Nothing Special   »   [go: up one dir, main page]

JP6901476B2 - Crosslinked resin foam sheet, its manufacturing method, and adhesive tape - Google Patents

Crosslinked resin foam sheet, its manufacturing method, and adhesive tape Download PDF

Info

Publication number
JP6901476B2
JP6901476B2 JP2018519892A JP2018519892A JP6901476B2 JP 6901476 B2 JP6901476 B2 JP 6901476B2 JP 2018519892 A JP2018519892 A JP 2018519892A JP 2018519892 A JP2018519892 A JP 2018519892A JP 6901476 B2 JP6901476 B2 JP 6901476B2
Authority
JP
Japan
Prior art keywords
foam sheet
crosslinked resin
sheet
resin
resin foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018519892A
Other languages
Japanese (ja)
Other versions
JPWO2018181982A1 (en
Inventor
麻美 永井
麻美 永井
哲史 濱田
哲史 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2018181982A1 publication Critical patent/JPWO2018181982A1/en
Application granted granted Critical
Publication of JP6901476B2 publication Critical patent/JP6901476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Adhesive Tapes (AREA)

Description

本発明は、架橋樹脂発泡シート、その製造方法、及び架橋樹脂発泡シートを備える粘着テープに関する。 The present invention relates to a crosslinked resin foamed sheet, a method for producing the same, and an adhesive tape provided with the crosslinked resin foamed sheet.

従来、携帯電話、カメラ、ゲーム機器、電子手帳、タブレット端末、ノート型パーソナルコンピュータ等の電子機器では、発泡シートからなるシール材又は衝撃吸収材が使用されている。これらシール材又は衝撃吸収材は、発泡シートを基材とした粘着テープ等にして使用されることがある。例えば、上記電子機器における表示装置は、一般的に、LCD等の表示パネルの上に保護パネルを設置した構造を有するが、その保護パネルを、表示パネル外側の額縁部分と貼り合わせるために、発泡シートを基材とした粘着テープが使用される。
電子機器内部に使用される発泡シートとしては、熱分解型発泡剤を含む発泡性ポリオレフィン系樹脂シートを発泡かつ架橋させて得られる架橋ポリオレフィン系樹脂発泡シートが知られている(例えば、特許文献1参照)。
Conventionally, in electronic devices such as mobile phones, cameras, game devices, electronic organizers, tablet terminals, and notebook personal computers, a sealing material or a shock absorbing material made of a foam sheet has been used. These sealing materials or shock absorbing materials may be used as adhesive tapes or the like using a foamed sheet as a base material. For example, a display device in the above electronic device generally has a structure in which a protective panel is installed on a display panel such as an LCD, but the protective panel is foamed in order to be bonded to a frame portion on the outside of the display panel. Adhesive tape based on a sheet is used.
As a foam sheet used inside an electronic device, a crosslinked polyolefin resin foam sheet obtained by foaming and cross-linking a foamable polyolefin resin sheet containing a pyrolysis type foaming agent is known (for example, Patent Document 1). reference).

国際公開2005/007731号International Publication No. 2005/007731

ところで、昨今、電子機器は小型化が進む一方で、各種部品の高機能化も進み、電気機器内部のスペースの制約が大きくなり、電子機器内部で使用される発泡シートの幅が狭くなる傾向にある。例えば、表示パネル外側の額縁部分は、電子機器の小型化と、表示装置の大型化により幅が狭くなり、額縁部分に貼付される粘着テープの幅も狭くなってきている。
しかし、発泡シートは、幅が狭くなると、単位面積あたりに作用される力が大きくなり材破されやすくなるため、電気機器を落下させたときなどの衝撃で破損されることがある。また、発泡シートの気泡は、シートの端面において開放され連続気泡の挙動を示すため、シートの幅が狭いと柔軟になりすぎて、貼り付け不良等を起こすおそれがある。
したがって、発泡シートには、幅を狭くした場合でも、柔軟になりすぎるのを防止するとともに、耐衝撃性などの耐久性を向上させることが求められている。
By the way, in recent years, while electronic devices are becoming smaller and more sophisticated, various parts are becoming more sophisticated, space restrictions inside electrical devices are becoming larger, and the width of foam sheets used inside electronic devices tends to be narrower. is there. For example, the width of the frame portion on the outside of the display panel has become narrower due to the miniaturization of electronic devices and the increase in size of the display device, and the width of the adhesive tape attached to the frame portion has also become narrower.
However, when the width of the foamed sheet is narrowed, the force applied per unit area becomes large and the material is easily broken, so that the foamed sheet may be damaged by an impact such as when an electric device is dropped. Further, since the bubbles of the foamed sheet are opened at the end face of the sheet and exhibit the behavior of open cells, if the width of the sheet is narrow, it becomes too flexible and there is a possibility that sticking failure or the like may occur.
Therefore, the foamed sheet is required to prevent it from becoming too flexible even when the width is narrowed, and to improve durability such as impact resistance.

本発明は、以上の事情に鑑みてなされたものであり、例えば、幅を狭くした場合でも、柔軟になりすぎるのを防止でき、かつ耐衝撃性に優れる樹脂発泡シートを提供することを課題とする。 The present invention has been made in view of the above circumstances. For example, it is an object of the present invention to provide a resin foam sheet which can be prevented from becoming too flexible even when the width is narrowed and has excellent impact resistance. To do.

発明者らは、鋭意検討の結果、架橋樹脂発泡シートのサンプル幅を太幅から細幅に変更した際、圧縮強度の低下率を抑えることにより上記課題を解決できることを見出し、以下の本発明を完成させた。すなわち、本発明は、以下の[1]〜[12]を提供するものである。
[1]独立気泡を有する架橋樹脂発泡シートであって、サンプル幅20mmで測定した圧縮強度(C20)に対する、サンプル幅1mmで測定した圧縮強度(C1)の低下率が、60%以下である、架橋樹脂発泡シート。
[2]MD方向及びTD方向の平均気泡径がいずれも100μm以下である、上記[1]に記載の架橋樹脂発泡シート。
[3]厚さが、0.03〜0.50mmである、上記[1]又は[2]の架橋樹脂発泡シート。
[4]ポリオレフィン樹脂を含む上記[1]〜[3]のいずれか1項に記載の架橋樹脂発泡シート。
[5]前記ポリオレフィン樹脂が、ポリエチレン樹脂である上記[4]に記載の架橋樹脂発泡シート。
[6]前記ポリオレフィン樹脂が、メタロセン化合物の重合触媒で重合された直鎖状低密度ポリエチレンである上記[4]に記載の架橋樹脂発泡シート。
[7]架橋度が30質量%以上である上記[1]〜[6]のいずれか1項に記載の架橋樹脂発泡シート。
[8]発泡倍率が、1.2〜4.0cm/gである上記[1]〜[7]のいずれか1項に記載の架橋樹脂発泡シート。
[9]幅が5mm以下である上記[1]〜[8]のいずれか1項に記載の架橋樹脂発泡シート。
[10]樹脂と熱分解型発泡剤とを含む発泡性組成物を発泡してなる上記[1]〜[9]のいずれか1項に記載の架橋樹脂発泡シート。
[11]上記[1]〜[10]のいずれか1項に記載の架橋樹脂発泡シートの製造方法であって、
樹脂および熱分解型発泡剤を含む発泡性組成物を架橋し、かつ、加熱して前記熱分解型発泡剤を発泡させる架橋樹脂発泡シートの製造方法。
[12]上記[1]〜[10]のいずれか1項に記載の架橋樹脂発泡シートと、前記架橋樹脂発泡シートの少なくともいずれか一方の面に設けた粘着剤層とを備える粘着テープ。
As a result of diligent studies, the inventors have found that when the sample width of the crosslinked resin foamed sheet is changed from a large width to a narrow width, the above problem can be solved by suppressing the rate of decrease in compressive strength. Completed. That is, the present invention provides the following [1] to [12].
[1] A crosslinked resin foamed sheet having closed cells, wherein the reduction rate of the compressive strength (C 1 ) measured at a sample width of 1 mm is 60% or less with respect to the compressive strength (C 20) measured at a sample width of 20 mm. There is a cross-linked resin foam sheet.
[2] The crosslinked resin foam sheet according to the above [1], wherein the average cell diameter in both the MD direction and the TD direction is 100 μm or less.
[3] The crosslinked resin foam sheet according to the above [1] or [2], which has a thickness of 0.03 to 0.50 mm.
[4] The crosslinked resin foam sheet according to any one of the above [1] to [3], which contains a polyolefin resin.
[5] The crosslinked resin foam sheet according to the above [4], wherein the polyolefin resin is a polyethylene resin.
[6] The crosslinked resin foam sheet according to the above [4], wherein the polyolefin resin is a linear low-density polyethylene polymerized with a polymerization catalyst of a metallocene compound.
[7] The crosslinked resin foam sheet according to any one of the above [1] to [6], which has a degree of crosslink of 30% by mass or more.
[8] The crosslinked resin foamed sheet according to any one of the above [1] to [7], wherein the foaming ratio is 1.2 to 4.0 cm 3 / g.
[9] The crosslinked resin foam sheet according to any one of the above [1] to [8], which has a width of 5 mm or less.
[10] The crosslinked resin foamed sheet according to any one of the above [1] to [9], which is obtained by foaming a foamable composition containing a resin and a thermally decomposable foaming agent.
[11] The method for producing a crosslinked resin foam sheet according to any one of the above [1] to [10].
A method for producing a crosslinked resin foam sheet in which a foamable composition containing a resin and a pyrolysis foaming agent is crosslinked and heated to foam the pyrolysis foaming agent.
[12] An adhesive tape comprising the crosslinked resin foamed sheet according to any one of the above [1] to [10] and an adhesive layer provided on at least one surface of the crosslinked resin foamed sheet.

本発明によれば、幅を狭くした場合でも、柔軟になりすぎるのを防止し、かつ耐衝撃性に優れる樹脂発泡シートを提供することができる。 According to the present invention, it is possible to provide a resin foam sheet which is prevented from becoming too flexible and has excellent impact resistance even when the width is narrowed.

耐衝撃性試験装置の模式図である。It is a schematic diagram of the impact resistance test apparatus.

以下、本発明について実施形態を用いて詳細に説明する。
[架橋樹脂発泡シート]
本発明に係る架橋樹脂発泡シート(以下、単に「発泡シート」ともいう)は、独立気泡を有する発泡シートであって、サンプル幅20mmで測定した圧縮強度(C20)に対する、サンプル幅1mmで測定した圧縮強度(C1)の低下率が、60%以下となるものである。なお、圧縮強度の低下率は、(C20−C1)/C20より算出されるものある。
本発明の発泡シートは、圧縮強度の低下率を低くすることで、サンプル幅を狭くしても圧縮強度を高いものに維持できる。そのため、シート幅を狭くした場合でも、発泡シートが柔軟になりすぎるのを防止し、発泡シートを基材とする粘着テープを貼り付ける際に生じる貼り付け不良等が起こりにくくなる。また、発泡シートは、狭い幅にした場合でも、耐衝撃性などの機械強度が高く維持され、小型化された電子機器内において衝撃吸収材などとして好適に使用可能になる。
Hereinafter, the present invention will be described in detail using embodiments.
[Crosslinked resin foam sheet]
The crosslinked resin foamed sheet according to the present invention (hereinafter, also simply referred to as “foamed sheet”) is a foamed sheet having closed cells, and is measured at a sample width of 1 mm with respect to a compressive strength (C 20) measured at a sample width of 20 mm. The rate of decrease in the compressed compressive strength (C 1 ) is 60% or less. The rate of decrease in compressive strength is calculated from (C 20- C 1 ) / C 20.
By lowering the rate of decrease in compressive strength, the foamed sheet of the present invention can maintain high compressive strength even if the sample width is narrowed. Therefore, even when the sheet width is narrowed, the foamed sheet is prevented from becoming too flexible, and sticking defects and the like that occur when sticking the adhesive tape using the foamed sheet as a base material are less likely to occur. Further, the foam sheet maintains high mechanical strength such as impact resistance even when the width is narrow, and can be suitably used as a shock absorber or the like in a miniaturized electronic device.

発泡シートの柔軟性を適切なものとし、かつ耐衝撃性を良好とするために、上記した圧縮強度の低下率は、55%以下が好ましく、40%以下がさらに好ましく、30%以下がよりさらに好ましい。また、上記圧縮強度の低下率は、低ければ低いほうがよいが、実用的には5%以上である。 In order to make the flexibility of the foamed sheet appropriate and to improve the impact resistance, the reduction rate of the compressive strength described above is preferably 55% or less, more preferably 40% or less, still more preferably 30% or less. preferable. The rate of decrease in compressive strength should be as low as it is, but it is practically 5% or more.

本発明においては、10%圧縮強度を測定したときの低下率、及び25%圧縮強度を測定したときの低下率のいずれか一方が、上記した範囲内であればよいが、両方が上記範囲内であることが好ましい。いずれの低下率も上記範囲内であると、様々な使用条件下において、貼り付け性、耐衝撃性等の各種性能が良好になる。なお、10%、25%圧縮強度の測定方法は、後述する実施例に示すとおりである。 In the present invention, either one of the reduction rate when measuring the 10% compressive strength and the reduction rate when measuring the 25% compressive strength may be within the above range, but both are within the above range. Is preferable. When any of the reduction rates is within the above range, various performances such as stickability and impact resistance are improved under various usage conditions. The methods for measuring the 10% and 25% compressive strength are as shown in Examples described later.

[独立気泡率]
本発明の発泡シートは、独立気泡を有するものである。独立気泡を有するとは、全気泡に対する独立気泡の割合(「独立気泡率」という)が70%以上となることを意味する。独立気泡率は、好ましくは75%以上、より好ましくは90%以上である。
独立気泡率は、ASTM D2856(1998)に準拠して求めることができる。市販の測定器では、乾式自動密度計アキュピック1330などが挙げられる。
[Closed cell ratio]
The foamed sheet of the present invention has closed cells. Having closed cells means that the ratio of closed cells to total cells (referred to as "closed cell ratio") is 70% or more. The closed cell ratio is preferably 75% or more, more preferably 90% or more.
The closed cell ratio can be determined according to ASTM D2856 (1998). Examples of commercially available measuring instruments include the dry automatic densitometer Accupic 1330.

独立気泡率は、より具体的には下記の要領で測定される。発泡シートから一辺が5cmの平面正方形状で、且つ一定厚みの試験片を切り出す。試験片の厚みを測定し、試験片の見掛け体積Vを算出するとともに試験片の重量Wを測定する。次に、気泡の占める見掛け体積Vを下記式に基づいて算出する。なお、試験片を構成している樹脂の密度は、1g/cmとする。
気泡の占める見掛け体積V=V−W
続いて、試験片を23℃の蒸留水中に水面から100mmの深さに沈めて、試験片に15kPaの圧力を3分間に亘って加える。しかる後、試験片を水中から取り出して試験片の表面に付着した水分を除去し、試験片の重量Wを測定し、下記式に基づいて連続気泡率F及び独立気泡率Fを算出する。
連続気泡率F(%)=100×(W−W)/V
独立気泡率F(%)=100−F
The closed cell ratio is more specifically measured as follows. A test piece having a square shape with a side of 5 cm and a constant thickness is cut out from the foam sheet. The thickness of the test piece was measured, to measure the weight W 1 of the specimen to calculate the apparent volume V 1 of the test piece. Next, the apparent volume V 2 occupied by the bubbles is calculated based on the following formula. The density of the resin constituting the test piece is 1 g / cm 3 .
Apparent volume occupied by bubbles V 2 = V 1 −W 1
Subsequently, the test piece is submerged in distilled water at 23 ° C. to a depth of 100 mm from the water surface, and a pressure of 15 kPa is applied to the test piece for 3 minutes. After that, the test piece is taken out from the water to remove the water adhering to the surface of the test piece, the weight W 2 of the test piece is measured, and the open cell ratio F 1 and the closed cell ratio F 2 are calculated based on the following formulas. To do.
Continuous bubble ratio F 1 (%) = 100 × (W 2- W 1 ) / V 2
Closed cell ratio F 2 (%) = 100-F 1

[平均気泡径]
発泡シートは、MDおよびTD方向の平均気泡径のいずれもが、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは70μm以下である。このような平均気泡径の気泡は、一般的に微細気泡と呼ばれる。発泡シートは、微細気泡を有することで、シート幅を狭くしたような場合でも、その狭い幅の間に独立気泡が多数存在することになる。
発泡シートの端面では、気泡が切断され連続気泡のような挙動を示し、圧縮強度を低下させる要因となるが、切断される気泡が微細気泡であり、かつ狭い幅の間に独立気泡が多数存在することで、シート端面の気泡による圧縮強度の低下を最小限に抑えることができる。したがって、気泡の平均気泡径を上記範囲内とすることで、圧縮強度の低下率を低くすることが可能である。
また、MD及びTDの平均気泡径それぞれは、製造容易性の観点から、好ましくは10μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上である。
[Average cell diameter]
The foamed sheet has an average cell diameter in both the MD and TD directions, preferably 100 μm or less, more preferably 80 μm or less, and further preferably 70 μm or less. Bubbles having such an average bubble diameter are generally called fine bubbles. Since the foamed sheet has fine bubbles, even when the sheet width is narrowed, a large number of closed cells are present in the narrow width.
At the end face of the foam sheet, bubbles are cut and behave like open bubbles, which causes a decrease in compressive strength. However, the bubbles to be cut are fine bubbles and a large number of closed cells are present in a narrow width. By doing so, it is possible to minimize the decrease in compressive strength due to air bubbles on the end face of the sheet. Therefore, by setting the average bubble diameter of the bubbles within the above range, it is possible to reduce the rate of decrease in compressive strength.
Further, the average cell diameters of MD and TD are preferably 10 μm or more, more preferably 20 μm or more, still more preferably 30 μm or more, from the viewpoint of ease of production.

なお、平均気泡径は下記の要領で測定したものをいう。
発泡シートを50mm四方にカットしたものを測定用の発泡体サンプルとして用意した。これを液体窒素に1分間浸した後にカミソリ刃でMD方向、TD方向に沿ってそれぞれ厚さ方向に切断した。この断面をデジタルマイクロスコープ(株式会社キーエンス製「VHX−900」)を用いて200倍の拡大写真を撮り、MD方向及びTD方向のそれぞれにおける長さ2mm分の切断面に存在する全ての気泡について気泡径を測定し、その操作を5回繰り返した。そして、全ての気泡の平均値をMD方向及びTD方向それぞれの平均気泡径とした。
なお、MD方向は、Machine directionを意味し、押出方向等と一致する方向であるとともに、TD方向は、Transverse directionを意味し、MD方向に直交する方向であり、発泡シートのシート面に平行な方向である。また、ZD方向は、発泡体の厚さ方向であり、MD方向及びTD方向のいずれにも垂直な方向である。
The average cell diameter is measured as follows.
A foam sheet cut into 50 mm squares was prepared as a foam sample for measurement. This was immersed in liquid nitrogen for 1 minute and then cut in the thickness direction along the MD direction and the TD direction with a razor blade. A 200x magnified photograph of this cross section was taken using a digital microscope (“VHX-900” manufactured by KEYENCE CORPORATION), and all bubbles existing on the cut surface of 2 mm in length in each of the MD direction and the TD direction were taken. The bubble diameter was measured and the operation was repeated 5 times. Then, the average value of all the bubbles was taken as the average bubble diameter in each of the MD direction and the TD direction.
The MD direction means a machine direction and is a direction that coincides with the extrusion direction and the like, and the TD direction is a direction that is orthogonal to the MD direction and is parallel to the sheet surface of the foam sheet. The direction. Further, the ZD direction is the thickness direction of the foam, and is a direction perpendicular to both the MD direction and the TD direction.

また、本発明において、上記微細気泡は、そのMD及びTD方向における気泡径のばらつきが小さいことが好ましい。そのため、MD及びTD方向の気泡径の標準偏差は、いずれも、60μm以下が好ましく、40μm以下がより好ましい。該気泡径の標準偏差は低ければ低いほうがよく、0μmであることが好ましいが、実用的な観点から、1μm以上であることが好ましい。なお、MD及びTD方向の気泡径の標準偏差は、上記したMD及びTD方向の平均気泡径を求めるために測定した個々の気泡径に基づき計算される。
気泡径のばらつきが小さいと、気泡間にある気泡壁の大きさが均一になりやすいため、機械強度の低い気泡壁が少なくなる。また、発泡シートの端面において大きな気泡が存在しにくくなる。そのため、発泡シートは、幅を狭くしても、圧縮強度が安定し、上記した圧縮強度の低下率を低くしやすくなる。
Further, in the present invention, it is preferable that the fine bubbles have a small variation in bubble diameter in the MD and TD directions. Therefore, the standard deviation of the bubble diameters in the MD and TD directions is preferably 60 μm or less, more preferably 40 μm or less. The lower the standard deviation of the bubble diameter, the better, and it is preferably 0 μm, but from a practical point of view, it is preferably 1 μm or more. The standard deviation of the bubble diameters in the MD and TD directions is calculated based on the individual bubble diameters measured in order to obtain the average bubble diameter in the MD and TD directions described above.
When the variation in the bubble diameter is small, the size of the bubble wall between the bubbles tends to be uniform, so that the number of bubble walls having low mechanical strength is reduced. In addition, large bubbles are less likely to be present on the end face of the foamed sheet. Therefore, even if the width of the foamed sheet is narrowed, the compressive strength is stable, and the above-mentioned decrease rate of the compressive strength is likely to be lowered.

[架橋度]
発泡シートは、架橋発泡体であり、その架橋度が30質量%以上であることが好ましい。架橋度は、35〜65質量%がより好ましく、40〜49質量%がさらに好ましい。架橋度をこれら下限値以上とすることで架橋発泡樹脂シートの気泡を微細化しやすくなり、また各気泡の大きさのばらつきも少なくしやすくなる。また、これら上限値以下とすることで発泡体を適切に発泡させやすくなり、発泡倍率を高めやすくなる。発泡シートは、発泡倍率を高めることで、柔軟性を高めやすくなり、圧縮強度を適切な値としやすくなる。
[Crosslinkability]
The foamed sheet is a crosslinked foam, and the degree of crosslinkage is preferably 30% by mass or more. The degree of cross-linking is more preferably 35 to 65% by mass, further preferably 40 to 49% by mass. By setting the degree of cross-linking to these lower limit values or more, it becomes easy to make the bubbles of the cross-linked foamed resin sheet finer, and it becomes easy to reduce the variation in the size of each bubble. Further, when the value is not more than these upper limit values, it becomes easy to appropriately foam the foam, and it becomes easy to increase the foaming ratio. By increasing the foaming ratio of the foamed sheet, it becomes easy to increase the flexibility, and it becomes easy to set the compressive strength to an appropriate value.

[樹脂発泡シートの寸法]
発泡シートの厚さは、0.03〜0.5mmであることが好ましい。厚さを0.03mm以上とすると、発泡シートの耐衝撃性及び柔軟性の確保が容易になる。また、厚さを0.5mm以下とすると、薄型化が可能になり、小型化した電子機器に好適に使用できる。これらの観点から、樹脂発泡シートの厚さは、0.08〜0.40mmであることがより好ましく、0.10〜0.25mmであることがさらに好ましい。
発泡シートは、その幅が狭いものが好ましく、具体的には、細線状に加工したものが好ましい。例えば発泡シートの幅を5mm以下にして使用してもよく、好ましくは3mm以下、より好ましくは1mm以下で使用する。樹脂発泡シートの幅を狭くすると、小型化された電子機器内部において好適に使用することが可能である。また、本発明の発泡シートは、幅を狭くしても、耐衝撃性、柔軟性が良好に維持される。
発泡シートの幅の下限値は特に限定されないが、例えば0.1mm以上のものであってもよいし、0.2mm以上のものであってもよい。なお、発泡シートの平面形状は、特に限定されないが、細長矩形状、枠状、L字状、コの字状等とするとよい。ただし、これらの形状以外でも、通常の四角形、円形等の他のいかなる形状であってもよい。
[Dimensions of resin foam sheet]
The thickness of the foam sheet is preferably 0.03 to 0.5 mm. When the thickness is 0.03 mm or more, it becomes easy to secure the impact resistance and flexibility of the foamed sheet. Further, when the thickness is 0.5 mm or less, the thickness can be reduced, and it can be suitably used for a miniaturized electronic device. From these viewpoints, the thickness of the resin foam sheet is more preferably 0.08 to 0.40 mm, further preferably 0.10 to 0.25 mm.
The foam sheet preferably has a narrow width, and specifically, a foam sheet processed into a fine line shape is preferable. For example, the width of the foam sheet may be 5 mm or less, preferably 3 mm or less, and more preferably 1 mm or less. By narrowing the width of the resin foam sheet, it can be suitably used inside a miniaturized electronic device. Further, the foamed sheet of the present invention maintains good impact resistance and flexibility even if the width is narrowed.
The lower limit of the width of the foamed sheet is not particularly limited, but may be, for example, 0.1 mm or more, or 0.2 mm or more. The planar shape of the foam sheet is not particularly limited, but may be an elongated rectangular shape, a frame shape, an L shape, a U shape, or the like. However, other than these shapes, any other shape such as a normal quadrangle or a circle may be used.

[発泡倍率]
発泡シートの発泡倍率は、1.2〜4.0cm/gであることが好ましい。発泡倍率を1.2cm/g以上とすることで、圧縮強度、柔軟性が良好となり、発泡シートの衝撃吸収性、シール性が良好となりやすい。一方で、4.0cm/g以下とすることで、機械強度が高くなり、耐衝撃性などを向上させやすくなる。また、平均気泡径、及び気泡径のばらつきも小さくしやすくなる。
以上の観点から、発泡倍率は、1.3〜3.5cm/gがより好ましく、2.0〜3.0cm/gがさらに好ましい。なお、本発明では、JIS K7222に従い発泡シートの密度を求め、その逆数を発泡倍率とする。
[Effervescence magnification]
The foaming ratio of the foamed sheet is preferably 1.2 to 4.0 cm 3 / g. By setting the foaming ratio to 1.2 cm 3 / g or more, the compressive strength and flexibility are improved, and the impact absorption and sealing property of the foamed sheet are likely to be improved. On the other hand, when the thickness is 4.0 cm 3 / g or less, the mechanical strength is increased and the impact resistance and the like can be easily improved. In addition, it becomes easy to reduce the variation in the average bubble diameter and the bubble diameter.
In view of the foregoing, expansion ratio is more preferably 1.3~3.5cm 3 / g, more preferably 2.0~3.0cm 3 / g. In the present invention, the density of the foamed sheet is determined according to JIS K7222, and the reciprocal of the density is defined as the foaming ratio.

[圧縮強度]
発泡シートのサンプル幅1mmにおける10%圧縮強度(C1)は、30〜600kPaであることが好ましく、40〜350kPaであることがより好ましく、100〜200kPaであることがさらに好ましい。
また、発泡シートのサンプル幅1mmにおける25%圧縮強度(C1)は、150〜1500kPaであることが好ましく、250〜1400kPaであることがより好ましく、270〜600kPaであることがさらに好ましい。
圧縮強度(C1)を上記範囲内とすることで、発泡シートは適度な柔軟性を有することとなり、耐衝撃性が良好になりやすい。また、柔軟になりすぎて、貼り付け性などが低下することも防止する。
[Compressive strength]
The 10% compressive strength (C 1 ) of the foamed sheet at a sample width of 1 mm is preferably 30 to 600 kPa, more preferably 40 to 350 kPa, and even more preferably 100 to 200 kPa.
The 25% compressive strength (C 1 ) of the foamed sheet at a sample width of 1 mm is preferably 150 to 1500 kPa, more preferably 250 to 1400 kPa, and even more preferably 270 to 600 kPa.
By setting the compressive strength (C 1 ) within the above range, the foamed sheet has appropriate flexibility, and the impact resistance tends to be good. It also prevents the stickability from being deteriorated due to being too flexible.

[ポリオレフィン樹脂]
樹脂発泡シートに使用される樹脂としては、各種の樹脂を使用すればよいが、中でもポリオレフィン樹脂を使用することが好ましい。ポリオレフィン樹脂を使用することで、樹脂発泡シートの適度な柔軟性を確保しつつ、平均気泡径、及び気泡径のばらつきを小さくすることが可能である。
ポリオレフィン樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合体、またはこれらの混合物等が挙げられ、これらの中ではポリエチレン樹脂が好ましい。
ポリエチレン樹脂としては、チーグラー・ナッタ化合物、メタロセン化合物、酸化クロム化合物等の重合触媒で重合されたポリエチレン樹脂が挙げられ、好ましくは、メタロセン化合物の重合触媒で重合されたポリエチレン樹脂が用いられる。
[Polyolefin resin]
As the resin used for the resin foam sheet, various resins may be used, and among them, polyolefin resin is preferably used. By using the polyolefin resin, it is possible to reduce the variation in the average cell diameter and the cell diameter while ensuring an appropriate flexibility of the resin foam sheet.
Examples of the polyolefin resin include polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer, and a mixture thereof, and among these, polyethylene resin is preferable.
Examples of the polyethylene resin include polyethylene resins polymerized with a polymerization catalyst such as a Cheegler-Natta compound, a metallocene compound, and a chromium oxide compound, and preferably, a polyethylene resin polymerized with a polymerization catalyst of a metallocene compound is used.

また、ポリエチレン樹脂としては、直鎖状低密度ポリエチレンが好ましい。直鎖状低密度ポリエチレンを用いることにより、発泡シートに柔軟性を付与するとともに、樹脂発泡シートの薄型化が可能になる。この直鎖状低密度ポリエチレンは、メタロセン化合物等の重合触媒を用いて得たものがより好ましい。また、直鎖状低密度ポリエチレンは、エチレン(例えば、全モノマー量に対して75質量%以上、好ましくは90質量%以上)と必要に応じて少量のα−オレフィンとを共重合することにより得られる直鎖状低密度ポリエチレンがより好ましい。
α−オレフィンとして、具体的には、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、及び1−オクテン等が挙げられる。なかでも、炭素数4〜10のα−オレフィンが好ましい。
ポリエチレン樹脂、例えば上記した直鎖状低密度ポリエチレンの密度は、0.870〜0.910g/cmが好ましく、0.875〜0.907g/cmがより好ましく、0.880〜0.905g/cmが更に好ましい。ポリエチレン樹脂としては、複数のポリエチレン樹脂を用いることもでき、また、上記した密度範囲以外のポリエチレン樹脂を加えてもよい。
Further, as the polyethylene resin, linear low-density polyethylene is preferable. By using the linear low-density polyethylene, the foamed sheet can be made flexible and the resin foamed sheet can be made thinner. The linear low-density polyethylene is more preferably obtained by using a polymerization catalyst such as a metallocene compound. Further, the linear low-density polyethylene can be obtained by copolymerizing ethylene (for example, 75% by mass or more, preferably 90% by mass or more) with respect to the total amount of monomers and, if necessary, a small amount of α-olefin. The linear low density polyethylene to be obtained is more preferable.
Specific examples of the α-olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene and the like. Of these, α-olefins having 4 to 10 carbon atoms are preferable.
Polyethylene resin, for example the density of the linear low density polyethylene as described above is preferably 0.870~0.910g / cm 3, more preferably 0.875~0.907g / cm 3, 0.880~0.905g / Cm 3 is more preferred. As the polyethylene resin, a plurality of polyethylene resins may be used, or a polyethylene resin other than the above-mentioned density range may be added.

(メタロセン化合物)
メタロセン化合物としては、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物を挙げることができる。より具体的には、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物を挙げることができる。
このようなメタロセン化合物は、活性点の性質が均一であり各活性点が同じ活性度を備えている。メタロセン化合物を用いて合成した重合体は、分子量、分子量分布、組成、組成分布等の均一性が高いため、メタロセン化合物を用いて合成した重合体を含むシートを架橋した場合には、架橋が均一に進行する。均一に架橋されたシートは、均一に発泡されるため、上記したように、気泡径のばらつきを小さくしやすい。また、均一に延伸できるため、発泡シートの厚さを均一にしやすくなる。
(Metallocene compound)
Examples of the metallocene compound include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. More specifically, one or more cyclopentadienyl rings or their analogs are present as ligands in tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum. Can be mentioned.
In such a metallocene compound, the properties of active sites are uniform, and each active site has the same activity. A polymer synthesized using a metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc. Therefore, when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, the cross-linking is uniform. Proceed to. Since the uniformly crosslinked sheet is uniformly foamed, it is easy to reduce the variation in the bubble diameter as described above. Moreover, since it can be stretched uniformly, it becomes easy to make the thickness of the foam sheet uniform.

リガンドとしては、例えば、シクロペンタジエニル環、インデニル環等を挙げることができる。これらの環式化合物は、炭化水素基、置換炭化水素基又は炭化水素−置換メタロイド基により置換されていてもよい。炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種アミル基、各種ヘキシル基、2−エチルヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種セチル基、フェニル基等が挙げられる。なお、「各種」とは、n−、sec−、tert−、iso−を含む各種異性体を意味する。
また、環式化合物をオリゴマーとして重合したものをリガンドとして用いてもよい。
更に、π電子系の不飽和化合物以外にも、塩素や臭素等の一価のアニオンリガンド又は二価のアニオンキレートリガンド、炭化水素、アルコキシド、アリールアミド、アリールオキシド、アミド、アリールアミド、ホスフィド、アリールホスフィド等を用いてもよい。
Examples of the ligand include a cyclopentadienyl ring, an indenyl ring and the like. These cyclic compounds may be substituted with hydrocarbon groups, substituted hydrocarbon groups or hydrocarbon-substituted metalloid groups. Examples of the hydrocarbon group include methyl group, ethyl group, various propyl group, various butyl group, various amyl group, various hexyl group, 2-ethylhexyl group, various heptyl group, various octyl group, various nonyl group and various decyl group. , Various cetyl groups, phenyl groups and the like. In addition, "various" means various isomers including n-, sec-, tert-, and iso-.
Further, a product obtained by polymerizing a cyclic compound as an oligomer may be used as a ligand.
Furthermore, in addition to π-electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine, divalent anion chelating ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, and aryls. You may use phosphide or the like.

四価の遷移金属やリガンドを含むメタロセン化合物としては、例えば、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル−t−ブチルアミドジルコニウムジクロリド等が挙げられる。
メタロセン化合物は、特定の共触媒(助触媒)と組み合わせることにより、各種オレフィンの重合の際に触媒としての作用を発揮する。具体的な共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。なお、メタロセン化合物に対する共触媒の使用割合は、10〜100万モル倍が好ましく、50〜5,000モル倍がより好ましい。
発泡シートに含まれるポリオレフィン樹脂は、上記した直鎖状低密度ポリエチレンを使用する場合、上記の直鎖状低密度ポリエチレンを単独で使用してもよいが、他のポリオレフィン樹脂と併用してもよく、例えば、以下に述べる他のポリオレフィン樹脂と併用してもよい。他のポリオレフィン樹脂を含有する場合、直鎖状低密度ポリエチレン(100質量%)に対する他のポリオレフィン樹脂の割合は、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。
Examples of metallocene compounds containing tetravalent transition metals and ligands include cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, and dimethyl. Examples thereof include silyltetramethylcyclopentadienyl-t-butylamide zirconium dichloride.
The metallocene compound exerts an action as a catalyst in the polymerization of various olefins by combining with a specific co-catalyst (co-catalyst). Specific examples of the co-catalyst include methylaluminoxane (MAO) and boron-based compounds. The ratio of the cocatalyst used to the metallocene compound is preferably 10 to 1 million mol times, more preferably 50 to 5,000 mol times.
When the above-mentioned linear low-density polyethylene is used as the polyolefin resin contained in the foam sheet, the above-mentioned linear low-density polyethylene may be used alone, or may be used in combination with other polyolefin resins. For example, it may be used in combination with other polyolefin resins described below. When the other polyolefin resin is contained, the ratio of the other polyolefin resin to the linear low-density polyethylene (100% by mass) is preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less. preferable.

ポリオレフィン樹脂として使用するエチレン−酢酸ビニル共重合体(EVA)は、例えば、エチレンを50質量%以上含有するエチレン−酢酸ビニル共重合体が挙げられる。エチレン−酢酸ビニル共重合体(EVA)を使用する場合、上記したポリエチレン樹脂(PE)と併用することが好ましく、これら質量比(EVA/PE)は10/90〜90/10が好ましく、20/80〜80/20がより好ましく、50/50〜80/20がさらに好ましい。
また、ポリプロピレン樹脂としては、例えば、ポリプロピレン、プロピレンを50質量%以上含有するプロピレン−α−オレフィン共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
プロピレン−α−オレフィン共重合体を構成するα−オレフィンとしては、具体的には、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等が挙げることができ、これらの中では、炭素数6〜12のα−オレフィンが好ましい。
Examples of the ethylene-vinyl acetate copolymer (EVA) used as the polyolefin resin include an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene. When an ethylene-vinyl acetate copolymer (EVA) is used, it is preferable to use it in combination with the above-mentioned polyethylene resin (PE), and the mass ratio (EVA / PE) of these is preferably 10/90 to 90/10, 20/90. 80 to 80/20 is more preferable, and 50/50 to 80/20 is even more preferable.
Examples of the polypropylene resin include polypropylene and a propylene-α-olefin copolymer containing 50% by mass or more of propylene. One of these may be used alone, or two or more thereof may be used in combination.
Specific examples of the α-olefin constituting the propylene-α-olefin copolymer include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-hexene, and 1-. Examples thereof include octene, and among these, α-olefins having 6 to 12 carbon atoms are preferable.

また、発泡シートは、樹脂としてポリオレフィン樹脂を使用する場合、発泡シートに含有される樹脂は、ポリオレフィン樹脂を単独で使用してもよいが、ポリオレフィン樹脂以外の樹脂を含んでもよい。発泡シートにおいて、ポリオレフィン樹脂の樹脂全量に対する割合は、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。
また、発泡シートに使用するポリオレフィン樹脂以外の樹脂としては、スチレン系熱可塑性エラストマー、EPDMなどのエチレンプロピレン系熱可塑性エラストマー等の各種のエラストマー、ゴム成分などが挙げられる。
When a polyolefin resin is used as the resin for the foamed sheet, the resin contained in the foamed sheet may be a polyolefin resin alone or may contain a resin other than the polyolefin resin. In the foamed sheet, the ratio of the polyolefin resin to the total amount of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more.
Examples of resins other than the polyolefin resin used for the foam sheet include styrene-based thermoplastic elastomers, various elastomers such as ethylene-propylene-based thermoplastic elastomers such as EPDM, and rubber components.

(熱分解型発泡剤)
本発明の発泡シートは、上記樹脂と熱分解型発泡剤とを含む発泡性組成物を発泡してなることが好ましい。また、熱分解型発泡剤としては、粒径が15μm未満のものを使用することが好ましい。粒径が15μm未満のものを使用することで、上記したように架橋度を比較的高くすることも相俟って、発泡シートの気泡径、及び気泡径のばらつきを小さくしやすくなる。また、熱分解型発泡剤の粒径は、2〜14μmが好ましく、5〜13μmがより好ましい。また、発泡剤の粒径のばらつきは、上記したように、気泡径のばらつきを抑えるためには小さいほうがよい。
なお、熱分解型発泡剤の粒径は、レーザー回折法により測定した値であって、累積頻度50%に相当する粒径(D50)を意味する。
(Pyrolytic foaming agent)
The foamed sheet of the present invention is preferably formed by foaming a foamable composition containing the above resin and a thermally decomposable foaming agent. Further, as the pyrolysis type foaming agent, it is preferable to use one having a particle size of less than 15 μm. By using a particle size of less than 15 μm, the degree of cross-linking is relatively high as described above, and the bubble diameter of the foamed sheet and the variation in the bubble diameter can be easily reduced. The particle size of the pyrolysis foaming agent is preferably 2 to 14 μm, more preferably 5 to 13 μm. Further, as described above, the variation in the particle size of the foaming agent should be small in order to suppress the variation in the bubble diameter.
The particle size of the pyrolysis foaming agent is a value measured by a laser diffraction method and means a particle size (D50) corresponding to a cumulative frequency of 50%.

熱分解型発泡剤としては、有機発泡剤、無機発泡剤が使用可能である。有機系発泡剤としては、アゾジカルボンアミド、アゾジカルボン酸金属塩(アゾジカルボン酸バリウム等)、アゾビスイソブチロニトリル等のアゾ化合物、N,N’−ジニトロソペンタメチレンテトラミン等のニトロソ化合物、ヒドラゾジカルボンアミド、4,4’−オキシビス(ベンゼンスルホニルヒドラジド)、トルエンスルホニルヒドラジド等のヒドラジン誘導体、トルエンスルホニルセミカルバジド等のセミカルバジド化合物等が挙げられる。
無機系発泡剤としては、酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、無水クエン酸モノソーダ等が挙げられる。
これらの中では、微細な気泡を得る観点、及び経済性、安全面の観点から、アゾ化合物が好ましく、アゾジカルボンアミドが特に好ましい。これらの熱分解型発泡剤は、単独で又は2以上を組み合わせて使用することができる。
発泡性組成物における熱分解型発泡剤の配合量は、樹脂100質量部に対して、好ましくは1〜10質量部、より好ましくは1.5〜5質量部、さらに好ましくは2〜4質量部である。
As the pyrolytic foaming agent, an organic foaming agent and an inorganic foaming agent can be used. Examples of the organic foaming agent include azodicarboxylic amides, azodicarboxylic acid metal salts (Azodicarboxylic acid barium, etc.), azo compounds such as azobisisobutyronitrile, and nitroso compounds such as N, N'-dinitrosopentamethylenetetramine. Examples thereof include hydrazine derivatives such as hydrazodicarboxylic amide, 4,4'-oxybis (benzenesulfonyl hydrazide) and toluenesulfonylhydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
Examples of the inorganic foaming agent include ammonium acid, sodium carbonate, ammonium hydrogencarbonate, sodium hydrogencarbonate, ammonium nitrite, sodium boron hydride, monosoda anhydrous citrate and the like.
Among these, an azo compound is preferable, and an azodicarbonamide is particularly preferable, from the viewpoint of obtaining fine bubbles, and from the viewpoint of economy and safety. These pyrolyzable foaming agents can be used alone or in combination of two or more.
The blending amount of the pyrolytic foaming agent in the effervescent composition is preferably 1 to 10 parts by mass, more preferably 1.5 to 5 parts by mass, and further preferably 2 to 4 parts by mass with respect to 100 parts by mass of the resin. Is.

また、発泡性組成物は、上記樹脂と熱分解型発泡剤に加えて、気泡核調整剤を含有することが好ましい。気泡核調整剤としては、酸化亜鉛、ステアリン酸亜鉛等の亜鉛化合物、クエン酸、尿素の有機化合物等が挙げられるが、これらの中では、酸化亜鉛がより好ましい。上記した小粒径の発泡剤に加えて気泡核調整剤を使用することで、平均気泡径、及び気泡径のばらつきを小さくしやすくなる。気泡核調整剤の配合量は、樹脂100質量部に対して、好ましくは0.4〜8質量部、より好ましくは0.5〜5質量部、さらに好ましくは0.8〜2.5質量部である。
発泡性組成物は、必要に応じて、上記以外にも、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、充填材等の発泡体に一般的に使用する添加剤を含有していてもよい。
Further, the effervescent composition preferably contains a bubble nucleation adjusting agent in addition to the above resin and a pyrolysis type effervescent agent. Examples of the bubble nucleating agent include zinc compounds such as zinc oxide and zinc stearate, and organic compounds of citric acid and urea, and among these, zinc oxide is more preferable. By using the bubble nucleating agent in addition to the above-mentioned small particle size foaming agent, it becomes easy to reduce the variation in the average cell diameter and the bubble diameter. The blending amount of the bubble nucleating agent is preferably 0.4 to 8 parts by mass, more preferably 0.5 to 5 parts by mass, and further preferably 0.8 to 2.5 parts by mass with respect to 100 parts by mass of the resin. Is.
The effervescent composition contains, if necessary, additives generally used for foams such as antioxidants, heat stabilizers, colorants, flame retardants, antistatic agents, and fillers, in addition to the above. You may be doing it.

[発泡シートの製造方法]
発泡シートの製造方法は、特に制限はないが、例えば、樹脂および熱分解型発泡剤を含む発泡性組成物を架橋するとともに、加熱して熱分解型発泡剤を発泡させることで製造する。その製造方法は、より具体的には、以下の工程(1)〜(4)を含む。
工程(1):樹脂、及び熱分解型発泡剤を含む添加剤を混合して、シート状の発泡性組成物(樹脂シート)に成形する工程
工程(2):シート状の発泡性組成物に電離性放射線を照射して発泡性組成物を架橋させる工程
工程(3):架橋させた発泡性組成物を加熱し、熱分解型発泡剤を発泡させて、発泡シートを得る工程
工程(4):MD方向又はTD方向のいずれか一方又は双方の方向に発泡シートを延伸する工程
[Manufacturing method of foam sheet]
The method for producing the foam sheet is not particularly limited, but for example, it is produced by cross-linking a foamable composition containing a resin and a pyrolysis foaming agent and heating to foam the pyrolysis foaming agent. More specifically, the manufacturing method includes the following steps (1) to (4).
Step (1): Mixing a resin and an additive containing a pyrolysis type foaming agent to form a sheet-like foamable composition (resin sheet) Step (2): Forming a sheet-like foamable composition Steps of irradiating ionizing radiation to crosslink the effervescent composition (3): Steps of heating the crosslinked effervescent composition to foam a pyrolytic foaming agent to obtain a foamed sheet (4). : A step of stretching the foam sheet in either one or both of the MD direction and the TD direction.

工程(1)において、樹脂シートを成形する方法は、特に限定されないが、例えば、樹脂及び添加剤を押出機に供給して溶融混練し、押出機から発泡性組成物をシート状に押出すことによって樹脂シートを成形すればよい。
工程(2)において発泡性組成物を架橋する方法としては、樹脂シートに電子線、α線、β線、γ線等の電離性放射線を照射する方法を用いる。上記電離放射線の照射量は、得られる発泡シートの架橋度が上記した所望の範囲となるように調整すればよいが、5〜15Mradであることが好ましく、6〜13Mradであることがより好ましい。
工程(3)において、発泡性組成物を加熱し熱分解型発泡剤を発泡させるときの加熱温度は、熱分解型発泡剤の発泡温度以上であればよいが、好ましくは200〜300℃、より好ましくは220〜280℃である。
In the step (1), the method for molding the resin sheet is not particularly limited, but for example, the resin and the additive are supplied to the extruder, melt-kneaded, and the effervescent composition is extruded into a sheet from the extruder. The resin sheet may be molded according to the above.
As a method for cross-linking the foamable composition in the step (2), a method of irradiating the resin sheet with ionizing radiation such as electron beam, α ray, β ray, and γ ray is used. The irradiation amount of the ionizing radiation may be adjusted so that the degree of cross-linking of the obtained foamed sheet is within the above-mentioned desired range, but it is preferably 5 to 15 Mrad, and more preferably 6 to 13 Mrad.
In the step (3), the heating temperature at which the foamable composition is heated to foam the pyrolysis foaming agent may be equal to or higher than the foaming temperature of the pyrolysis foaming agent, but is preferably 200 to 300 ° C. It is preferably 220 to 280 ° C.

工程(4)における発泡シートの延伸は、樹脂シートを発泡させて発泡シートを得た後に行ってもよいし、樹脂シートを発泡させつつ行ってもよい。なお、樹脂シートを発泡させて発泡シートを得た後、発泡シートを延伸する場合には、発泡シートを冷却することなく発泡時の溶融状態を維持したまま続けて発泡シートを延伸してもよく、発泡シートを冷却した後、再度、発泡シートを加熱して溶融又は軟化状態とした上で発泡シートを延伸してもよい。発泡シートは延伸することで薄厚にしやすくなる。
工程(4)において、発泡シートのMD方向及びTD方向の一方又は両方への延伸倍率は、1.1〜5.0倍が好ましく、1.5〜4.0倍がより好ましい。
延伸倍率を上記下限値以上とすると、発泡シートの柔軟性及び引張強度が良好になりやすくなる。一方、上限値以下とすると、発泡シートが延伸中に破断したり、発泡中の発泡シートから発泡ガスが抜けて発泡倍率が著しく低下したりすることが防止され、発泡シートの柔軟性や引張強度が良好になり、品質も均一なものとしやすくなる。
また、延伸時に発泡シートは、例えば100〜280℃、好ましくは150〜260℃に加熱すればよい。
以上のようにして得られた発泡シートは、抜き加工等の周知の方法により切断して、所望の形状に加工してもよい。
The stretching of the foamed sheet in the step (4) may be performed after foaming the resin sheet to obtain a foamed sheet, or may be performed while foaming the resin sheet. When the foamed sheet is stretched after the resin sheet is foamed to obtain a foamed sheet, the foamed sheet may be continuously stretched without cooling the foamed sheet while maintaining the molten state at the time of foaming. After cooling the foamed sheet, the foamed sheet may be heated again to be in a molten or softened state, and then the foamed sheet may be stretched. The foamed sheet can be easily made thin by stretching.
In the step (4), the draw ratio of the foamed sheet in one or both of the MD direction and the TD direction is preferably 1.1 to 5.0 times, more preferably 1.5 to 4.0 times.
When the draw ratio is at least the above lower limit value, the flexibility and tensile strength of the foamed sheet tend to be improved. On the other hand, when it is set to the upper limit or less, it is prevented that the foamed sheet breaks during stretching, or the foamed gas is released from the foamed sheet during stretching and the foaming ratio is significantly lowered, and the flexibility and tensile strength of the foamed sheet Is good, and it is easy to make the quality uniform.
Further, the foamed sheet may be heated to, for example, 100 to 280 ° C., preferably 150 to 260 ° C. during stretching.
The foamed sheet obtained as described above may be cut into a desired shape by cutting by a well-known method such as punching.

ただし、本製造方法は、上記に限定されずに、上記以外の方法により、発泡シートを得てもよい。例えば、電離性放射線を照射する代わりに、発泡性組成物に予め有機過酸化物を配合しておき、発泡性組成物を加熱して有機過酸化物を分解させる方法等により架橋を行ってもよい。また、工程(4)、すなわち発泡シートの延伸を省略してもよい。 However, the present production method is not limited to the above, and a foamed sheet may be obtained by a method other than the above. For example, instead of irradiating with ionizing radiation, the effervescent composition may be preliminarily blended with an organic peroxide, and the effervescent composition may be heated to decompose the organic peroxide for cross-linking. Good. Further, the step (4), that is, the stretching of the foamed sheet may be omitted.

発泡シートの用途は、特に限定されないが、例えば電子機器内部で使用することが好ましい。本発明の発泡シートは、薄くかつ幅を狭くしても高い耐衝撃性及び適度な柔軟性を有するので、発泡シートを配置するスペースが小さい各種の携帯電子機器内部で好適に使用できる。携帯電子機器としては、携帯電話、カメラ、ゲーム機器、電子手帳、タブレット端末、ノート型パーソナルコンピュータ等が挙げられる。発泡シートは、電子機器内部において、衝撃吸収材、シール材として使用可能である。
また、発泡シートを基材とする粘着テープに使用してもよい。粘着テープは、適度な柔軟性を有する本発明の発泡シートを基材とすることで、貼り付け不良等が生じにくくなる。
The use of the foam sheet is not particularly limited, but it is preferably used inside an electronic device, for example. Since the foamed sheet of the present invention is thin and has high impact resistance and appropriate flexibility even if the width is narrowed, it can be suitably used inside various portable electronic devices in which a space for arranging the foamed sheet is small. Examples of portable electronic devices include mobile phones, cameras, game devices, electronic organizers, tablet terminals, notebook personal computers, and the like. The foam sheet can be used as a shock absorbing material and a sealing material inside an electronic device.
Further, it may be used for an adhesive tape using a foamed sheet as a base material. By using the foamed sheet of the present invention, which has appropriate flexibility, as a base material for the adhesive tape, sticking defects and the like are less likely to occur.

粘着テープは、例えば、発泡シートと、発泡シートの少なくともいずれか一方の面に設けた粘着剤層とを備えるものであるが、両面に粘着剤層を設けた両面粘着テープが好ましい。
粘着テープを構成する粘着剤層の厚さは、5〜200μmであることが好ましい。粘着剤層の厚さは、より好ましくは7〜150μmであり、更に好ましくは10〜100μmである。粘着剤層の厚さが5〜200μmの範囲であると、粘着テープを用いて固定した構成体の厚さを薄くできる。
粘着剤層に使用する粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等を用いることができる。
また、粘着剤層の上には、さらに離型紙等の剥離シートが貼り合わされてもよい。
発泡シートの少なくとも一面に粘着剤層を形成する方法は、特に限定されないが、以下の方法が例示される。例えば、発泡シートの少なくとも一面にコーター等の塗工機を用いて粘着剤を塗布する方法、樹脂発泡シートの少なくとも一面にスプレーを用いて粘着剤を噴霧、塗布する方法、発泡シートの少なくとも一面に刷毛を用いて粘着剤を塗布する方法、剥離シート上に形成した粘着剤層を発泡シートの少なくとも一面に転写する方法等が挙げられる。
The adhesive tape includes, for example, a foamed sheet and a pressure-sensitive adhesive layer provided on at least one surface of the foamed sheet, and a double-sided pressure-sensitive adhesive tape provided with pressure-sensitive adhesive layers on both sides is preferable.
The thickness of the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive tape is preferably 5 to 200 μm. The thickness of the pressure-sensitive adhesive layer is more preferably 7 to 150 μm, still more preferably 10 to 100 μm. When the thickness of the pressure-sensitive adhesive layer is in the range of 5 to 200 μm, the thickness of the structure fixed by using the pressure-sensitive adhesive tape can be reduced.
The pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is not particularly limited, and for example, an acrylic pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, or the like can be used.
Further, a release sheet such as a paper pattern may be further attached on the pressure-sensitive adhesive layer.
The method for forming the pressure-sensitive adhesive layer on at least one surface of the foamed sheet is not particularly limited, and the following methods are exemplified. For example, a method of applying an adhesive to at least one surface of a foam sheet using a coating machine such as a coater, a method of spraying and applying an adhesive to at least one surface of a resin foam sheet using a spray, and a method of spraying and applying an adhesive to at least one surface of a foam sheet. Examples thereof include a method of applying an adhesive using a brush, a method of transferring an adhesive layer formed on a release sheet to at least one surface of a foamed sheet, and the like.

本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

[測定方法]
各物性の測定方法及び評価方法は、次の通りである。
<見かけ密度及び発泡倍率>
樹脂発泡シートについてJIS K7222に準拠して見かけ密度を測定し、その逆数を発泡倍率とした。
<架橋度>
樹脂発泡シートから約100mgの試験片を採取し、試験片の重量A(mg)を精秤する。次に、この試験片を120℃のキシレン30cm中に浸漬して24時間放置した後、200メッシュの金網で濾過して金網上の不溶解分を採取、真空乾燥し、不溶解分の重量B(mg)を精秤する。得られた値から、下記式により架橋度(質量%)を算出した。
架橋度(質量%)=100×(B/A)
<独立気泡率>
明細書記載の方法に従って測定した。
<平均気泡径>
平均気泡径は、明細書記載の方法で測定した。
[Measuring method]
The measurement method and evaluation method of each physical property are as follows.
<Apparent density and foaming ratio>
The apparent density of the resin foamed sheet was measured in accordance with JIS K7222, and the reciprocal of the density was taken as the foaming magnification.
<Crosslink degree>
Approximately 100 mg of a test piece is collected from the resin foam sheet, and the weight A (mg) of the test piece is precisely weighed. Next, this test piece was immersed in 30 cm 3 of xylene at 120 ° C. and left for 24 hours, filtered through a 200 mesh wire mesh to collect the insoluble matter on the wire mesh, vacuum dried, and the weight of the insoluble matter. Weigh B (mg) precisely. From the obtained values, the degree of cross-linking (mass%) was calculated by the following formula.
Degree of cross-linking (mass%) = 100 x (B / A)
<Closed cell ratio>
The measurement was carried out according to the method described in the specification.
<Average cell diameter>
The average cell diameter was measured by the method described herein.

<圧縮強度>
10%、25%圧縮強度(C20)はそれぞれ、発泡シートを20mm×20mmに打ち抜き加工してサンプルを得てそのサンプルを用いて、厚さがシート1枚分であることを除いて、JIS K6767に準拠して測定した。
10%、25%圧縮強度(C1)はそれぞれ、発泡シートを1.0mm×20mmに打ち抜き加工してサンプルを得て、そのサンプル20個をシート同士が重ならないように測定機に置き、10%、25%圧縮強度(C20)と同様に測定した。なお、本実施例、比較例の発泡シートは、サンプルの長手方向がMD方向に一致するようにサンプリングした。
<Compressive strength>
The 10% and 25% compressive strengths (C 20 ) are JIS, except that the foamed sheet is punched to 20 mm × 20 mm to obtain a sample, and the sample is used, except that the thickness is one sheet. Measured according to K6767.
For 10% and 25% compressive strength (C 1 ), foam sheets are punched to 1.0 mm × 20 mm to obtain samples, and 20 samples are placed on a measuring machine so that the sheets do not overlap each other. %, 25% Compressive strength (C 20 ) was measured in the same manner. The foam sheets of the present example and the comparative example were sampled so that the longitudinal direction of the sample coincided with the MD direction.

<耐衝撃性>
(耐衝撃性評価サンプルの調整)
実施例、比較例で得られた発泡シートの両面に下記方法により得られた粘着剤層を積層し、発泡シートを基材とする両面粘着テープを以下の要領で作製した。
(両面粘着テープの作製方法)
温度計、攪拌機、冷却管を備えた反応器にブチルアクリレート75質量部、2−エチルヘキシルアクリレート22質量部、アクリル酸3質量部、2−ヒドロキシエチルアクリレート0.2質量部、及び酢酸エチル80質量部を加え、窒素置換した後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤としてアゾビスイソブチロニトリル0.1質量部を添加した。5時間還流させて、アクリル共重合体(z)の溶液を得た。得られたアクリル共重合体(z)について、カラムとしてWater社製「2690 Separations Model」を用いてGPC法により重量平均分子量を測定したところ、60万であった。
得られたアクリル共重合体(z)の溶液に含まれるアクリル共重合体(z)の固形分100質量部に対して、軟化点135℃の重合ロジンエステル15質量部、酢酸エチル(不二化学薬品株式会社製)125質量部、イソシアネート系架橋剤(東ソー株式会社製、コロネートL45)2質量部を添加し、攪拌することにより粘着剤(Z)を得た。なお、アクリル系粘着剤の架橋度は33質量%であった。
厚さ150μmの離型紙を用意し、この離型紙の離型処理面に粘着剤(Z)を塗布し、100℃で5分間乾燥させることにより、厚さ30μmのアクリル系粘着剤層を形成した。このアクリル系粘着剤層を、発泡シートからなる基材の表面と貼り合わせた。次いで、同様の要領で、基材の反対の表面にも上記と同じアクリル系粘着剤層を貼り合わせた。これにより、厚さ150μmの離型紙で両面が覆われた両面粘着テープを得た。
<Impact resistance>
(Adjustment of impact resistance evaluation sample)
Adhesive layers obtained by the following methods were laminated on both sides of the foamed sheets obtained in Examples and Comparative Examples, and a double-sided adhesive tape using the foamed sheet as a base material was produced in the following manner.
(How to make double-sided adhesive tape)
75 parts by mass of butyl acrylate, 22 parts by mass of 2-ethylhexyl acrylate, 3 parts by mass of acrylic acid, 0.2 parts by mass of 2-hydroxyethyl acrylate, and 80 parts by mass of ethyl acetate in a reactor equipped with a thermometer, a stirrer, and a cooling tube. Was added and replaced with nitrogen, and then the reactor was heated to start reflux. Subsequently, 0.1 part by mass of azobisisobutyronitrile was added as a polymerization initiator into the reactor. The mixture was refluxed for 5 hours to obtain a solution of the acrylic copolymer (z). The weight average molecular weight of the obtained acrylic copolymer (z) was measured by the GPC method using "2690 Separations Model" manufactured by Water Co., Ltd. as a column, and it was 600,000.
With respect to 100 parts by mass of the solid content of the acrylic copolymer (z) contained in the obtained solution of the acrylic copolymer (z), 15 parts by mass of the polymerized rosin ester at a softening point of 135 ° C. and ethyl acetate (Fuji Kagaku) A pressure-sensitive adhesive (Z) was obtained by adding 125 parts by mass of an isocyanate-based cross-linking agent (manufactured by Toso Co., Ltd.) and 2 parts by mass of an isocyanate-based cross-linking agent (coronate L45 manufactured by Toso Co., Ltd.) and stirring the mixture. The degree of cross-linking of the acrylic pressure-sensitive adhesive was 33% by mass.
A release paper having a thickness of 150 μm was prepared, an adhesive (Z) was applied to the release-treated surface of the release paper, and the mixture was dried at 100 ° C. for 5 minutes to form an acrylic pressure-sensitive adhesive layer having a thickness of 30 μm. .. This acrylic pressure-sensitive adhesive layer was bonded to the surface of a base material made of a foam sheet. Then, in the same manner, the same acrylic pressure-sensitive adhesive layer as described above was attached to the opposite surface of the base material. As a result, a double-sided adhesive tape having both sides covered with a paper pattern having a thickness of 150 μm was obtained.

(耐衝撃性試験装置の作製)
図1に、耐衝撃性試験装置の模式図を示す。
耐衝撃性試験装置は、以下の手順で作製した。
まず、上記で得られた両面粘着テープを外径が幅15.0mm、長さ15.0mm、内径が幅13.6mm、長さ13.6mmになるように打ち抜き、各枠辺の幅を0.7mmとした四角枠状の試験片1を作製した。
次いで、図1(a)に示すように、中央に方形の孔2を設けたポリカーボネート製、又はSUS製の被着板3を用意し、離型紙を剥がした試験片1を、被着板3の上表面で、この孔2の外周側全周に亘って貼り付けた。
次いで、前記の孔2を被覆するサイズのガラス製の被着板4を、試験片1の上に重ねて貼り付け、前記の孔2を被覆して耐衝撃性試験装置を組み立てた。
その後、耐衝撃性試験装置を上下反転して、被着板3を上面にした状態で、被着板3側から5kgfの圧力を5秒間加えて、上下に位置する被着板3と試験片とを圧着し、常温で36時間放置した。なお、耐衝撃性試験では、被着板3が、ポリカーボネート(PC)製、及びSUS製それぞれの場合について評価した。
(Manufacturing of impact resistance test equipment)
FIG. 1 shows a schematic view of the impact resistance test apparatus.
The impact resistance test device was manufactured by the following procedure.
First, the double-sided adhesive tape obtained above is punched so that the outer diameter is 15.0 mm in width and 15.0 mm in length, and the inner diameter is 13.6 mm in width and 13.6 mm in length, and the width of each frame side is 0. A square frame-shaped test piece 1 having a diameter of 0.7 mm was prepared.
Next, as shown in FIG. 1A, a polycarbonate or SUS adherend plate 3 having a square hole 2 in the center was prepared, and the test piece 1 from which the release paper was peeled off was attached to the adherend plate 3. On the upper surface, the hole 2 was attached over the entire circumference on the outer peripheral side.
Next, a glass adherend plate 4 having a size covering the hole 2 was laminated and attached on the test piece 1, and the hole 2 was covered to assemble an impact resistance test apparatus.
After that, the impact resistance test device is turned upside down, and with the adherend plate 3 facing up, a pressure of 5 kgf is applied from the adherend plate 3 side for 5 seconds to apply the adherend plate 3 and the test piece located above and below. Was crimped and left at room temperature for 36 hours. In the impact resistance test, the case where the adherend plate 3 was made of polycarbonate (PC) and SUS was evaluated.

(耐衝撃性の判定)
図1(b)に示すように、作製した耐衝撃性試験装置を支持台5に固定し、被着板3に形成された孔2を通過する大きさの50gの重さの鉄球6を、孔2を通過するように落とした。鉄球を落とす高さを徐々に高くしていき、鉄球の落下により加わった衝撃により試験片と被着板が剥がれた時の鉄球を落した高さを計測し、耐衝撃性を評価した。被着板3がポリカーボネートのときに32cm以上となり、かつSUS製のときに38cm以上となる場合を“A”と評価した。被着板3がポリカーボネートのときに32cm未満であり、かつSUS製のときに38cm以上となる場合、又は被着板3がポリカーボネートのときに32cm以上であり、かつSUS製のときに38cm未満となる場合を“B”と評価した。被着板3がポリカーボネートのときに32cm未満であり、かつSUS製のときに38cm未満となる場合を“C”と評価した。
(Judgment of impact resistance)
As shown in FIG. 1 (b), the produced impact resistance test apparatus is fixed to the support base 5, and an iron ball 6 having a weight of 50 g and having a size passing through the hole 2 formed in the adherend plate 3 is formed. , Dropped so as to pass through hole 2. The height at which the iron ball is dropped is gradually increased, and the height at which the iron ball is dropped when the test piece and the adherend are peeled off due to the impact applied by the fall of the iron ball is measured to evaluate the impact resistance. did. The case where the adherend plate 3 was 32 cm or more when it was made of polycarbonate and 38 cm or more when it was made of SUS was evaluated as “A”. When the adherend plate 3 is made of polycarbonate, it is less than 32 cm and it is 38 cm or more when it is made of SUS, or when the adherend plate 3 is made of polycarbonate, it is 32 cm or more and it is less than 38 cm when it is made of SUS. The case was evaluated as "B". When the adherend plate 3 was made of polycarbonate, it was less than 32 cm, and when it was made of SUS, it was less than 38 cm, which was evaluated as "C".

[実施例1]
メタロセン化合物の重合触媒によって得られた直鎖状低密度ポリエチレン樹脂(樹脂A)100質量部と、熱分解型発泡剤として粒径13μmのアゾジカルボンアミド3.4質量部と、気泡核調整剤として酸化亜鉛(堺化学工業株式会社製、商品名「OW−212F」)1.0質量部と、酸化防止剤0.5質量部とを押出機に供給した。次いで、130℃で溶融混練し、厚さが260μmの長尺状の樹脂シートに押出した。なお、樹脂Aとして、ダウケミカル社製の商品名「アフィニティーPL1850」(密度0.902g/cm)を用いた。
次に、上記長尺状の樹脂シートの両面に加速電圧500kVの電子線を7Mrad照射して樹脂シートを架橋した。その後、架橋した樹脂シートを熱風及び赤外線ヒーターにより250℃に保持された発泡炉内に連続的に送り込んで加熱して発泡させて、厚さ300μmの発泡シートを得た。
次いで、得られた発泡シートを発泡炉から連続的に送り出した。そして、この発泡シートをその両面の温度が200〜250℃となるように維持した状態で、発泡シートをそのTD方向に2.0倍の延伸倍率で延伸させると共に、発泡シートの発泡炉への送り込み速度(供給速度)よりも速い巻取速度でもって発泡シートを巻き取ることによって発泡シートをMD方向にも延伸させて、発泡シートを得た。なお、上記発泡シートの巻取速度は、樹脂シート自身の発泡によるMD方向への膨張分を考慮しつつ調整した。得られた発泡シートを上記評価方法に従って評価し、その結果を表1に示す。
[Example 1]
100 parts by mass of a linear low-density polyethylene resin (resin A) obtained by a polymerization catalyst of a metallocene compound, 3.4 parts by mass of azodicarbonamide having a particle size of 13 μm as a pyrolysis foaming agent, and as a bubble nucleating agent. 1.0 part by mass of zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., trade name "OW-212F") and 0.5 part by mass of an antioxidant were supplied to the extruder. Then, it was melt-kneaded at 130 ° C. and extruded into a long resin sheet having a thickness of 260 μm. As the resin A, the trade name “Affinity PL1850” (density 0.902 g / cm 3 ) manufactured by Dow Chemical Co., Ltd. was used.
Next, both sides of the long resin sheet were irradiated with an electron beam having an acceleration voltage of 500 kV for 7Mrad to crosslink the resin sheet. Then, the crosslinked resin sheet was continuously sent into a foaming furnace held at 250 ° C. by hot air and an infrared heater and heated to foam to obtain a foamed sheet having a thickness of 300 μm.
Then, the obtained foam sheet was continuously sent out from the foam furnace. Then, while maintaining the temperature of both sides of the foamed sheet at 200 to 250 ° C., the foamed sheet is stretched in the TD direction at a stretching ratio of 2.0 times, and the foamed sheet is transferred to a foaming furnace. The foamed sheet was stretched in the MD direction by winding the foamed sheet at a winding speed faster than the feeding speed (supplying speed) to obtain a foamed sheet. The winding speed of the foamed sheet was adjusted in consideration of the expansion amount in the MD direction due to the foaming of the resin sheet itself. The obtained foam sheet was evaluated according to the above evaluation method, and the results are shown in Table 1.

[実施例2〜7、比較例1〜3]
ポリオレフィン系樹脂組成物の配合を表1及び2に示すように変更すると共に、架橋時の線量を表1及び2の架橋度となるように調整した点、TDの延伸倍率を2.0倍〜3.5倍に調整した点を除いて実施例1と同様に実施した。
なお、実施例6で使用したポリオレフィン樹脂は、以下のとおりである。
樹脂B:エチレン・酢酸ビニル共重合樹脂、三菱化学株式会社製、商品名「ノバテックEVA」
樹脂C:直鎖状低密度ポリエチレン、株式会社プライムポリマー社製、商品名「エバフレックス460−H」
[Examples 2 to 7, Comparative Examples 1 to 3]
The composition of the polyolefin resin composition was changed as shown in Tables 1 and 2, and the dose at the time of cross-linking was adjusted to the degree of cross-linking shown in Tables 1 and 2. It was carried out in the same manner as in Example 1 except that it was adjusted to 3.5 times.
The polyolefin resin used in Example 6 is as follows.
Resin B: Ethylene-vinyl acetate copolymer resin, manufactured by Mitsubishi Chemical Corporation, trade name "Novatec EVA"
Resin C: Linear low-density polyethylene, manufactured by Prime Polymer Co., Ltd., trade name "Evaflex 460-H"

Figure 0006901476
Figure 0006901476

以上のように、実施例1〜7では、圧縮強度の低下率((C20−C1)/C20)が60%以下となり、シート幅を狭くしても柔軟になりすぎることがない一方で、耐衝撃性は十分に高くなった。一方で、比較例1〜3では、圧縮強度の低下率が60%より高かったため、シート幅を狭くすると柔軟になりすぎ、さらに、耐衝撃性を十分に高くすることができなかった。As described above, in Examples 1 to 7, the rate of decrease in compressive strength ((C 20 −C 1 ) / C 20 ) is 60% or less, and even if the sheet width is narrowed, it does not become too flexible. So, the impact resistance is high enough. On the other hand, in Comparative Examples 1 to 3, since the rate of decrease in compressive strength was higher than 60%, narrowing the sheet width made the seat too flexible, and the impact resistance could not be sufficiently increased.

1 試験片
2 孔
3 マグネシウム製被着板
4 ガラス製被着板
5 支持台
6 鉄球
1 Test piece 2 holes 3 Magnesium adherend plate 4 Glass adherence plate 5 Support base 6 Iron ball

Claims (10)

ポリエチレン樹脂を含む、独立気泡を有する架橋樹脂発泡シートであって、
サンプル幅20mmで測定した圧縮強度(C20)に対する、サンプル幅1mmで測定した圧縮強度(C)の低下率が、60%以下であり、
サンプル幅1mmにおける10%圧縮強度(C )が30〜600kPaであり、また、25%圧縮強度(C )が150〜1500kPaである、
架橋樹脂発泡シート。
A crosslinked resin foam sheet containing closed cells containing polyethylene resin.
For compressive strength measured at sample width 20 mm (C 20), compressive strength measured at sample width 1 mm (C 1) reduced rates of state, and are 60% or less,
10% compressive strength at sample width 1 mm (C 1) is 30~600KPa, also 25% compressive strength (C 1) is Ru 150~1500kPa der,
Crosslinked resin foam sheet.
MD方向及びTD方向の平均気泡径がいずれも100μm以下である、請求項1に記載の架橋樹脂発泡シート。 The crosslinked resin foam sheet according to claim 1, wherein the average cell diameter in both the MD direction and the TD direction is 100 μm or less. 厚さが、0.03〜0.50mmである、請求項1又は2の架橋樹脂発泡シート。 The crosslinked resin foam sheet according to claim 1 or 2, wherein the thickness is 0.03 to 0.50 mm. 前記ポリエチレン樹脂が、メタロセン化合物の重合触媒で重合された直鎖状低密度ポリエチレンである請求項1〜3のいずれか1項に記載の架橋樹脂発泡シート。 The crosslinked resin foam sheet according to any one of claims 1 to 3, wherein the polyethylene resin is a linear low-density polyethylene polymerized with a polymerization catalyst of a metallocene compound. 架橋度が30質量%以上である請求項1〜4のいずれか1項に記載の架橋樹脂発泡シート。 The crosslinked resin foam sheet according to any one of claims 1 to 4 , wherein the degree of crosslinking is 30% by mass or more. 発泡倍率が、1.2〜4.0cm/gである請求項1〜5のいずれか1項に記載の架橋樹脂発泡シート。 The crosslinked resin foamed sheet according to any one of claims 1 to 5 , wherein the foaming ratio is 1.2 to 4.0 cm 3 / g. 幅が5mm以下である請求項1〜6のいずれか1項に記載の架橋樹脂発泡シート。 The crosslinked resin foam sheet according to any one of claims 1 to 6 , which has a width of 5 mm or less. 樹脂と熱分解型発泡剤とを含む発泡性組成物を発泡してなる請求項1〜7のいずれか1項に記載の架橋樹脂発泡シート。 The crosslinked resin foam sheet according to any one of claims 1 to 7, wherein a foamable composition containing a resin and a thermal decomposition type foaming agent is foamed. 請求項1〜8のいずれか1項に記載の架橋樹脂発泡シートの製造方法であって、
樹脂および熱分解型発泡剤を含む発泡性組成物を架橋し、かつ、加熱して前記熱分解型発泡剤を発泡させる架橋樹脂発泡シートの製造方法。
The method for producing a crosslinked resin foam sheet according to any one of claims 1 to 8.
A method for producing a crosslinked resin foam sheet in which a foamable composition containing a resin and a pyrolysis foaming agent is crosslinked and heated to foam the pyrolysis foaming agent.
請求項1〜8のいずれか1項に記載の架橋樹脂発泡シートと、前記架橋樹脂発泡シートの少なくともいずれか一方の面に設けた粘着剤層とを備える粘着テープ。 An adhesive tape comprising the crosslinked resin foamed sheet according to any one of claims 1 to 8 and an adhesive layer provided on at least one surface of the crosslinked resin foamed sheet.
JP2018519892A 2017-03-31 2018-03-30 Crosslinked resin foam sheet, its manufacturing method, and adhesive tape Active JP6901476B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017071672 2017-03-31
JP2017071672 2017-03-31
PCT/JP2018/013834 WO2018181982A1 (en) 2017-03-31 2018-03-30 Cross-linked resin foam sheet, production method therefor, and adhesive tape

Publications (2)

Publication Number Publication Date
JPWO2018181982A1 JPWO2018181982A1 (en) 2019-08-08
JP6901476B2 true JP6901476B2 (en) 2021-07-14

Family

ID=63678178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018519892A Active JP6901476B2 (en) 2017-03-31 2018-03-30 Crosslinked resin foam sheet, its manufacturing method, and adhesive tape

Country Status (4)

Country Link
JP (1) JP6901476B2 (en)
KR (1) KR20190129886A (en)
CN (2) CN115819827A (en)
WO (1) WO2018181982A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393149B2 (en) * 2019-07-30 2023-12-06 積水化学工業株式会社 Foam sheets, laminates, cushioning materials for printing rolls, and printing plate cylinder fixing members
CN112778565B (en) * 2020-12-30 2023-03-31 广德祥源新材科技有限公司 Impact-resistant ultrathin polyolefin foamed sheet and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563253B1 (en) 2003-07-11 2006-03-27 한국과학기술원 A carbon nanometer tube aligning method using magnetic field in an microgap and a carbon nanometer tube tip manufacturing method using thereof
JP5534854B2 (en) * 2010-02-19 2014-07-02 積水化学工業株式会社 Adhesive sheet for electronic equipment
JP2013053177A (en) * 2011-08-31 2013-03-21 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material
JP2013053179A (en) * 2011-08-31 2013-03-21 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material
JP6207009B2 (en) * 2012-07-03 2017-10-04 積水化学工業株式会社 Cross-linked polyolefin resin foam sheet
KR102125916B1 (en) * 2014-03-31 2020-06-23 세키스이가가쿠 고교가부시키가이샤 Polyolefin foam sheet and pressure-sensitive adhesive tape
EP3202831B1 (en) * 2014-09-30 2023-11-01 Sekisui Chemical Co., Ltd. Polyolefin resin foam sheet and adhesive tape
JP6466413B2 (en) * 2014-09-30 2019-02-06 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape
JP2017061669A (en) * 2015-03-31 2017-03-30 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape

Also Published As

Publication number Publication date
WO2018181982A1 (en) 2018-10-04
CN115819827A (en) 2023-03-21
CN110446747B (en) 2022-12-20
CN110446747A (en) 2019-11-12
KR20190129886A (en) 2019-11-20
JPWO2018181982A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6379040B2 (en) Cross-linked polyolefin resin foam sheet
JP2020147757A (en) Polyolefin resin foam sheet and adhesive tape
JP6773817B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6878098B2 (en) Foam sheet and adhesive tape
JP7071836B2 (en) Foam sheet and adhesive tape
JP7295623B2 (en) Polyolefin resin foam sheet and adhesive tape using the same
JP7000316B2 (en) Resin foam sheet, method of manufacturing resin foam sheet, and adhesive tape
JP6901476B2 (en) Crosslinked resin foam sheet, its manufacturing method, and adhesive tape
JP7071848B2 (en) Foam sheet and adhesive tape
JP6918701B2 (en) Polyolefin-based foam sheet, its manufacturing method and adhesive tape
JP6625032B2 (en) Closed-cell resin foam and method for producing the same
JP7201431B2 (en) POLYOLEFIN FOAM SHEET, MANUFACTURING METHOD THEREOF AND ADHESIVE TAPE
JP6572307B2 (en) Cross-linked polyolefin resin foam sheet and method for producing the same
JP7063566B2 (en) Resin foam sheet, method of manufacturing resin foam sheet, and adhesive tape
JP6789053B2 (en) Resin foam sheet, method of manufacturing resin foam sheet, and adhesive tape
JP7209473B2 (en) Resin foam sheet and adhesive tape
JP6898109B2 (en) Resin foam sheet and its manufacturing method
JP6956163B2 (en) Closed cell resin foam and its manufacturing method
JP2023040962A (en) foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190619

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200610

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200618

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200623

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200904

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200908

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210105

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210420

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210525

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210617

R151 Written notification of patent or utility model registration

Ref document number: 6901476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250