Nothing Special   »   [go: up one dir, main page]

JP6729392B2 - ポリオレフィン微多孔膜、その製造方法および電池用セパレータ - Google Patents

ポリオレフィン微多孔膜、その製造方法および電池用セパレータ Download PDF

Info

Publication number
JP6729392B2
JP6729392B2 JP2016566573A JP2016566573A JP6729392B2 JP 6729392 B2 JP6729392 B2 JP 6729392B2 JP 2016566573 A JP2016566573 A JP 2016566573A JP 2016566573 A JP2016566573 A JP 2016566573A JP 6729392 B2 JP6729392 B2 JP 6729392B2
Authority
JP
Japan
Prior art keywords
polyolefin
film
polyolefin microporous
microporous membrane
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016566573A
Other languages
English (en)
Other versions
JPWO2016104792A1 (ja
Inventor
佐藤 剛
剛 佐藤
敏彦 金田
敏彦 金田
河野 公一
公一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2016104792A1 publication Critical patent/JPWO2016104792A1/ja
Application granted granted Critical
Publication of JP6729392B2 publication Critical patent/JP6729392B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • C08J2201/0543Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ポリオレフィン微多孔膜、その製造方法および電池用セパレータに関し、より詳しくは、耐酸化性、メルトダウン温度および靱性等の機械的強度に優れ、電池用セパレータに好適に使用できるポリオレフィン微多孔膜、その製造方法および電池用セパレータに関するものである。
近年のリチウムイオン二次電池の高出力密度化、高容量化に伴い、耐酸化性と機械的強度に優れたバッテリーセパレータフィルムが要望されている。
特開平5−222237号公報には、造核剤、ポリオレフィンに対する良溶媒と造核剤の分散性に優れた溶媒との混合溶媒およびポリオレフィンを溶融混合してなるポリオレフィン溶液を冷却してゲル状組成物を形成し、ゲル状組成物を加熱延伸し、しかる後残存溶媒を除去することにより製造されるポリオレフィン微多孔膜が記載されている。このようなポリオレフィン微多孔膜は、混合溶媒を使用するため、上記ポリオレフィン溶液中で均一に溶媒が分散せず、得られるポリオレフィン微多孔膜のポロメータによる最大孔径、平均流量孔径がともに大きくなり、透気抵抗度も非常に低くなる。このため、電池のセパレータフィルムとして使用する際には、耐電圧特性と機械的強度に更なる改良が必要であった。
特開2010−215901号公報、特表2009−527633号公報には、乾式法として知られている製造方法によるポリプロピレン多孔性フィルムが開示されている。具体的には、溶融押出時に低温押出、高ドラフト比を採用して、シート化した延伸前のフィルム中のラメラ構造を制御し、これを延伸することで、空隙を形成する方法である。しかし、このような製造方法では、細孔構造が不均一になりやすく、局所的にボイドを含む構造が生じる懸念がある。中でも微多孔膜表面の細孔の孔径が大きくなり、その分布も不均一となることから、耐電圧特性に劣ったり、特定方向の微多孔膜の機械的強度が極端に低下し、靱性に劣ったりするといった問題があった。
特開2014−141644号公報には、引張強度のMD方向とTD方向の比が0.9以上1.5未満の二軸配向多孔性ポリプロピレンフィルムが記載されている。しかし、そのポリプロピレンフィルムは乾式法で製造されていることから、透気抵抗度が低く、引張伸度や靱性に更なる改良が必要であった。
特開平6−223802号公報には高分子量ポリエチレンおよび高分子量ポリプロピレンの混合物から形成された微多孔膜が記載されている。しかし、このような微多孔膜は、大部分がポリエチレンにより構成されているため、耐酸化性に更なる改良が必要であった。
特開平5−222237号公報 特開2010−215901号公報 特表2009−527633号公報 特開2014−141644号公報 特開平6−223802号公報
本発明の目的は、優れた耐酸化性と靱性を有するポリプロピレンを主成分とするポリオレフィン微多孔膜および電池用セパレータを提供することである。
本発明の第1の態様は、ポリプロピレン樹脂を90質量%以上含んでなるポリオレフィン樹脂からなり、MD方向引張強度が25MPa以上であり、TD方向引張強度が25MPa以上であり、MD方向とTD方向の引張強度の比(MD/TD)が0.4以上2.0以下であり、MD方向引張伸度が80%以上であり、MD方向とTD方向の引張伸度の比(MD/TD)が0.6以上1.7以下であることを特徴とするポリオレフィン微多孔膜である。
前記ポリオレフィン微多孔膜の示差走査型熱量計を用いたβ晶由来の結晶融解熱ピークが認められないことが好ましい。
前記ポリオレフィン微多孔膜は、メルトダウン温度が160℃以上であることが好ましく、膜厚を20μmとした時の透気抵抗度が300sec/100cc以上であることが好ましく、ポロメータによる平均流量孔径が25.0nm以下であることが好ましい。
前記ポリオレフィン微多孔膜の膜厚が1μm以上12μm以下であることが好ましい。
前記ポリプロピレン樹脂の重量平均分子量は、1×10以上1×10以下であることが好ましい。
本発明の第2の態様は、前記ポリオレフィン微多孔膜からなる電池用セパレータであり、本発明の第3の態様は、前記セパレータを用いた二次電池である。
本発明の第4の態様は、下記(1)〜(5)の工程を含むことを特徴とする、MD方向引張強度が25MPa以上であり、TD方向引張強度が25MPa以上であり、MD方向とTD方向の引張強度の比(MD/TD)が0.4以上2.0以下であり、MD方向引張伸度が80%以上であり、MD方向とTD方向の引張伸度の比(MD/TD)が0.6以上1.7以下であるポリオレフィン微多孔膜の製造方法である。
(1)ポリプロピレン樹脂を90質量%以上含んでなるポリオレフィン樹脂、結晶化制御剤および成膜用溶剤を溶融混練し、ポリオレフィン溶液を調製する工程
(2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
(3)前記ゲル状シートを延伸する延伸工程
(4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
(5)前記成膜用溶剤除去後のシートを乾燥する工程
本発明のポリオレフィン微多孔膜は、ポリプロピレンを主成分とし、MD方向とTD方向の引張特性に異方性が小さいことから、優れた耐酸化性、メルトダウン温度および靱性などの機械的強度を有する。本発明のポリオレフィン微多孔膜の製造方法は、優れた耐酸化性、メルトダウン温度および靱性などの機械的強度を有するポリオレフィン微多孔膜を効率よく製造することができる。本発明の電池用セパレータは、優れた耐酸化性、メルトダウン温度および靱性などの機械的強度を有するポリオレフィン微多孔膜からなるので、リチウムイオン二次電池のような電池に使用した際に、電池の長寿命化、良化した充放電サイクル特性および改善された安全性を付与することが期待できる。
1.ポリオレフィン微多孔膜
本発明のポリオレフィン微多孔膜は、ポリオレフィン樹脂からなる。
以下、本発明について、各項目毎に説明する。
(1)ポリオレフィン樹脂
ポリオレフィン樹脂は、ポリプロピレン樹脂を主成分とする。ポリオレフィン樹脂中のポリプロピレン樹脂の含有量は、90質量%以上であることが好ましく、より好ましくは95質量%以上、最も好ましくは100質量%である。ポリオレフィン樹脂中のポリプロピレン樹脂の含有量が上記範囲未満であると本発明のポリオレフィン微多孔膜の耐酸化性が悪化する。
(i)ポリプロピレン樹脂
ポリプロピレン樹脂としては、その重量平均分子量が1×10以上1×10以下であることが好ましく、1×10以上1×10以下であることがさらに好ましい。ポリプロピレン樹脂の分子量分布は5以上10以下程度であることが好ましい。ポリオレフィン樹脂の重量平均分子量が上記範囲内であると、成膜用溶剤と溶融混練して押出す工程での取り扱い作業性が向上する。
ポリプロピレン樹脂の融点は特に限定されないが、180℃以下であることが好ましい。
ポリプロピレン樹脂は、他のオレフィンとの共重合体であってもよいが、ホモポリマーであることが好ましい。ポリプロピレンと他のオレフィンとの共重合体としては、プロピレン−エチレン共重合体、プロピレン−ブテン共重合体、プロピレン−ヘキセン共重合体等を挙げることができる。
(ii)ポリプロピレン以外のポリオレフィン樹脂
本発明のポリオレフィン微多孔膜はポリオレフィン樹脂として、ポリエチレン、ポリブテン等のポリプロピレン以外のポリオレフィンを少量含んでもよい。このようなポリオレフィンとしては、Mwが1×10〜1×10のポリエチレン、Mwが1×10〜5×10の超高分子量ポリエチレン、Mwが1×10〜4×10のポリブテン−1ポリブテン−1、ポリペンテン−1、ポリヘキセン−1、ポリオクテン−1およびMwが1×10〜1×10のポリエチレンワックスからなる群から選ばれた少なくとも一種を用いてもよい。
前記ポリプロピレン樹脂以外のポリオレフィンのポリオレフィン樹脂中の含有量は、本発明の効果を損なわない範囲で、適宜調節できるが、ポリオレフィン樹脂中、10質量%以下が好ましく、5質量%以下がより好ましく、0質量%がさらに好ましい。
(iii)その他の樹脂成分
前記ポリオレフィン樹脂は、必要に応じて、前記ポリオレフィン樹脂以外のその他の樹脂成分を含むことができる。その他の樹脂成分としては、耐熱性樹脂であることが好ましく、耐熱性樹脂としては、例えば、融点が150℃以上の結晶性樹脂(部分的に結晶性である樹脂を含む)、および/又はガラス点移転(Tg)が150℃以上の非晶性樹脂が挙げられる。ここでTgはJIS K7121に準拠して測定した値である。
その他の樹脂成分の具体例としては、ポリエステル、ポリメチルペンテン[PMP又はTPX(トランスパレントポリマーX)、融点:230〜245℃]、ポリアミド(PA、融点:215〜265℃)、ポリアリレンスルフィド(PAS)、ポリフッ化ビニリデン(PVDF)などのフッ化ビニリデン単独重合体やポリテトラフルオロエチレン(PTFE)などのフッ化オレフィンおよびこれらの共重合体などの含フッ素樹脂;ポリスチレン(PS、融点:230℃)、ポリビニルアルコール(PVA、融点:220〜240℃)、ポリイミド(PI、Tg:280℃以上)、ポリアミドイミド(PAI、Tg:280℃)、ポリエーテルサルフォン(PES、Tg:223℃)、ポリエーテルエーテルケトン(PEEK、融点:334℃)、ポリカーボネート(PC、融点:220〜240℃)、セルロースアセテート(融点:220℃)、セルローストリアセテート(融点:300℃)、ポリスルホン(Tg:190℃)、ポリエーテルイミド(融点:216℃)等が挙げられる。樹脂成分は、単一樹脂成分からなるものに限定されず、複数の樹脂成分からなるものでもよい。その他の樹脂成分の好ましいMwは、樹脂の種類により異なるが、一般的に1×10〜1×10であり、より好ましくは1×10〜7×10である。また、前記ポリオレフィン樹脂中のその他の樹脂成分の含有量は、本発明の趣旨を逸脱しない範囲で適宜、調節されるが、前記ポリオレフィン樹脂中、20質量%以下の範囲で含有され、好ましくは5質量%未満であり、より好ましくは0質量%である。
(2)結晶化制御剤
結晶化制御剤とは、ポリオレフィン樹脂に配合することでポリオレフィン樹脂の結晶化を促進または抑制する添加剤であり、造核剤、透明化剤、結晶化遅延剤等があげられる。中でも造核剤および結晶化遅延剤が好ましい。結晶化制御剤の配合により、本発明のポリオレフィン微多孔膜の細孔構造が均一に微細になることが期待できる。
(i)造核剤
造核剤としては、ポリプロピレン樹脂用造核剤が好適に使用でき、芳香族リン酸エステル金属塩系造核剤、安息香酸金属塩系造核剤等のカルボン酸金属塩系造核剤、ソルビトール系造核剤およびこれらの混合物などポリオレフィン樹脂用造核剤として一般的に使用されるものが使用できる。中でも、後述するポリオレフィン樹脂溶液への分散性の観点から、基本的にヒドロシリル基を含有しない芳香族リン酸エステル金属塩系造核剤、安息香酸金属塩系造核剤等のカルボン酸金属塩系造核剤およびこれらの混合物であることが好ましい。なお、ポリプロピレン樹脂用造核剤としては市販の複数成分からなる造核剤マスターバッチを用いてもよい。
ポリプロピレン樹脂用造核剤としては、α晶造核剤、β晶造核剤、γ晶造核剤が例示されるが、生成される結晶が微小となる傾向にある点からα晶造核剤であることが好ましい。β晶造核剤を使用した場合は、粗大化した針状結晶が形成される場合がある。
芳香族リン酸エステル金属塩系造核剤としては、例えば、ナトリウムビス(4−tert-ブチルフェニル)ホスフェート、ナトリウム 2,2’−メチレンビス(4,6−ジ-tert-ブチルフェニル)ホスフェート等が挙げられる。
カルボン酸金属塩系造核剤としては、例えば、安息香酸リチウム塩、安息香酸ナトリウム塩、4−第三ブチル安息香酸アルミニウム塩、アジピン酸ナトリウム等が挙げられる。
ソルビトール系造核剤としては、例えば、ジベンジリデンソルビトール、ビス(4−メチルベンジリデン)ソルビトール、ビス(3,4-ジメチルベンジリデン)ソルビトール等が挙げられる。
造核剤の配合量は、一般的にポリオレフィン樹脂100質量部に対して0.01〜5.00質量部であり、さらに好ましくは0.05〜3.00質量部であるが、特に限定されない。造核剤は、ポリオレフィン樹脂に直接配合してもよく、ポリオレフィン樹脂と造核剤を予め混合したマスターバッチとして、ポリオレフィン樹脂に配合しても良い。
(ii)結晶化遅延剤
ポリオレフィン樹脂の結晶化遅延剤としては、非晶性ポリオレフィン樹脂、低結晶性ポリオレフィン樹脂などが使用でき、中でも低結晶性ポリプロピレン樹脂などが好適に使用できる。
具体的には、非晶性ポリオレフィン樹脂としては、例えば、ポリスチレン、ポリカーボネート等が挙げられ、低結晶性ポリオレフィン樹脂としては、エチレン−プロピレン、エチレン−ブテン等のランダム共重合体、アタクチックポリプロピレン等の低立体規則性ポリオレフィンが挙げられる。
結晶化遅延剤の配合量は、一般的にポリオレフィン樹脂100質量部に対して0.01〜5.00質量部であり、さらに好ましくは0.05〜3.00質量部であるが、特に限定されない。
(3)ポリオレフィン微多孔膜の特性
本発明のポリオレフィン微多孔膜は、MD方向引張強度が25MPa以上であり、TD方向引張強度が25MPa以上であり、MD方向とTD方向の引張強度の比が0.4以上2.0以下であり、MD方向引張伸度が80%以上であり、MD方向とTD方向の引張伸度の比が0.6以上1.7以下であるため、機械的強度の等方性に優れ、電池用セパレータとして使用した場合、電池の生産性に優れ、得られた電池に高い安全性と長寿命化を付与できる。
(i)引張強度、引張伸度
本発明のポリオレフィン微多孔膜のMD方向(膜表面の長さ方向、機械方向)の引張強度の下限は25MPaであり、好ましくは40MPaあり、より好ましくは50MPaであり、TD方向(MD方向と垂直の膜表面幅方向)の引張強度の下限は25MPaであり、好ましくは40MPaであり、より好ましくは50MPaである。本発明のポリオレフィン微多孔膜のMD方向およびTD方向の引張強度の上限は特に限定されないが、一般的に400MPaであることが好ましく、300MPaであることがより好ましい。
本発明のポリオレフィン微多孔膜のMD方向の引張伸度の下限は、80%であり、好ましくは90%であり、より好ましくは100%である。本発明のポリオレフィン微多孔膜のTD方向の引張伸度の下限は、特に限定されないが、70%であることが好ましく、より好ましくは80%である。本発明のポリオレフィン微多孔膜のMD方向およびTD方向の引張伸度の上限は特に限定されないが、一般的に500%であることが好ましく、300%であることがより好ましい。
本発明のポリオレフィン微多孔膜の引張強度および引張伸度が、上記範囲内であるとポリオレフィン微多孔膜の機械的強度と柔軟性に優れ、電池用セパレータとして使用した場合、電池製造時の取扱い作業性に優れ、電池の安全性と長寿命化が期待できるからである。
(ii)MD方向とTD方向の引張特性の比
本発明のポリオレフィン微多孔膜の引張強度のMD方向とTD方向の比(MD/TD)の下限は、0.4であり、好ましくは0.45であり、より好ましくは0.5であり、その上限は2.0であり、好ましくは1.5であり、より好ましくは1.3である。
本発明のポリオレフィン微多孔膜のMD方向とTD方向の引張伸度の比(MD/TD)の下限は、0.6であり、好ましくは0.7であり、より好ましくは0.8であり、その上限は1.7であり、好ましくは1.6であり、より好ましくは1.5である。
本発明のポリオレフィン微多孔膜のMD方向とTD方向の引張強度および引張伸度の比(MD/TD)が上記範囲内であると、ポリオレフィン微多孔膜の強度に方向依存性がないことから、膜に応力がかかった際に靱性に優れ、特定方向に裂けることがなく、異物が微多孔膜を貫通したとしても貫通孔の拡大が回避できるからである。
(iii)最大孔径、平均流量孔径
本発明のポリオレフィン微多孔膜の最大孔径は、39.0nm以下であることが好ましく、より好ましくは37.0nm以下である。本明細書において、「最大孔径」とは、ポリオレフィン微多孔膜中に分布する全貫通孔の中で最大の孔径を示すものであり、ポロメータを用いたバブルポイント法により測定できる。
本発明のポリオレフィン微多孔膜の平均流量孔径は、25.0nm以下であることが好ましく、より好ましくは20.0nm以下であり、さらに好ましくは19nm以下である。平均流量孔径の下限は特に限定されないが、ポロメータの測定範囲限界以下であってもよい。本明細書において、「平均流量孔径」とは、ポリオレフィン微多孔膜中に分布する全貫通孔の平均流量孔径を示すものであり、ポロメータにより測定できる
本発明のポリオレフィン微多孔膜をセパレータとして利用した場合、均一微細な孔構造を有するため、引張伸度や靱性等の機械的強度および耐電圧性能に優れ、デンドライド析出・成長による部分短絡(マイクロショート)を防止でき、電池の長寿命化が期待される。
最大孔径および、平均流量孔径を上記範囲にする手段としては、例えば、ポリオレフィン樹脂に結晶化制御剤を配合し、成膜時の延伸温度をポリオレフィン樹脂の結晶分散温度(Tcd)〜Tcd+30℃の範囲内にすることなどが挙げられる。前記手段により延伸の際の延伸応力が、膜を構成する構造に均一に作用し、微多孔膜の細孔構造を制御できると考えられる。
また、ポリオレフィン樹脂と親和性の高い結晶化制御剤を使用したり、ポリオレフィン樹脂に予め結晶化制御剤を均一に分散したマスターバッチを使用したりすることも、ポリオレフィン微多孔膜の最大孔径および平均流量孔径を上記範囲に調整する点から好ましい。
(iv)絶縁破壊電圧
本発明のポリオレフィン微多孔膜は、絶縁破壊電圧の下限が0.10kV/μmであることが好ましく、0.14kV/μmであることがより好ましく、0.17kV/μmであることが特に好ましい。絶縁破壊電圧の上限は特に限定されないが、一般的にkV/μmであることが好ましい。ポリオレフィン微多孔膜の絶縁破壊電圧が上記範囲内であると、バッテリーセパレータとして使用した際、電池の耐久性、耐電圧性能が良好になることが期待できるからである。
本発明のポリオレフィン微多孔膜の絶縁破壊電圧は、例えば、JIS C2110やASTM D149に規定される方法に準じて測定することができる。
(v)空孔率
本発明のポリオレフィン微多孔膜の空孔率は20〜80%であることが好ましい。空孔率が上記範囲内であると、微多孔膜の機械的強度が良好になるので好ましい。空孔率は30〜65%であることがより好ましく、40〜45%であることが特に好ましい。
(vi)透気抵抗度
本発明のポリオレフィン微多孔膜は、膜厚を20μmとしたときの透気抵抗度の下限が300sec/100ccが好ましく、400sec/100ccがより好ましい。透気抵抗度の上限は5000sec/100ccが好ましく、4000sec/100ccがより好ましく、3500sec/100ccが特に好ましい。ここで、膜厚を20μmとしたときの透気抵抗度とは、膜厚T(μm)の微多孔膜において、JIS P 8117(2009)に準拠して測定した透気抵抗度をPするとき、式:P=(P×20)/Tによって算出される透気抵抗度Pのことを指す。ポリオレフィン微多孔膜の透気抵抗度が上記範囲内であると、機械的強度や靱性の観点から有利である。
(vii)耐酸化性
本発明のポリオレフィン微多孔膜の耐酸化性は、セパレータの黒色化の程度により評価できる。電池用セパレータの黒色化は電池内の正極のコバルトの還元と並行して発生するポリマーのラジカル連鎖的酸化反応に起因するポリマーのポリエン化が原因と考えられている。黒色化が進行すると膜強度の劣化、短絡が引き起こされる。ポリエチレンは分子構造から連鎖的に酸化反応が進行するのに対し、ポリプロピレンは、連鎖反応を止める性質を持ち黒色化(酸化)の進行を防ぐ効果が期待できる。
(viii)ポリプロピレン樹脂のβ晶に由来する結晶融解熱ピーク
本発明のポリオレフィン微多孔膜は、好ましくは、示差走査型熱量計を用いた示差熱分析においてポリプロピレン樹脂のβ晶に由来する結晶融解熱ピークを有さない。本明細書において、「結晶融解熱ピーク」とは、示差走査型熱量計で得られる極大値を有する曲線を示す。一般にβ晶造核剤を配合すると、ポリプロピレン樹脂のβ晶由来結晶融解熱ピークが検出されるが、 その場合、ポリオレフィン微多孔膜の最大孔径や平均流量孔径が粗大化したり、微多孔膜の伸度が低下したりする場合があるからである。
一般に、上記ポリプロピレン樹脂のβ晶に由来する結晶融解熱ピークは、ポリプロピレン樹脂のα晶に由来する結晶融解熱ピークの低温側に認められる。具体的には、例えば、ポリプロピレンホモポリマーの場合140℃以上160℃未満に認められ、エチレンが1〜4モル%共重合されたランダムプロピレンエチレン共重合体の場合120℃以上140℃未満の範囲に認められる。具体的な測定方法は後述する。
従来、ポリプロピレンを主成分とするポリオレフィン微多孔膜は薄膜化が難しかったが、本発明のポリオレフィン微多孔膜がβ晶に由来する結晶融解熱ピークを有さない場合は、膜厚を12μm以下まで薄膜化することができることが見出された。その場合の微多孔膜の膜厚の下限は1μmであることが好ましく、3μmであることがより好ましく、その上限は10μmであることがより好ましく、9μmであることがさらに好ましい。本発明のポリオレフィン微多孔膜の薄膜化は、後述するポリオレフィン溶液の調製条件やゲル状シートの形成条件および延伸条件を適宜調整して達成することができる。
(ix)メルトダウン温度
本発明のポリオレフィン微多孔膜のメルトダウン温度の下限は、耐熱性の観点から、好ましくは、160℃であり、より好ましくは、170℃である。メルトダウン温度の上限は特に限定されないが、ポリプロピレン樹脂を主成分とするポリオレフィン微多孔膜の場合は、一般的に、190℃である。
2.ポリオレフィン微多孔膜の製造方法
本発明のポリオレフィン微多孔膜の製造方法としては、上述した特性を有するポリオレフィン微多孔膜が製造できれば、特に限定されず、従来公知の方法を用いることができる。例えば、日本国特許第2132327号および日本国特許第3347835号公報、国際公開2006/137540号等に記載された方法を用いることができる。具体的には、下記の工程(1)〜(5)を含むことが好ましく、下記の工程(6)をさらに含んでもよく、さらに下記の工程(7)を含むこともできる。
(1)前記ポリオレフィン樹脂、結晶化制御剤および成膜用溶剤を溶融混練し、ポリオレフィン溶液を調製する工程
(2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
(3)前記ゲル状シートを延伸する第1の延伸工程
(4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
(5)前記成膜用溶剤除去後のシートを乾燥する工程
(6)前記乾燥後のシートを延伸する第2の延伸工程
(7)前記乾燥後のシートを熱処理する工程
以下、各工程についてそれぞれ説明する。
(1)ポリオレフィン溶液の調製工程
ポリオレフィン樹脂に、結晶化制御剤および適当な成膜用溶剤を配合した後、溶融混練し、ポリオレフィン溶液を調製する。溶融混練方法として、例えば日本国特許第2132327号および日本国特許第3347835号公報に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
ポリオレフィン溶液中、ポリオレフィン樹脂と成膜用溶剤との配合割合は、特に限定されないが、ポリオレフィン樹脂20〜50質量部に対して、成膜溶剤50〜80質量部であることが好ましく、ポリオレフィン樹脂30〜45質量部に対して、成膜溶剤55〜70質量部であることが好ましい。
押出し成形体の成形性を改善するために、ポリオレフィン溶液に造核剤、結晶化遅延剤などの結晶化制御剤を配合する。その配合量としては、ポリオレフィン樹脂100質量部に対し0.01〜5質量部が好ましく、さらに好ましくは0.05〜3質量部である。結晶化制御剤の配合量が上記範囲内であると押出し成形体の取り扱い作業性が良好であり、均一な延伸フィルムを得ることができる。
上記のポリオレフィン溶液を経てポリオレフィン微多孔膜を製造すると、膜成形加工性に優れるので、膜物性の制御の観点から好ましい。
(2)ゲル状シートの形成工程
ポリオレフィン溶液を押出機からダイに送給し、シート状に押し出す。同一または異なる組成の複数のポリオレフィン溶液を、押出機から一つのダイに送給し、そこで層状に積層し、シート状に押出してもよい。
押出方法はフラットダイ法およびインフレーション法のいずれでもよいが、膜厚や膜の平面性等の制御の精度の観点から、フラットダイ法が好ましい。押出し温度は140〜250℃好ましく、押出速度は0.2〜15m/分が好ましい。ポリオレフィン溶液の各押出量を調節することにより、膜厚を調節することができる。
押出方法としては、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。
得られた押出し成形体を冷却することによりゲル状シートを形成する。ゲル状シートの形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。
(3)第1の延伸工程
次に、得られたゲル状シートを少なくとも一軸方向に延伸する。ゲル状シートは、結晶化制御剤および成膜用溶剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。中でも、膜厚や膜の平面性等の制御の精度の観点から、テンター法が好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸および多段延伸(例えば同時二軸延伸および逐次延伸の組合せ)のいずれでもよい。
本工程における延伸倍率(面積延伸倍率)は、一軸延伸の場合、2倍以上が好ましく、3〜30倍がより好ましい。二軸延伸の場合、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。また、長手および横手方向(MDおよびTD方向)のいずれでも3倍以上が好ましく、MD方向とTD方向での延伸倍率は、互いに同じでも異なってもよい。延伸倍率を9倍以上とすると、突刺強度の向上が期待できる。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の面積延伸倍率のことをいう。
本工程の延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)〜Tcd+30℃の範囲内にするのが好ましく、結晶分散温度(Tcd)+5℃〜結晶分散温度(Tcd)+25℃の範囲内にするのがより好ましく、Tcd+10℃〜Tcd+20℃の範囲内にするのが特に好ましい。延伸温度が上記範囲内であるとポリオレフィン樹脂延伸による破膜が抑制され、高倍率の延伸ができ、得られるポリオレフィン微多孔膜の細孔構造が微細化、均一化される。
結晶分散温度(Tcd)は、ASTM D4065による動的粘弾性の温度特性測定により求められる。本発明のポリオレフィン樹脂は、約110〜130℃の結晶分散温度を有するので、延伸温度は110〜160℃であることが好ましく、より好ましくは115〜155℃であり、さらに好ましくは120〜150℃である。
以上のような延伸によりポリプロピレンラメラ間に開裂が起こり、ポリプロピレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した極めて微細な網目構造を形成する。
所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより一層機械的強度に優れた微多孔膜が得られる。その方法の詳細は日本国特許第3347854号に記載されている。
(4)成膜用溶剤の除去
洗浄溶媒を用いて、成膜用溶剤の除去(洗浄)を行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号公報や特開2002−256099号公報に開示の方法を利用することができる。
(5)乾燥
成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であるのが好ましく、特にTcdより5℃以上低いことが好ましい。乾燥は、微多孔膜を100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい
(6)第2の延伸工程
必要に応じて、乾燥後の微多孔膜を、少なくとも一軸方向に延伸してもよい。微多孔膜の延伸は、加熱しながら上記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸および逐次延伸のいずれでもよい。
本工程における延伸温度は、特に限定されないが、通常90〜150℃であり、より好ましくは95〜145℃である。
本工程における微多孔膜の延伸の一軸方向への延伸倍率(面積延伸倍率)は、下限が1.0倍以上であるのが好ましく、より好ましくは1.1倍以上、さらに好ましくは1.2倍以上である。また、上限が1.8倍以下とするのが好ましい。一軸延伸の場合、MD方向又はTD方向に1.0〜2.0倍とする。二軸延伸の場合、面積延伸倍率は、下限が1.0倍以上であるのが好ましく、より好ましくは1.1倍以上、さらに好ましくは1.2倍以上である。上限は、3.5倍以下が好適であり、MD方向およびTD方向に各々1.0〜2.0倍とし、MD方向とTD方向での延伸倍率が互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の延伸倍率のことをいう。
(7)熱処理
また、乾燥後の微多孔膜は、熱処理を行うことができる。熱処理によって結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱固定処理および/又は熱緩和処理を用いることができる。熱固定処理とは、膜の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中にMD方向やTD方向に熱収縮させる熱処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。例えば、熱緩和処理方法としては特開2002−256099号公報に開示の方法があげられる。熱処理温度はポリオレフィン樹脂のTcd〜Tmの範囲内が好ましく、微多孔膜の延伸温度±5℃の範囲内がより好ましく、微多孔膜の第2の延伸温度±3℃の範囲内が特に好ましい。
3.積層多孔膜
また、前記ポリオレフィン微多孔膜の少なくとも一方の表面に、多孔層を設け、積層多孔膜としてもよい。多孔層としては、例えば、フィラーと樹脂バインダとを含むフィラー含有樹脂溶液や耐熱性樹脂溶液を用いて形成される多孔層を挙げることができる。
前記フィラーとしては、アルミナ、シリカ、チタニア、ジルコニアなどの無機フィラー;やフッ素樹脂粒子、架橋高分子フィラーなどの有機フィラーが挙げられ、200℃以上の融点をもち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。これらは1種を単独で、又は2種以上を併用することができる。
前記フィラーの平均粒径は特に限定されないが、例えば、好ましくは0.1μm以上3.0μm以下である。
前記フィラーが、前記多孔層中に占める割合(質量分率)としては、耐熱性の点から、好ましくは50%以上99.99%以下である。
前記樹脂バインダとしては、前述のポリオレフィン樹脂に含まれるその他の樹脂成分の項で記載したポリオレフィンや耐熱性樹脂が好適に使用できる。
前記樹脂バインダが、前記フィラーと前記樹脂バインダとの総量に占める割合としては、両者の結着性の点から、体積分率で0.5%以上8%以下であることが好ましい。
前記耐熱性樹脂としては、前述のポリオレフィン樹脂に含まれるその他の樹脂成分の項で記載した耐熱性樹脂と同様のものが好適に使用できる。
前記フィラー含有樹脂溶液や耐熱性樹脂溶液をポリオレフィン微多孔膜の表面に塗布する方法としては、グラビアコーター法など、必要とする層厚や塗布面積を実現できる方法であれば特に限定されない。
前記フィラー含有溶液や耐熱性樹脂溶液の溶媒としては、ポリオレフィン微多孔膜に塗布した溶液から除去され得る溶媒であることが好ましく、特に限定されない。具体的には、例えば、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、塩化メチレン、ヘキサンが挙げられる。
溶媒を除去する方法としては、ポリオレフィン微多孔膜に悪影響を及ぼさない方法であれば特に限定することない。具体的には、例えば、ポリオレフィン微多孔膜を固定しながらその融点以下の温度で乾燥する方法、減圧乾燥する方法、樹脂バインダや耐熱性樹脂の貧溶媒に浸漬して樹脂を凝固させると同時に溶媒を抽出する方法が挙げられる。
前記多孔層の厚さとしては、耐熱性向上の観点から、好ましくは0.5μm以上100μm以下である。
本発明の積層多孔膜において、前記多孔層の厚さが、積層多孔膜の厚さに占める割合は、目的に応じて適宜調整して使用できる。具体的には、例えば15%以上80%以下であることが好ましく、20%以上75%以下がより好ましい。
また、前記多孔層は、積層多孔膜の一方の表面に形成されてもよく、両面に形成されてもよい。
4.電池用セパレータ
本発明のポリオレフィン微多孔膜は、水系電解液を使用する電池、非水系電解質を使用する電池のいずれにも好適に使用できる。具体的には、ニッケル−水素電池、ニッケル−カドミウム電池、ニッケル−亜鉛電池、銀−亜鉛電池、リチウム二次電池、リチウムポリマー二次電池等の二次電池のセパレータとして好ましく用いることができる。中でも、非水系電解質を使用するリチウムイオン二次電池のセパレータとして用いることが好ましい。
リチウムイオン二次電池は、正極と負極がセパレータを介して積層されており、セパレータが電解液(電解質)を含有している。電極の構造は特に限定されず、従来公知の構造を用いることができ、例えば、円盤状の正極および負極が対向するように配設された電極構造(コイン型)、平板状の正極および負極が交互に積層された電極構造(積層型)、積層された帯状の正極および負極が巻回された電極構造(捲回型)等にすることができる。
リチウムイオン二次電池に使用される、集電体、正極、正極活物質、負極、負極活物質および電解液は、特に限定されず、従来公知の材料を適宜組み合わせて用いることができる。
なお、本発明は、上記の実施の形態に限定されるものでなく、その要旨の範囲内で種々変形して実施することができる。
本発明を実施例により、さらに詳細に説明するが、本発明の実施態様は、これらの実施例に限定されるものではない。なお、実施例で用いた評価法、分析の各法および材料は、以下の通りである。
[評価方法、分析方法]
(1)膜厚(μm)
微多孔膜の95mm×95mmの範囲内における5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック)により測定し、膜厚の平均値を求めた。
(2)空孔率(%)
微多孔膜の重量wとそれと等価な空孔のないポリマーの重量w(幅、長さ、組成の同じポリマー)とを比較した、以下の式によって、空孔率を測定した。
空孔率(%)=(w−w)/w×100
(3)透気抵抗度(sec/100cc)
膜厚T1の微多孔膜に対して透気度計(旭精工株式会社製、EGO−1T)で透気抵抗度P1を測定した。また、式:P2=(P1×20)/T1により、膜厚を20μmとしたときの透気抵抗度P2を算出した。
(4)最大孔径および平均流量孔径(nm)
パームポロメータ(PMI社製、CFP−1500A)を用いて、Dry−up、Wet−upの順で、最大孔径および平均流量孔径を測定した。Wet−upには表面張力が既知のPMI社製Galwick(商品名)で十分に浸した微多孔膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。
平均流量孔径については、Dry−up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet−up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の数式を用いた。
d=C・γ/P
(上記式中、「d(μm)」は微多孔膜の孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数とした。
(5)重量平均分子量(Mw)
PP、UHMWPEおよびHDPEのMwは以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC−150C
・カラム:昭和電工株式会社製Shodex UT806M
・カラム温度:135℃
・溶媒(移動相):o−ジクロルベンゼン
・溶媒流速:1.0 ml/分
・試料濃度:0.1 wt%(溶解条件:135℃/1h)
・インジェクション量:500μl
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター(RI検出器)
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
(6)絶縁破壊電圧
一辺150mmの正方形のアルミニウム板上に、直径60mmの円状に切り出した膜厚T1の微多孔膜を置き、その上に真鍮製の直径50mm、高さ30mm、重さ500gの円柱電極を置いて、菊水電子工業製TOS5051A耐絶縁破壊特性試験器を接続した。0.2kV/秒の昇圧速度で電圧を加え、絶縁破壊したときの値V1を読み取った。絶縁破壊電圧の測定はそれぞれ15回行い平均値を求めた。
(7)耐酸化性
ポリオレフィン微多孔膜の耐酸化性を評価するために、アノード、カソード、セパレータおよび電解質からなる電池化学セルにセパレータとして組み込んで、加速過充電試験を行った。
幅40mm×長さ40mm×厚さ15μmのアルミニウム基板上に密度3.55g/cmのLiCoOを単位面積質量13.4mg/cmで積層したカソード、および、幅45mm×長さ45mm×厚さ10μmの銅フィルム基板上に密度1.65g/cmの天然黒鉛を単位面積質量5.5mg/cmで積層したアノードを用いた。アノードおよびカソードは120℃の真空オーブンで乾燥して使用した。セパレータは、長さ50mm、幅60mmのポリオレフィン微多孔膜を50℃の真空オーブンで乾燥して使用した。電解質はエチレンカーボネートとエチルメチルカーボネートの混合物(3/7、V/V)中にLiPFを1M溶解させて調製した。アノード、セパレータおよびカソードを積み重ね、セパレータに電解質を含浸させ、得られた積層体をアルミラミネート内で真空シールして密封して、電気化学セルを作製した。
作成した電気化学セルを0.5Cの電流で電圧4.3Vまで定電流充電した後に、温度60℃下で4.3V定電圧充電を200時間行った。
電池解体後、セパレータを取出し、ジエチルカーボネート、エタノール、N-メチルピロリドン、1規定の塩酸中で各1時間洗浄を行って付着物を除去した。その後、空気中で乾燥させ、セパレータのカソード(正極)接触面における変色を目視確認し、耐酸化性評価を行った。評価はセパレータの全体の面積当たりの変色部分の面積の割合で評価した。評価結果は下記の通りに表記した。
5%未満:◎
5%〜10%未満:○
10%〜20%:△
20%以上:×
(8)β晶融解熱ピーク
ポリオレフィン微多孔膜のβ晶由来の結晶融解熱ピークは、示差走査型熱量計でポリオレフィン微多孔膜を25℃から240℃まで走査温度10℃/分で昇温後1分間保持し、次に240℃から25℃まで走査速度10℃/分で降温後1分間保持し、更に25℃から240℃まで走査速度10℃/分で再昇温させ、再昇温の際の温度に対する熱量の時間変化を記録して測定した。α晶由来の結晶融解熱ピークの低温側にβ晶由来の結晶融解熱ピークが認められた場合を“あり”、認められなった場合を“なし”と評価した。
(9)引張試験
各方向に対応する引張強度および引張伸度については、幅10mmの短冊状試験片を用いて、ASTM D882に準拠した方法により測定した。
(10)落球メルトダウン温度
50mm角の微多孔膜を直径12mmの穴を有する金属製のブロック枠を用いて挟み、タングステンカーバイド製の直径10mmの球を微多孔膜上に設置する。微多孔膜は水平方向に平面を有するように設置される。30℃からスタートし、5℃/分で昇温する。微多孔膜が球によって破膜されたときの温度を測定し、メルトダウン温度とした。
(11)靱性評価(貫通孔観察結果)
先端が球面(曲率半径R:0.5mm)の直径1mmの針で固定した微多孔膜を2mm/秒で突刺し、貫通孔径の形状を目視で観察すると同時に貫通孔径を測定した。試験は3回繰り返し、貫通孔径は3回の測定値の平均値で評価した。評価結果は下記の通りに表記した。
貫通孔が直径1mm以下の円形または長径1mm以下のだ円形:◎
貫通孔が直径1.7mm未満の円形または長径1.7mm未満のだ円形:○
貫通孔の直径または長径が1.7mmを超えた場合、または、貫通孔周囲に裂けが認められた場合:×
[実施例1]
重量平均分子量(Mw)が2.6×10、分子量分布(Mw/Mn)が6.2の超高分子量ポリプロピレン(UHMWPP)24.75質量部、および、造核剤NA-11(A
DEKA社製:芳香族リン酸エステル金属塩系造核剤) 0.25質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン75.00質量部を供給し、180℃、200rpmの条件で溶融混練して、ポリプロピレン樹脂溶液を二軸押出機中で調製した。続いて、ポリプロピレン樹脂溶液を、二軸押出機の先端に設置されたシート形成ダイから押し出し、得られたシート状押出物を25℃の冷却ロールで引き取りながら、ゲル状シートを形成した。次いで、ゲル状シートを120℃で5×5倍になるように二軸延伸した後、25℃の塩化メチレンに浸漬して流動パラフィンを除去し、室温で風乾後、125℃で10分間熱処理してポリプロピレン微多孔膜を調整した。得られた微多孔膜の特性を表1に示した。
[実施例2、3、4]
同時二軸延伸時の温度をそれぞれ130℃、140℃、145℃としたこと以外は、実施例1と同様にしてポリプロピレン微多孔膜を得た。得られた微多孔膜の特性を表1に示した。
[実施例5]
重量平均分子量(Mw)が2.60×10、分子量分布(Mw/Mn)が6.2の超高分子量ポリプロピレン(UHMWPP)23.50質量部、および重量平均分子量(Mw)が5.72×10であり、分子量分布(Mw/Mn)が4.81である高密度ポリエチレン(HDPE)1.25質量部、および、造核剤NA-11(ADEKA社製)
0.25質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン75質量部を供給したこと以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表1に示した。
[実施例6]
重量平均分子量(Mw)が2.60×10、分子量分布(Mw/Mn)6.2の超高分子量ポリプロピレン(UHMWPP)24.25質量部、および、結晶化遅延剤としてエルモーデュ(出光興産社製)0.75質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン75質量部を供給したこと、および、延伸温度を130℃としたこと以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表2に示した。
[実施例7]
延伸温度を140℃としたこと以外は実施例6と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表2に示した。
なお、実施例1,2,3,5,6,7,9で得られた微多孔膜の平均流量孔径は、ポロメータの測定限界(14.2nm)以下であった。表1および表2には14.2nm以下と記載した。
[比較例1]
乾式一軸延伸法により製造されたポリプロピレン製単層微多孔膜を評価し、その特性を表2に示した。
[比較例2]
重量平均分子量Mwが2.89×10であり、分子量分布Mw/Mnが5.28である超高分子量ポリエチレン(UHMWPE)30.00質量部 と、重量平均分子量Mwが5.72×10であり、分子量分布Mw/Mnが4.81である高密度ポリエチレン(HDPE)70.00質量部とからなるポリエチレン樹脂組成物30.00質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン70.00質量部を供給したこと、および、延伸温度を115℃としたこと以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表2に示した。
[比較例3]
重量平均分子量(Mw)が2.60×10、分子量分布(Mw/Mn)が6.2の超高分子量ポリプロピレン(UHMWPP)17.33質量部、および重量平均分子量(Mw)が5.72×10であり、分子量分布(Mw/Mn)が4.81である高密度ポリエチレン(HDPE)7.42質量部、および、造核剤NA-11(ADEKA社製)0.25質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン75.00質量部を供給したこと以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表2に示した。
Figure 0006729392
Figure 0006729392
[実施例8]
ゲル状シートを140℃でMD方向に5倍延伸した後、TD方向に5倍延伸した以外は実施例3と同様にしてポリオレフィン微多孔膜を得た。得られたポリオレフィン微多孔膜の特性を表3に示した。
[実施例9]
重量平均分子量(Mw)が2.6×10、分子量分布(Mw/Mn)が6.2の超高分子量ポリプロピレン(UHMWPP)39.75質量部と流動パラフィン60質量部を用いてポリオレフィン樹脂溶液を調製し、ポリオレフィン微多孔膜の膜厚を5.5μmとした以外は実施例1と同様にしてポリオレフィン微多孔膜を得た。得られた微多孔膜の特性を表3に示した。
Figure 0006729392
本発明に係るポリオレフィン微多孔膜は、耐酸化性、メルトダウン温度および靱性等の機械的強度に優れるので、特に、リチウムイオン二次電池に代表される非水電解液系二次電池のような二次電池に好適に使用することができる。

Claims (14)

  1. ポリプロピレン樹脂を90質量%以上含んでなるポリオレフィン樹脂からなり、MD方向引張強度が25MPa以上であり、TD方向引張強度が25MPa以上であり、MD方向とTD方向の引張強度の比(MD/TD)が0.4以上2.0以下であり、MD方向引張伸度が80%以上であり、MD方向とTD方向の引張伸度の比(MD/TD)が0.6以上1.7以下であり、ポロメータによる平均流量孔径が25.0nm以下であるポリオレフィン微多孔膜。
  2. 前記ポリオレフィン微多孔膜の示差走査型熱量計を用いたβ晶由来の結晶融解熱ピークが認められないことを特徴とする請求項1に記載のポリオレフィン微多孔膜。
  3. 前記ポリオレフィン微多孔膜のメルトダウン温度が160℃以上であることを特徴とする請求項1または請求項2に記載のポリオレフィン微多孔膜。
  4. 前記ポリオレフィン微多孔膜の膜厚を20μmとした時の透気抵抗度が300sec/100cc以上であることを特徴とする請求項1〜3いずれか一項に記載のポリオレフィン微多孔膜。
  5. 前記ポリオレフィン微多孔膜の膜厚が1μm以上12μm以下であるであることを特徴とする請求項1〜4いずれか一項に記載のポリオレフィン微多孔膜。
  6. 前記ポリプロピレン樹脂の重量平均分子量が1×10 以上1×10 以下であることを特徴とする請求項1〜5のいずれか一項に記載のポリオレフィン微多孔膜
  7. 請求項1〜6のいずれか一項に記載のポリオレフィン微多孔膜からなる電池用セパレータ
  8. 非水電解液系二次電池用であることを特徴とする請求項7に記載の電池用セパレータ。
  9. 請求項7に記載の電池用セパレータを用いた二次電池。
  10. 下記(1)〜(5)の工程を含むことを特徴とする、MD方向引張強度が25MPa以上であり、TD方向引張強度が25MPa以上であり、MD方向とTD方向の引張強度の比が0.4以上2.0以下であり、MD方向引張伸度が80%以上であり、MD方向とTD方向の引張伸度の比が0.6以上1.7以下、ポロメータによる平均流量孔径が25.0nm以下であるポリオレフィン微多孔膜の製造方法。
    (1)ポリプロピレン樹脂を90質量%以上含んでなるポリオレフィン樹脂、結晶化制御剤および成膜用溶剤を溶融混練し、ポリオレフィン溶液を調製する工程
    (2)前記ポリオレフィン溶液を押出し、冷却しゲル状シートを形成する工程
    (3)前記ゲル状シートを延伸する延伸工程
    (4)前記延伸後のゲル状シートから成膜用溶剤を除去する工程
    (5)前記成膜用溶剤除去後のシートを乾燥する工程
  11. 使用される結晶化制御剤が造核剤または結晶化遅延剤であることを特徴とする請求項10に記載のポリオレフィン微多孔膜の製造方法。
  12. ポリオレフィン微多孔膜の微多孔膜の示差走査型熱量計を用いたβ晶由来の結晶融解熱ピークが認められないことを特徴とする請求項10または請求項11記載のポリオレフィン微多孔膜の製造方法。
  13. 110℃〜160℃でゲル状シートを延伸することを特徴とする請求項10〜12いずれか一項に記載のポリオレフィン微多孔膜の製造方法。
  14. さらに、下記工程を含むことを特徴とすることを特徴とする請求項10〜13のいずれか一項に記載のポリオレフィン微多孔膜の製造方法。
    (7)120℃〜130℃でポリオレフィン微多孔膜を熱処理する工程
JP2016566573A 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ Active JP6729392B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014266009 2014-12-26
JP2014266009 2014-12-26
JP2015115091 2015-06-05
JP2015115091 2015-06-05
PCT/JP2015/086418 WO2016104792A1 (ja) 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ

Publications (2)

Publication Number Publication Date
JPWO2016104792A1 JPWO2016104792A1 (ja) 2017-10-05
JP6729392B2 true JP6729392B2 (ja) 2020-07-22

Family

ID=56150800

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016566573A Active JP6729392B2 (ja) 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ
JP2016566570A Active JP6729391B2 (ja) 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016566570A Active JP6729391B2 (ja) 2014-12-26 2015-12-25 ポリオレフィン微多孔膜、その製造方法および電池用セパレータ

Country Status (6)

Country Link
US (1) US10507436B2 (ja)
EP (1) EP3239222B1 (ja)
JP (2) JP6729392B2 (ja)
KR (2) KR102432330B1 (ja)
CN (2) CN107250234B (ja)
WO (2) WO2016104792A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6682942B2 (ja) * 2016-03-24 2020-04-15 三菱ケミカル株式会社 ポリプロピレン系樹脂多孔性フィルム及びその製造方法
US20190247805A1 (en) * 2016-11-04 2019-08-15 Asahi Kasei Medical Co., Ltd. Porous membrane and method for manufacturing porous membrane
JP6943580B2 (ja) * 2017-03-03 2021-10-06 住友化学株式会社 非水電解液二次電池用セパレータ
US10693115B2 (en) 2017-03-03 2020-06-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
JP6472822B2 (ja) 2017-03-03 2019-02-20 住友化学株式会社 非水電解液二次電池用セパレータ
CN110431176B (zh) * 2017-03-31 2021-03-19 东丽株式会社 聚烯烃微多孔膜、非水电解液系二次电池用隔膜及非水电解液系二次电池
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN108123086A (zh) * 2017-11-16 2018-06-05 深圳市博盛新材料有限公司 一种制备锂离子电池隔膜的方法及锂离子电池隔膜
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP7103715B2 (ja) * 2018-10-26 2022-07-20 帝人株式会社 ポリオレフィン微多孔膜、フィルター、クロマトグラフィー担体及びイムノクロマトグラフ用ストリップ
JP7463704B2 (ja) * 2018-12-10 2024-04-09 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及びポリオレフィン微多孔膜の製造方法
CN112424271A (zh) * 2018-12-26 2021-02-26 东丽株式会社 聚烯烃微多孔膜及聚烯烃微多孔膜的制造方法
JP7338234B2 (ja) * 2019-05-21 2023-09-05 株式会社Gsユアサ 非水電解質蓄電素子
CN110247006A (zh) * 2019-06-11 2019-09-17 溧阳月泉电能源有限公司 锂离子二次电池隔膜的生产方法
JP7480550B2 (ja) * 2020-03-26 2024-05-10 三菱ケミカル株式会社 多孔フィルム
US11976177B2 (en) 2020-07-01 2024-05-07 Celanese International Corporation Polymer composition and membranes made therefrom with improved mechanical strength
CN114512767B (zh) * 2020-11-16 2022-11-15 青岛蓝科途膜材料有限公司 锂离子电池隔膜、其制备方法及由其制得的锂离子电池
RU2750669C1 (ru) * 2020-11-17 2021-06-30 Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) Способ получения полимерного материала с открытыми порами
CN112615105B (zh) * 2020-12-23 2022-10-14 江苏澳盛复合材料科技有限公司 用于电池多孔薄膜的制备方法、多孔薄膜、电池隔膜以及电池
CN114733360A (zh) * 2021-01-07 2022-07-12 杭州费尔新材料有限公司 一种聚烯烃中空纤维膜的制备方法
KR102574111B1 (ko) * 2021-03-22 2023-09-01 도레이배터리세퍼레이터필름 한국유한회사 폴리올레핀 미세 다공막
KR20230115100A (ko) * 2022-01-26 2023-08-02 주식회사 엘지화학 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
JP2024511266A (ja) * 2022-02-23 2024-03-13 エルジー エナジー ソリューション リミテッド 電気化学素子用分離膜基材、前記基材を含む分離膜、及び電池セル分離膜の形成方法
EP4376202A1 (en) 2022-10-12 2024-05-29 Sinoma Lithium Battery Separator (Nanjing) Co., Ltd. Polyolefin porous membrane and preparation method therefor, battery separator, and electrochemical device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812799A (ja) * 1991-06-21 1996-01-16 Tonen Corp ポリオレフィン微多孔膜及びその製造方法
JPH05222237A (ja) * 1992-02-13 1993-08-31 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法
JPH05222236A (ja) * 1992-02-13 1993-08-31 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法
JP3342755B2 (ja) 1992-10-28 2002-11-11 旭化成株式会社 円筒型電気部品用セパレ−タ−
JP3347835B2 (ja) 1993-08-13 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JP4734520B2 (ja) 2001-03-02 2011-07-27 東レ東燃機能膜合同会社 熱可塑性樹脂微多孔膜の製造方法
KR100470314B1 (ko) * 2003-06-17 2005-02-07 (주)삼신크리에이션 전기화학소자용 복합막, 그 제조방법 및 이를 구비한전기화학소자
US20040265565A1 (en) 2003-06-30 2004-12-30 Fischer Patrick J. Microporous article containing flame retardant
RU2008102735A (ru) 2005-06-24 2009-07-27 Тонен Кемикал Корпорейшн (Jp) Многослойная микропористая полиэтиленовая мембрана и разделитель батареи и батарея, использующие мембрану
US8795565B2 (en) 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
EP2306552B1 (en) * 2008-07-16 2014-11-26 Toray Industries, Inc. Separator for electricity storage device
CN103280547B (zh) * 2008-12-19 2015-09-23 旭化成电子材料株式会社 聚烯烃制微多孔膜及锂离子二次电池用分隔件
EP2374840B1 (en) * 2009-01-07 2013-08-28 Prime Polymer Co., Ltd. Polypropylene resin composition for microporous film formation
JP2010215901A (ja) 2009-02-17 2010-09-30 Toray Ind Inc 多孔性ポリプロピレンフィルム
CN105150655B (zh) * 2009-03-09 2018-09-14 旭化成株式会社 层叠分隔件及其制造方法
EP2444453A4 (en) 2009-06-19 2012-12-12 Mitsubishi Plastics Inc POROUS POLYPROPYLENE FILM
CN104204051A (zh) * 2012-03-23 2014-12-10 东丽株式会社 多孔性膜和蓄电装置
JP2014141644A (ja) 2012-12-26 2014-08-07 Toray Ind Inc 二軸配向多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータフィルムおよび蓄電デバイス

Also Published As

Publication number Publication date
CN107250234A (zh) 2017-10-13
WO2016104789A1 (ja) 2016-06-30
CN107223147B (zh) 2021-02-26
EP3239222A4 (en) 2017-11-29
JP6729391B2 (ja) 2020-07-22
WO2016104792A1 (ja) 2016-06-30
JPWO2016104789A1 (ja) 2017-10-05
CN107250234B (zh) 2020-09-18
KR102432328B1 (ko) 2022-08-11
EP3239222B1 (en) 2021-09-29
KR20170101288A (ko) 2017-09-05
US10507436B2 (en) 2019-12-17
KR102432330B1 (ko) 2022-08-11
US20170341035A1 (en) 2017-11-30
EP3239222A1 (en) 2017-11-01
KR20170101290A (ko) 2017-09-05
JPWO2016104792A1 (ja) 2017-10-05
CN107223147A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
JP6729392B2 (ja) ポリオレフィン微多孔膜、その製造方法および電池用セパレータ
JP5250261B2 (ja) ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP6662290B2 (ja) ポリオレフィン多層微多孔質膜、その製造方法及び電池用セパレータ
JP5967589B2 (ja) ポリオレフィン微多孔膜及びその製造方法
JP5250262B2 (ja) ポリオレフィン微多孔膜及びその製造方法、並びに電池用セパレータ及び電池
US10686175B2 (en) Polyolefin microporous membrane, production method therefor, and battery separator
US20190088917A1 (en) Polyolefin microporous membrane, method of producing polyolefin microporous membrane, battery separator, and battery
JP7283080B2 (ja) ポリオレフィン製微多孔膜、電池用セパレータおよび二次電池
WO2017170288A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
JPWO2018164054A1 (ja) ポリオレフィン微多孔膜
WO2016104791A1 (ja) ポリオレフィン樹脂組成物およびポリオレフィン微多孔膜の製造方法
JP2019102126A (ja) 電池用セパレータ及び非水電解液二次電池
WO2020096061A1 (ja) 多孔性ポリオレフィンフィルム、電池用セパレータおよび二次電池
JP6988880B2 (ja) ポリオレフィン微多孔膜
JP7306200B2 (ja) 多孔性ポリオレフィンフィルム
JP2010215901A (ja) 多孔性ポリプロピレンフィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6729392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151