JP7041523B2 - Magnesia Alumina Carbon Brick - Google Patents
Magnesia Alumina Carbon Brick Download PDFInfo
- Publication number
- JP7041523B2 JP7041523B2 JP2018004446A JP2018004446A JP7041523B2 JP 7041523 B2 JP7041523 B2 JP 7041523B2 JP 2018004446 A JP2018004446 A JP 2018004446A JP 2018004446 A JP2018004446 A JP 2018004446A JP 7041523 B2 JP7041523 B2 JP 7041523B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- mass
- particle size
- alumina
- magnesia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
本発明は、溶融金属容器の内張り用、特に溶鋼鍋の湯当たり部に好適に使用されるマグネシアアルミナカーボンれんがに関する。 The present invention relates to magnesia alumina carbon bricks, which are suitably used for the lining of molten metal containers, particularly the hot water contact portion of molten steel pots.
溶鋼鍋では、特に湯当たり部の損耗が大きく、他の部位と比較して補修の頻度が多いため原単価軽減、操業能率向上への大きな障害となっている。この湯当たり部の損耗の形態は、溶鋼注入時の機械的衝撃による摩耗損耗、熱衝撃による剥離損耗、及び目地損耗の3つの形態が主である。 In the molten steel pot, the wear of the hot water contact part is particularly large, and the repair frequency is higher than that of other parts, which is a major obstacle to the reduction of the original unit price and the improvement of the operation efficiency. There are three main forms of wear of the hot water contact portion: wear wear due to mechanical impact during molten steel injection, peel wear due to thermal shock, and joint wear.
近年、湯当たり部の目地損耗対策として、湯当たり部の目地なし施工、すなわち大型ブロックれんがの適用が試みられているが、熱衝撃や機械的衝撃による割れ、欠損、及び使用時の受熱による焼結収縮などのトラブルにより十分なメリットが出るには至っていない。
一方、炭素含有れんが特にマグカーボン系のれんがは鱗状黒鉛等の黒鉛を含有するため耐熱衝撃性に優れており、湯当たり部への適用が実用化されているが、湯当たり部の損耗の主要因の一つである目地損耗の問題が残されている。
In recent years, as a measure against joint wear of hot water contact parts, jointless construction of hot water hitting parts, that is, application of large block bricks has been attempted, but cracking and chipping due to thermal shock and mechanical shock, and firing due to heat reception during use Due to troubles such as shrinkage, sufficient merits have not come out.
On the other hand, carbon-containing bricks, especially magcarbon-based bricks, have excellent heat-impact resistance because they contain graphite such as scaly graphite, and their application to hot water contact parts has been put into practical use. The problem of joint wear, which is one of the causes, remains.
これに対して、アルミナマグネシアカーボンれんが(アルミナを主成分とするれんが)及びマグネシアアルミナカーボンれんが(マグネシアを主成分とするれんが)は、使用時にスピネル膨張によって目地損耗を抑制する効果があるとされている。
このうちマグネシアアルミナカーボンれんがとして、特許文献1には、「マグネシアクリンカーと炭素とアルミナクリンカーを夫々70~85重量%、10~20重量%、2~10重量%含有しており、前記マグネシアクリンカーに対し前記アルミナクリンカーが粒径1mm~0.2mm範囲の中間粒1~8重量%,0.2mm以下の微粒1~5重量%の粒度構成を有し、フェノール樹脂,ピッチの一種または組み合わせのバインダーで混練し成形乾燥したマグネシア・アルミナ・炭素系不焼成れんがにおいて窒素雰囲気中1500℃で3時間の加熱を4回繰り返した残存線膨張率が1.0~2.5%の範囲になる溶鋼を入れる容器の内張り耐火物」が開示されている。
On the other hand, alumina magnesia carbon brick (brick whose main component is alumina) and magnesia alumina carbon brick (brick whose main component is magnesia) are said to have the effect of suppressing joint wear due to spinel expansion during use. There is.
Of these, as magnesia alumina carbon brick, Patent Document 1 states that "Magnesia clinker, carbon and alumina clinker are contained in 70 to 85% by weight, 10 to 20% by weight and 2 to 10% by weight, respectively, and the magnesia clinker contains 70 to 85% by weight, respectively. On the other hand, the alumina clinker has a particle size composition of 1 to 8% by weight of intermediate particles in the range of 1 mm to 0.2 mm and 1 to 5% by weight of fine particles of 0.2 mm or less, and is a binder of one or a combination of phenol resin and pitch. In magnesia, alumina, and carbon-based non-firing bricks that have been kneaded and dried in "Fireproof material for the lining of the container to be put in" is disclosed.
このようなマグネシアアルミナカーボンれんがにおいては、スピネル膨張により残存膨張が大きくなるため目地損耗の抑制効果が得られるが、よりスピネル膨張による残存膨張を大きくするためにアルミナの含有率を高くすると、アルミナがスラグ中のCaO成分によって低融点物質を生成するため耐食性の低下が問題となる。 In such magnesia alumina carbon bricks, the residual expansion increases due to spinel expansion, so that the effect of suppressing joint wear can be obtained. However, if the alumina content is increased in order to further increase the residual expansion due to spinel expansion, alumina becomes Since the CaO component in the slag produces a low melting point substance, deterioration of corrosion resistance becomes a problem.
本発明が解決しようとする課題は、マグネシアアルミナカーボンれんがにおいて残存膨張性を付与するためにアルミナを使用することによる耐食性の低下を抑制することにある。 An object to be solved by the present invention is to suppress a decrease in corrosion resistance due to the use of alumina in order to impart residual expandability in magnesia alumina carbon bricks.
本発明者らは、耐火原料として使用するアルミナの一部を粒径74μm以下の超微粉として使用し、しかもアルミニウム、アルミニウム合金又はシリコンと併用することで耐食性に優れる緻密な組織が得られ、しかも十分な残存膨張性を有するマグネシアアルミナカーボンれんがが得られることを知見した。 The present inventors use a part of alumina used as a fireproof raw material as an ultrafine powder having a particle size of 74 μm or less, and by using it in combination with aluminum, an aluminum alloy or silicon, a dense structure having excellent corrosion resistance can be obtained, and moreover, they can obtain a dense structure. It was found that magnesia alumina carbon brick having sufficient residual expandability can be obtained.
すなわち、本発明の一観点によれば次のマグネシアアルミナカーボンれんがが提供される。
黒鉛を8~18質量%、
粒径74μm超5mm以下のマグネシアを50~77質量%、
粒径74μm以下のマグネシアを3~15質量%、
粒径74μm超1mm以下のアルミナを5~20質量%、
粒径10μm以下の含有率が30質量%以下である粒径74μm以下のアルミナを5~20質量%、
並びに、アルミニウム、アルミニウム合金及びシリコンうち1種以上を合計で0.5~3質量%含有し、
しかも粒径74μm超1mm以下のアルミナと粒径74μm以下のアルミナの合量が15~25質量%である耐火原料配合物を、有機バインダーとともに混練、成形した後、熱処理して得られるマグネシアアルミナカーボンれんが。
That is, according to one aspect of the present invention, the following magnesia alumina carbon bricks are provided.
8-18% by mass of graphite,
50-77% by mass of magnesia with a particle size of more than 74 μm and 5 mm or less,
3 to 15% by mass of magnesia with a particle size of 74 μm or less,
5 to 20% by mass of alumina with a particle size of more than 74 μm and 1 mm or less,
5 to 20% by mass of alumina having a particle size of 74 μm or less, the content of which has a particle size of 10 μm or less is 30% by mass or less.
In addition, it contains 0.5 to 3% by mass of one or more of aluminum, aluminum alloy and silicon in total.
Moreover, magnesia alumina carbon obtained by kneading a fire-resistant raw material compound having a total amount of alumina having a particle size of more than 74 μm and 1 mm or less and alumina having a particle size of 74 μm or less of 15 to 25% by mass together with an organic binder, molding the mixture, and then heat-treating the mixture. Binder.
なお、本発明において「粒径」とは篩目の大きさであり、例えば粒径74μm以下とは74μmの篩目を通過するものである。 In the present invention, the "particle size" is the size of the mesh, and for example, the particle size of 74 μm or less means that the particle size passes through the mesh of 74 μm.
以下、本発明のマグネシアアルミナカーボンれんがにおける耐火原料配合物の構成を詳細に説明する。 Hereinafter, the composition of the refractory raw material compound in the magnesia alumina carbon brick of the present invention will be described in detail.
黒鉛は耐熱衝撃性を確保するために8~18質量%使用する。8質量%未満で耐熱衝撃性が不十分となり、18質量%を超える耐食性が低下する。 Graphite is used in an amount of 8 to 18% by mass to ensure heat impact resistance. If it is less than 8% by mass, the thermal impact resistance becomes insufficient, and if it exceeds 18% by mass, the corrosion resistance is lowered.
粒径74μm超5mm以下のマグネシアは、溶鋼鍋などにおけるスラグに対する耐食性を確保するために50~77質量%使用する。また、粒径74μm以下のマグネシアの超微粉は、スピネル化を促進ししかも緻密な組織として耐食性を向上させるために3~15質量%使用する。3質量%未満では耐食性が不足し、15質量%を超えると成形時の充填性が悪くなり、緻密な組織が得られ難くなって耐食性が低下する。 Magnesia having a particle size of more than 74 μm and 5 mm or less is used in an amount of 50 to 77% by mass in order to secure corrosion resistance to slag in a molten steel pot or the like. Further, the ultrafine powder of magnesia having a particle size of 74 μm or less is used in an amount of 3 to 15% by mass in order to promote spinelization and improve corrosion resistance as a dense structure. If it is less than 3% by mass, the corrosion resistance is insufficient, and if it exceeds 15% by mass, the filling property at the time of molding is deteriorated, it becomes difficult to obtain a dense structure, and the corrosion resistance is lowered.
前述のとおり本発明では、アルミナの一部を粒径74μm以下の超微粉として使用する。すなわち本発明者らは、アルミナの粒径を74μm以下とすることで、早期の残存膨張性を付与する効果とアルミナを使用することによる耐食性低下を抑制する効果とが同時に満足するレベルで得られることを知見し、この知見に基づき粒径74μm以下のアルミナを5~20質量%使用することとした。粒径74μm以下のアルミナが5質量%未満では耐食性低下の抑制効果が不十分となるとともに早期の残存膨張性の付与効果が不十分となり、20質量%を超えると耐食性の低下が大きくなる。 As described above, in the present invention, a part of alumina is used as an ultrafine powder having a particle size of 74 μm or less. That is, the present inventors can obtain the effect of imparting residual expandability at an early stage and the effect of suppressing the deterioration of corrosion resistance due to the use of alumina at the same level by setting the particle size of alumina to 74 μm or less. Based on this finding, it was decided to use 5 to 20% by mass of alumina having a particle size of 74 μm or less. If the particle size of alumina having a particle size of 74 μm or less is less than 5% by mass, the effect of suppressing the deterioration of corrosion resistance is insufficient and the effect of imparting residual expandability at an early stage is insufficient, and if it exceeds 20% by mass, the deterioration of corrosion resistance becomes large.
また、この粒径74μm以下のアルミナの粒度構成は、粒径10μm以下の含有率が30質量%以下とする。粒径10μm以下の含有率が30質量%を超えると、成形時の充填性が悪くなり、緻密な組織が得られ難くなって耐食性が低下する。
なお、前述した粒径74μm以下のマグネシアの粒度構成も、粒径10μm以下の含有率が30質量%以下とすることが好ましい。ただし、粒径74μm以下のマグネシアの使用量は粒径74μm以下のアルミナの使用量と比べて少ないので、成形時の充填性に及ぼす影響は比較的小さいことから、粒径10μm以下の含有率が30質量%を超えるものを使用することもできる。
Further, in the particle size composition of alumina having a particle size of 74 μm or less, the content of the alumina having a particle size of 10 μm or less is 30% by mass or less. If the content of the particle size of 10 μm or less exceeds 30% by mass, the filling property at the time of molding deteriorates, it becomes difficult to obtain a dense structure, and the corrosion resistance deteriorates.
As for the particle size composition of magnesia having a particle size of 74 μm or less as described above, it is preferable that the content of the magnesia having a particle size of 10 μm or less is 30% by mass or less. However, since the amount of magnesia used having a particle size of 74 μm or less is smaller than the amount of alumina used having a particle size of 74 μm or less, the effect on the filling property during molding is relatively small. Those exceeding 30% by mass can also be used.
粒径74μm超1mm以下のアルミナは、継続的な残存膨張性を付与するために5~20質量%使用する。5質量%未満では相対的に粒径74μm以下のアルミナが多くなり急激な残存膨張になり耐食性も低下する。20質量%を超えると相対的に粒径74μm以下のアルミナが不足して耐食性低下の抑制効果が不十分となるとともに早期の残存膨張性の付与効果が不十分となる。 Alumina having a particle size of more than 74 μm and 1 mm or less is used in an amount of 5 to 20% by mass in order to impart continuous residual expandability. If it is less than 5% by mass, the amount of alumina having a particle size of 74 μm or less is relatively large, resulting in rapid residual expansion and deterioration of corrosion resistance. If it exceeds 20% by mass, alumina having a particle size of 74 μm or less is relatively insufficient, and the effect of suppressing the deterioration of corrosion resistance becomes insufficient, and the effect of imparting residual expandability at an early stage becomes insufficient.
粒径74μm以下のアルミナと粒径74μm超1mm以下のアルミナは合量で15~25質量%使用する。15質量%未満では残存膨張が小さくなるため目地損耗の抑制効果が小さくなり、25質量%を超えると耐食性の低下が大きくなる。
なお、粒径1mm超のアルミナは、耐食性の低下を抑制する点から使用しないことが好ましい。
Alumina having a particle size of 74 μm or less and alumina having a particle size of more than 74 μm and 1 mm or less are used in an amount of 15 to 25% by mass. If it is less than 15% by mass, the residual expansion becomes small, so that the effect of suppressing joint wear becomes small, and if it exceeds 25% by mass, the deterioration of corrosion resistance becomes large.
It is preferable not to use alumina having a particle size of more than 1 mm from the viewpoint of suppressing deterioration of corrosion resistance.
アルミニウム、アルミニウム合金及びシリコンは、れんが中で熱を受けると一旦溶融して、れんがの組織中の微細な気孔に浸透し、その後炭化物や酸化物を生成する。このためこれらの金属を使用することで、れんがの組織を緻密化して、強度、耐摩耗性及び耐食性を高める効果が得られる。しかも本発明のマグネシアアルミナカーボンれんがにおいては、これらの金属と粒径74μm以下のマグネシア及びアルミナの超微粉とを組み合わせて使用することで、さらに組織が緻密化することにより耐食性と耐摩耗性を各段に高めることができる。 When aluminum, aluminum alloys and silicon receive heat in the brick, they melt once and penetrate into the fine pores in the structure of the brick, and then form carbides and oxides. Therefore, by using these metals, it is possible to obtain the effect of densifying the brick structure and enhancing the strength, wear resistance and corrosion resistance. Moreover, in the magnesia alumina carbon brick of the present invention, by using these metals in combination with magnesia having a particle size of 74 μm or less and ultrafine powders of alumina, the structure is further densified to improve corrosion resistance and wear resistance. It can be raised step by step.
これらの金属は合計で0.5~3質量%使用する。0.5質量%未満では組織の緻密化が不十分となり、3質量%を超えると高弾性となり耐熱衝撃性が低下する。
さらに、耐食性と耐摩耗性をより高めるためには、アルミニウム及び/又はアルミニウム合金を合計で1~2質量%使用するとともに、シリコンを0.5~1.5質量%使用することが好ましい。なお、アルミニウム合金としては、アルマグ合金やアルミシリコン合金を使用することができる。
A total of 0.5 to 3% by mass of these metals is used. If it is less than 0.5% by mass, the densification of the structure becomes insufficient, and if it exceeds 3% by mass, it becomes highly elastic and the thermal impact resistance is lowered.
Further, in order to further enhance the corrosion resistance and the wear resistance, it is preferable to use 1 to 2% by mass of aluminum and / or an aluminum alloy in total and 0.5 to 1.5% by mass of silicon. As the aluminum alloy, an Almag alloy or an aluminum silicon alloy can be used.
これらの金属は粒径74μm以下の超微粉として使用することが好ましく、その粒度構成は成形時の充填性を確保する点から、粒径10μm以下の含有率が30質量%以下であることが好ましい。 These metals are preferably used as ultrafine powder having a particle size of 74 μm or less, and the particle size composition preferably has a particle size of 10 μm or less and a content of 30% by mass or less from the viewpoint of ensuring filling property at the time of molding. ..
このような構成の耐火原料配合物に、有機バインダーを添加して、混練し、成形後、熱処理することで本発明のマグネシアアルミナカーボンれんがを得ることができる。熱処理温度は150~800℃とすることができる。 The magnesia alumina carbon brick of the present invention can be obtained by adding an organic binder to the refractory raw material compound having such a structure, kneading the mixture, molding the mixture, and then heat-treating the mixture. The heat treatment temperature can be 150 to 800 ° C.
また、本発明のマグネシアアルミナカーボンれんがは、溶鋼鍋の湯当たり部に使用することで、より顕著な耐用性の向上効果が得られる。すなわち、本発明では超微粉のアルミナとして粒径74μm以下のアルミナを使用しているため、残存膨張を大きくするためにその使用量を増やしても耐食性の低下を抑制することができ、しかも緻密な組織となるため耐摩耗性に優れることで優れた湯当たり部用れんがとして使用することができる。 Further, when the magnesia alumina carbon brick of the present invention is used in the hot water contact portion of a molten steel pot, a more remarkable effect of improving durability can be obtained. That is, in the present invention, since alumina having a particle size of 74 μm or less is used as the alumina of the ultrafine powder, it is possible to suppress the decrease in corrosion resistance even if the amount used is increased in order to increase the residual expansion, and it is more precise. Since it is a structure, it has excellent wear resistance and can be used as a brick for a hot water contact part.
本発明によれば、マグネシアアルミナカーボンれんがにおいて残存膨張性を付与するためにアルミナを使用することによる耐食性の低下を抑制することができる。 According to the present invention, it is possible to suppress a decrease in corrosion resistance due to the use of alumina in order to impart residual expandability in magnesia alumina carbon bricks.
本発明で使用する粒径74μm超1mm以下のアルミナとしては、電融アルミナ、焼結アルミナ、ボーキサイト、及びバンケツ等のうち1種以上を使用することができる。
また、粒径74μm以下のアルミナとしては、電融アルミナ、焼結アルミナ、仮焼アルミナ、ボーキサイト、及びバンケツ等のうち1種以上を使用することができる。
As the alumina having a particle size of more than 74 μm and 1 mm or less used in the present invention, one or more of fused alumina, sintered alumina, bauxite, banquet and the like can be used.
Further, as the alumina having a particle size of 74 μm or less, one or more of fused alumina, sintered alumina, calcined alumina, bauxite, banquet and the like can be used.
本発明で使用するマグネシアとしては、電融マグネシアや焼結マグネシアを使用することができ、MgO純度が93質量%以上のものを使用することができる。 As the magnesia used in the present invention, fused magnesia or sintered magnesia can be used, and those having an MgO purity of 93% by mass or more can be used.
本発明で使用する黒鉛としては、鱗状黒鉛等を使用することができる。
さらに、ピッチやカーボンブラックなどの使用も可能である。
As the graphite used in the present invention, scaly graphite or the like can be used.
Furthermore, pitch and carbon black can be used.
表1に示す耐火原料配合物に有機バインダーとしてフェノール樹脂を適量添加して混練し、オイルプレスによって230mm×114mm×100mmの形状に成形後、最高温度250℃で5時間保持の熱処理(乾燥処理)を施してマグネシアアルミナカーボンれんがを得た。このマグネシアアルミナカーボンれんがから物性測定用試料を切り出して見掛気孔率、残存膨張及び弾性率を測定するとともに、耐食性を評価した。 An appropriate amount of phenol resin as an organic binder is added to the fire-resistant raw material formulation shown in Table 1, kneaded, molded into a shape of 230 mm × 114 mm × 100 mm by an oil press, and then heat-treated (drying treatment) at a maximum temperature of 250 ° C. for 5 hours. To obtain magnesia alumina carbon brick. A sample for measuring physical characteristics was cut out from this magnesia alumina carbon brick, and the apparent porosity, residual expansion and elastic modulus were measured, and the corrosion resistance was evaluated.
見掛気孔率の測定においては形状50×50×50mmの試料をコークスブリーズ中に埋め、電気炉において1400℃まで昇温し、3時間保持して自然放冷した。その後、溶媒を白灯油としJIS R 2205に準拠して見掛気孔率を測定した。この見掛気孔率が低いほど、れんがは緻密であり、耐食性向上に有効と判断される。
残存膨張は1400℃で3時間還元焼成後の線変化率の測定結果であり、弾性率は1400℃で3時間還元焼成後の音速弾性率の測定結果である。
In the measurement of the apparent porosity, a sample having a shape of 50 × 50 × 50 mm was embedded in a coke breeze, heated to 1400 ° C. in an electric furnace, held for 3 hours, and allowed to cool naturally. Then, the solvent was white kerosene, and the apparent porosity was measured according to JIS R 2205. The lower the apparent porosity, the denser the bricks, and it is judged that it is effective in improving the corrosion resistance.
The residual expansion is the measurement result of the linear change rate after the reduction firing at 1400 ° C. for 3 hours, and the elastic modulus is the measurement result of the sound velocity elastic modulus after the reduction firing at 1400 ° C. for 3 hours.
耐食性は、回転侵食試験にて評価した。回転侵食試験では、水平の回転軸を有するドラム内面を供試れんがでライニングし、スラグを投入、加熱して、れんが表面を侵食させた。加熱源は酸素-プロパンバーナーとし、試験温度は1750℃、スラグ組成はCaO:40質量%、SiO2:20質量%、Al2O3:20質量%、FeO+Fe2O3:20質量%とし、スラグの排出、投入を30分毎に10回繰り返した。試験終了後、各れんがの最大溶損部の寸法(れんがの残寸)を測定し、表1に記載の「実施例1」のれんがの残寸を100とする耐食性指数で表示した。この耐食性指数は数値が大きいほど耐食性が優れていることを示す。 Corrosion resistance was evaluated by a rotary erosion test. In the rotary erosion test, the inner surface of the drum having a horizontal axis of rotation was lined with a test brick, and slag was added and heated to erode the surface of the brick. The heating source was an oxygen-propane burner, the test temperature was 1750 ° C., the slag composition was CaO: 40% by mass, SiO 2 : 20% by mass, Al 2O 3 : 20% by mass, FeO + Fe 2O 3 : 20% by mass. The slag was discharged and charged 10 times every 30 minutes. After the test was completed, the size of the maximum melted part of each brick (remaining size of the brick) was measured and displayed as a corrosion resistance index with the remaining size of the brick of "Example 1" shown in Table 1 as 100. The larger the value of this corrosion resistance index, the better the corrosion resistance.
実施例1から実施例4は粒径74μm以下及び粒径74μm超1mm以下のアルミナの含有率が異なる例であるが、十分な耐食性と残存膨張性が得られている。なお、粒径74μm以下のアルミナの含有率が高くなると1回目(初期)の残存膨張が大きくなるが、耐食性の低下は抑制されている。 Examples 1 to 4 have different contents of alumina having a particle size of 74 μm or less and a particle size of more than 74 μm and 1 mm or less, but sufficient corrosion resistance and residual expandability are obtained. When the content of alumina having a particle size of 74 μm or less increases, the residual expansion at the first (initial) stage increases, but the deterioration of corrosion resistance is suppressed.
これに対して比較例1は粒径74μm以下のアルミナの含有率が3質量%と本発明の下限値を下回っており、耐食性と初期の残存膨張が不足している。
また、比較例2は粒径74μm以下のアルミナの含有率が23質量%と本発明の上限値を超えており、耐食性が低下している。
On the other hand, in Comparative Example 1, the content of alumina having a particle size of 74 μm or less is 3% by mass, which is lower than the lower limit of the present invention, and the corrosion resistance and the initial residual expansion are insufficient.
Further, in Comparative Example 2, the content of alumina having a particle size of 74 μm or less is 23% by mass, which exceeds the upper limit of the present invention, and the corrosion resistance is lowered.
比較例3は、粒径10μm以下の含有率が50質量%である粒径44μm以下のアルミナを使用した例であり、成形時の充填性が悪いため見掛気孔率が高くなり、耐食性が低下している。 Comparative Example 3 is an example in which alumina having a particle size of 44 μm or less, which has a particle size of 10 μm or less and a content of 50% by mass, is used. is doing.
比較例4は、アルミナの合量が10質量%と少ない例であり、残存膨張が小さい。
比較例5は、アルミナの合量が30質量%と多い例であり、アルミナが多すぎるためスラグによる低融点物質生成の影響により耐食性が低下している。
Comparative Example 4 is an example in which the total amount of alumina is as small as 10% by mass, and the residual expansion is small.
Comparative Example 5 is an example in which the total amount of alumina is as large as 30% by mass, and since the amount of alumina is too large, the corrosion resistance is lowered due to the influence of the formation of the low melting point substance by the slag.
比較例6は、アルミニウムとシリコンを使用していない例であり、見掛気孔率が高くなり耐食性が低下している。 Comparative Example 6 is an example in which aluminum and silicon are not used, and the apparent porosity is high and the corrosion resistance is lowered.
実施例5は黒鉛の含有率を8質量%とした例、実施例6は黒鉛の含有率を15質量%とし、さらに粒径44μm以下のアルミニウムを使用した例、実施例7は粒径74μm以下のアルミニウムの含有率を2質量%及びシリコンの含有率を1質量%とした例、実施例8は粒径74μm以下のアルミニウムの含有率を0.5質量%とした例であり、いずれも良好な耐食性及び残存膨張性が得られている。
一方、比較例7はアルミニウムとシリコンとの合量が3.5質量%と本発明の上限値を超えている例であり、組織が緻密化し耐食性も向上しているが、高弾性率化している。
Example 5 has an example in which the content of graphite is 8% by mass, Example 6 has an example in which the content of graphite is 15% by mass, and aluminum having a particle size of 44 μm or less is used, and Example 7 has a particle size of 74 μm or less. The aluminum content is 2% by mass and the silicon content is 1% by mass, and Example 8 is an example in which the content of aluminum having a particle size of 74 μm or less is 0.5% by mass, both of which are good. Excellent corrosion resistance and residual swelling property are obtained.
On the other hand, Comparative Example 7 is an example in which the total amount of aluminum and silicon exceeds the upper limit of the present invention at 3.5% by mass, and the structure is densified and the corrosion resistance is improved, but the elastic modulus is increased. There is.
次に実施例2と比較例1のマグネシアアルミナカーボンれんがを溶鋼鍋の湯当り部に適用して50回の使用試験を行い使用後のれんがの残存寸法を測定したところ、実施例2は比較例1に対して約16%、残存寸法が大きく、耐用性に優れていることを確認した。 Next, the magnesia alumina carbon bricks of Example 2 and Comparative Example 1 were applied to the hot water contact portion of the molten steel pot, and the use test was performed 50 times to measure the residual size of the brick after use. Example 2 was Comparative Example. It was confirmed that the remaining size was large by about 16% with respect to 1 and the durability was excellent.
Claims (3)
粒径74μm超5mm以下のマグネシアを50~77質量%、
粒径74μm以下のマグネシアを3~15質量%、
粒径74μm超1mm以下のアルミナを5~20質量%、
粒径10μm以下の含有率が30質量%以下である粒径74μm以下のアルミナを5~20質量%、
並びに、アルミニウム、アルミニウム合金及びシリコンうち1種以上を合計で0.5~3質量%含有し、
しかも粒径74μm超1mm以下のアルミナと粒径74μm以下のアルミナの合量が15~25質量%である耐火原料配合物を、有機バインダーとともに混練、成形した後、熱処理して得られるマグネシアアルミナカーボンれんが。 8-18% by mass of graphite,
50-77% by mass of magnesia with a particle size of more than 74 μm and 5 mm or less,
3 to 15% by mass of magnesia with a particle size of 74 μm or less,
5 to 20% by mass of alumina with a particle size of more than 74 μm and 1 mm or less,
5 to 20% by mass of alumina having a particle size of 74 μm or less, the content of which has a particle size of 10 μm or less is 30% by mass or less.
In addition, it contains 0.5 to 3% by mass of one or more of aluminum, aluminum alloy and silicon in total.
Moreover, magnesia alumina carbon obtained by kneading a fire-resistant raw material compound having a total amount of alumina having a particle size of more than 74 μm and 1 mm or less and alumina having a particle size of 74 μm or less of 15 to 25% by mass together with an organic binder, molding the mixture, and then heat-treating the mixture. Binder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018004446A JP7041523B2 (en) | 2018-01-15 | 2018-01-15 | Magnesia Alumina Carbon Brick |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018004446A JP7041523B2 (en) | 2018-01-15 | 2018-01-15 | Magnesia Alumina Carbon Brick |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019123635A JP2019123635A (en) | 2019-07-25 |
JP7041523B2 true JP7041523B2 (en) | 2022-03-24 |
Family
ID=67397924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018004446A Active JP7041523B2 (en) | 2018-01-15 | 2018-01-15 | Magnesia Alumina Carbon Brick |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7041523B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114163221A (en) * | 2021-11-23 | 2022-03-11 | 瑞泰马钢新材料科技有限公司 | Ceramic-combined micro powder alumina-magnesia-carbon brick and preparation method thereof |
JP7228733B1 (en) | 2022-07-08 | 2023-02-24 | 黒崎播磨株式会社 | Magnesia carbon brick and its manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013249241A (en) | 2012-06-04 | 2013-12-12 | Rozai Kogyo Kaisha Ltd | Unburned brick |
JP2014156389A (en) | 2013-01-16 | 2014-08-28 | Kurosaki Harima Corp | Magnesia-carbon brick |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5692160A (en) * | 1979-12-24 | 1981-07-25 | Kyushu Refractories | Magnesiaaaluminaacarbon brick |
JPS5978971A (en) * | 1982-10-27 | 1984-05-08 | 川崎製鉄株式会社 | Magnesia laumina refractories |
JPS6016874A (en) * | 1983-07-11 | 1985-01-28 | 川崎製鉄株式会社 | Basic flow-in refractories |
JPH0415484A (en) * | 1990-05-07 | 1992-01-20 | Shinagawa Refract Co Ltd | Inner lining material for cement baking filn |
JPH08143356A (en) * | 1994-11-17 | 1996-06-04 | Kyushu Refract Co Ltd | Magnesia based non-fired brick |
-
2018
- 2018-01-15 JP JP2018004446A patent/JP7041523B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013249241A (en) | 2012-06-04 | 2013-12-12 | Rozai Kogyo Kaisha Ltd | Unburned brick |
JP2014156389A (en) | 2013-01-16 | 2014-08-28 | Kurosaki Harima Corp | Magnesia-carbon brick |
Also Published As
Publication number | Publication date |
---|---|
JP2019123635A (en) | 2019-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4681456B2 (en) | Low carbon magnesia carbon brick | |
JP6279052B1 (en) | Magnesia carbon brick and method for producing the same | |
JP6546687B1 (en) | Method of manufacturing magnesia carbon brick | |
WO2014119593A1 (en) | Magnesia carbon brick | |
JP6358275B2 (en) | Slide plate refractory | |
JP6353284B2 (en) | Magnesia carbon brick | |
JP7041523B2 (en) | Magnesia Alumina Carbon Brick | |
JP7557328B2 (en) | Manufacturing method of mag-carbon bricks for LF pots | |
JP6259643B2 (en) | High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them | |
JP6219729B2 (en) | Magnesia carbon brick | |
JP6154772B2 (en) | Alumina-silicon carbide-carbon brick | |
JP6583968B2 (en) | Refractory brick | |
JP6190730B2 (en) | Magnesia carbon brick | |
JP4280052B2 (en) | Manufacturing method of sliding nozzle plate for ladle | |
JP7377635B2 (en) | Bricks for hot metal ladle and hot metal ladle lined with the bricks | |
JP5663122B2 (en) | Castable refractories for non-ferrous metal smelting containers and precast blocks using the same | |
JP2012192430A (en) | Alumina carbon-based slide gate plate | |
JP7228733B1 (en) | Magnesia carbon brick and its manufacturing method | |
JP2006021972A (en) | Magnesia-carbon brick | |
JP2009242122A (en) | Brick for blast furnace hearth and blast furnace hearth lined with the same | |
JP2015171991A (en) | Iron-making vessel | |
JP7517320B2 (en) | Hot metal pretreatment vessel | |
JP6923824B2 (en) | Manufacturing method of magnesia carbon refractory | |
JP4234804B2 (en) | Plate brick for sliding nozzle device | |
JP6975027B2 (en) | Amorphous refractory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220311 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7041523 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |