオーミック電極332をゲートGt1の端子とする。
同じく、アイランド302に設けられた結合ダイオードD1は、pゲート層87、nカソード層88で構成されている。そして、nカソード層88の領域314上に設けられたnオーミック電極324をカソード端子とする。さらに、nカソード層88を除去して露出させたpゲート層87上に設けられたpオーミック電極332をアノード端子とする。ここでは、結合ダイオードD1のアノード端子は、ゲートGt1と同じである。
アイランド303に設けられた電源線抵抗Rg1は、pゲート層87で構成されている。つまり、電源線抵抗Rg1は、nカソード層88を除去して露出させたpゲート層87上に設けられたpオーミック電極333とpオーミック電極334との間のpゲート層87を抵抗として設けられている。
アイランド304に設けられたスタートダイオードSDは、pゲート層87、nカソード層88で構成されている。つまり、スタートダイオードSDは、nカソード層88の領域315上に設けられたnオーミック電極325をカソード端子とする。さらに、nカソード層88を除去して露出させたpゲート層87上に設けられたpオーミック電極335をアノード端子とする。
アイランド305に設けられた電流制限抵抗R1、アイランド306に設けられた電流制限抵抗R2は、アイランド303に設けられた電源線抵抗Rg1と同様に設けられ、それぞれが2個のpオーミック電極(符号なし)間のpゲート層87を抵抗とする。
図6(a)において、各素子間の接続関係を説明する。
点灯信号線75は、幹部75aと複数の枝部75bとを備える。幹部75aは設定サイリスタS/発光ダイオードLEDの列方向に延びるように設けられている。枝部75bは幹部75aから枝分かれして、アイランド301に設けられた設定サイリスタS1のカソード端子であるnオーミック電極321と接続されている。点灯信号線75は、アイランド301と同様にアイランドに設けられた他の設定サイリスタSのカソード端子にも接続されている。点灯信号線75は、φI端子に接続されている。
第1転送信号線72は、アイランド302に設けられた転送サイリスタT1のカソード端子であるnオーミック電極323に接続されている。第1転送信号線72は、アイランド302と同様なアイランドに設けられた他の奇数番号の転送サイリスタTのカソード端子にも接続されている。第1転送信号線72は、アイランド305に設けられた電流制限抵抗R1を介してφ1端子に接続されている。
一方、第2転送信号線73は、符号を付さないアイランドに設けられた偶数番号の転送サイリスタTのカソード端子であるnオーミック電極(符号なし)に接続されている。第2転送信号線73は、アイランド306に設けられた電流制限抵抗R2を介してφ2端子に接続されている。
電源線71は、アイランド303に設けられた電源線抵抗Rg1の一方の端子であるpオーミック電極334に接続されている。電源線71は、アイランド303と同様なアイランドに設けられた他の電源線抵抗Rgの一方の端子にも接続されている。電源線71は、Vga端子に接続されている。
そして、アイランド301に設けられた設定サイリスタS1のゲートGs1の端子であるpオーミック電極331は、アイランド302に設けられた転送サイリスタT1のゲートGt1の端子であるpオーミック電極332に接続配線76で接続されている。アイランド301と同様なアイランドに設けられた設定サイリスタSのゲートGsの端子は、アイランド302と同様なアイランドに設けられた転送サイリスタTのゲートGtの端子と、接続配線76と同様な接続配線で接続されている。
そして、pオーミック電極332は、アイランド303に設けられた電源線抵抗Rg1の他方の端子であるpオーミック電極333に接続配線77で接続されている。アイランド302と同様なアイランドに設けられたpオーミック電極332と同様pオーミック電極は、アイランド303と同様なアイランドに設けられた電源線抵抗Rgの他方の端子であるpオーミック電極333と同様なpオーミック電極に接続配線77と同様な接続配線で接続されている。
アイランド302に設けられた結合ダイオードD1のカソード端子であるnオーミック電極324は、隣接するアイランド302と同様なアイランドに設けられた転送サイリスタT2のゲートGt2の端子であるp型オーミック電極(符号なし)に接続配線79で接続されている。アイランド301と同様なアイランドに設けられた、アイランド302、と同様なアイランドに設けられた結合ダイオードDのカソード端子は、隣接するアイランド302と同様なアイランドに設けられた転送サイリスタTのゲートGt(ゲートGs)の端子と接続配線79と同様な接続配線で接続されている。
アイランド302のゲートGt1の端子であるpオーミック電極332は、アイランド304に設けられたスタートダイオードSDのカソード端子であるnオーミック電極325と接続配線78で接続されている。スタートダイオードSDのアノード端子であるpオーミック電極335は、第2転送信号線73に接続されている。
なお、上記の接続及び構成は、p型の基板80を用いた際のものであり、n型の基板を用いる場合は、極性が逆となる。また、i型の基板を用いる場合は、基板の駆動部101及び発光部102が設けられる側に、基準電位Vsubを供給する電源ライン200aと接続される端子が設けられる。そして、接続及び構成は、p型の基板を用いる場合、n型の基板を用いる場合のどちらかと同様になる。
(発光ダイオードLEDと設定サイリスタSとの積層構造)
図7は、発光ダイオードLED1と設定サイリスタS1とが積層されたアイランド301の拡大図である。図7は、図6(a)のVIB-VIB線での断面図であるが、図6(b)とは反対側(-x方向)から見た断面図である。なお、保護層90を省略するとともに、アイランド301上において点灯信号線75が設けられる領域を省略している。以降に示す断面図も同様である。
前述したように、発光ダイオードLED1上に光透過抑制層84を介して設定サイリスタS1が積層されている。すなわち、発光ダイオードLED1と設定サイリスタS1とは直列接続されている。なお、「発光ダイオードLED1上」とは発光ダイオードLED1と直接接触している状態のみを指すのではなく、直接接触せずに上方に位置している状態も含む。また、「基板上」等の類似の表現においても同様である。
図7に示すように、発光ダイオードLEDは、p型の基板80上に、pアノード層81、発光層82、nカソード層83を順にエピタキシャル成長させた半導体積層体で構成されている。なお、発光層82は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構造である。なお、発光層82は、不純物を添加していないイントリンシック(i)型の層(i層)であってもよい。また、発光層82は、量子井戸構造以外であってもよく、例えば、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。
pアノード層81は、電流狭窄層81bを含んで構成されている。すなわち、pアノード層81は、下側pアノード層81a、電流狭窄層81b、上側pアノード層81cで構成されている。電流狭窄層81bは、電流通過部αと電流阻止部βとで構成されている。図7に示すように、電流通過部αは、発光ダイオードLEDの中央部に、電流阻止部βは、発光ダイオードLEDの周辺部に設けられている。つまり、電流狭窄層81bの部分が電流阻止部β、電流狭窄層81bの設けられていない部分が電流通過部αとなっている。
なお、pアノード層81における電流阻止部βは、pアノード層81への水素イオン(H)の打ち込み(イオン打ち込み)により形成してもよい。すなわち、電流阻止部βは、電流狭窄層81bを含まないpアノード層81(下側pアノード層81a、上側pアノード層81c)を形成した後において、電流阻止部βとする部分にHを打ち込むことで形成されてもよい。
そして、電流狭窄層をnカソード層83に設けてもよい。
そして、nカソード層83上に、光透過抑制層84がエピタキシャル成長されている。光透過抑制層84も半導体層である。なお、光透過抑制層84については、後述する。
設定サイリスタSは、光透過抑制層84上に、pアノード層85、nゲート層86、pゲート層87、nカソード層88を順にエピタキシャル成長させた半導体積層体で構成されている。
これらの半導体層は、例えば有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)などによって積層され、半導体積層体が形成される。
nオーミック電極321は、例えばnカソード層88などn型の半導体層とオーミックコンタクトが取りやすいGeを含むAu(AuGe)などである。
pオーミック電極331は、例えばpゲート層83などp型の半導体層とオーミックコンタクトが取りやすいZnを含むAu(AuZn)などである。
裏面電極91は、pオーミック電極331と同様に、例えばAuZnである。
なお、上記においては、pゲート層85にpオーミック電極331を設けて設定サイリスタS1のゲートGsとしたが、nゲート層82にnオーミック電極を設けて設定サイリスタS1のゲートGsとしてもよい。
<サイリスタ>
ここで、サイリスタ(転送サイリスタT、設定サイリスタS)の基本的な動作を説明する。サイリスタは、前述したように、アノード端子(アノード)、カソード端子(カソード)、ゲート端子(ゲート)の3端子を有する半導体素子であって、例えば、GaAs、GaAlAs、AlAsなどによるp型の半導体層(pアノード層85、pゲート層87)、n型の半導体層(nゲート層86、nカソード層88)を基板80上に積層して構成されている。つまり、サイリスタは、pnpn構造を成している。ここでは、p型の半導体層とn型の半導体層とで構成されるpn接合の順方向電位(拡散電位)Vdを一例として1.5Vとして説明する。
以下では、一例として、Vsub端子である裏面電極91(図5、図6参照)に供給される基準電位Vsubをハイレベルの電位(以下では「H」と表記する。)として0V、Vga端子に供給される電源電位Vgaをローレベルの電位(以下では「L」と表記する。)として-5Vとして説明する。よって、「H」(0V)、「L」(-5V)と表記することがある。
まず、サイリスタ単体の動作を説明する。ここでは、サイリスタのアノードは0Vであるとする。
アノードとカソードとの間に電流が流れていないオフ状態のサイリスタは、しきい電圧より低い電位(絶対値が大きい負の電位)がカソードに印加されるとオン状態に移行(ターンオン)する。ここで、サイリスタのしきい電圧は、ゲートの電位からpn接合の順方向電位Vd(1.5V)を引いた値である。
オン状態になると、サイリスタのゲートは、アノード端子の電位に近い電位になる。ここでは、アノードは0Vであるので、ゲートは、0Vになるとする。また、オン状態のサイリスタのカソードは、アノードの電位からpn接合の順方向電位Vd(1.5V)を引いた電位に近い電位となる。ここでは、アノードは0Vであるので、オン状態のサイリスタのカソードは、-1.5Vに近い電位(絶対値が1.5Vより大きい負の電位)となる。なお、カソードの電位は、オン状態のサイリスタに電流を供給する電源との関係で設定される。
オン状態のサイリスタは、カソードが、オン状態を維持するために必要な電位(上記の-1.5Vに近い電位)より高い電位(絶対値が小さい負の電位、0V又は正の電位)になると、オフ状態に移行(ターンオフ)する。
一方、オン状態のサイリスタのカソードに、オン状態を維持するために必要な電位より低い電位(絶対値が大きい負の電位)が継続的に印加され、オン状態を維持しうる電流(維持電流)が供給されると、サイリスタはオン状態を維持する。
次に、発光ダイオードLEDと設定サイリスタSとが積層された状態での動作を説明する。発光ダイオードLEDと設定サイリスタSとは、積層されることで直列接続されている。そして、図7に示す設定サイリスタS1と発光ダイオードLED1では、設定サイリスタS1のnカソード層88がnオーミック電極321を介して、点灯信号線φI1に接続され、発光ダイオードLED1のpアノード層81は、基板80及び裏面電極91を介して基準電位Vsubに接続されている。発光チップCにおける他の発光ダイオードLED及び設定サイリスタSも同様である。
つまり、直列接続された発光ダイオードLEDと設定サイリスタSとには、点灯信号φIと基準電位Vsubとの間の電圧が印加される。ここでは、基準電位Vsubは、「H」(0V)である。よって、点灯信号φIの電位が、発光ダイオードLEDと設定サイリスタSとに分圧される。ここでは、発光ダイオードLEDに印加される電圧を、仮に-1.7Vであるとして説明する。すると、設定サイリスタSがオフ状態の場合、設定サイリスタSに-3.3Vが印加される。
上述したように、オフ状態にある設定サイリスタSのしきい値電圧が、-3.3Vより絶対値において小さい場合には、設定サイリスタSがターンオンする。すると、直列接続された発光ダイオードLEDと設定サイリスタSとに電流が流れて、発光ダイオードLEDが点灯(発光)する。一方、設定サイリスタSのしきい値電圧が、-3.3Vより絶対値において小さい場合には、設定サイリスタSはターンオンせず、オフ状態を維持する。よって、発光ダイオードLEDも非点灯(非発光)のオフ状態を維持する。
なお、設定サイリスタSがターンオンすると、電流制限抵抗RI(図5参照)により、直列接続された発光ダイオードLEDと設定サイリスタSとに印加される電圧が絶対値において低下する。しかし、設定サイリスタSに印加される電圧が、設定サイリスタSのオン状態を維持する電圧であれば、設定サイリスタSはオン状態を維持する。これにより発光ダイオードLEDも点灯(発光)を継続する。
後述するように、設定サイリスタSは、接続された転送サイリスタTがターンオンしてオン状態になると、オン状態への移行が可能な状態になる。そして、点灯信号φIが後述するように「L」になると、設定サイリスタSがターンオンしてオン状態になるとともに、発光ダイオードLEDを点灯(発光)させる(点灯を設定する)。よって、本明細書では、「設定サイリスタ」と表記する。
なお、上記に示した電圧は一例であって、発光ダイオードLEDの発光波長や光量によって変えることになる。その際は、点灯信号φIの電位(「L」)を調整すればよい。
上記では、積層された発光ダイオードLEDと設定サイリスタSとで説明したが、積層された下部ダイオードUDと転送サイリスタTとにおいても、同様である。なお、下部ダイオードUDが出射する光は利用しない。よって、下部ダイオードUDから基板80を透過して光が出射することを抑制するため、下部ダイオードUDが設けられた基板80の裏面には、裏面電極91が全面に設けられている。
なお、サイリスタは、GaAsなどの半導体で構成されるので、オン状態において、nゲート層86とpゲート層87との間で発光することがある。サイリスタが出射する光の量は、カソードの面積及びカソードとアノードとの間に流す電流によって決まる。
設定サイリスタSは、発光ダイオードLED上に積層されているために、設定サイリスタSが出射する光が、発光ダイオードLEDを透過して感光体ドラム12に照射されるおそれがある。つまり、設定サイリスタSが出射する光が、発光ダイオードLEDの出射する光に重畳される。
発光ダイオードLEDと設定サイリスタSや転送サイリスタTとは半導体積層体の構成が異なるため、設定サイリスタSの出射する光と、発光ダイオードLEDの出射する光とは、波長域や幅などが異なる。つまり、設定サイリスタSの発光スペクトルと、発光ダイオードLEDの発光スペクトルとは異なる。
よって、設定サイリスタSの出射する光が混入すると発光ダイオードLEDの発光スペクトルを乱すことになる。例えば、発光ダイオードLEDの発光スペクトルは、設定サイリスタSの発光スペクトルに比べて狭いため、プリントヘッド14などにおいて光学系を設計しやすい。しかし、設定サイリスタSの発光スペクトルが発光ダイオードLEDの発光スペクトルに混入すると、この恩恵が得られなくなるとともに、形成される画像の画質等に悪影響を与えるおそれがある。
そこで、第1の実施の形態では、発光ダイオードLEDと設定サイリスタSとの間に、光透過抑制層84が設けられている。光透過抑制層84は、設定サイリスタSの出射する光の強度(光量)を低減して、発光ダイオードLED側に透過することを抑制する。なお、光透過抑制層84は、設定サイリスタSの出射する光を100%低減することを要しない。つまり、光透過抑制層84は、設定サイリスタSの出射する光が感光体ドラム12に照射されても形成される画像の画質等に悪影響をもたらさない程度に、設定サイリスタSの出射する光の強度(光量)を低減するものであればよい。
なお、光透過抑制層84は、発光ダイオードLEDの出射する光を透過するものであってよい。つまり、発光ダイオードLEDの発光スペクトルと、設定サイリスタSの発光スペクトルが異なる場合、波長によって透過特性が異なるものであってよい。
<光透過抑制層84>
図8は、光透過抑制層84を説明する図である。図8(a)は、光透過抑制層84が単層のn型半導体層84aである場合、図8(b)は、光透過抑制層84が単層のp型半導体層84bである場合、図8(c)は、光透過抑制層84が複数のn型半導体層84c、84dで構成されている場合、図8(d)は、光透過抑制層84が複数のp型半導体層84e、84fで構成されている場合、及び、図8(e)は、光透過抑制層84がn型半導体層84gとp型半導体層84hとで構成されている場合である。
光透過抑制層84は、例えば、光透過抑制層84を構成する半導体層(n型半導体層84a、84c、84d、84g、p型半導体層84b、84e、84f、84h)の少なくとも一層のバンドギャップが、設定サイリスタSの出射する光の波長に相当するバンドギャップより小さいか同じである半導体層で構成される。
このようにすることで、設定サイリスタSの出射する光は、光透過抑制層84における設定サイリスタSの出射する光に相当するバンドギャップよりバンドギャップが小さいか同じである半導体層で吸収される。つまり、設定サイリスタSの出射する光の波長に相当するバンドギャップより小さいか同じである半導体層で構成された光透過抑制層84は、設定サイリスタSの出射する光を吸収することで強度(光量)を低減して、設定サイリスタSの出射する光が透過することを抑制する。なお、バンドギャップエネルギで光透過抑制層84を設定することで、光透過抑制層84の設定が容易になる。
なお、設定サイリスタSの出射する光の波長は、設定サイリスタSにおけるnゲート層86及びpゲート層87のバンドギャップにより決まる。
よって、例えば、設定サイリスタSのnゲート層86及びpゲート層87をAlGaAsで構成した場合、光透過抑制層84(n型半導体層84a、84c、84d、84g、p型半導体層84b、84e、84f、84hの少なくとも一層)は、GaAs又はInGaAsとすればよい。
また、例えば、設定サイリスタSのnゲート層86及びpゲート層87をGaAsで構成した場合、光透過抑制層84(n型半導体層84a、84c、84d、84g、p型半導体層84b、84e、84f、84hの少なくとも一層)は、InGaAs又はInGaNAsとすればよい。
さらに、例えば、設定サイリスタSのnゲート層86及びpゲート層87をInGaAsで構成した場合、光透過抑制層84(n型半導体層84a、84c、84d、84g、p型半導体層84b、84e、84f、84hの少なくとも一層)は、InGaAs又はInGaNAsとすればよい。
なお、光透過抑制層84において設定サイリスタSの出射する光を吸収する半導体層(n型半導体層84a、84c、84d、84g、p型半導体層84b、84e、84f、84hの少なくとも一層)の厚さは、光の吸収量で設定すればよく、例えば数nmから数100nmである。
バンドギャップエネルギが小さい半導体層は、バンドギャップエネルギが大きい半導体層に比べて、電流が流れやすい。よって、逆方向の接合(逆方向接合)である発光ダイオードLEDのpアノード層83と設定サイリスタSのnカソード層85との間にバンドギャップエネルギが小さい半導体層を含む光透過抑制層84を設けることで、発光ダイオードLEDを点灯させる際に、発光ダイオードLEDと設定サイリスタSとの直列接続に印加する電圧(立ち上がり電圧)が低減される。
なお、光透過抑制層84は、金属特性を有するIII-V族材料で構成されてもよい。例えば、InNとInAsとの化合物であるInNAsは、InNの組成比xが約0.1~約0.8の範囲において、バンドギャップエネルギが負になり、金属特性を有する。
また、例えば、InNSbは、InNの組成比xが約0.2~約0.75の範囲において、バンドギャップエネルギが負になり、金属特性を有する。
このような金属特性を有するIII-V族材料は、設定サイリスタSが出射する光を吸収するとともに、金属的な導電性により設定サイリスタSと発光ダイオードLEDとの間の抵抗が小さくなる。つまり、金属特性を有するIII-V族材料で構成された光透過抑制層84は、設定サイリスタSの出射する光を吸収することで強度(光量)を低減して、設定サイリスタSの出射する光が透過することを抑制する。さらに、発光ダイオードLEDを点灯させる際に、設定サイリスタSと発光ダイオードLEDとの直列接続に印加する電圧(立ち上がり電圧)がより低減される。
また、光透過抑制層84(n型半導体層84a、84c、84d、84g、p型半導体層84b、84e、84f、84hの少なくとも一層)は、発光ダイオードLED側で接するnカソード層85と設定サイリスタS側で接するpアノード層85との、いずれか一方より不純物濃度が高い層であってもよい。ここで「接する」とは、直接接している状態のみを意味するものではなく、光透過抑制層84よりも十分に薄いi型の薄膜層が介在する場合など、動作上、直接接する場合と実質的に同等となる状態を含む。
半導体層の不純物濃度が高くなると、半導体内において自由に移動できる電子及び正孔(自由キャリア)の数が増加し、光を吸収しやすくなる(自由キャリア吸収)。この場合、半導体層のバンドギャップに関係なく光を吸収する。つまり、吸収する光は、波長依存性が小さい。
例えば、自由キャリア吸収を生じる不純物濃度は、1×1018/cm以上である。光透過抑制層84において設定サイリスタSの出射する光を吸収する半導体層(n型半導体層84a、84c、84d、84g、p型半導体層84b、84e、84f、84hの少なくとも一層)の厚さは、光の吸収量で設定すればよく、例えば数nmから数100nmである。
つまり、不純物濃度が高い半導体層で構成された光透過抑制層84は、設定サイリスタSの出射する光を吸収することで強度(光量)を低減して、設定サイリスタSの出射する光が透過することを抑制する。
不純物濃度が高い半導体層は、不純物濃度が低い半導体層に比べて、抵抗が小さく、電流が流れやすい。よって、逆方向接合である発光ダイオードLEDのpアノード層83と設定サイリスタSのnカソード層85との間に不純物濃度が高い半導体層を含む光透過抑制層84を設けることで、発光ダイオードLEDを点灯させる際に、設定サイリスタSと発光ダイオードLEDとの直列接続に印加する電圧(立ち上がり電圧)が低減される。
光透過抑制層84は、図8(a)から(e)に示すように、発光ダイオードLED側において発光ダイオードLEDのnカソード層83に接し(隣接し)、設定サイリスタS側において設定サイリスタSのpアノード層85に接する(隣接する)。
光透過抑制層84が単層である場合、光透過抑制層84は、図8(a)、(b)に示すように、発光ダイオードLEDのnカソード層83と同じ導電型のn型、又は、設定サイリスタSのpアノード層85と同じ導電型のp型であればよい。また、光透過抑制層84が同じ導電型の複数の層である場合、光透過抑制層84は、図8(c)、(d)に示すように、発光ダイオードLEDのnカソード層83と同じ導電型のn型、又は、設定サイリスタSのpアノード層85と同じ導電型のp型であればよい。
また、光透過抑制層84がn型とp型との二層で構成される場合は、図8(e)に示すように、光透過抑制層84の発光ダイオードLEDのnカソード層83側がn型、設定サイリスタSのpアノード層85側がp型であるとよい。図8(e)のように構成することで、図8(a)~(d)の構成と比較し、立ち上がり電圧が更に低減される。
つまり、光透過抑制層84は、隣接する発光ダイオードLEDを構成する層(nカソード層83)と設定サイリスタSを構成する層(pアノード層85)とが直接接するとした(直接接合させた)場合と同じ方向に電流が流れる接合が維持されるように構成されることがよい。つまり、光透過抑制層84は、隣接する発光ダイオードLEDを構成する層(nカソード層83)と設定サイリスタSを構成する層(pアノード層85)とが直接接するとした場合(直接接合させた場合)に対して、逆方向接合となる界面が増えないように構成するとよい。
発光ダイオードLEDのnカソード層83と設定サイリスタSのpアノード層85との間に逆方向接合となる界面が増えると、電流の流れが阻害されたり、発光ダイオードLEDを点灯させる際に、発光ダイオードLEDと設定サイリスタSとの直列接続に印加する電圧(立ち上がり電圧)が高くなったりする。
言い換えると、光透過抑制層84が複数の層で構成される場合においては、発光ダイオードLEDを構成する層(nカソード層83)と光透過抑制層84を構成する複数の層のうち発光ダイオードLEDを構成する層(nカソード層83)に接する層とは、同じ導電型を有し、かつ、設定サイリスタSを構成する層(pアノード層85)と、光透過抑制層84を構成する複数の層のうち設定サイリスタSを構成する層(pアノード層85)に接する層とは、同じ導電型を有することが好ましい。また、この条件を満たすのであれば、光透過抑制層84は二層に限らず、nカソード層83およびpアノード層85の不純物濃度より高い不純物濃度の三層や四層の半導体層で構成してもよい。不純物濃度を高くすることで、逆方向接合が増えたとしても、立ち上がり電圧が高くなることが抑制される。
上記において説明した光透過抑制層84は、光を吸収することで設定サイリスタSの出射する光の強度(光量)を低減して、設定サイリスタSの出射する光が透過することを抑制する。光透過抑制層84は、光を反射することで、設定サイリスタSの出射する光が透過することを抑制してもよい。このとき、光透過抑制層84は、設定サイリスタSの出射する光を反射するが、発光ダイオードLEDの出射する光を透過するようにしてもよい。
なお、設定サイリスタSがz方向に出射する光が発光ダイオードLEDの発光スペクトルに影響を与える場合には、設定サイリスタS1上のnオーミック電極321及び他の設定サイリスタSの同様なnオーミック電極を大きくして、設定サイリスタSが出射する光を遮蔽すればよい。また、転送サイリスタTがz方向に出射する光が発光ダイオードLEDの発光スペクトルに影響を与える場合には、転送サイリスタT1上のnオーミック電極323及び他の転送サイリスタTの同様なnオーミック電極を大きくして、転送サイリスタTが出射する光を遮蔽すればよい。なお、転送サイリスタTがーz方向に出射する光は、基板80の裏面に設けられた裏面電極91で遮蔽される。
(発光装置65の動作)
次に、発光装置65の動作について説明する。
前述したように、発光装置65は発光チップC1~C40を備える(図3、4参照)。
発光チップC1~C40は並列に駆動されるので、発光チップC1の動作を説明すれば足りる。
<タイミングチャート>
図9は、発光装置65及び発光チップCの動作を説明するタイミングチャートである。
図9では、発光チップC1の発光ダイオードLED1~LED5の5個の発光ダイオードLEDの点灯(発振)又は非点灯を制御(点灯制御と表記する。)する部分のタイミングチャートを示している。なお、図9では、発光チップC1の発光ダイオードLED1、LED2、LED3、LED5を点灯させ、発光ダイオードLED4を消灯(非点灯)としている。
図9において、時刻aから時刻kへとアルファベット順に時刻が経過するとする。発光ダイオードLED1は、期間T(1)において、発光ダイオードLED2は、期間T(2)において、発光ダイオードLED3は、期間T(3)において、発光ダイオードLED4は、期間T(4)において点灯又は非点灯の制御(点灯制御)がされる。以下、同様にして番号が5以上の発光ダイオードLEDが点灯制御される。
ここでは、期間T(1)、T(2)、T(3)、…は同じ長さの期間とし、それぞれを区別しないときは期間Tと呼ぶ。
φ1端子(図5、図6参照)に送信される第1転送信号φ1及びφ2端子(図5、図6参照)に送信される第2転送信号φ2は、「H」(0V)と「L」(-5V)との2つの電位を有する信号である。そして、第1転送信号φ1及び第2転送信号φ2は、連続する2つの期間T(例えば、期間T(1)と期間T(2))を単位として波形が繰り返される。
以下では、「H」(0V)及び「L」(-5V)を、「H」及び「L」と省略する場合がある。
第1転送信号φ1は、期間T(1)の開始時刻bで「H」(0V)から「L」(-5V)に移行し、時刻fで「L」から「H」に移行する。そして、期間T(2)の終了時刻iにおいて、「H」から「L」に移行する。
第2転送信号φ2は、期間T(1)の開始時刻bにおいて「H」(0V)であって、時刻eで「H」(0V)から「L」(-5V)に移行する。そして、期間T(2)の終了時刻iにおいて「L」から「H」に移行する。
第1転送信号φ1と第2転送信号φ2とを比較すると、第2転送信号φ2は、第1転送信号φ1を時間軸上で期間T後ろにずらしたものに当たる。一方、第2転送信号φ2は、期間T(1)において、破線で示す波形及び期間T(2)での波形が、期間T(3)以降において繰り返す。第2転送信号φ2の期間T(1)の波形が期間T(3)以降と異なるのは、期間T(1)は発光装置65が動作を開始する期間であるためである。
第1転送信号φ1と第2転送信号φ2との一組の転送信号は、後述するように、転送サイリスタTのオン状態を番号順に伝播させることにより、オン状態の転送サイリスタTと同じ番号の発光ダイオードLEDを、点灯(発振)又は非点灯の制御(点灯制御)の対象として指定する。
次に、発光チップC1のφI端子に送信される点灯信号φI1について説明する。なお、他の発光チップC2~C40には、それぞれ点灯信号φI2~φI40が送信される。点灯信号φI1は、「H」(0V)と「L」(-5V)との2つの電位を有する信号である。
ここでは、発光チップC1の発光ダイオードLED1に対する点灯制御の期間T(1)において、点灯信号φI1を説明する。点灯信号φI1は、期間T(1)の開始時刻bにおいて「H」(0V)であって、時刻cで「H」(0V)から「L」(-5V)に移行する。そして、時刻dで「L」から「H」に移行し、時刻eにおいて「H」を維持する。
図4、図5を参照しつつ、図9に示したタイミングチャートにしたがって、発光装置65及び発光チップC1の動作を説明する。なお、以下では、発光ダイオードLED1、LED2を点灯制御する期間T(1)、T(2)について説明する。
(1)時刻a
<発光装置65>
時刻aにおいて、発光装置65の信号発生回路110の基準電位供給部160は、基準電位Vsubを「H」(0V)に設定する。電源電位供給部170は、電源電位Vgaを「L」(-5V)に設定する。すると、発光装置65の回路基板62上の電源ライン200aは基準電位Vsubの「H」(0V)になり、発光チップC1~C40のそれぞれのVsub端子は「H」になる。同様に、電源ライン200bは電源電位Vgaの「L」(-5V)になり、発光チップC1~C40のそれぞれのVga端子は「L」になる(図4参照)。これにより、発光チップC1~C40のそれぞれの電源線71は「L」になる(図5参照)。
そして、信号発生回路110の転送信号発生部120は第1転送信号φ1、第2転送信号φ2をそれぞれ「H」(0V)に設定する。すると、第1転送信号ライン201及び第2転送信号ライン202が「H」になる(図4参照)。これにより、発光チップC1~C40のそれぞれのφ1端子及びφ2端子が「H」になる。電流制限抵抗R1を介してφ1端子に接続されている第1転送信号線72の電位も「H」になり、電流制限抵抗R2を介してφ1端子に接続されている第2転送信号線73も「H」になる(図5参照)。
さらに、信号発生回路110の点灯信号発生部140は、点灯信号φI1~φI40をそれぞれ「H」(0V)に設定する。すると、点灯信号ライン204-1~204-40が「H」になる(図4参照)。これにより、発光チップC1~C40のそれぞれのφI端子が、電流制限抵抗RIを介して「H」になり、φI端子に接続された点灯信号線75も「H」(0V)になる(図5参照)。
<発光チップC1>
設定サイリスタSのアノード(pアノード層85)は、光透過抑制層84を介して、発光ダイオードLEDのカソード(nカソード層83)に接続され、発光ダイオードLEDのアノード(pアノード層81)は、「H」に設定されたVsub端子に接続されている。
転送サイリスタTのアノード(pアノード層85)は、光透過抑制層84を介して、下部ダイオードUDのカソード(nカソード層83)に接続され、下部ダイオードUDのアノード(pアノード層81)は、「H」に設定されたVsub端子に接続されている。
奇数番号の転送サイリスタT1、T3、T5、…のそれぞれのカソードは、第1転送信号線72に接続され、「H」(0V)に設定されている。偶数番号の転送サイリスタT2、T4、T6、…のそれぞれのカソードは、第2転送信号線73に接続され、「H」に設定されている。よって、転送サイリスタTは、アノード及びカソードがともに「H」となり、オフ状態にある。また、下部ダイオードUDも、アノード及びカソードがともに「H」となり、オフ状態にある。
設定サイリスタSのカソード端子は、「H」(0V)の点灯信号線75に接続されている。よって、設定サイリスタSは、アノード及びカソードがともに「H」となり、オフ状態にある。また、発光ダイオードLEDも、アノード及びカソードがともに「H」となり、オフ状態にある。
ゲートGt1は、前述したように、スタートダイオードSDのカソードに接続されている。ゲートGt1は、電源線抵抗Rg1を介して、電源電位Vga(「L」(-5V))の電源線71に接続されている。そして、スタートダイオードSDのアノード端子は第2転送信号線73に接続され、電流制限抵抗R2を介して、「H」(0V)のφ2端子に接続されている。よって、スタートダイオードSDは順バイアスであり、スタートダイオードSDのカソード(ゲートGt1)は、スタートダイオードSDのアノードの電位(「H」(0V))からpn接合の順方向電位Vd(1.5V)を引いた値(-1.5V)になる。また、ゲートGt1が-1.5Vになると、結合ダイオードD1は、アノード(ゲートGt1)が-1.5Vで、カソードが電源線抵抗Rg2を介して電源線71(「L」(-5V))に接続されているので、順バイアスになる。よって、ゲートGt2の電位は、ゲートGt1の電位(-1.5V)からpn接合の順方向電位Vd(1.5V)を引いた-3Vになる。さらに、結合ダイオードD2は、アノード(ゲートGt1)が-3Vで、カソードが電源線抵抗Rg2を介して電源線71(「L」(-5V))に接続されているので、順バイアスになる。よって、ゲートGt3の電位は、ゲートGt2の電位(-3V)からpn接合の順方向電位Vd(1.5V)を引いた-4.5Vになる。しかし、4以上の番号のゲートGtには、スタートダイオードSDのアノードが「H」(0V)であることの影響は及ばず、これらのゲートGtの電位は、電源線71の電位である「L」(-5V)になっている。
なお、ゲートGtはゲートGsであるので、ゲートGsの電位は、ゲートGtの電位と同じである。よって、転送サイリスタT、設定サイリスタSのしきい電圧は、ゲートGt、Gsの電位からpn接合の順方向電位Vd(1.5V)を引いた値となる。すなわち、転送サイリスタT1、設定サイリスタS1のしきい電圧は-3V、転送サイリスタT2、設定サイリスタS2のしきい電圧は-4.5V、転送サイリスタT3、設定サイリスタS3のしきい電圧は-6V、番号が4以上の転送サイリスタT、設定サイリスタSのしきい電圧は-6.5Vとなっている。
(2)時刻b
図9に示す時刻bにおいて、第1転送信号φ1が、「H」(0V)から「L」(-5V)に移行する。これにより発光装置65は、動作を開始する。
第1転送信号φ1が「H」から「L」に移行すると、φ1端子及び電流制限抵抗R1を介して、第1転送信号線72の電位が、「H」(0V)から「L」(-5V)に移行する。すると、転送サイリスタT1に印加されている電圧は-3.3Vであるので、しきい電圧が-3Vである転送サイリスタT1がターンオンする。このとき、下部ダイオードUD1に電流が流れてオフ状態からオン状態に移行する。転送サイリスタT1がターンオンすることで、第1転送信号線72の電位は、転送サイリスタT1のアノードの電位(下部ダイオードUD1に印加された電位である-1.7V)からpn接合の順方向電位Vd(1.5V)を引いた-3.2Vに近い電位(絶対値が3.2Vより大きい負の電位)になる。
なお、転送サイリスタT3はしきい電圧が-6Vであり、番号が5以上の奇数番号の転送サイリスタTは、しきい電圧が-6.5Vである。転送サイリスタT3及び番号が5以上の奇数番号の転送サイリスタTに印加される電圧は、発光ダイオードLEDに印加される電圧1.7Vを-3.2Vに足した-1.5Vになるので、転送サイリスタT3及び番号が5以上の奇数番号の転送サイリスタTはターンオンしない。
一方、偶数番号の転送サイリスタTは、第2転送信号φ2が「H」(0V)であって、第2転送信号線73が「H」(0V)であるのでターンオンできない。
転送サイリスタT1がターンオンすると、ゲートGt1/Gs1の電位は、転送サイリスタT1のアノードの電位である「H」(0V)になる。そして、ゲートGt2(ゲートGs2)の電位が-1.5V、ゲートGt3(ゲートGs3)の電位が-3V、ゲートGt4(ゲートGs4)の電位が-4.5V、番号が5以上のゲートGt(ゲートGl)の電位が「L」になる。
これにより、設定サイリスタS1のしきい電圧が-1.5V、転送サイリスタT2、設定サイリスタS2のしきい電圧が-3V、転送サイリスタT3、設定サイリスタS3のしきい電圧が-4.5V、転送サイリスタT4、設定サイリスタS4のしきい電圧が-6V、番号が5以上の転送サイリスタT、設定サイリスタSのしきい電圧が-6.5Vになる。
しかし、第1転送信号線72は、オン状態の転送サイリスタT1により-1.5Vになっているので、オフ状態の奇数番号の転送サイリスタTはターンオンしない。第2転送信号線73は、「H」(0V)であるので、偶数番号の転送サイリスタTはターンオンしない。点灯信号線75は「H」(0V)であるので、いずれの発光ダイオードLEDも点灯しない。
時刻bの直後(ここでは、時刻bにおける信号の電位の変化によってサイリスタなどの変化が生じた後、定常状態になったときをいう。他の場合も同じである。)において、転送サイリスタT1、下部ダイオードUD1がオン状態にあって、他の転送サイリスタT、下部ダイオードUD、設定サイリスタS、発光ダイオードLEDはオフ状態にある。
(3)時刻c
時刻cにおいて、点灯信号φI1が「H」(0V)から「L」(-5V)に移行する。
点灯信号φI1が「H」から「L」に移行すると、電流制限抵抗RI及びφI端子を介して、点灯信号線75が「H」(0V)から「L」(-5V)に移行する。すると、発光ダイオードLEDに印加される電圧1.7Vを足した-3.3Vが設定サイリスタS1に印加され、しきい電圧が-1.5Vである設定サイリスタS1がターンオンして、発光ダイオードLED1が点灯(発光)する。これにより、点灯信号線75の電位が-3.2Vに近い電位になる。なお、設定サイリスタS2はしきい電圧が-3Vであるが、設定サイリスタS2に印加される電圧は、発光ダイオードLEDに印加される電圧1.7Vを-3.2Vに足した-1.5Vになるので、設定サイリスタS2はターンオンしない。
時刻cの直後において、転送サイリスタT1、下部ダイオードUD1、設定サイリスタS1がオン状態にあって、発光ダイオードLED1が点灯(発光)している。
(4)時刻d
時刻dにおいて、点灯信号φI1が「L」(-5V)から「H」(0V)に移行する。
点灯信号φI1が「L」から「H」に移行すると、電流制限抵抗RI及びφI端子を介して、点灯信号線75の電位が-3.2Vから「H」に移行する。すると、設定サイリスタS1のカソード及び発光ダイオードLED1のアノードがともに「H」になるので設定サイリスタS1がターンオフするとともに、発光ダイオードLED1が消灯する(非点灯になる)。発光ダイオードLED1の点灯期間は、点灯信号φI1が「H」から「L」に移行した時刻cから、点灯信号φI1が「L」から「H」に移行する時刻dまでの、点灯信号φI1が「L」である期間となる。
時刻dの直後において、転送サイリスタT1がオン状態にある。
(5)時刻e
時刻eにおいて、第2転送信号φ2が「H」(0V)から「L」(-5V)に移行する。ここで、発光ダイオードLED1を点灯制御する期間T(1)が終了し、発光ダイオードLED2を点灯制御する期間T(2)が開始する。
第2転送信号φ2が「H」から「L」に移行すると、φ2端子を介して第2転送信号線73の電位が「H」から「L」に移行する。前述したように、転送サイリスタT2は、しきい電圧が-3Vになっているので、ターンオンする。このとき、下部ダイオードUD2にも電流が流れてオフ状態からオン状態に移行する。
これにより、ゲート端子Gt2(ゲート端子Gs2)の電位が「H」(0V)、ゲートGt3(ゲートGs3)の電位が-1.5V、ゲートGt4(ゲートGs4)の電位が-3V、ゲートGt4(ゲートGs4)の電位が-4.5Vになる。そして、番号が6以上のゲートGt(ゲートGs)の電位が-5Vになる。
時刻eの直後において、転送サイリスタT1、T2、下部ダイオードUD1、UD2がオン状態にある。
(6)時刻f
時刻fにおいて、第1転送信号φ1が「L」(-5V)から「H」(0V)に移行する。
第1転送信号φ1が「L」から「H」に移行すると、φ1端子を介して第1転送信号線72の電位が「L」から「H」に移行する。すると、オン状態の転送サイリスタT1は、アノード及びカソードがともに「H」になって、ターンオフする。このとき、下部ダイオードUD1のアノード及びカソードもともに「H」になって、オン状態からオフ状態に移行する。
すると、ゲートGt1(ゲートGs1)の電位は、電源線抵抗Rg1を介して、電源線71の電源電位Vga(「L」(-5V))に向かって変化する。これにより、結合ダイオードD1が電流の流れない方向に電位が加えられた状態(逆バイアス)になる。よって、ゲートGt2(ゲートGs2)が「H」(0V)である影響は、ゲートGt1(ゲートGs1)には及ばなくなる。すなわち、逆バイアスの結合ダイオードDで接続されたゲートGtを有する転送サイリスタTは、しきい電圧が-6.5Vになって、第1転送信号φ1又は第2転送信号φ2が「L」(-5V)になっても、ターンオンしなくなる。
時刻fの直後において、転送サイリスタT2、下部ダイオードUD2がオン状態にある。
(7)その他
時刻gにおいて、点灯信号φI1が「H」(0V)から「L」(-5V)に移行すると、時刻cでの発光ダイオードLED1及び設定サイリスタS1と同様に、設定サイリスタS2がターンオンして、発光ダイオードLED2が点灯(発光)する。
そして、時刻hにおいて、点灯信号φI1が「L」(-5V)から「H」(0V)に移行すると、時刻dでの発光ダイオードLED1及び設定サイリスタS1と同様に、設定サイリスタS2がターンオフして、発光ダイオードLED2が消灯する。
さらに、時刻iにおいて、第1転送信号φ1が「H」(0V)から「L」(-5V)に移行すると、時刻bでの転送サイリスタT1又は時刻eでの転送サイリスタT2と同様に、しきい電圧が-3Vの転送サイリスタT3がターンオンする。時刻iで、発光ダイオードLED2を点灯制御する期間T(2)が終了し、発光ダイオードLED3を点灯制御する期間T(3)が開始する。
以降は、これまで説明したことの繰り返しとなる。
なお、発光ダイオードLEDを点灯(発光)させないで、消灯(非点灯)のままとするときは、図9の発光ダイオードLED4を点灯制御する期間T(4)における時刻jから時刻kに示す点灯信号φI1のように、点灯信号φIを「H」(0V)のままとすればよい。このようにすることで、設定サイリスタS4のしきい電圧が-1.5Vであっても、設定サイリスタS4はターンオンせず、発光ダイオードLED4は消灯(非点灯)のままとなる。
以上説明したように、転送サイリスタTのゲート端子Gtは結合ダイオードDによって相互に接続されている。よって、ゲートGtの電位が変化すると、電位が変化したゲートGtに、順バイアスの結合ダイオードDを介して接続されたゲートGtの電位が変化する。そして、電位が変化したゲートを有する転送サイリスタTのしきい電圧が変化する。転送サイリスタTは、しきい電圧が-3.3Vより高い(絶対値が小さい負の値)と、第1転送信号φ1又は第2転送信号φ2が「H」(0V)から「L」(-5V)に移行するタイミングにおいてターンオンする。
そして、オン状態の転送サイリスタTのゲートGtにゲートGsが接続された設定サイリスタSは、しきい電圧が-1.5Vであるので、点灯信号φIが「H」(0V)から「Lo」(-5V)に移行するとターンオンし、設定サイリスタSに直列接続された発光ダイオードLEDが点灯(発光)する。
すなわち、転送サイリスタTはオン状態になることで、点灯制御の対象である発光ダイオードLEDを指定し、「L」(-5V)の点灯信号φIは、点灯制御の対象である発光ダイオードLEDに直列接続された設定サイリスタSをターンオンするとともに、発光ダイオードLEDを点灯させる。
なお、「H」(0V)の点灯信号φIは、設定サイリスタSをオフ状態に維持するとともに、発光ダイオードLEDを非点灯に維持する。すなわち、点灯信号φIは、発光ダイオードLEDの点灯/非点灯を設定する。
このように、画像データに応じて点灯信号φIを設定して、各発光ダイオードLEDの点灯又は非点灯を制御する。
(発光チップCの製造方法)
発光チップCの製造方法について説明する。
図10、図11、図12は、発光チップCの製造方法を説明する図である。図10(a)は、半導体積層体形成工程、図10(b)は、nオーミック電極(nオーミック電極321、323、324など)を形成するnオーミック電極形成工程、図10(c)は、半導体積層体分離工程、図11(d)は、電流阻止部βを形成する電流阻止部形成工程、図11(e)は、pゲート層87を露出させるpゲート層出しエッチング工程、図11(f)は、pオーミック電極(pオーミック電極331、332など)を形成するpオーミック電極形成工程、図12(g)は、保護層90を形成する保護層形成工程、図12(h)は、配線(電源線71、第1転送信号線72、第2転送信号線73、点灯信号線75など)及び裏面電極91を形成する配線等形成工程である。
図10、図11、図12では、図7に示したアイランド301、302の断面図で説明する。これらのアイランドは、図6(a)のVIB-VIB線での断面図であるが、図6(b)とは反対側(-x方向)から見た断面図である。なお、他のアイランドについても同様である。また、不純物の導電型(p、n)を表記する。
以下順に説明する。
図10(a)に示す半導体積層体形成工程では、p型の基板80上に、pアノード層81、発光層82、nカソード層83、光透過抑制層84、pアノード層85、nゲート層86、pゲート層87、nカソード層88を順にエピタキシャル成長させて、半導体積層体を形成する。
ここでは、基板80は、p型のGaAsを例として説明するが、n型のGaAs、不純物を添加していないイントリンシック(i)型のGaAsでもよい。また、InP、GaN、InAs、その他III-V族、II-VI材料からなる半導体基板、サファイア、Si、Geなどでもよい。基板を変更した場合、基板上にモノリシックに積層される材料は、基板の格子定数に略整合(歪構造、歪緩和層、メタモルフィック成長を含む)する材料を用いる。一例として、InAs基板上には、InAs、InAsSb、GaInAsSbなどを使用し、InP基板上にはInP、InGaAsPなどを使用し、GaN基板上又はサファイア基板上には、GaN、AlGaN、InGaNを使用し、Si基板上にはSi、SiGe、GaPなどを使用する。ただし、結晶成長後に他の支持基板に貼りつける場合は、支持基板に対して半導体材料が略格子整合している必要はない。
pアノード層81は、下側pアノード層81a、電流狭窄層81b、上側pアノード層81cを順に積層して構成されている。
pアノード層81の下側pアノード層81a、上側pアノード層81cは、例えば不純物濃度1×1018/cmのp型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
電流狭窄層81bは、例えばAlAs又はAlの不純物濃度が高いp型のAlGaAsである。Alが酸化されてAlが形成されることにより、電気抵抗が高くなって、電流経路を狭窄するものであればよい。
発光層82は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構造である。井戸層は、例えばGaAs、AlGaAs、InGaAs、GaAsP、AlGaInP、GaInAsP、GaInPなどであり、障壁層は、AlGaAs、GaAs、GaInP、GaInAsPなどである。なお、発光層82は、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。
nカソード層83は、例えばnカソード層83は、例えば不純物濃度1×1018/cmのn型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
光透過抑制層84は、n型の不純物を高濃度に添加したn++層84aとn型の不純物を高濃度に添加したp++層84bとの接合(図8(e)参照。)で構成されている。n++層84a及びp++層84bは、例えば不純物濃度1×1020/cmと高濃度である。なお、通常の接合の不純物濃度は、1017/cm台~1018/cm台である。n++層84aとp++層84bとの組み合わせ(以下では、n++層84a/p++層84bで表記する。)は、例えばn++GaInP/p++GaAs、n++GaInP/p++AlGaAs、n++GaAs/p++GaAs、n++AlGaAs/p++AlGaAs、n++InGaAs/p++InGaAs、n++GaInAsP/p++GaInAsP、n++GaAsSb/p++GaAsSbである。なお、組み合わせを相互に変更したものでもよい。
pアノード層85は、例えば不純物濃度1×1018/cmのp型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
nゲート層86は、例えば不純物濃度1×1017/cmのn型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
pゲート層87は、例えば不純物濃度1×1017/cmのp型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
nカソード層88は、例えば不純物濃度1×1018/cmのn型のAl0.9GaAsである。Al組成は、0~1の範囲で変更してもよい。なお、GaInPなどでもよい。
これらの半導体層は、例えば有機金属気相成長法(MOCVD)、分子線エピタキシー法(MBE)などによって積層され、半導体積層体が形成される。
図10(b)に示すnオーミック電極形成工程では、まず、nカソード層88上に、nオーミック電極321、323、324などが形成される。
nオーミック電極(nオーミック電極321、323、324など)は、例えばnカソード層88などのn型の半導体層とオーミックコンタクトが取りやすいGeを含むAu(AuGe)などである。
そして、nオーミック電極(nオーミック電極321、323、324など)は、例えばリフトオフ法などにより形成される。
図10(c)に示す半導体積層体分離工程では、nカソード層88、pゲート層87、nゲート層86、pアノード層85、光透過抑制層84、nカソード層83、発光層82、pアノード層81を順にエッチングし、アイランド301、302などのアイランドに分離する。このエッチングは、硫酸系のエッチング液(重量比において硫酸:過酸化水素水:水=1:10:300)などを用いたウェットエッチングで行ってもよく、例えば塩化ホウ素などを用いた異方性ドライエッチング(RIE)で行ってもよい。この半導体積層体分離工程におけるエッチングは、メサエッチング又はポストエッチングと呼ばれることがある。
次の図11(d)に示す電流阻止部形成工程では、半導体積層体分離工程により、側面が露出した電流狭窄層81bを側面から酸化して、電流を阻止する電流阻止部βを形成する。酸化されないで残った部分が電流通過部αとなる。
電流狭窄層81bの酸化は、例えば、300~400℃での水蒸気酸化により、AlAs、AlGaAsなどである電流狭窄層81bのAlを酸化させることで行う。このとき、露出した側面から酸化が進行し、アイランド301、302などのアイランドの周囲にAlの酸化物であるAlによる電流阻止部βが形成される。電流狭窄層81bの酸化されなかった部分が、電流通過部αとなる。なお、図11(e)から図12(i)では、アイランド301において、電流阻止部βがアイランドの側面から距離が異なるように記載されているが、これは図示の便宜のためである。酸化はアイランド301、302などのアイランドの側面から同じ距離進行するので、形成される電流阻止部βのアイランドの側面からの距離は同じになる。
なお、電流阻止部βは、AlAsなどのAl組成比が大きい半導体層を用いる代わりに、GaAs、AlGaAsなどの半導体層に水素イオン(H)の打ち込むことで形成してもよい。(Hイオン打ち込み)。すなわち、電流狭窄層81bを用いず、下側pアノード層81aと上側pアノード層81cとを分割せずに一体化したpアノード層81を形成し、電流阻止部βとする部分にHを打ち込むことで、不純物を不活性化して、電気抵抗が高い電流阻止部βを形成してもよい。
図11(e)に示すpゲート層出しエッチング工程では、nカソード層88をエッチングして、pゲート層87を露出させる。
このエッチングは、硫酸系のエッチング液(重量比において硫酸:過酸化水素水:水=1:10:300)を用いたウェットエッチングで行ってもよく、例えば塩化ホウ素を用いた異方性ドライエッチングで行ってもよい。
図11(f)に示すpオーミック電極形成工程では、pゲート層87上に、pオーミック電極331、332などが形成される。
pオーミック電極(pオーミック電極331、332など)は、例えばpゲート層87などのp型の半導体層とオーミックコンタクトが取りやすいZnを含むAu(AuZn)などである。
そして、pオーミック電極(pオーミック電極331、332など)は、例えばリフトオフ法などにより形成される。
図12(g)に示す保護層形成工程では、例えばSiO、SiON、SiNなどの絶縁性材料によりアイランド301、302などの表面を覆うように、保護層90が形成される。
そして、nオーミック電極(nオーミック電極321、323、324など)及びpオーミック電極(pオーミック電極331、332など)の上の保護層90にスルーホール(開口)が設けられる。
図12(h)に示す配線等形成工程では、保護層90に設けられたスルーホールを介して、nオーミック電極(nオーミック電極321、323、324など)及びpオーミック電極(pオーミック電極331、332など)を接続する配線(電源線71、第1転送信号線72、第2転送信号線73、点灯信号線75など)及び裏面電極91が形成される。
配線及び裏面電極91は、Au、Alなどである。
以上説明したように、第1の実施の形態に係る発光チップCは、発光ダイオードLEDと設定サイリスタSとを積層させている。これにより、発光チップCは、転送サイリスタTと設定サイリスタSとにより、発光ダイオードLEDを順に点灯させる自己走査型となる。これにより、発光チップCに設けられる端子の数が少なくなり、発光チップC及び発光装置65が小型になる。
発光ダイオードLED上に設定サイリスタSを設けず、設定サイリスタSを発光サイリスタ(発光素子)として使用することがある。すなわち、発光ダイオードLED、下部ダイオードUDを構成する、pアノード層81、発光層82、nカソード層83を設けない。
この場合、駆動特性と発光特性とを別々に(独立して)設定しえない。このため、駆動の高速化、光の高出力化、高効率化、低消費電力化、低コスト化などが図りづらい。
これに対し、第1の実施の形態では、発光ダイオードLEDにより発光を行わせ、転送サイリスタT及び設定サイリスタSにより転送を行わせて、発光と転送とを分離している。設定サイリスタSは発光することを要しない。よって、発光ダイオードLEDを量子井戸構造として発光特性などを向上させるととともに、転送サイリスタT及び設定サイリスタSによる駆動特性などを向上させうる。すなわち、発光部102の発光ダイオードLEDと、駆動部101の転送サイリスタT及び設定サイリスタSとを別々に(独立して)設定しうる。これにより、駆動の高速化、光の高出力化、高効率化、低消費電力化、低コスト化などが図りやすい。
また、第1の実施の形態では、発光ダイオードLEDと設定サイリスタSとを、光透過抑制層84を介して積層している。この場合、発光ダイオードLEDのpアノード層83と設定サイリスタSのnカソード層85とは、直接積層すると逆バイアスになる。しかし、前述したように、光透過抑制層84は電流を流しやすいため、光透過抑制層84を介して発光ダイオードLEDと設定サイリスタSとを積層することで、電流が流れやすくなる。
なお、光透過抑制層84を設けないと、発光ダイオードLEDと設定サイリスタSとの直列接続に電流を流すために、逆バイアスの接合が降伏する電圧以上の電圧を印加することになる。すなわち、駆動電圧が高くなってしまう。
すなわち、発光ダイオードLEDと設定サイリスタSとを光透過抑制層84を介して積層することで、光透過抑制層84を介さない場合に比べて、駆動電圧が低く抑えられる。
また、光透過抑制層84は、設定サイリスタSが発光しても、設定サイリスタSが出射する光を画像形成に影響を与えない程度に低減する。よって、設定サイリスタSが発光してもかまわない。
なお、発光ダイオードLEDのpアノード層81に設けた電流狭窄層81bは、発光ダイオードLEDのnカソード層83に設けてもよい。
また、光透過抑制層84として用いられる材料は、GaAs、InPなどに比べると成長が難しく、品質が劣る。よって、光透過抑制層84内部に結晶欠陥が発生しやすく、その上に成長する例えばGaAsなどの半導体内に結晶欠陥が伸びていく。例えば、GaAs基板やInP基板に対してInGaAs層、GaN基板に対してInGaN層は格子定数が異なるため、歪が発生し結晶欠陥が生じやすい。
さらに、光透過抑制層84が不純物濃度の高い半導体層である場合には、例えば、光透過抑制層84の不純物濃度は1019/cmと、他の層の不純物濃度1017~1018/cmに比べて高い。不純物として用いられるSiは、ベースとなる半導体材料の一例であるGaAsとは、格子定数、結合強度、最外殻電子数などが異なる。よって、光透過抑制層84上に、例えばGaAsなどの半導体層を成長させると結晶欠陥が発生しやすい。結晶欠陥は、不純物濃度が高くなればなるほど、発生確率が上昇する。そして、結晶欠陥は、その上に形成される半導体層に伝播していく。
また、光透過抑制層84のように、不純物濃度を他の層よりも高くするためには、低温成長せざるを得ない。すなわち、成長条件(温度、成長速度、比率)を変えねばならない。このため、光透過抑制層84上に設けられる半導体層は、最適な成長条件からずれてしまう。
この結果、光透過抑制層84上に設けられる半導体層は、結晶欠陥が多く含まれることになる。
特に、発光ダイオードLEDなどの発光素子の発光特性は、半導体層に含まれる結晶欠陥の影響を受けやすい。一方、サイリスタ(設定サイリスタS、転送サイリスタT)は、ターンオンして、発光ダイオードLEDや下部ダイオードUDに電流が供給できればよい。すなわち、サイリスタ(設定サイリスタS、転送サイリスタT)は、結晶欠陥の影響を受けにくい。
そこで、第1の実施の形態では、基板80上に、発光ダイオードLED、下部ダイオードUDを設け、その上に、光透過抑制層84を介して設定サイリスタS、転送サイリスタTを設けるようにしている。これにより、発光ダイオードLED、下部ダイオードUD、特に、発光ダイオードLEDにおける結晶欠陥の発生を抑制し、発光特性が結晶欠陥の影響を受けにくいようにしている。
<電圧低減層89>
上記の発光チップCにおいては、光透過抑制層84を介して、発光ダイオードLED、下部ダイオードUD上に、設定サイリスタS、転送サイリスタTを積層した。よって、電源電位Vga、第1転送信号φ1、第2転送信号φ2、点灯信号φIの電圧が絶対値において大きくなった。前述したように、「L」(-5V)を用いていた。
そこで、電源電位Vga、第1転送信号φ1、第2転送信号φ2、点灯信号φIに用いる電圧が絶対値において低減するために、サイリスタ(設定サイリスタS、転送サイリスタT)に印加する電圧を低減する電圧低減層89を用いてもよい。
図13は、発光ダイオードLED1と電圧低減層89を備えた設定サイリスタS1とが積層されたアイランド301の拡大断面図である。図13は、図7(a)に、電圧低減層89を追加したものである。よって、図7(a)と同様な部分は同じ符号を付して説明を省略し、異なる部分を説明する。
ここでは、電圧低減層89は、設定サイリスタSのpアノード層85とnゲート層86との間に設けられている。なお、転送サイリスタTにおいても同様である。
電圧低減層89は、pアノード層85の一部として、pアノード層85と同様の不純物濃度のp型であってもよく、nゲート層86の一部として、nゲート層86と同様の不純物濃度のn型であってもよい。また、電圧低減層89はi型の層であってもよい。
設定サイリスタSや転送サイリスタTにおける電圧低減層89の役割を、一般化してサイリスタとして説明する。
図14は、サイリスタの構造とサイリスタの特性を説明する図である。図14(a)は、電圧低減層89を備えないサイリスタの断面図、図14(b)は、電圧低減層89を備えるサイリスタの断面図、図14(c)は、サイリスタ特性である。図14(a)、(b)は、例えば、発光ダイオードLED上に積層されていない設定サイリスタS1の断面に相当する。よって、設定サイリスタS1での符号を( )に示している。そして、裏面電極91は、pアノード層85の裏面に設けられているとする。
図14(a)に示すサイリスタは、pアノード層85とnゲート層86との間に、電圧低減層89を備える。図14(b)に示すサイリスタは、電圧低減層89を備えない。
サイリスタにおける立ち上がり電圧(図14(c)のVr、Vr′参照)は、サイリスタを構成する半導体層におけるもっとも小さいバンドギャップエネルギによって決まる。なお、サイリスタにおける立ち上がり電圧とは、サイリスタのオン状態における電流を、電圧軸に外挿した際の電圧である。
図14(c)に示すように、pアノード層85、nゲート層86、pゲート層87、nカソード層88に比べ、バンドギャップエネルギが小さい層である電圧低減層89を備えたサイリスタは、立ち上がり電圧Vr′が、電圧低減層89を備えないサイリスタの立ち上がり電圧Vrに比べて低い。さらに、電圧低減層89は、一例として、発光層82のバンドギャップよりも小さいバンドギャップを有する層である。
サイリスタ(設定サイリスタS、転送サイリスタT)は発光素子として利用されるものではなく、あくまで発光ダイオードLEDなどの発光素子を駆動する駆動部101の一部として機能する。よって、実際に発光する発光素子の発光波長とは無関係にバンドギャップが決められる。そこで、発光層82のバンドギャップよりも小さいバンドギャップを有する電圧低減層89を設けることで、サイリスタの立ち上がり電圧Vrを低減している。
これにより、サイリスタ及び発光素子がオンした状態で、サイリスタ及び発光素子に印加する電圧が低減される。
図15は、半導体層を構成する材料のバンドギャップエネルギを説明する図である。
GaAsの格子定数は、約5.65Åである。AlAsの格子定数は、約5.66Åである。よって、この格子定数に近い材料は、GaAs基板に対してエピタキシャル成長しうる。例えば、GaAsとAlAsとの化合物であるAlGaAsやGeは、GaAs基板に対してエピタキシャル成長しうる。
また、InPの格子定数は、約5.87Åである。この格子定数に近い材料は、InP基板に対してエピタキシャル成長しうる。
また、GaNの格子定数は、成長面によって異なるが、a面が3.19Å、c面が5.17Åである。この格子定数に近い材料はGaN基板に対してエピタキシャル成長しうる。
そして、GaAs、InP及びGaNに対して、サイリスタの立ち上がり電圧が小さくなるバンドギャップエネルギは、図16に網点で示す範囲の材料である。つまり、網点で示す範囲の材料を、サイリスタを構成する層として用いると、サイリスタの立ち上がり電圧Vrが、網点で示す領域の材料のバンドギャップエネルギになる。
例えば、GaAsのバンドギャップエネルギは、約1.43eVである。よって、電圧低減層89を用いないと、サイリスタの立ち上がり電圧Vrは、約1.43Vとなる。しかし、網点で示す範囲の材料を、サイリスタを構成する層とするか、又は、含むことで、サイリスタの立ち上がり電圧Vrは、0V超且つ1.43V未満としうる(0V<Vr<1.43V)。
これにより、サイリスタがオン状態にある時の、電力消費が低減される。
網点で示す範囲の材料としては、GaAsに対してバンドギャップエネルギが約0.67eVのGeがある。また、InPに対してバンドギャップエネルギが約0.36eVのInAsがある。また、GaAs基板又はInP基板に対して、GaAsとInPとの化合物、InNとInSbとの化合物、InNとInAsとの化合物などにおいて、バンドギャップエネルギが、小さい材料を用いうる。特に、GaInNAsをベースとした混合化合物が適している。これらに、Al、Ga、As、P、Sbなどが含まれてもよい。また、GaNに対してはGaNPが電圧低減層89となりうる。他にも、(1)メタモリフィック成長などによるInN層、InGaN層、(2)InN、InGaN、InNAs、InNSbからなる量子ドット、(3)GaNの格子定数(a面)の2倍に相当するInAsSb層などを電圧低減層89として導入しうる。これらに、Al、Ga、N、As、P、Sbなどが含まれてよい。
ここでは、サイリスタの立ち上がり電圧Vr、Vr′で説明したが、サイリスタがオン状態を維持する最小の電圧である保持電圧Vh、Vh′やオン状態のサイリスタに印加される電圧も同様である(図14(c)参照)。
一方、サイリスタのスイッチング電圧Vs(図14(c)参照)は、逆バイアスになった半導体層の空乏層で決まる。よって、電圧低減層89は、サイリスタのスイッチング電圧Vsに及ぼす影響が小さい。
すなわち、電圧低減層89は、サイリスタのスイッチング電圧Vsを維持しつつ、立ち上がり電圧を低下させる(立ち上がり電圧Vrを立ち上がり電圧Vr′に)。これにより、オン状態のサイリスタに印加される電圧が低減され、消費電力が低減される。サイリスタのスイッチング電圧Vsはpアノード層85、nゲート層86、pゲート層87、nカソード層88の材料や不純物濃度等を調整することで任意の値に設定される。ただし、電圧低減層89の挿入位置によってスイッチング電圧Vsは変化する。
また、図13では、電圧低減層89を一つ設けた例を示しているが、複数設けてもよい。例えば、pアノード層85とnゲート層86との間、及び、pゲート層87とnカソード層88との間にそれぞれ電圧低減層89を設けた場合や、nゲート層86内に一つ、pゲート層87内にもう一つ設けてもよい。その他にも、pアノード層85、nゲート層86、pゲート層87、nカソード層88の内から2、3層を選択し、それぞれの層内に設けてもよい。これらの電圧低減層の導電型は、電圧低減層を設けたアノード層、カソード層、ゲート層と合わせてもよいし、i型であってもよい。
なお、電圧低減層89として用いられる材料は、GaAs、InPなどに比べると成長が難しく、品質が劣る。よって、電圧低減層89内部に結晶欠陥が発生しやすく、その上に成長する例えばGaAsなどの半導体内に結晶欠陥が伸びていく。
前述したように、発光ダイオードLEDなどの発光素子の発光特性は、半導体層に含まれる結晶欠陥の影響を受けやすい。一方、サイリスタ(設定サイリスタS、転送サイリスタT)は、ターンオンして、発光ダイオードLEDや下部ダイオードUDに電流が供給できればよい。よって、電圧低減層89を含むサイリスタを発光層として用いるのではなく、電圧低減のために用いるのであれば、サイリスタを構成する半導体層に結晶欠陥が含まれてもよい。
そこで、光透過抑制層84と同様に、基板80上に、発光ダイオードLED、下部ダイオードUDを設け、その上に、電圧低減層89を含む設定サイリスタS、転送サイリスタTを設けるようにすればよい。これにより、発光ダイオードLED、下部ダイオードUD、特に、発光ダイオードLEDにおいて結晶欠陥の発生を抑制し、発光特性が結晶欠陥の影響を受けにくいようになる。また、設定サイリスタSや転送サイリスタTをモノリシックに積層しうる。
なお、電流狭窄層は、発光ダイオードLEDのpアノード層81に設けたが、発光ダイオードLEDのnカソード層83、設定サイリスタSのpアノード層85、nカソード層88に設けてもよい。
以下では、第1の実施の形態に係る発光チップCの変形例を説明する。以下に示す変形例では、発光チップCのアイランド301における発光ダイオードLED1と設定サイリスタS1とが積層された部分で説明するが、他の発光ダイオードLEDと設定サイリスタSとが積層された部分及び下部ダイオードUDと転送サイリスタTとが積層された部分も同様である。他の構成は、これまで説明した発光チップCと同様であるので、同様な部分の説明を省略し、異なる部分を説明する。
(第1の実施の形態に係る発光チップCの変形例1-1)
図16は、第1の実施の形態に係る発光チップCの変形例1-1を説明する発光ダイオードLED1と設定サイリスタS1とが積層されたアイランド301の拡大断面図である。
変形例1-1では、電流狭窄層(変形例1-1では電流狭窄層85b)は、pアノード層81の代わりにpアノード層85に設けられている。すなわち、pアノード層85が下側pアノード層85a、電流狭窄層85b、上側pアノード層85cで構成されている。他の構成は、第1の実施の形態に係る発光チップCと同様である。
なお、変形例1-1は、図10、図11、図12に示した第1の実施の形態に係る発光チップCの製造方法を変更することで製造される。すなわち、pアノード層85を下側pアノード層85a、電流狭窄層85b、上側pアノード層85cとして、電流狭窄層85bを側面から酸化すればよい。この構造の場合、発光ダイオードLEDまでエッチングする必要がないことから、段差が小さくなってプロセスが容易になったり、放熱性が向上したりして、レーザ特性が改善するなどの利点がある。
(第1の実施の形態に係る発光チップCの変形例1-2)
図17は、第1の実施の形態に係る発光チップCの変形例1-2を説明する発光ダイオードLED1と設定サイリスタS1とが積層されたアイランド301の拡大断面図である。
変形例1-2では、電流狭窄層81bの代りに、電流通過部αに対応する部分に光透過抑制層84が設けられている。他の構成は、第1の実施の形態に係る発光チップCと同様である。
前述したように、光透過抑制層84は、電流が流れやすい。しかし、光透過抑制層84がないnカソード層83とpアノード層85との接合は、降伏を生じない逆バイアスの状態において電流が流れにくい。
よって、電流通過部αに対応する部分に光透過抑制層84を設けると、発光ダイオードLEDに流れる電流を中央部に集中させられる。
なお、変形例1-2の発光チップCは、図10、図11、図12に示した第1の実施の形態に係る発光チップCの製造方法を変更することで製造される。すなわち、図10(a)において、基板80上に、pアノード層81、発光層82、nカソード層83、光透過抑制層84を順に積層する。その後、電流阻止部βとなる部分の光透過抑制層84を除去し、電流通過部αとなる部分の光透過抑制層84を残す。その後、残した光透過抑制層84の周囲を埋めるようにpアノード層85を積層する。そして、nゲート層86、pゲート層87、nカソード層88を順に積層する。なお、pアノード層85の代わりに、残した光透過抑制層84の周囲をnカソード層83で埋めてもよい。
変形例1-2の発光チップCは、水蒸気酸化が適用しづらい半導体材料を用いる場合に適用されてもよい。
(第1の実施の形態に係る発光チップCの変形例1-3)
図18は、第1の実施の形態に係る発光チップCの変形例1-3を説明する発光ダイオードLED1と設定サイリスタS1とが積層されたアイランド301の拡大断面図である。
変形例1-3では、nカソード層83を分布ブラッグ反射層(DBR:Distributed Bragg Reflector)(以下では、DBR層と表記する。)としている。DBR層は、屈折率差を設けた半導体層を複数積層して構成される。そして、DBR層は、発光ダイオードLEDの出射する光を反射するように構成されている。他の構成は、第1の実施の形態に係る発光チップCと同様である。
光透過抑制層84に発光ダイオードLEDの発光波長よりバンドギャップエネルギが小さい半導体材料を使用すると、光透過抑制層84に達した光が、バンド端吸収されて損失になる。このため、変形例1-3では、発光層82と光透過抑制層84との間にDBR層を設け、DBR層で発生する定在波の節に当たる位置に光透過抑制層84を設けている。このようにすることで、光透過抑制層84に用いる半導体材料によるバンド端吸収が大幅に抑制される。
DBR層は、例えばAl0.9Ga0.1Asの高Al組成の低屈折率層と、例えばAl0.2Ga0.8Asの低Al組成の高屈折率層との組み合わせで構成されている。低屈折率層及び高屈折率層のそれぞれの膜厚(光路長)は、例えば中心波長の0.25(1/4)に設定されている。なお、低屈折率層と高屈折率層とのAlの組成比は、0~1の範囲で変更してもよい。
よって、変形例1-3の発光チップCは、図10、図11、図12に示した第1の実施の形態に係る発光チップCの製造方法において、nカソード層83をDBR層に変更することで製造される。
(第1の実施の形態に係る発光チップCの変形例1-4)
図19は、第1の実施の形態に係る発光チップCの変形例1-4を説明する発光ダイオードLED1と設定サイリスタS1とが積層されたアイランド301の拡大断面図である。
変形例1-4では、発光層82を2つのDBR層で挟んでいる。すなわち、pアノード層81及びnカソード層83がDBR層として構成されている。pアノード層81は、電流狭窄層81bを含んでいる。すなわち、pアノード層81は、下側pアノード層81a、電流狭窄層81b、上側pアノード層81cの順で積層され、下側pアノード層81a、上側pアノード層81cがDBR層として構成されている。
なお、下側pアノード層81a、上側pアノード層81c、nカソード層83を、下側pアノード(DBR)層81a、上側pアノード(DBR)層81c、nカソード(DBR)層83と表記することがある。
DBR層の構成は、変形例1-3と同様である。なお、pアノード(DBR)層81における電流狭窄層81bの膜厚(光路長)は、採用する構造によって決定される。取り出し効率やプロセス再現性を重要視する場合は、DBR層を構成する低屈折率層及び高屈折率層の膜厚(光路長)の整数倍に設定されるのがよく、例えば中心波長の0.75(3/4)に設定されている。なお、奇数倍の場合は、電流狭窄層81bは、高屈折率層と高屈折率層とで挟まれるとよい。また、偶数倍の場合は、電流狭窄層81bは、高屈折率層と低屈折率層とで挟まれるとよい。すなわち、電流狭窄層81bは、DBR層による屈折率の周期の乱れを抑制するように設けられるとよい。逆に、酸化された部分の影響(屈折率や歪)を低減したい場合は、電流狭窄層81bの膜厚は、数十nmが好ましく、DBR層内に立つ定在波の節の部分に挿入されるのが好ましい。
pアノード(DBR)層81及びnカソード(DBR)層83は、発光ダイオードLEDの発光層82が出射する光を反射するように構成されている。すなわち、pアノード(DBR)層81とnカソード(DBR)層83とは、共振器(キャビティ)を構成し、発光層82が出射する光が共振により強められて出力される。すなわち、変形例1-4では、共振型の発光ダイオードLED上に設定サイリスタSが積層されている。
変形例1-4の発光チップCは、第1の実施の形態において図10、11、12に示した製造方法を一部変更することで製造される。すなわち、図10(a)の半導体積層体形成工程において、pアノード層81の下側pアノード層81a、上側pアノード層81c、及び、nカソード層83をDBR層として形成すればよい。
(第1の実施の形態に係る発光チップCの変形例1-5)
図20は、第1の実施の形態に係る発光チップCの変形例1-5を説明する発光ダイオードLED1と設定サイリスタS1とが積層されたアイランド301の拡大断面図である。
変形例1-5では、図19に示した発光チップCのnカソード(DBR)層81をDBR層としないnカソード層83とし、その代りnカソード層88をDBR層としている。よって、nカソード層88をnカソード(DBR)層88と表記する。他の構成は、第1の実施の形態に係る発光チップCと同様である。
変形例1-5では、pアノード(DBR)層81とnカソード(DBR)層88とは、共振器(キャビティ)を構成し、発光層82が出射する光が共振により強められて出力される。なお、この構成は、発光層82が出射する光が、光透過抑制層84を透過する場合に適用される。
変形例1-5の発光チップCは、第1の実施の形態において図10、11、12に示した製造方法を一部変更することで製造される。すなわち、図10(a)の半導体積層体形成工程において、pアノード(DBR)層81及びnカソード(DBR)層88をDBR層として形成すればよい。
第1の実施の形態の発光チップC及び各変形例の発光チップCにおいて、光透過抑制層84を設けているので、設定サイリスタSの出射する光の強度(光量)が低減され、発光ダイオードLEDの発光スペクトルに設定サイリスタSの発光スペクトルが混入することが抑制される。
また、発光ダイオードLEDの周辺部に電流阻止部βを設けているので、電流通過部αに電流が集中する。これにより、非発光再結合に消費される電力が抑制されて、低消費電力化及び光取り出し効率が向上する。
なお、酸化による電流狭窄層を用いる場合には、電流狭窄部を発光ダイオードLEDのnカソード層83、設定サイリスタSのpアノード層85、nカソード層88に設けてもよい。また、変形例1-2(図17)と同様に、酸化による電流狭窄層の代わりに光透過抑制層84を用いてもよい。
また、設定サイリスタS、転送サイリスタTに、電圧低減層89を加えてもよい。
なお、第1の実施の形態の発光チップC及び各変形例の発光チップCにおいて、発光ダイオードLEDのpアノード層81及びnカソード層83をクラッド層とし、発光層82をクラッド層としたpアノード層81とnカソード層83とで挟んでレーザ発振させてもよい。この場合、発光ダイオードLEDはレーザダイオードLDとなる。そして、レーザダイオードLDは、基板80の表面に平行な方向に光が出射する。
[第2の実施の形態]
第1の実施の形態に係る発光チップCでは、発光素子を発光ダイオードLEDとした。第2の実施の形態に係る発光チップCでは、発光素子として垂直共振器面発光レーザVCSEL(Vertical Cavity Surface Emitting Laser)としている。
発光チップCにおける垂直共振器面発光レーザVCSEL(下部ダイオードUDを含む)と設定サイリスタS(転送サイリスタTを含む)との積層された構成を除く他の構成は、第1の実施の形態と同様であって、発光ダイオードLED(発光ダイオードLED1~LED128)を垂直共振器面発光レーザVCSEL(垂直共振器面発光レーザVCSEL1~VCSEL128)に置き換えればよい。よって、同様な部分の説明を省略し、異なる部分を説明する。
図21は、第2の実施の形態に係る発光チップCの垂直共振器面発光レーザVCSEL1と設定サイリスタS1とが積層されたアイランド301の拡大断面図である。
基本的な構成は、図19に示した第1の実施の形態に係る発光チップCの変形例1-4と同様であるので説明を省略する。
垂直共振器面発光レーザVCSELは、2つのDBR層(pアノード(DBR)層81とnカソード(DBR)層83)とで挟まれた発光層82において、光を共振させてレーザ発振させている。2つのDBR層(pアノード(DBR)層81とnカソード(DBR)層83)との反射率が例えば99%以上になるとレーザ発振する。
以下では、第2の実施の形態に係る発光チップCの変形例を説明する。以下に示す変形例では、発光チップCのアイランド301における垂直共振器面発光レーザVCSEL1と設定サイリスタS1とが積層された部分で説明するが、他の垂直共振器面発光レーザVCSELと設定サイリスタSとが積層された部分、及び、下部ダイオードUDと転送サイリスタTとが積層された部分も同様である。他の構成は、これまで説明した発光チップCと同様であるので、異なる部分を説明し、同様な部分の説明を省略する。
(第2の実施の形態に係る発光チップCの変形例2-1)
図22は、第2の実施の形態に係る発光チップCの変形例2-1を説明する垂直共振器面発光レーザVCSEL1と設定サイリスタS1とが積層されたアイランド301の拡大断面図である。
変形例2-1の基本的な構成は、図20に示した第1の実施の形態に係る発光チップCの変形例1-5と同様であるので説明を省略する。
垂直共振器面発光レーザVCSELは、2つのDBR層(pアノード(DBR)層81とnカソード(DBR)層88)とで挟まれた発光層82において、光を共振させてレーザ発振させている。なお、この構成は、発光層82が出射する光は、光透過抑制層84を透過する場合に適用される。
(第2の実施の形態に係る発光チップCの変形例2-2)
図23は、第2の実施の形態に係る発光チップCの変形例2-2を説明する垂直共振器面発光レーザVCSEL1と設定サイリスタS1とが積層されたアイランド301の拡大断面図である。
変形例2-2の基本的な構成は、図17に示した第1の実施の形態に係る発光チップCの変形例1-2と同様であって、pアノード層81とpアノード層85をDBR層としている。他の構成は、変形例1-2と同様であるので説明を省略する。
垂直共振器面発光レーザVCSELは、発光層82とnカソード層83とを挟む2つのDBR層(pアノード(DBR)層81とpアノード(DBR)層85)において、光を共振させてレーザ発振させている。なお、この構成は、発光層82が出射する光が、光透過抑制層84を透過する場合に適用される。
また、変形例2-2は、酸化による電流狭窄層を用いないため、水蒸気酸化が適用しづらいInP、GaN、サファイアなどの基板上の半導体材料に適用しやすい。
第2の実施の形態の発光チップC及び各変形例の発光チップCにおいて、光透過抑制層84を設けているので、設定サイリスタSの出射する光の強度(光量)が低減され、垂直共振器面発光レーザVCSELの発光スペクトルに設定サイリスタSの発光スペクトルが混入することが抑制される。
また、垂直共振器面発光レーザVCSELの周辺部に電流阻止部βを設けているので、電流通過部αに電流が集中する。これにより、非発光再結合に消費される電力が抑制されて、低消費電力化及び光取り出し効率が向上する。
なお、酸化による電流狭窄層を用いる場合には、電流狭窄部を垂直共振器面発光レーザVCSELのnカソード層83、設定サイリスタSのpアノード層85、nカソード層88に設けてもよい。また、変形例2-2(図23)と同様に、酸化による電流狭窄層の代わりに光透過抑制層84を用いてもよい。
また、設定サイリスタS、転送サイリスタTに、電圧低減層89を加えてもよい。
[第3の実施の形態]
第1の実施の形態及び第2の実施の形態では、転送サイリスタTは、下部ダイオードUDの上に構成されて、下部ダイオードUDと転送サイリスタTとは直列接続されていた。このため、転送サイリスタTに供給される第1転送信号φ1、第2転送信号φ2の「L」の電位は、直列接続された下部ダイオードUDと転送サイリスタTとに印加された。このため、例えば、「L」(-5V)であった。
第3の実施の形態では、転送サイリスタTが下部ダイオードUDと直列接続されないように構成されている。よって、転送サイリスタTに供給される第1転送信号φ1、第2転送信号φ2の「L」の電位が低くなり、転送サイリスタTのアノードとカソードに印加する電位でよい。例えば、「L′」(-3.3V)でよい。
なお、発光チップCの構造を除いて、第1の実施の形態と同様である。よって、同様の部分の説明を省略して、異なる部分を説明する。
図24は、第3の実施の形態に係る自己走査型発光素子アレイ(SLED)が搭載された発光チップCの回路構成を説明する等価回路図である。
発光チップC1(C)は、発光ダイオードLED1~LED128で構成される発光部102(図4(a)参照)を備える。また、発光チップC1(C)は、設定サイリスタS1~S128、転送サイリスタT1~T128、結合ダイオードD1~D127、電源線抵抗Rg1~Rg128、スタートダイオードSD、電流制限抵抗R1、R2により構成される駆動部101を備える。
すなわち、第3の実施の形態に係る発光チップCは、図24に示すように、等価回路図上において図5に示した第1の実施の形態に係る発光チップCが備える下部ダイオードUD1~UD128を備えない。
図25は、第3の実施の形態に係る発光チップCのアイランド301、302の断面図である。
第3の実施の形態に係る発光チップCの平面レイアウトは、図6(a)に示した第1の実施の形態に係る発光チップCの平面レイアウトと同じである。よって、説明を省略する。
図25に示す第3の実施の形態に係る発光チップCのアイランド301、302の断面図は、図6(a)のVIB-VIB線での断面であるが、図6(b)とは反対側(-x方向)から見た断面図である。
図25に示すように、第3の実施の形態に係る発光チップCでは、アイランド302において、転送サイリスタT1のpアノード層85とp型の基板80とがp型の半導体層とオーミックコンタクトが取りやすいZnを含むAu(AuZn)などの接続配線74で接続されている。
これにより、転送サイリスタT1のpアノード層85は、基板80の裏面電極91に供給される基準電位Vsub(「H」(0V))に設定される。
そして、転送サイリスタT1の下にある下部ダイオードUD1は、pアノード層81、発光層82、nカソード層83の側面が接続配線74により短絡(ショート)されている。これにより、下部ダイオードUD1は、存在するが動作しないようになっている。なお、アイランド302の側面の全面が、保護層90で覆われていてもよい。
また、接続配線74をnカソード層83に接続させた構造であってもよい。電流は、接続配線74からnカソード層83、光透過抑制層84を介して、転送サイリスタTに流れるので、下部ダイオードUD(nカソード層83から発光層82、pアノード層81)には電流が流れず、下部ダイオードUDで電力消費されない。これは、接続配線74を光透過抑制層84の一部に接続させた場合でも同様である。
図26は、第3の実施の形態に係る発光チップCの動作を説明するタイミングチャートである。
図9に示した第1の実施の形態に係る発光チップCの動作を説明するタイミングチャートにおいて、第1転送信号φ1及び第2転送信号φ2の「L」が「L′」になっている。前述のように、第1転送信号φ1及び第2転送信号φ2は、転送サイリスタTのアノードとカソードとの間に印加される。よって、第1の実施の形態に係る発光チップCの第1転送信号φ1及び第2転送信号φ2より、絶対値が小さい電圧でよい。すなわち、下部ダイオードUD1に印加される電圧(ここでは、1.7Vとした。)が不要になる。この例では、「L′」(-3.3V)となる。なお、発光チップCの動作は、第1転送信号φ1及び第2転送信号φ2の「L」(-5V)を「L′」(-3.3V)とするとともに、下部ダイオードUDの動作を無視すればよい。
動作させるための第1転送信号φ1及び第2転送信号φ2が低電圧化され、低消費電力化される。
以下では、第3の実施の形態に係る発光チップCの変形例3-1を説明する。以下に示す変形例では、図25に示した第3の実施の形態に係る発光チップCのアイランド301、302が異なっている。他の構成は、これまで説明した発光チップCと同様であるので、異なる部分を説明し、同様な部分の説明を省略する。
図27は、第3の実施の形態に係る発光チップCの変形例4-1の発光チップCのアイランド301、302の拡大断面図である。変形例4-1では、接続配線74′が、アイランド302のy方向の端部に設けられている。このようにすることで、第3の実施の形態に係る発光チップC(図25)のように接続配線74と接続配線76とが短絡するおそれが抑制される。なお、接続配線74′がy方向の端部に設けられている状態は、接続配線74′と接続配線76とが保護層90を挟んで重ならない例である。つまり、接続配線74′が、接続配線76と保護層90を挟んで重ならない場所(アイランド302の-x方向側又はx方向側)に設けられていてればよい。つまり、図6(a)に示した発光チップCの平面レイアウトなどにおいて、隙間の部分に接続配線74′を設ければよい。
特に、図6(a)の平面レイアウト図において、第1転送信号線72若しくは第2転送信号線73の近傍、又は、第1転送信号線72若しくは第2転送信号線73の下部は、これらの信号線を通しているだけでその下の半導体領域は活用されていない。よって、第1転送信号線72若しくは第2転送信号線73の近傍、又は、第1転送信号線72若しくは第2転送信号線73の下部に接続配線74又は接続配線74′を設けるのが、チップサイズを大きくすることや回路構成を変更することの必要がなくなるので望ましい。例えば、奇数番号の転送サイリスタT1、T3、・・・に対しては、転送サイリスタT1、T3、…と第2転送信号線73との間、又は、第2転送信号線73の下部に、偶数番号の転送サイリスタT2、T4、・・・に対しては、転送サイリスタT2、T4、…と第1転送信号線72との間、又は、第1転送信号線72の下部に接続配線74又は接続配線74′を設けた構造である。
第1の実施の形態及び第2の実施の形態に係る発光チップCに第3の実施の形態に係る発光チップCの構成を適用してもよい。
第1の実施の形態から第3の実施の形態では、発光素子として、発光ダイオードLED、レーザダイオードLD、垂直共振器面発光レーザVCSELを説明したが、他の発光素子であってもよい。例えば、発光素子は、アノード端子及びカソード端子に加えレーザ発振のオン/オフ又はレーザ光の強度を制御する制御端子を備える、レーザトランジスタであってもよい。また、発光素子とサイリスタを組み合わせた発光部品以外に光透過抑制層を適用してもよい。例えば、発光素子と発光素子を駆動する発光トランジスタとの間に、発光トランジスタが出射する光の透過を抑制する光透過抑制層を設けてもよい。すなわち、基板上に設けられた発光素子と、発光素子の上方に積層され、発光素子を駆動する駆動素子と、発光素子と駆動素子との間に積層され、駆動素子が出射する光の透過を抑制する光透過抑制層とを備える発光部品としてもよい。そして、この発光部品と他の回路を組み合わせたり、この発光部品を複数組み合わせて新たな発光部品としてもよい。
第1の実施の形態から第3の実施の形態における自己走査型発光素子アレイ(SLED)は、発光素子(発光ダイオードLED、レーザダイオードLD、垂直共振器面発光レーザVCSEL)を備える発光部102と、設定サイリスタS、下部ダイオードUD、転送サイリスタTなどを備える駆動部101とで構成されていたが、駆動部101において、設定サイリスタSと転送サイリスタTとの間などに制御用のサイリスタなどを備えてもよい。さらに、ダイオード、抵抗などの他の部材を含んでもよい。
また、転送サイリスタTの間を結合ダイオードDで接続したが、抵抗など電位の変化を伝達できる部材で接続してもよい。
また、発光素子(発光ダイオードLED、レーザダイオードLD、垂直共振器面発光レーザVCSEL)、設定サイリスタSを用いず、下部ダイオードUDを発光素子(発光ダイオードLED、レーザダイオードLD、垂直共振器面発光レーザVCSEL)とし、転送サイリスタTに供給される第1転送信号φ1、第2転送信号φ2に点灯信号φIを重畳させてもよい。このようにすることで、用いる素子数が少なくなり、発光チップCのサイズが小さくなる。この場合、発光素子を除く、転送サイリスタTなどが駆動部101を構成する。
第1の実施の形態から第3の実施の形態において、発光素子(発光ダイオードLED、レーザダイオードLD、垂直共振器面発光レーザVCSEL)、設定サイリスタS、下部ダイオードUD、転送サイリスタTの導電型を逆にするとともに、回路の極性を変更してもよい。すなわち、アノードコモンをカソードコモンとし、カソードコモンをアノードコモンにしてもよい。
なお、発光素子(発光ダイオードLED、レーザダイオードLD、垂直共振器面発光レーザVCSEL)のターンオン時の発光遅延や緩和振動を抑制するため、予め発光素子に閾値電流以上の微小な電流を注入して僅かに発光状態又は発振状態としておいてもよい。すなわち、設定サイリスタSがターンオンする前から発光素子を僅かに発光させておき、設定サイリスタSがターンオンした時に、発光素子の発光量を増加させて、予め定められた光量にするように構成してもよい。このような構成としては、例えば、発光素子(発光ダイオードLED、レーザダイオードLD、垂直共振器面発光レーザVCSEL)のアノード層に電極を形成し、この電極に電圧源又は電流源を接続しておき、設定サイリスタSがターンオンする前から、この電圧源または電流源から発光素子に微弱な電流を注入するようにすればよい。
また、各実施の形態における、転送サイリスタTおよび設定サイリスタSの構造としては、各実施の形態における転送サイリスタTおよび設定サイリスタSの機能を有する構造であればpnpnの4層構造以外であってもよい。例えば、サイリスタ特性を有するpinin構造、pipin構造、npip構造、またはpnin構造などであってもよい。この場合、pinin構造のpとnに挟まれた、i層、n層、i層、pnin構造のpとnとに挟まれた、n層、i層のいずれかがゲート層となり、ゲート層上に設けられたnオーミック電極をゲートGt(ゲートGs)の端子とすればよい。もしくは、npip構造のnとpに挟まれた、i層、p層、i層、npip構造のnとpとに挟まれた、p層、i層のいずれかがゲート層となり、ゲート層上に設けられたpオーミック電極332をゲートGt(ゲートGs)の端子とすればよい。
さらに、各実施の形態における、サイリスタを構成する複数の半導体層と発光素子を構成する複数の半導体層とが、光透過抑制層を構成する半導体層を介して積層されている半導体構造は、自己走査型発光素子アレイ(SLED)以外の用途にも使用できる。例えば、1個の発光素子(発光ダイオードLED、レーザダイオードLD、垂直共振器面発光レーザVCSELなど)とそれに積層された設定サイリスタSとで構成され、外部からの電気信号や光信号などの入力によって点灯する単体の発光部品として使用できる。この場合、発光素子が発光部102、設定サイリスタSが駆動部101を構成する。
以上においては、主にp型のGaAsを基板80の例として説明した。他の基板を用いた場合における各半導体層(図10(a)の半導体積層体形成工程で形成する半導体積層体)の例を説明する。
まず、GaN基板を用いた場合における半導体積層体の一例は以下の通りである。
pアノード層81は、例えば、例えば不純物濃度1×1018/cmのp型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
GaN基板上では酸化狭窄層を電流狭窄層として使用することが困難であるため、光透過抑制層を電流狭窄層として用いた図17、図23が望ましい構造である。もしくはイオン注入を電流狭窄方法として使用することも有効である。
発光層82は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構図である。井戸層は、例えばGaN、InGaN、AlGaNなどであり、障壁層は、AlGaN、GaNなどである。なお、発光層82は、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。
nカソード層83は、例えば不純物濃度1×1018/cmのn型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
光透過抑制層84をn型の不純物を高濃度に添加したn++層84aとn型の不純物を高濃度に添加したp++層84bとで構成した場合(図10(a)参照。)、n++層84aとp++層84bとの組み合わせ(以下では、n++層84a/p++層84bで表記する。)は、例えばn++GaN/p++GaN、n++GaInN/p++GaInN、n++AlGaN/p++AlGaNとすればよい。なお、組み合わせを相互に変更したものでもよい。
pアノード層85は、例えば不純物濃度1×1018/cmのp型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
nゲート層86は、例えば不純物濃度1×1017/cmのn型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
pゲート層87は、例えば不純物濃度1×1017/cmのp型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
nカソード層88は、例えば不純物濃度1×1018/cmのn型のAl0.9GaNである。Al組成は、0~1の範囲で変更してもよい。
次に、InP基板を用いた場合における半導体積層体の一例は以下の通りである。
pアノード層81は、例えば不純物濃度1×1018/cmのp型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
InP基板上では酸化狭窄層を電流狭窄層として使用することが困難であるため、光透過抑制層を電流狭窄層として用いた図17、図23が望ましい構造である。もしくはイオン注入を電流狭窄方法として使用することも有効である。
発光層82は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構図である。井戸層は、例えばInAs、InGaAsP、AlGaInAs、GaInAsPSbなどであり、障壁層は、InP、InAsP、InGaAsP、AlGaInAsPなどである。なお発光層82は、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。
nカソード層83は、例えば不純物濃度1×1018/cmのn型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
光透過抑制層84を、n型の不純物を高濃度に添加したn++層84aとn型の不純物を高濃度に添加したp++層84bとで構成する場合(図10(a)参照。)、n++層84aとp++層84bとの組み合わせ(以下では、n++層84a/p++層84bで表記する。)は、例えばn++InP/p++InP、n++InAsP/p++InAsP、n++InGaAsP/p++InGaAsP、n++InGaAsPSb/p++InGaAsPSbとすればよい。なお、組み合わせを相互に変更したものでもよい。
pアノード層85は、例えば不純物濃度1×1018/cmのp型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
nゲート層86は、例えば不純物濃度1×1017/cmのn型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
pゲート層87は、例えば不純物濃度1×1017/cmのp型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
nカソード層88は、例えば不純物濃度1×1018/cmのn型のInGaAsPである。Ga組成、Al組成は、0~1の範囲で変更してもよい。
これらの半導体層は、例えば有機金属気相成長法(MOCVD)、分子線エピタキシー法(MBE)などによって積層され、半導体積層体が形成される。
また、以上説明した実施の形態を、有機材料からなるp型・n型・i型層に適用することも可能である。
さらに、それぞれの実施の形態を、他の実施の形態と組み合わせて用いてもよい。そして、本発明の趣旨に反しない限りにおいて様々な変形を行っても構わない。
1…画像形成装置、10…画像形成プロセス部、11…画像形成ユニット、12…感光体ドラム、14…プリントヘッド、30…画像出力制御部、40…画像処理部、62…回路基板、63…光源部、64…ロッドレンズアレイ、65…発光装置、80…基板、81…pアノード層、pアノード(DBR)層、81b、85b…電流狭窄層、82…発光層、83…nカソード層、nカソード(DBR)層、84…光透過抑制層、84a…n++層、84b…p++層、85…pアノード層、pカソード(DBR)層、86…nゲート層、87…pゲート層、88…nカソード層、89…電圧低減層、90…保護層、91…裏面電極、100…転写基板、101…駆動部、102…発光部、110…信号発生回路、120…転送信号発生部、140…点灯信号発生部、160…基準電位供給部、170…電源電位供給部、301~306…アイランド、φ1…第1転送信号、φ2…第2転送信号、φI(φI1~φI40)…点灯信号、α…電流通過部(領域)、β…電流阻止部(領域)、C(C1~C40)…発光チップ、D(D1~D127)…結合ダイオード、LED(LED1~LED128)…発光ダイオード、SD…スタートダイオード、T(T1~T128)…転送サイリスタ、VCSEL(VCSEL1~VCSEL128)…垂直共振器面発光レーザ、Vga…電源電位、Vsub…基準電位

Claims (12)

  1. 基板と、
    前記基板上に設けられた発光素子と、
    オン状態になることで前記発光素子を発光、又は、当該発光素子の発光量を増加させるサイリスタと、
    前記発光素子と前記サイリスタとの間に設けられ、当該サイリスタが出射する光の透過を抑制する光透過抑制層と
    を備え
    前記発光素子と前記光透過抑制層と前記サイリスタとがこの並び順で積層される発光部品。
  2. 前記発光素子の出射する光と、前記サイリスタの発光する光とは、波長が異なることを特徴とする請求項1に記載の発光部品。
  3. 前記光透過抑制層は、バンドギャップエネルギが前記サイリスタの出射する光に相当するバンドギャップエネルギより小さい半導体層を含むことを特徴とする請求項1又は2に記載の発光部品。
  4. 前記発光素子及び前記サイリスタは、それぞれ複数の半導体層が積層されて構成され、
    前記光透過抑制層は、前記発光素子側において接する当該発光素子を構成する半導体層と、前記サイリスタ側において接する当該サイリスタを構成する半導体層との、いずれか一方の半導体層と同じ導電型を有するとともに、当該いずれか一方の半導体層よりも不純物濃度が高い半導体層を含むことを特徴とする請求項1又は2に記載の発光部品。
  5. 前記発光素子及び前記サイリスタは、それぞれ複数の半導体層が積層されて構成され、
    前記光透過抑制層は、前記発光素子側において接する当該発光素子を構成する半導体層と、前記サイリスタ側において接する当該サイリスタを構成する半導体層とを直接接合させた場合における電流の流れやすい方向が維持されるように構成されていることを特徴とする請求項1又は2に記載の発光部品。
  6. 前記発光素子、前記サイリスタ及び前記光透過抑制層は、それぞれ複数の半導体層が積層されて構成され、
    前記サイリスタを構成する複数の半導体層のうち前記光透過抑制層に接する半導体層と、当該光透過抑制層を構成する複数の半導体層のうち当該サイリスタに接する層とは、同じ導電型を有し、
    前記発光素子を構成する複数の半導体層のうち前記光透過抑制層に接する半導体層と、当該光透過抑制層を構成する複数の半導体層のうち当該発光素子に接する半導体層とは、同じ導電型を有し、
    前記光透過抑制層を構成する複数の半導体層のそれぞれは、前記発光素子を構成する複数の半導体層のうち当該光透過抑制層に接する半導体層、及び、前記サイリスタを構成する複数の半導体層のうち当該光透過抑制層に接する半導体層よりも不純物濃度が高いことを特徴とする請求項1又は2に記載の発光部品。
  7. 前記サイリスタは、当該サイリスタの立ち上がり電圧を低減する電圧低減層を備えることを特徴とする請求項1に記載の発光部品。
  8. 前記電圧低減層は、前記サイリスタを構成する他の半導体層のいずれよりもバンドギャップエネルギが小さいことを特徴とする請求項7に記載の発光部品。
  9. 基板と、
    前記基板上に設けられた複数の発光素子と、
    複数の前記発光素子上に光透過抑制層を介してそれぞれが積層され、オン状態になることで当該発光素子を発光、又は、当該発光素子の発光量を増加させる複数のサイリスタと、
    複数の前記発光素子と同一の構成の下部素子上に前記光透過抑制層を介してそれぞれが積層されるとともに、オン状態になることで、前記サイリスタをオン状態に移行が可能な状態にする複数の転送素子を、備え、
    前記転送素子は、接続配線により、前記下部素子を介さず、又は、当該下部素子を構成する半導体層の一部の半導体層を介して前記基板に接続されていることを特徴とする発光部品。
  10. 基板と、当該基板上に設けられた発光素子と、オン状態になることで当該発光素子を発光、又は、当該発光素子の発光量を増加させるサイリスタと、当該発光素子と当該サイリスタとの間に設けられ、当該サイリスタが出射する光の透過を抑制する光透過抑制層と、を含み、当該発光素子と当該光透過抑制層と当該サイリスタとがこの並び順で積層される発光手段と、
    前記発光手段から出射される光を結像させる光学手段と
    を備えるプリントヘッド。
  11. 像保持体と、
    前記像保持体を帯電する帯電手段と、
    基板と、当該基板上に設けられた発光素子と、オン状態になることで当該発光素子を発光、又は、当該発光素子の発光量を増加させるサイリスタと、当該発光素子と当該サイリスタとの間に設けられ、当該サイリスタが出射する光の透過を抑制する光透過抑制層と、を含み、当該発光素子と当該光透過抑制層と当該サイリスタとがこの並び順で積層され、光学手段を介して前記像保持体を露光する露光手段と、
    前記露光手段により露光され前記像保持体に形成された静電潜像を現像する現像手段と、
    前記像保持体に現像された画像を被転写体に転写する転写手段と
    を備える画像形成装置。
  12. 基板上に設けられた発光素子と、
    前記発光素子上に積層され、前記発光素子を駆動する駆動素子と、
    前記発光素子と前記駆動素子との間に設けられ、当該駆動素子が出射する光の透過を抑制する光透過抑制層と
    を備え
    前記発光素子と前記光透過抑制層と前記駆動素子とがこの並び順で積層される発光部品。
JP2017181727A 2017-02-13 2017-09-21 発光部品、プリントヘッド及び画像形成装置 Active JP7021485B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2017181727A JP7021485B2 (ja) 2017-09-21 2017-09-21 発光部品、プリントヘッド及び画像形成装置
CN201810127278.3A CN108428715B (zh) 2017-02-13 2018-02-08 发光部件、发光装置和图像形成装置
CN201810127584.7A CN108427248B (zh) 2017-02-13 2018-02-08 发光部件、发光装置和图像形成装置
US15/891,384 US10236321B2 (en) 2017-02-13 2018-02-08 Light-emitting component, light-emitting device, and image forming apparatus
US15/891,381 US11043530B2 (en) 2017-02-13 2018-02-08 Light-emitting component having light-absorbing layer, light-emitting device, and image forming apparatus
CN201810127276.4A CN108428714B (zh) 2017-02-13 2018-02-08 层叠结构、发光部件、发光装置和图像形成装置
US15/891,383 US10438990B2 (en) 2017-02-13 2018-02-08 Light-emitting component, light-emitting device, and image forming apparatus
CN201810127280.0A CN108428707B (zh) 2017-02-13 2018-02-08 发光部件、发光装置和图像形成装置
US15/891,385 US10374002B2 (en) 2017-02-13 2018-02-08 Layered structure including thyristor and light-emitting element, light-emitting component, light-emitting device, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017181727A JP7021485B2 (ja) 2017-09-21 2017-09-21 発光部品、プリントヘッド及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2019057647A JP2019057647A (ja) 2019-04-11
JP7021485B2 true JP7021485B2 (ja) 2022-02-17

Family

ID=66107700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017181727A Active JP7021485B2 (ja) 2017-02-13 2017-09-21 発光部品、プリントヘッド及び画像形成装置

Country Status (1)

Country Link
JP (1) JP7021485B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4346033A1 (en) * 2022-09-27 2024-04-03 FUJIFILM Business Innovation Corp. Light-emitting component, multilayer semiconductor substrate, light-emitting device, and measurement apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992877B (zh) * 2021-02-05 2022-11-22 业成科技(成都)有限公司 倒装发光二极管及其制造方法与背光模组
JP2022168786A (ja) * 2021-04-26 2022-11-08 富士フイルムビジネスイノベーション株式会社 発光部品、光計測装置、画像形成装置および発光部品の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308385A (ja) 2000-04-24 2001-11-02 Nippon Sheet Glass Co Ltd 自己走査型発光装置
JP2004356191A (ja) 2003-05-27 2004-12-16 Nippon Sheet Glass Co Ltd 発光素子アレイおよびその製造方法
JP2009246310A (ja) 2008-03-31 2009-10-22 Kyocera Corp 発光サイリスタ、発光素子アレイ、画像形成装置、ならびに同一基板上に発光サイリスタおよび半導体抵抗素子を形成する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106689A (ja) * 1993-10-01 1995-04-21 Toyota Motor Corp 半導体レーザー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308385A (ja) 2000-04-24 2001-11-02 Nippon Sheet Glass Co Ltd 自己走査型発光装置
JP2004356191A (ja) 2003-05-27 2004-12-16 Nippon Sheet Glass Co Ltd 発光素子アレイおよびその製造方法
JP2009246310A (ja) 2008-03-31 2009-10-22 Kyocera Corp 発光サイリスタ、発光素子アレイ、画像形成装置、ならびに同一基板上に発光サイリスタおよび半導体抵抗素子を形成する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4346033A1 (en) * 2022-09-27 2024-04-03 FUJIFILM Business Innovation Corp. Light-emitting component, multilayer semiconductor substrate, light-emitting device, and measurement apparatus

Also Published As

Publication number Publication date
JP2019057647A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
CN108428707B (zh) 发光部件、发光装置和图像形成装置
JP6245319B1 (ja) 発光部品、プリントヘッド、画像形成装置及び半導体積層基板
CN107219741B (zh) 发光部件、打印头和图像形成装置
JP6210120B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP6369613B1 (ja) 発光部品、プリントヘッド及び画像形成装置
JP6332535B2 (ja) 積層構造体、発光部品、プリントヘッド及び画像形成装置
JP7021485B2 (ja) 発光部品、プリントヘッド及び画像形成装置
CN113451348A (zh) 发光零件
JP7073685B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP7021529B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP7039905B2 (ja) 発光部品の製造方法
JP6222388B1 (ja) 発光部品、プリントヘッド及び画像形成装置
JP6728831B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP6332543B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP6501019B2 (ja) 発光部品及び半導体積層基板
JP7059584B2 (ja) 発光部品、プリントヘッド、画像形成装置及び発光部品の製造方法
JP7021484B2 (ja) 発光部品、プリントヘッド及び画像形成装置
JP7059547B2 (ja) 積層構造体、発光部品、プリントヘッド及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7021485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150