Nothing Special   »   [go: up one dir, main page]

JP6794613B2 - 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体 - Google Patents

窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体 Download PDF

Info

Publication number
JP6794613B2
JP6794613B2 JP2015021246A JP2015021246A JP6794613B2 JP 6794613 B2 JP6794613 B2 JP 6794613B2 JP 2015021246 A JP2015021246 A JP 2015021246A JP 2015021246 A JP2015021246 A JP 2015021246A JP 6794613 B2 JP6794613 B2 JP 6794613B2
Authority
JP
Japan
Prior art keywords
particles
agglomerated
agglomerated particles
less
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021246A
Other languages
English (en)
Other versions
JP2016135731A5 (ja
JP2016135731A (ja
Inventor
桂 池宮
桂 池宮
山崎 正典
正典 山崎
鈴木 拓也
拓也 鈴木
一樹 武田
一樹 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53777999&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6794613(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2016135731A publication Critical patent/JP2016135731A/ja
Publication of JP2016135731A5 publication Critical patent/JP2016135731A5/ja
Priority to JP2020187065A priority Critical patent/JP7455047B2/ja
Application granted granted Critical
Publication of JP6794613B2 publication Critical patent/JP6794613B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Paints Or Removers (AREA)

Description

本発明は窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)、該粒子の製造方法に係り、詳しくは、窒化ホウ素一次粒子(以下「BN一次粒子」と称す。)が凝集してなるBN凝集粒子及びその製造方法に関する。
本発明はまた、このBN凝集粒子を含有するBN凝集粒子含有樹脂組成物と、このBN凝集粒子含有樹脂組成物を成形してなる成形体に関する。
窒化ホウ素(以下「BN」と称す。)は、絶縁性のセラミックであり、ダイヤモンド構造を持つc−BN、黒鉛構造をもつh−BN、乱層構造を持つα−BN、β−BNなど様々な結晶型が知られている。
これらの中で、h−BNは、黒鉛と同じ層状構造を有し、合成が比較的容易でかつ熱伝導性、固体潤滑性、化学的安定性、耐熱性に優れるという特徴を備えていることから、電気・電子材料分野で多く利用されている。
近年、特に電気・電子分野では集積回路の高密度化に伴う発熱が大きな問題となっており、いかに熱を放熱するかが緊急の課題となっている。h−BNは、絶縁性であるにもかかわらず、高い熱伝導性を有するという特徴を活かして、このような放熱部材用熱伝導性フィラーとして注目を集めている。
しかしながら、h−BNは板状の粒子形状であり、その板面方向(ab面内あるいは(002)面内)には高い熱伝導性を示すものの(通常、熱伝導率として400W/mK程度)、板厚方向(C軸方向)には低い熱伝導性(通常、熱伝導率として2〜3W/mK程
度)しか示さないため、これを樹脂に配合してBN粒子含有樹脂組成物とし、例えば、板状の成形体を成形した場合、板状のh−BNが成形時にBN粒子含有樹脂組成物の流動方向である成形体の板面方向に配向することとなり、得られる成形体は、板面方向には熱伝導率に優れるものの、厚み方向には低熱伝導率しか示さないという問題があった。
そこで、このようなh−BNの熱伝導性の異方性を改良するために、成形体を成形した場合でも上記のような配向が少ない、鱗片板状以外の形状を有する、h−BNが凝集した凝集粒子が検討されてきた。このようなh−BN凝集粒子としては、噴霧乾燥などにより造粒されたh−BN凝集粒子、h−BNを焼結し焼結体を粉砕して製造されたh−BN凝集粒子などがある(特許文献1,2)。また、ホウ酸とメラミンの混合物から製造したh−BN凝集粒子であって、h−BN一次粒子が配向せずに凝集した松ぼっくり状のh−BN凝集粒子も提案されている(特許文献3)。
言い換えれば、従来のh−BN凝集粒子に於いては、大きな凝集粒子を作製することで凝集粒子間の接触抵抗を低減させることが検討されてきた。また、h−BN凝集粒子を構成するh−BN一次粒子間の粒界を減らすことで高熱伝導性を達成するために、数μmから数百μm程度と比較的粒子径が大きく、結晶性の高いh−BN一次粒子が用いられてきた(特許文献1,2,3)。
このような従来のBN凝集粒子の用途として、パワー半導体デバイスなどで必要とされる放熱シートに用いることが知られているが、BN凝集粒子間の接触抵抗を低減するためには、一定の圧力下での成形が必要なため、その圧力によってBN凝集粒子が崩壊し、h−BN一次粒子が成形面方向に配向してしまい、結果として成形面に垂直方向な熱伝導は低く、実用化レベルに到達していないのが現状である。つまり、一定圧力下でも放熱シー
ト垂直方向に高い熱伝導性を付与可能なBN凝集粒子が望まれており、さらにBN凝集粒子自体が高い熱伝導性を有する凝集粒子の開発が望まれている。
特開2006−257392号公報 特表2008−510878号公報 特開平9−202663号公報
本発明者らの検討によると、従来のBN凝集粒子では、BN凝集粒子を構成するh−BN一次粒子間の界面およびh−BN一次粒子の結晶性の低さが、BN凝集粒子の熱伝導を低下させる原因の一つであるということがわかってきた。即ち、これらの原因はh−BN一次粒子界面およびh−BN一次粒子中の結晶粒界に於いて熱伝導の担い手であるフォノンが散乱されるからであると考えた。
また、樹脂に従来のBN凝集粒子を充填した場合にも、BN凝集粒子を大きくすることによる凝集粒子間の接触抵抗はある程度低減可能であるが、BN凝集粒子を構成するh−BN一次粒子の配向がBN凝集粒子同士の接触抵抗を増加させ、熱伝導性を低下させる原因となることがわかってきた。即ち、成形体としての熱伝導性を向上させるためには、BN凝集粒子を構成するh−BN一次粒子の配向を制御し、BN凝集粒子同士の接触抵抗を低減させるとともに、BN凝集粒子を構成するh−BN一次粒子の結晶性を高め、さらにBN凝集粒子を構成するh−BN一次粒子中の粒界を低減することが有効であると考えた。
本発明は、上記従来の問題点を解決し、BN凝集粒子を構成するh−BN一次粒子が高熱伝導性でありながら、BN凝集粒子同士の接触抵抗も低減したBN凝集粒子を製造し、各種成形体への適用性に優れたBN凝集粒子及びその製造方法を提供することを課題とする。本発明はまた、このBN凝集粒子と樹脂とを含有するBN凝集粒子含有樹脂組成物と、このBN凝集粒子含有樹脂組成物を成形してなる成形体を提供することを課題とする。
本発明者らは、鋭意検討を重ねた結果、BN凝集粒子を作製する際の原料スラリー粘度を特定の範囲にすることによって、BN凝集粒子を構成するh−BN一次粒子中の平均結晶子径が大きくなることを見出した。平均結晶子径が大きくなることでh−BN一次粒子中の結晶子間の粒界が減少し、結果としてBN凝集粒子の熱伝導性を高めることに成功した。さらに驚くべきことに、このようにして作製されたBN凝集粒子は、BN凝集粒子を構成するh−BN一次粒子の特定の結晶面が配向するため、該BN凝集粒子を用いて成形体とした際に、従来のBN凝集粒子と比較して熱伝導性の高い成形体を作製可能であることを見出し、本発明を完成するに至った。
すなわち、本発明の要旨は、窒化ホウ素一次粒子(以下「h−BN一次粒子」と称す。)が凝集してなる窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)であって、10mmφの粉末錠剤成形機で0.85ton/cm2以上2.54ton/cm2以下の成形
圧力で成形して得られたペレット状の試料を粉末X線回折測定して得られるh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であり、かつBN凝集粒子を0.2mm深さのガラス試料板に表面が平滑になるように充填し、粉末X線回折測定して得られるh−BN一次粒子の(002)面ピークから求めたh−BN一次粒子の平均結晶子径が320Å以上であることを特徴とするBN凝集粒子に存する。
また、BN凝集粒子の平均粒子径D50(μm)が26μm以上であることが好ましく、BN凝集粒子の比表面積が8m2/g以下であることが好ましく、BN凝集粒子が球状
であることが好ましく、BN凝集粒子がカードハウス構造を有することが好ましく、h−BN一次粒子の平均粒子径が1.1μm以上であることが好ましい。
また、本発明の更に他の要旨は、上記BN凝集粒子と他のフィラーとの混合物であるBN凝集粒子組成物に存し、更に他の要旨は、樹脂と上記BN凝集粒子とを含むBN凝集粒子含有樹脂組成物に存し、更に他の要旨は、上記BN凝集粒子を含む成形体に存する。
また、本発明の更に他の要旨は、原料窒化ホウ素粉末のスラリー(以下「BNスラリー」と称す。)を調製するステップ、及び該スラリーを加熱処理するステップ、を含むBN凝集粒子を製造する方法であって、該BNスラリーの粘度が200mPa・s以上5000mPa・s以下であり、該加熱処理を1800℃〜2300℃で行うことを特徴とするBN凝集粒子の製造方法に存する。また、原料窒化ホウ素粉末中の酸素濃度が、1質量%以上10質量%以下であることが好ましい。
本発明のBN凝集粒子は、粉末X線回折測定により得られる、BN凝集粒子を構成するh−BN一次粒子の(100)面と(004)面の粉末X線回折測定における前記h−BN一次粒子の(002)面ピークから求めた前記h−BN一次粒子の平均結晶子径が320Å以上であるため、BN凝集粒子を構成するh−BN一次粒子中の結晶粒界で生じるフォノン散乱を減らすことができ、その結果として、高い熱伝導性を示す。さらに、特定の圧力範囲で成形した場合でもh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であるため、本発明のBN凝集粒子を含有する樹脂組成物を成形して得られる成形体は、成形後でもBN凝集粒子を構成するh−BN一次粒子の特定の結晶面の配向が保たれる。従って、成形面に垂直方向(成形体厚み方向)に高い熱伝導性を示し、好ましくはパワー半導体デバイスなどで必要とされる放熱シートに非常に有用なものである。
本発明のBN凝集粒子の倍率20万倍の走査型電子顕微鏡(以下「SEM」と称す)写真である。 本発明のBN凝集粒子の倍率100万倍のSEM写真である。 カードハウス構造の模式図である。
以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
[BN凝集粒子]
本発明のBN凝集粒子は、h−BN一次粒子が凝集して形成されたものであり、本願発明の効果を損なわない範囲で、上記h−BN一次粒子以外の成分を含有してもよい。h−BN一次粒子以外の成分としては、後記の[BN凝集粒子の製造方法]で述べる、スラリーに添加してもよいバインダー、界面活性剤、溶媒に由来する成分を挙げることができる。
本発明のBN凝集粒子の形態は、特に制限はないが、好ましくは図1に示すような球状の形態が特徴であり、また、BN凝集粒子の形態はSEMにより確認することができる。
ここで「球状」とは、アスペクト比(長径と短径の比)が1以上2以下、好ましくは1以上1.5以下であることをさす。本発明のBN凝集粒子のアスペクト比は、SEMで撮
影された画像から200個以上の粒子を任意に選択し、それぞれの長径と短径の比を求めて平均値を算出することにより決定する。
また、BN凝集粒子は、BN凝集粒子表面においてh−BN一次粒子の結晶がBN凝集粒子の中心側から表面側へ向けて放射状に成長しているウニ様の形態、h−BN一次粒子が小板でありそれらが焼結凝集しているウニ様の球状の形態であることが好ましい。また、BN凝集粒子は、カードハウス構造を有することが好ましい。カードハウス構造とは、例えばセラミックス 43 No.2(2008年 日本セラミックス協会発行)に記載されており、板状粒子が配向せずに複雑に積層したような構造である。より具体的には、カードハウス構造を有するBN凝集粒子とは、h−BN一次粒子の集合体であって、h−BN一次粒子の平面部と端面部が接触している構造(図3参照)を有するBN凝集粒子であり、好ましくは球状である。また、カードハウス構造は粒子の内部においても同様の構造であることが好ましい。これらのBN凝集粒子の凝集形態及び内部構造は走査型電子顕微鏡(SEM)により確認することができる。
また、本発明に係るBN凝集粒子を物性で表すと、10mmφの粉末錠剤成形機で0.85ton/cm2以上2.54ton/cm2以下の成形圧力で成形して得られたペレッ
ト状の試料の粉末X線回折測定して得られるh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であり、かつh−BN一次粒子の(002)面ピークから求めたh−BN一次粒子の平均結晶子径が320Å以上であることを特徴とすることもできる。
本発明のBN凝集粒子において、これを構成するh−BN一次粒子の平均結晶子径は、高熱伝導性フィラーとしての用途において重要な要件の一つである。本発明のBN凝集粒子は、BN凝集粒子を構成するh−BN一次粒子の平均結晶子径を大きくすること、すなわち320Å以上とすることにより、h−BN一次粒子中の結晶粒界を減少しており、熱伝導性に優れる。さらに、特定の圧力以上で成形した場合でもh−BN一次粒子の(100)面と(004)面の面積強度比((100)/(004))が0.25以上であることにより、樹脂と本発明のBN凝集粒子を含む組成物を特定の圧力下で成形して成形体を作製した場合でも、h−BN一次粒子の特定の結晶面の配向が保持され、成形圧力に対して垂直方向(成形体厚み方向)に高熱伝導性を示すという効果を奏する。
(BN凝集粒子の特性)
・h−BN一次粒子の大きさ
BN凝集粒子を構成するh−BN一次粒子の長軸は通常0.5μm以上、好ましくは0.6μm以上、より好ましくは0.8μm以上、更に好ましくは1.0μm以上、特に好ましくは1.1μm以上である。また、通常10μm以下、好ましくは5μm以下、より好ましくは3μm以下である。
尚、上記長軸とはSEM測定により得られたBN凝集粒子1粒を拡大し、1粒のBN凝集粒子を構成しているh−BN一次粒子について、画像上で観察できるh−BN一次粒子の最大長を平均した値である。
・BN凝集粒子を構成するh−BN一次粒子の結晶構造
h−BN一次粒子の結晶構造は、特に限定されないが、合成の容易さと熱伝導性の点で六方晶系のh−BNを主成分として含むものが好ましい。また、バインダーとしてBN以外の無機成分が含まれる場合、熱処理の過程でそれらが結晶化するが、BNが主成分として含まれていればよい。なお、上記h−BN一次粒子の結晶構造は、粉末X線回折測定により確認することができる。
・h−BN一次粒子の平均結晶子径
BN凝集粒子を粉末X線回折測定して得られるh−BN一次粒子の(002)面ピークから求めたh−BN一次粒子の平均結晶子径は、特に制限はされないが、平均結晶子径は大きいことが熱伝導率の点から好ましい。例えば、通常300Å以上、好ましくは320Å以上、より好ましくは375Å以上であり、更に好ましくは380Å以上、より更に好ましくは390Å以上、特に好ましくは400Å以上であり、通常5000Å以下、好ましくは2000Å以下、更に好ましくは1000Å以下である。上記平均結晶子径が大きすぎると、h−BN一次粒子が成長しすぎるため、BN凝集粒子内の間隙が多くなり、成形体とする際の成形性が悪化するとともに、間隙が多くなることにより熱伝導性が向上しなくなる傾向がある。上記平均結晶子径が小さすぎると、h−BN一次粒子内の粒界が増えるため、フォノン散乱が結晶粒界で発生し、低熱伝導になる傾向がある。
尚、粉末X線回折測定は、0.2mm深さのガラス試料板に表面が平滑になるようにBN凝集粒子を充填し、測定される。
なお、ここで、「平均結晶子径」とは、粉末X線回折測定によって得られるh−BN一次粒子の(002)面ピークから、後述の実施例において記載の通り、Scherrer式にて求められる結晶子径である。
・h−BN一次粒子のピーク面積強度比
BN凝集粒子を10mmφの粉末錠剤成形機で0.85ton/cm2以上2.54t
on/cm2以下の成形圧力で成形して得られたペレット状の試料中のBN凝集粒子を構
成するh−BN一次粒子の(100)面と(004)面のピーク面積強度比(100)/(004))は、通常0.25以上、好ましくは0.30以上、より好ましくは0.35以上、更に好ましくは0.40以上であり、通常2.0以下、好ましくは1.5以下、更に好ましくは1.2以下である。大きすぎると、成形体とした際にBN凝集粒子間の接触抵抗が大きくなる傾向があり、小さすぎると、BN凝集粒子が崩壊し、厚み方向の熱伝導性が向上しない傾向がある。
通常、放熱シートなどにおいて最適なプレス圧力条件は、放熱シートの種類によって異なる。樹脂マトリックス中に分散したBN凝集粒子は、用途に応じた圧力条件にさらされるが、通常、BN粒子は圧力方向に対して直行する方向にab面が配向する傾向にある。BN凝集粒子を用いた場合でも成形圧力に対して粒子変形が生じ、結果としてab面が圧力方向に直行する方向に配向する傾向にある。
例えば、樹脂製の高放熱基板は、樹脂製基板内部の空隙低減や分散させたBN凝集粒子同士の完全な接触のために、0.85ton/cm2以上2.54ton/cm2以下のような比較的高い圧力で成形されると考えられる。このため、上記圧力範囲でもh−BN一次粒子の配向変化が少ないBN凝集粒子が熱伝導性向上には必要である。
本発明では、本明細書で規定する物性を満たすBN凝集粒子、好ましくはBN凝集粒子を構成するh−BN一次粒子がカードハウス構造、すなわち、h−BN一次粒子同士が一次粒子平面部と端面部で接触することによる相互補強構造を有することから、広い成形圧力範囲でBN凝集粒子の変形を抑制することが可能である。用途に応じて最適な圧力範囲は異なるが、成形体の厚み方向に高熱伝導化するためには、0.85ton/cm2以上
2.54ton/cm2の範囲において、少なくとも一定以上のh−BN一次粒子の配向
が保持される状態が達成することが好ましい。
一定以上のh−BN一次粒子の配向とは、例えばh−BN一次粒子の(100)面と(004)面のピーク面積強度比(100)/(004))によって表現されるが、これは(004)面、すなわち、圧力方向に対して直行する方向にab面が配向する割合がどれだけ少ないかを表現するものである。従って、上述のピーク面積強度比が大きいほど、成形圧力によるBN凝集粒子の変形が少ない。高熱伝導性を達成するには、少なくともピー
ク面積強度比は0.25以上であることが必要と考えている。ピーク面積強度比の下限、上限については前述のとおりである。
尚、0.85ton/cm2以上2.54ton/cm2の範囲におけるピーク面積強度比は、上記圧力範囲において一点でも所定の数値を満たせば問題なく、本発明の圧力範囲全てにおいて達成する必要はない。また、好ましくは、0.85ton/cm2、1.69ton/cm2、2.54ton/cm2の3点にて所定の数値を満たすことである。
なお、上記ピーク面積強度比は、錠剤成形機(10mmφ)に約0.2gの粉末を充填し、手動油圧式ポンプ(理研精機社製P-1B-041)を用いて、種々のプレス圧で錠剤成形した試料を測定に供する(例えば、0.85ton/cm2、1.69ton/cm2、2.54ton/cm2等)。測定は、オランダPANalytical社製X‘PertPro MPD粉末X線回折装置を用いて行うことで、該当するピーク面積の強度比を計
算することができる。
・BN凝集粒子の平均粒子径(D50
BN凝集粒子の平均粒子径(D50)は、通常5μm以上であり、好ましくは10μm以上、より好ましくは25μm以上、更に好ましくは26μm以上であり、特に好ましくは30μm以上、最も好ましくは40μm以上であり、45μm以上であっても好ましく、50μm以上であっても好ましい。また、通常200μm以下、好ましくは150μm以下、更に好ましくは100μm以下である。大きすぎると成形体とした際に表面の平滑性が悪くなる、BN凝集粒子間の間隙が多くなる等により、熱伝導性が向上しない傾向があり、小さすぎると成形体とした際にBN凝集粒子間の接触抵抗が大きくなる、BN凝集粒子自体の熱伝導性が低くなる等の傾向がある。
なお、D50は測定に供した粉体の体積を100%として累積曲線を描かせた際に丁度累積体積が50%となる時の粒子径を意味し、その測定方法は、湿式測定法としては、分散安定剤としてヘキサメタリン酸ナトリウムを含有する純水媒体中にBN凝集粒子を分散させた試料に対して、レーザ回折/散乱式粒度分布測定装置などを用いて測定することができ、乾式測定法としては、Malvern社製「Morphologi」を用いて測定することができる。
・破壊強度
BN凝集粒子の破壊強度は、通常2.5MPa以上、好ましくは3.0MPa以上、より好ましくは3.5MPa以上、更に好ましくは4.0MPa以上であり、通常20MPa以下、好ましくは15MPa以下、更に好ましくは10MPa以下である。大きすぎると、粒子の強度が強すぎるため、成形体とした際に表面平滑性が悪くなり、熱伝導性が低下する傾向があり、小さすぎると、成形体を作製する際の圧力で粒子が変形しやすくなり、熱伝導性が向上しない傾向がある。
なお、破壊強度は、粒子1粒をJIS R 1639−5に従って圧縮試験し、下記式により算出できる。通常、粒子は5点以上測定し、その平均値を採用する。
式:Cs=2.48P/πd2
Cs:破壊強度(MPa)
P:破壊試験力(N)
d:粒子径(mm)
・全細孔容積
BN凝集粒子の全細孔容積は、通常2.2cm3/g以下である。全細孔容積が小さい
ものは、BN凝集粒子内が密になっているために、熱伝導を阻害する境界面を少なくすることが可能となり、より熱伝導性の高いBN凝集粒子となる。BN凝集粒子の全細孔容積
が大きすぎると、組成物中のフィラーとして用いた場合に、細孔に樹脂が取り込まれ、見かけの粘度が上昇する場合があり、組成物の成形加工或いは塗布液の塗工が困難となる可能性がある。
BN凝集粒子の全細孔容積の下限値は特に制限はないが、通常0.01cm3/gであ
る。本発明の全細孔容積は、好ましくは0.01cm3/g以上、より好ましくは0.0
2cm3/gであり、好ましくは2cm3/g以下、より好ましくは1.5cm3/g以下
である。
凝集BN粉末中のBN凝集粒子の全細孔容積は、窒素吸着法および水銀圧入法で測定することができる。
・比表面積
BN凝集粒子の比表面積は通常1m2/g以上であるが、好ましくは3m2/g以上50m2/g以下、より好ましくは5m2/g以上40m2/g以下である。また、8m2/g以下であることも好ましく、7.25m2/g以下であることも好ましい。BN凝集粒子の
比表面積が、この範囲であると、樹脂と複合化した際に、BN凝集粒子同士の接触抵抗が低減される傾向にあり、BN凝集粒子含有樹脂組成物の粘度上昇も抑制できるため好ましい。比表面積は、BET1点法(吸着ガス:窒素)で測定することができる。
・バルク密度
BN凝集粒子をフィラーとして用いる場合には、樹脂の取り込みを最小限とするためにBN凝集粒子のバルク密度は大きい方が良く、通常0.3g/cm3以上であることが好
ましく、より好ましくは0.35g/cm3以上、更に好ましくは0.4g/cm3以上である。BN凝集粒子のバルク密度が小さすぎる場合、見かけの体積が大きくなり、BN凝集粒子含有樹脂組成物中の樹脂に対して、添加するBN凝集粒子の体積が多くなるとともに、樹脂の取り込みが大きくなり、また、BN凝集粒子の取り扱い性が著しく悪化する傾向がある。BN凝集粒子のバルク密度の上限については特に制限はないが、通常0.95g/cm3以下、好ましくは0.9g/cm3以下、より好ましくは0.85g/cm3
下である。BN凝集粒子のバルク密度が大きすぎるとBN凝集粒子含有樹脂組成物中で凝集BNの分散に偏りが生じ、沈降しやすくなる傾向がある。
なお、BN凝集粒子のバルク密度は、粉体のバルク密度を測定する通常の装置や方法を用いて求めることができる。
[BN凝集粒子の製造方法]
本発明のBN凝集粒子は、好ましくは、粘度が200〜5000mPa・sである原料BN粉末を含むスラリー(以下「BNスラリー」と称す場合がある。)を用いて粒子を造粒し、造粒粒子を加熱処理することによって、該造粒粒子の大きさを保持したままBN凝集粒子を構成するh−BN一次粒子の結晶子を成長させて、製造することができる。BNスラリーの粘度は、好ましくは300mPa・s以上、より好ましくは500mPa・s以上、更に好ましくは700mPa・s以上、特に好ましくは1000mPa・s以上であり、好ましくは4000mPa・s以下、より好ましくは3000mPa・s以下である。
上記BNスラリーの粘度は、生成するBN凝集粒子の体積基準の平均粒子径D50および、BN凝集粒子を構成するh−BN一次粒子の平均結晶子径に大きく影響し、該粘度を200mPa・s以上とすることにより、h−BN一次粒子の平均結晶子径及びBN凝集粒子の体積基準の平均粒子径D50を大きくすることができる。
一方BNスラリーの粘度を5000mPa・s以下とすることにより、造粒を容易にすることができる。BNスラリーの粘度の調製方法は、後述する。
なお、本発明におけるBNスラリーの粘度とは、FUNGILAB社の回転粘度計「VISCO BASIC Plus R」を用い、ブレード回転数100rpmにて測定した粘度のことである。
さらに、本発明のBN凝集粒子をフィラーとしてBN凝集粒子含有樹脂組成物を作製する場合、同一の充填量においても、他のBN粒子と比較して得られる成形体の熱伝導率が劇的に改善できる。これは、本発明のBN凝集粒子では、BN凝集粒子を構成するh−BN一次粒子の平均結晶粒子径の増大により、h−BN一次粒子中の結晶粒界が減少すること、BN凝集粒子を構成するh−BN一次粒子の特定面が配向していることによると推察され、好ましくは、凝集粒子の体積基準の平均粒子径D50が大きいことにより、BN凝集粒子間の接触抵抗が低減することも影響すると考えられる。
本発明のBN凝集粒子はBN凝集粒子自体の熱伝導性が高いだけでなく、樹脂と複合化して作製した成形体の熱伝導性も高くなる。
すなわち、本願発明によれば、当業者では通常制御することを想定していなかったスラリー粘度を特定の範囲に制御することにより、BN凝集粒子を構成するh−BN一次粒子の平均結晶子径を大きくすることが可能である製造方法を見出したものである。
更に、本発明によれば、上記スラリー粘度を特定の範囲に制御することにより、本発明で規定するBN凝集粒子を製造する方法を見出したものである。
なお、上記ピーク面積強度比およびh−BN一次粒子の平均結晶子径は、BNスラリーから製造する造粒粒子を加熱処理する際の焼成温度、原料BN粉末中に存在する酸素濃度によっても制御できる。具体的には、後程述べる通り、BNスラリーから製造する造粒粒子を加熱処理する際の焼成温度範囲を1800℃以上2300℃以下とすることでピーク面積強度比を0.25以上とすることができ、原料BN粉末中に存在する酸素濃度が1.0重量%以上の原料を用いることで、h−BN一次粒子の平均結晶子径を所望の範囲に制御できる。即ち、適切な焼成温度範囲と適切な酸素濃度の原料BN粉末を用いることで上記ピーク面積強度比と上記平均結晶子径を同時に制御できる。
これによりBN凝集粒子をBN凝集粒子含有樹脂組成物とした際のBN凝集粒子間の接触抵抗の低減並びにBN凝集粒子を構成するh−BN一次粒子中の結晶粒界が減少し、該BN凝集粒子を構成するh−BN一次粒子の特定の結晶面が配向した、熱伝導性の高いBN凝集粒子を作製できる。
本発明によって得られるBN凝集粒子は、高熱伝導性を維持しながら様々な大きさに設計することが可能なため、成形体として幅広い用途に適用可能である。
{スラリーの調製}
<原料BN粉末>
・原料BN粉末の種類
本発明で用いる原料BN粉末としては、市販のh−BN、市販のαおよびβ−BN、ホウ素化合物とアンモニアの還元窒化法により作製されたBN、ホウ素化合物とメラミンなどの含窒素化合物から合成されたBNなど何れも制限なく使用できるが、特にh−BNが本発明の効果をより発揮する点で好ましく用いられる。
・原料BN粉末の結晶性
本発明で用いる原料BN粉末の形態としては、粉末X線回折測定により得られるピークの半値幅が広く、結晶性が低い粉末状のBN粒子が好適である。即ち、板状のh−BNを原料として使用することも可能であるが、板状でないナノ粒子も好適に用いられる。結晶性の目安として、粉末X線回折測定から得られる(002)面のピーク半値幅が、2θの角度で、通常0.4°以上、好ましくは0.45°以上、より好ましくは0.5°以上である。また、通常2.0°以下、好ましくは1.5°以下、更に好ましくは1°以下であ
る。上記上限より大きいと、結晶子が十分大きくならず、大きくするためには長時間を要するため、生産性が悪くなる傾向がある。上記下限未満だと、結晶性が高すぎて、十分な結晶成長が見込めず、また、スラリー作製時の分散安定性が悪くなる傾向がある。なお、粉末X線回折測定方法は後述の実施例の項に記載する。
・原料BN粉末中の酸素原子濃度
BN結晶成長の観点からは、原料BN粉末中に酸素原子がある程度存在することが好ましく、本発明では、原料BN粉末中の全酸素濃度は、通常1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは4質量%以上である。また、通常、10質量%以下、更に好ましくは9質量%以下である。上記上限より大きいと、熱処理後も酸素が残存しやすくなるため、熱伝導性の改善効果が小さくなる傾向がある。上記下限未満だと、結晶性が高すぎて、結晶成長が見込めず、粉末X線回折測定から確認できるピーク強度比が所望の範囲から外れる傾向がある。
本発明においては、原料BN粉末中に存在する酸素濃度が1.0重量%以上の原料を用いることでも、BN凝集粒子を構成するh−BN一次粒子の平均結晶子径を所望の範囲に制御できる。
なお、原料BN粉末の全酸素濃度を上記範囲に調製する方法としては、例えばBN合成時の合成温度を1500℃以下の低温で行う方法、500℃〜900℃の低温の酸化雰囲気中で原料BN粉末を熱処理する方法などが挙げられる。
なお、原料BN粉末の全酸素濃度は、不活性ガス融解−赤外線吸収法により、株式会社堀場製作所製の酸素・窒素分析計を用いて測定することができる。
・原料BN粉末の全細孔容積および比表面積
原料BN粉末の全細孔容積は通常1.0cm3/g以下であるが、好ましくは0.3c
3/g以上1.0cm3/g以下、より好ましくは0.5cm3/g以上1.0cm3/g以下である。全細孔容積が1.0cm3/g以下であることにより、原料BN粉末が密に
なっているために、球形度の高い造粒が可能となる。
原料BN粉末の比表面積は通常50m2/g以上であるが、60m2/g以上が好ましく、70m2/g以上がより好ましい。通常、1000m2/g以下であるが、500m2
g以下が好ましく、300m2/g以下がより好ましい。原料BN粉末の比表面積が50
2/g以上であることにより、造粒による球形化の際に用いるBNスラリー中の分散粒
子径を小さくすることができるため好ましい。また、1000m2/g以下とすることに
よりスラリー粘度の増加を抑制することができるため好ましい。
なお、原料BN粉末の全細孔容積は、窒素吸着法および水銀圧入法で測定することができ、比表面積は、BET1点法(吸着ガス:窒素)で測定することができる。原料BN粉末の全細孔容積及び比表面積の具体的測定方法は、後述の実施例の項に記載する。
<媒体>
BNスラリーの調製に用いる媒体としては特に制限はなく、水及び/又は各種の有機溶媒を用いることができるが、噴霧乾燥の容易さ、装置の簡素化などの観点から、水を用いることが好ましく、純水がより好ましい。
BNスラリーの調製に用いる媒体の使用量は、BNスラリーの粘度が200〜5000mPa・sとなる量を加えることが好ましい。
具体的にはBNスラリーの調製に用いる媒体の使用量は、通常10質量%以上、好ましくは20質量%以上、より好ましくは30質量%以上であり、通常、70質量%以下、好ましくは65質量%以下、より好ましくは60質量%以下である。媒体の使用量が上記上限より大きいと、スラリー粘度が低くなりすぎるため、沈降などによるBNスラリーの均
一性が損なわれ、得られるBN凝集粒子を構成するh−BN一次粒子の結晶子径が所望の範囲から外れる傾向がある。下限未満であるとスラリー粘度が高すぎるため、造粒が困難になる傾向がある。すなわち、上記媒体の使用量が上記範囲外であると、BN凝集粒子の大きさとBN凝集粒子を構成するh−BN一次粒子の結晶性とh−BN一次粒子中の結晶粒界の低減を同時に満足することが困難になる。
<界面活性剤>
BNスラリーには、スラリーの粘度を調節すると共に、スラリー中の原料BN粉末の分散安定性(凝集抑制)の観点から、種々の界面活性剤を添加するのが好ましい。
界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、非イオン性界面活性剤等を用いることができ、これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
一般に、界面活性剤はスラリーの粘度を変化させることが可能である。従って、BNスラリーに界面活性剤を添加する場合、その量は、BNスラリーの粘度が200〜5000mPa・sとなるような量に調整する。例えば、原料BNとして、粉末X線回折測定により得られる(002)面ピークの半値幅2θが0.67°、酸素濃度が7.5質量%であるBNを用いて固形分50質量%のスラリーを調整する場合、通常、陰イオン性界面活性剤の有効成分として、スラリー全量に対し、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上添加し、通常10質量%以下、好ましくは7質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下添加する。上記上限より大きいと、スラリー粘度が下がりすぎるとともに、生成したBN凝集粒子中に界面活性剤由来の炭素成分が残りやすくなる傾向がある。上記下限未満だと、スラリー粘度が高くなりすぎ、造粒自体が困難になる傾向がある。
<バインダー>
BNスラリーは、原料BN粉末を効果的に粒子状に造粒するために、バインダーを含んでもよい。バインダーは、h−BN一次粒子を強固に結びつけ、造粒粒子を安定化するために作用する。
BNスラリーに用いるバインダーとしては、BN粒子同士の接着性を高めることができるものであればよいが、本発明においては、造粒粒子は粒子化後に加熱処理されるため、この加熱処理工程における高温条件に対する耐熱性を有するものが好ましい。
このようなバインダーとしては、酸化アルミニウム、酸化マグネシウム、酸化イットリウム、酸化カルシウム、酸化珪素、酸化ホウ素、酸化セリウム、酸化ジルコニウム、酸化チタンなどの金属の酸化物などが好ましく用いられる。これらの中でも、酸化物としての熱伝導性と耐熱性、BN粒子同士を結合する結合力などの観点から、酸化アルミニウム、酸化イットリウムが好適である。なお、バインダーはアルミナゾルのような液状バインダーを用いてもよく、加熱処理中に反応して、他の無機成分に変換されるものであってもよい。これらのバインダーは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
バインダーの使用量(液状バインダーの場合は、固形分としての使用量)は、BNスラリー中の原料BN粉末に対して、通常0質量%以上30質量%以下であり、好ましくは0質量%以上20質量%以下、より好ましくは0質量%以上15質量%以下である。上記上限を超えると造粒粒子中の原料BN粉末の含有量が少なくなり、結晶成長に影響するばかりか熱伝導性のフィラーとして用いた場合に熱伝導性改善効果が小さくなる。
<スラリー調製方法>
スラリー調製方法は、原料BN粉末及び媒体、更に必要により、バインダー、界面活性
剤が均一に分散し、所望の粘度範囲に調製されていれば特に限定されないが、原料BN粉末及び媒体、更に必要により、バインダー、界面活性剤を用いる場合、好ましくは以下のように調製する。
原料BN粉末を樹脂製のボトルに所定量計量し、次いで、バインダーを所定量添加する。さらに、界面活性剤を所定量添加した後、ジルコニア性のセラミックボールを加えて、ポットミル回転台で所望の粘度になるまで0.5〜5h程度撹拌する。
添加の順番は特に制限はないが、大量の原料BN粉末をスラリー化する場合、だまなどの凝集物ができやすくなるため、水に界面活性剤とバインダーを加えた水溶液を作製した後、所定量の原料BN粉末を少量ずつ添加し、ここにジルコニア性のセラミックボールを加えて、ポットミル回転台で分散、スラリー化しても良い。
また、分散に際しては、ポットミルのほかに、ビーズミル、プラネタリーミキサーなどの分散装置を使用しても良い。
スラリー化に際して、スラリーの温度は、10℃以上60℃以下で行う。下限よりも低いと、スラリー粘度が上昇し、所望の粘度範囲から外れる傾向にあり、上限よりも高いと原料BN粉末が水溶液中でアンモニアに分解しやすくなる。通常、10℃以上60℃以下であるが、好ましくは15℃以上50℃以下、より好ましくは15℃以上40℃以下、更に好ましくは15℃以上35℃以下である。
{造粒}
BNスラリーから造粒粒子を得るには、スプレードライ法、転動法、流動層法、そして撹拌法などの一般的な造粒方法を用いることができ、この中でもスプレードライ法が好ましい。
スプレードライ法では、原料となるスラリーの濃度、装置に導入する単位時間当たりの送液量と送液したスラリーを噴霧する際の圧空圧力及び圧空量により、所望の大きさの造粒粒子を製造することが可能であって、球状の造粒粒子を得ることも可能である。使用するスプレードライ装置に制限はないが、より大きな球状の造粒粒子とするためには、回転式ディスクによるものが最適である。このような装置としては、大川原化工機社製スプレードライヤーFシリーズ、藤崎電機社製スプレードライヤー「MDL−050M」などが挙げられる。
造粒により得られた造粒粒子の平均粒子径は、本発明のBN凝集粒子の体積基準の平均粒子径の範囲を25μm以上200μm以下とする場合には、体積基準の平均粒子径D50で通常15μm以上150μm以下、好ましくは、20μm以上100μm以下であることが好ましい。ここで、造粒粒子の体積基準の平均粒子径D50は、例えば、湿式では堀場製作所製「LA920」、乾式ではMalvern社製「Morphorogi」などで測定することができる。
{加熱処理}
上記のBN造粒粒子は、更に非酸化性ガス雰囲気下に加熱処理することでBN凝集粒子を製造することができる。
ここで、非酸化性ガス雰囲気とは、窒素ガス、ヘリウムガス、アルゴンガス、アンモニアガス、水素ガス、メタンガス、プロパンガス、一酸化炭素ガスなどの雰囲気のことである。ここで用いる雰囲気ガスの種類によりBN凝集粒子の結晶化速度が異なるものとなり、結晶化を短時間で行うためには特に窒素ガス、もしくは窒素ガスと他のガスを併用した混合ガスが好適に用いられる。
加熱処理温度は通常1800℃以上2300℃以下であるが、好ましくは1900℃以上であり、また好ましくは2200℃以下である。加熱処理温度が低すぎると、h−BN一次粒子の平均結晶子の成長が不十分となり、BN凝集粒子および成形体の熱伝導率が小
さくなる場合がある。加熱処理温度が高すぎると、BNの分解などが生じてしまうおそれがある。
上記加熱処理温度を1800℃以上2300℃以下とすることにより、h−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を所望の値とすることができる。
加熱処理時間は、通常5時間以上20時間以下であり、好ましくは5時間以上15時間以下である。加熱処理時間が上記下限未満の場合、結晶成長が不十分となり、上記上限を超えるとBNが一部分解するおそれがある。
加熱処理は、非酸化性ガス雰囲気下で行うために、好ましくは、通常、焼成炉内を真空ポンプを用いて排気した後、非酸化性ガスを導入しながら、所望の温度まで加熱して昇温するが、焼成炉内が十分に非酸化性ガスで置換できる場合は、常圧下で非酸化性ガスを導入しながら加熱昇温しても良い。焼成炉としては、マッフル炉、管状炉、雰囲気炉などのバッチ式炉やロータリーキルン、スクリューコンベヤ炉、トンネル炉、ベルト炉、プッシャー炉、竪型連続炉などの連続炉が挙げられ、目的に応じて使い分けられる。
通常、加熱処理する造粒粒子は、焼成時の組成の不均一性を低減するために、円形の黒鉛製蓋つきルツボに入れて加熱焼成される。この際、組成の不均一性の低減に加えて、焼成によるBN凝集粒子同士の焼結を抑制する目的で、黒鉛製の仕切りを入れても良い。仕切りによる分割数は、焼結が抑制できれば特に制限はないが、通常2分割以上16分割以
下である。上記上限より分割数が多いと焼結は抑制できるものの、h−BN一次粒子の結晶が十分に成長しなくなる傾向にあり、上記下限より分割数が少ないと、焼結が進む場合がある。
{分級}
上記加熱処理後のBN凝集粒子は、粒子径分布を小さくし、BN凝集粒子含有樹脂組成物に配合したときの粘度上昇を抑制するために、好ましくは分級処理する。この分級は、通常、造粒粒子の加熱処理後に行われるが、加熱処理前の造粒粒子について行い、その後加熱処理に供してもよい。
分級は湿式、乾式のいずれでも良いが、BNの分解を抑制するという観点からは、乾式の分級が好ましい。特に、バインダーが水溶性を有する場合には、特に乾式分級が好ましく用いられる。
乾式の分級には、篩による分級のほか、遠心力と流体抗力の差によって分級する風力分級などがあるが、旋回気流式分級機、強制渦遠心式分級機、半自由渦遠心式分級機などの分級機を用いて行うこともできる。これらの中で、サブミクロンからシングルミクロン領域の小さな微粒子を分級するには旋回気流式分級機を、それ以上の比較的大きな粒子を分級するには半自由渦遠心式分級機など、分級する粒子の粒子径に応じて適宜使い分ければよい。
[BN凝集粒子含有樹脂組成物]
本発明のBN凝集粒子含有樹脂組成物は、少なくとも本発明のBN凝集粒子と樹脂とを含有するものである。なお本発明のBN凝集粒子は、その形状的な特徴から、BN凝集粒子含有樹脂組成物のフィラーとして好適に用いられる。
BN凝集粒子含有樹脂組成物中におけるBN凝集粒子の含有割合(以下「フィラー充填量」と称する場合がある。)は、BN凝集粒子と樹脂の合計を100質量%として、通常5質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上であり、通常95質量%以下、好ましくは90質量%以下である。上記上限より大きいと、粘度が高くなりすぎて成形加工性が確保できなくなるとともに、BN凝集粒子の密な充填が阻害され
るために熱伝導性が低下する傾向があり、上記下限未満だと、成形加工性は確保できるものの、BN凝集粒子が少なすぎて熱伝導性が向上しない傾向がある。
<樹脂>
BN凝集粒子含有樹脂組成物に用いる樹脂としては、特に制限はないが、好ましくは硬化性樹脂および/または熱可塑性樹脂である。例えば、硬化性樹脂としては、熱硬化性、
光硬化性、電子線硬化性などが挙げられ、耐熱性、吸水性、寸法安定性などの点で、熱硬化性樹脂および/または熱可塑性樹脂が好ましく、これらの中でもエポキシ樹脂がより好ましい。これらの樹脂は2種以上組わせて用いてもよい。
エポキシ樹脂は1種類の構造単位を有するエポキシ樹脂のみであってもよいが、構造単位の異なる複数のエポキシ樹脂を組み合わせてもよい。また、エポキシ樹脂は、必要に応じて、エポキシ樹脂用硬化剤、硬化促進剤と共に用いられる。
エポキシ樹脂を用いる場合、そのTgは特段限定されないが通常0℃以上、好ましくは10℃以上、より好ましくは25℃以上であり、また通常350℃以下、好ましくは300℃以下、より好ましくは250℃以下である。
ここで、塗膜性ないしは成膜性や接着性と併せて、硬化物中のボイドを低減して高熱伝導の硬化物を得るために、エポキシ樹脂として少なくとも後述するフェノキシ樹脂(以下、「エポキシ樹脂(A)」と称す場合がある。)を含むことが好ましい。エポキシ樹脂全量に対するエポキシ樹脂(A)の質量比率は、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上、特に好ましくは16質量%以上、とりわけ好ましくは18質量%以上であり、また好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは80質量%以下の範囲である。
フェノキシ樹脂とは、通常、エピハロヒドリンと2価フェノール化合物とを反応させて得られる樹脂、または2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂を指すが、本発明においてはこれらのうち、重量平均分子量10000以上の高分子量であるフェノキシ樹脂をエポキシ樹脂(A)とする。
ここで、重量平均分子量とは、ゲルパーミエイションクロマトグラフィーで測定したポリスチレン換算の値である。
エポキシ樹脂(A)としては、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格およびジシクロペンタジエン骨格からなる群から選択された少なくとも1つの骨格を有するフェノキシ樹脂、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ナフタレン型フェノキシ樹脂、フェノールノボラック型フェノキシ樹脂、クレゾールノボラック型フェノキシ樹脂、フェノールアラルキル型フェノキシ樹脂、ビフェニル型フェノキシ樹脂、トリフェニルメタン型フェノキシ樹脂、ジシクロペンタジエン型フェノキシ樹脂、グリシジルエステル型フェノキシ樹脂、グリシジルアミン型フェノキシ樹脂が好ましい。中でも、耐熱性や密着性がより一層高められるので、フルオレン骨格および/またはビフェニル骨格を有するフェノキシ樹脂、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂が特に好ましい。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
本発明に係るエポキシ樹脂は、上記エポキシ樹脂(A)以外に、分子内に2個以上のエポキシ基を有するエポキシ樹脂(以下「エポキシ樹脂(B)」と称す場合がある。)を含有することが好ましい。上記エポキシ樹脂(B)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラル
キル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、多官能フェノール型エポキシ樹脂等の、各種エポキシ樹脂が挙げられる。この中でもビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、多官能フェノール型エポキシ樹脂が耐熱性や密着性の向上の点で好ましい。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
上記エポキシ樹脂(B)は、溶融粘度制御の観点から、その重量平均分子量が、好ましくは100〜5000であり、より好ましくは200〜2000である。重量平均分子量が100より低いものでは、耐熱性が劣る傾向にあり、5000より高いと、エポキシ樹脂の融点が高くなり、作業性が低下する傾向がある。
また、本発明に係るエポキシ樹脂は、その目的を損なわない範囲において、エポキシ樹脂(A)とエポキシ樹脂(B)以外のエポキシ樹脂(以下、「他のエポキシ樹脂」と称す場合がある。)を含んでいてもよい。他のエポキシ樹脂の含有量は、エポキシ樹脂(A)とエポキシ樹脂(B)の合計に対して、通常50質量%以下、好ましくは30質量%以下である。
本発明のBN凝集粒子含有樹脂組成物において、エポキシ樹脂(A)とエポキシ樹脂(B)を含む全エポキシ樹脂中のエポキシ樹脂(A)の割合は、その全エポキシ樹脂の合計を100質量%として、前述の如く、好ましくは5〜95質量%、好ましくは10〜90質量%、更に好ましくは20〜80質量%である。なお、「エポキシ樹脂(A)とエポキシ樹脂(B)を含む全エポキシ樹脂」とは、本発明のBN凝集粒子含有樹脂組成物に含まれるエポキシ樹脂が、エポキシ樹脂(A)及びエポキシ樹脂(B)のみの場合には、エポキシ樹脂(A)とエポキシ樹脂(B)の合計を意味し、さらに他のエポキシ樹脂を含む場合には、エポキシ樹脂(A)、エポキシ樹脂(B)及び他のエポキシ樹脂の合計を意味する。
エポキシ樹脂(A)の割合が上記下限以上であることにより、エポキシ樹脂(A)を配合することによる熱伝導性の向上効果を十分に得ることができ、所望の高熱伝導性を得ることができる。エポキシ樹脂(A)の割合が上記上限以下で、特にエポキシ樹脂(B)が全エポキシ樹脂の10質量%以上であることにより、エポキシ樹脂(B)の配合効果が発揮され、硬化性、硬化物の物性が十分なものとなる。
エポキシ樹脂用硬化剤は、用いられる樹脂の種類に応じて適宜に選ばれる。例えば、酸無水物系硬化剤やアミン系硬化剤が挙げられる。酸無水物系硬化剤としては、例えば、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、及びベンゾフェノンテトラカルボン酸無水物が挙げられる。アミン系硬化剤としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族ポリアミン、ジアミノジフェニルスルホン、ジアミノジフェニルメタン、ジアミノジフェニルエーテル、m−フェニレンジアミン等の芳香族ポリアミン及びジシアンジアミド等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのエポキシ樹脂用硬化剤は、通常、エポキシ樹脂に対して当量比で、0.3以上1.5以下の範囲で配合される。
硬化促進剤は、用いられる樹脂や硬化剤の種類に応じて適宜に選ばれる。例えば前記酸無水系硬化剤用の硬化促進剤としては、例えば三フッ化ホウ素モノエチルアミン、2−エチル−4−メチルイミダゾール、1−イソブチル−2−メチルイミダゾール、2−フェニル−4−メチルイミダゾールが挙げられる。これらは1種を単独で用いてもよく、2種以
上を混合して用いてもよい。これらの硬化促進剤は、通常、エポキシ樹脂100質量部に対して0.1質量部以上5質量部以下の範囲で用いられる。
また、本発明のBN凝集粒子含有樹脂組成物の樹脂は、熱可塑性樹脂であってもよい。熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合体樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、液晶ポリエステル樹脂等のポリエステル樹脂、ポリ塩化ビニル樹脂、フェノキシ樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルアミドイミド樹脂、ポリエーテルアミド樹脂及びポリエーテルイミド樹脂などが挙げられる。また、それらのブロック共重合体、グラフト共重合体等の共重合体も含まれる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
また、本発明のBN凝集粒子含有樹脂組成物の樹脂は、ゴム成分を含有してもよく、ゴム成分としては、例えば、天然ゴム、ポリイソプレンゴム、スチレン−ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン共重合体ゴム、ブタジエン−アクリロニトリル共重合体ゴム、イソブチレン−イソプレン共重合体ゴム、クロロプレンゴム、シリコンゴム、フッソゴム、クロロ・スルホン化ポリエチレン、ポリウレタンゴムなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
<その他の成分>
本発明のBN凝集粒子含有樹脂組成物は、本発明の効果が得られる範囲において、さらなる成分を含有していてもよい。このようなさらなる成分としては、例えば、上述した樹脂の他、無機フィラーである窒化アルミニウム、窒化ケイ素、繊維状、板状、粒子状凝集BN等の窒化物粒子、アルミナ、繊維状アルミナ、酸化亜鉛、酸化マグネシウム、酸化ベリリウム、酸化チタン等の絶縁性金属酸化物、ダイヤモンド、フラーレン、水酸化アルミニウム、水酸化マグネシウムなどの無機フィラー、無機フィラーとマトリックス樹脂の界面接着強度を改善するシランカップリング剤などの表面処理剤、還元剤等の絶縁性炭素成分、樹脂硬化剤、樹脂硬化促進剤、粘度調整剤、分散安定剤が挙げられる。
この中でも、熱伝導度の向上、耐電圧の向上から、窒化物粒子が好ましく、粒子状凝集BNがより好ましい。
また、BN凝集粒子含有樹脂組成物の粘度を下げる観点から、本発明のBN凝集粒子含有樹脂組成物には溶剤を用いることができる。溶剤には、公知の溶剤の中から樹脂を溶解する溶剤が用いられる。このような溶剤としては、例えば、メチルエチルケトン、アセトン、シクロヘキサノン、トルエン、キシレン、モノクロルベンゼン、ジクロルベンゼン、トリクロルベンゼン、フェノール、及びヘキサフルオロイソプロパノールが挙げられる。
これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
溶剤は、エポキシ樹脂等の樹脂100質量部に対して、通常0〜10,000質量部の範囲で用いられる。
[BN凝集粒子含有樹脂組成物の製造方法]
本発明のBN凝集粒子含有樹脂組成物は、本発明のBN凝集粒子、樹脂、及び必要に応じて添加されるその他の成分を撹拌や混練によって均一に混合することによって得ることができる。その混合には、例えば、ミキサー、ニーダー、単軸又は二軸混練機等の一般的な混練装置を用いることができ、混合に際しては、必要に応じて加熱してもよい。
なお、溶媒を含む系や樹脂が液体状態で、本発明のBN凝集粒子含有組成物が流動性を有するスラリー状態(本明細書では塗布用スラリーともいう)の場合、スラリーにする際の調製方法は、特に限定されず、従来公知の方法を用いることができる。なお、その際、塗布液の均一性の向上、脱泡等を目的として、ペイントシェーカーやビーズミル、プラネタリミキサ、攪拌型分散機、自公転攪拌混合機、三本ロール、ニーダー、単軸又は二軸混練機等の一般的な混練装置などを用いて混合・撹拌することが好ましい。
各配合成分の混合順序も、反応や沈殿物が発生するなど特段の問題がない限り任意であるが、例えば樹脂を有機溶媒(例えば、メチルエチルケトン)に混合・溶解させて樹脂液を作成し、得られた樹脂液に、BN凝集粒子及び後述するその他の成分とを十分混合したものを加えて混合し、その後、粘度調製用として更に有機溶媒を加えて混合した後に、更に、樹脂硬化剤や硬化促進剤、或いは、分散剤等の添加剤を加えて混合する方法が挙げられる。
[BN凝集粒子の成形体]
本発明の成形体は、本発明のBN凝集粒子を使用した成形体、好ましくはBN凝集粒子含有樹脂組成物を成形してなるものである。成形体の成形方法は一般に用いられる方法を用いることができる。
例えば、本発明のBN凝集粒子含有樹脂組成物が可塑性や流動性を有する場合、該BN凝集粒子含有樹脂組成物を所望の形状で、例えば型へ収容した状態で硬化させることによって成形することができる。
このような成形体の製造では、射出成形、射出圧縮成形、押出成形、圧縮成形および真空圧縮成形を利用することができる。
上述スラリーが溶媒を含む場合は、ホットプレート、熱風炉、IR加熱炉、真空乾燥機、高周波加熱機など公知の加熱方法で溶媒を除去することができる。
また、本発明のBN凝集粒子含有樹脂組成物がエポキシ樹脂やシリコーン樹脂等の熱硬化性樹脂組成物である場合、成形体の成形、すなわち硬化は、それぞれの硬化温度条件で行うことができる。
また、本発明のBN凝集粒子含有樹脂組成物が熱可塑性樹脂組成物である場合、成形体の成形は、熱可塑性樹脂の溶融温度以上の温度及び所定の成形速度や圧力の条件で行うことができる。
また、本発明の成形体は、本発明のBN凝集粒子含有樹脂組成物の硬化物を所望の形状に削り出すことによっても得ることができる。
本発明のBN凝集粒子の用途としては、成形体の中でも放熱シートが好ましい。放熱シートの製造方法は、特に制限はなく従来技術の放熱シートの製造方法により製造が可能である。
また、BN凝集粒子を用いて成形された本発明の放熱シート又は銅貼り合せ放熱シートを有した回路基板(本明細書ではこれらを纏めてシートともいう)は、高い熱伝導性による放熱効果で、高い信頼性のもとに、デバイスの高出力、高密度化が可能であるため、パワー半導体デバイス装置の放熱基板や放熱シートとして適している。パワー半導体デバイス装置において、本発明の放熱シート以外のアルミ配線、封止材、パッケージ材、ヒートシンク、サーマルペースト、はんだ等の部材は従来公知の部材を適宜採用できる。
また、本発明のシートは、窒化ホウ素凝集粒子(A)を少なくとも含有するシートであって、該シートは、X線回折測定して得られる、該シート中のh−BN一次粒子の(100)面と(004)面のピーク強度比((100)/(004))が1.0以上である。このピーク強度比((100)/(004))は、好ましくは1.5以上、より好ましく
は2.0以上、更に好ましくは2.5以上、特に好ましくは3.0以上である。上限は特に制限はないが、通常10.0以下、好ましくは7.0以下、より好ましくは5.0以下である。
更に、該シートをX線回折測定して得られる、該シート中のh−BN一次粒子の(002)面ピークから求めたh−BN一次粒子平均結晶子径は、特に制限はされないが、通常300Å以上、好ましくは320Å以上、より好ましくは375Å以上であり、更に好ましくは380Å以上、より更に好ましくは390Å以上、特に好ましくは400Å以上であり、通常5000Å以下、好ましくは2000Å以下、更に好ましくは1000Å以下であるシートであることが好ましい。
本発明のシートは、窒化ホウ素凝集粒子(A)を少なくとも含有するシートであって、該シートは、X線回折測定して得られる、該シート中のh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))は、特に制限されないが、通常0.6以上、好ましくは0.65以上、好ましくは0.7以上、より好ましくは0.75以上、更に好ましくは0.8以上、特に好ましくは0.85以上、である。また、上限は特に制限はないが、通常10.0以下、好ましくは5.0以下、より好ましくは4.0以下である。
また、放熱シートの熱伝導率(W/mK)は、特に制限はないが通常、5W/mK以上、好ましくは10W/mK以上、更に好ましくは13W/mK、特に好ましくは15W/mK以上、とりわけ好ましくは17W/mK以上である。
耐電圧性能は、通常、10kV/mm以上、好ましくは15kV/mm以上、特に好ましくは20kV/mm以上である。また、本発明のシートのガラス転移温度は、通常100℃以上、好ましくは130℃以上、特に好ましくは175℃以上である。
以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、下記の実施例における各種の条件や評価結果の値は、本発明の実施態様における好ましい範囲同様に、本発明の好ましい範囲を示すものであり、本発明の好ましい範囲は前記した実施態様における好ましい範囲と下記実施例の値または実施例同士の値の組合せにより示される範囲を勘案して決めることができる。
{測定条件}
本発明における特性は以下に記載の方法にて測定した。
・スラリー粘度:
FUNGILAB社の回転粘度計「VISCO BASIC Plus R」を用い、ブレード回転数100rpmにて測定した。
・BN凝集粒子の平均粒子径(D50):
BN凝集粒子をMalvern社製「Morphologi」を用いてD50(μm)を測定した。
・h−BN一次粒子の平均結晶子径:
粉末X線回折測定によって得られたh−BN一次粒子の(002)面由来のピークから、Scherrer式を用いて平均結晶子径を求めた。粉末X線回折測定は、PANalytical社製X線回折装置「X‘Pert Pro MPD」を用いた。Scherrer式とは次の式である。
D=(K・λ)/(β・cosθ)
ここで、D:結晶子径、K:Scherrer定数、λ:X線(CuKα1)波長、β
:ピーク半値幅、θ:CuKα1由来のブラッグ角、である。またβは、次の補正式を用
いて求めた。
β=(βo 2−βi 20.5
ここで、βiは、標準Siにより求めておいた装置由来の半価幅であり、βoは、h−BNの(002)面由来のピーク半値幅である。各定数の値は、以下を用いた。
K=0.9、λ=1.54059Å
・h−BN一次粒子の(100)/(004)ピーク面積強度比:
錠剤成形機(10mmφ)に約0.2gのBN凝集粒子を充填し、手動油圧式ポンプ(理研精機社製P-1B-041)を用いて、0.85ton/cm2のプレス圧で錠剤成形した。得られた試料について、粉末X線回折測定と同様の装置を用いて、h−BN一次粒子の(100)面および(004)面のピーク面積強度比((100)/(004))を求めた。結果を表1に示した。
・成形体の厚み方向熱伝導率
成形体の厚み方向の熱拡散率を株式会社アイフェイズ製の熱拡散率測定装置「ai―Phase Mobile 1u」を用いて測定し、以下により求めた。
成形体の厚み方向熱伝導率=成形体の厚み方向の熱拡散率×成形体の比重×成形体の比熱
BN凝集粒子、BN凝集粒子含有樹脂組成物および成形体の製造
(実施例1)
<BNスラリーからのBN凝集粒子の作製>
[BNスラリー(スラリーA)の調製]
(原料)
原料h−BN粉末(粉末X線回折測定により得られる(002)面ピークの半値幅が2θ=0.67°、酸素濃度が7.5質量%):10000g バインダー(多木化学(株)製「タキセラムM160L」、固形分濃度21質量%):11496g 界面活性剤(花王(株)製界面活性剤「アンモニウムラウリルサルフェート」:固形分濃度14質量%):250g
(スラリーの調製)
原料h−BN粉末を樹脂製のボトルに所定量計量し、次いでバインダーを所定量添加した。さらに、界面活性剤を所定量添加した後、ジルコニア性のセラミックボールを添加して、ポットミル回転台で1時間撹拌した。
スラリーの粘度は、810mPa・sであった。
[造粒]
BNスラリーからの造粒は、大河原化工機株式会社製FOC−20を用いて、ディスク回転数20000〜23000rpm、乾燥温度80℃で実施し、球状のBN凝集粒子を得た。
[BN凝集粒子(BN−A凝集粒子)の作製]
上記BN造粒粒子を、室温で真空引きをした後、窒素ガスを導入して復圧し、そのまま窒素ガスを導入しながら2000℃まで83℃/時で昇温し、2000℃到達後、そのまま窒素ガスを導入しながら5時間保持した。その後、室温まで冷却し、カードハウス構造を有する球状のBN−A凝集粒子を得た。
[分級]
更に、上記加熱処理後のBN−A凝集粒子を、乳鉢および乳棒を用いて軽粉砕した後、目開き90μmの篩を用いて分級した。分級後、BN−A凝集粒子を構成するh−BN一
次粒子の平均結晶子径、該h−BN一次粒子の(100)面と(004)面のピーク強度比(100)/(004))、BN−A凝集粒子のD50を測定した。測定結果は表1に示す。
<成形体シートの製造>
上記で得られたBN−A凝集粒子をフィラーとして用い、フィラーと樹脂組成物とからなるBN凝集粒子含有樹脂組成物を調製した。
[樹脂組成物]
三菱化学(株)製エポキシ樹脂である「157S70」、「828US」、「4275」および四国化成工業(株)製の硬化剤である「C11Z−CN」を、「157S70」:「828US」:「4275」:「C11Z−CN」=1:0.25:0.25:0.11(質量比)の割合で混合して樹脂組成物を得た。
[BN凝集粒子含有樹脂組成物の調製]
BN−A(BN凝集粒子)と上記樹脂組成物をBN−A凝集粒子の充填量(樹脂組成物とBN―A凝集粒子の合計に対するBN−凝集粒子の含有割合)が80質量%になるように配合した。
調製された樹脂組成物/BN−A凝集粒子混合物100質量部と、メチルエチルケトン50質量部をポリプロピレン製の蓋付きカップに入れ、さらに、樹脂組成物成分100質量部に対して6質量部の1−シアノエチル−2−ウンデシルイミダゾール(硬化剤)を加え、自公転攪拌機(シンキー社製「泡取り錬太郎 AR−250」))を用いて混合して、BN凝集粒子含有樹脂組成物塗布液を調製した。
[塗布]
得られたBN凝集粒子含有樹脂組成物塗布液を、ギャップ間隔400μmのバーコーター(テスター産業株式会社製「オートフィルムアプリケーター」)で、厚さ100μm、10cm×20cmの銅基板上に塗布した。その後、50℃で、30分間真空乾燥を行って、銅基板に塗布膜を形成した。
[成形体の製造]
得られた塗布膜が形成された銅版を4cm角に切断した。金型に入れて、130℃、500kg/cm2で3分間ホットプレスを行い、さらにオーブン中で160℃、2時間硬
化させることにより、熱伝導率評価用の成形体(4cm×4cm)を得た。測定結果は表1に示す。
(実施例2)
実施例1において、スラリーAを原料の配合比を以下に変更したBNスラリー(スラリーB)とした以外は、実施例1と同様に行い、カードハウス構造を有する球状のBN凝集粒子(凝集BN−B)及びBN凝集粒子含有樹脂組成物、成形体を作製した。測定結果を表1に示す。
[BNスラリー(スラリーB)]
(原料)
原料h−BN粉末:10000g
純水:7500g
バインダー:5750g
界面活性剤:250g
(スラリー調製)
原料h−BN粉末を樹脂製のボトルに所定量計量し、次いで純水、バインダーの順に所定量添加した。さらに、界面活性剤を所定量添加した後、ジルコニア性のセラミックボー
ルを添加して、ポットミル回転台で1時間撹拌した。スラリーの粘度は、2200mPa・sであった。
(実施例3)
実施例1において、スラリーAを原料の配合比を以下に変更したBNスラリー(スラリーC)とした以外は、実施例1と同様に行い、カードハウス構造を有する球状のBN凝集粒子(凝集BN−C)及びBN凝集粒子含有樹脂組成物、成形体を作製した。測定結果を表1に示す。
[BNスラリー(スラリーC)]
(原料)
原料h−BN粉末:10000g
バインダー:11496g
界面活性剤:250g
(スラリー調製)
原料h−BN粉末を樹脂製のボトルに所定量計量し、次いでバインダーを所定量添加した。さらに、界面活性剤を所定量添加した後、ジルコニア性のセラミックボールを添加して、ポットミル回転台で1時間撹拌した。スラリーの粘度は、1600mPa・sであった。
(比較例1)
実施例2におけるスラリーBを、原料の配合比を変更した以下に示すスラリーDとした以外は、実施例2と同様に行い、BN凝集粒子(BN−D凝集粒子)及びBN凝集粒子含有樹脂組成物、成形体を作製した。スラリーの粘度は155mPa・sであった。測定結果を表1に示す。
[BNスラリー(スラリーD)]
スラリーD配合
(原料)
原料h−BN粉末:2400g
純水:2199g
バインダー:1380g
界面活性剤:60g
(比較例2)
実施例1と同様にスラリーの調製および造粒を行い、BN凝集粒子作製時の焼成温度を1300℃、保持時間を24hとした以外は実施例1と同様にBN凝集粒子を作製した(凝集BN−E)。このBN凝集粒子を用いて、実施例1と同様の方法でBN凝集粒子含有樹脂組成物の作製、成形体の製造を行った。表1に結果を示す。
(比較例3)
実施例1のBN−A凝集粒子に変えてモメンティブ社製PTX60を用いた以外は実施例1と同様にBN凝集粒子含有樹脂組成物及び成形体の製造を行った。表1に結果を示す。
(比較例4)
実施例1のBN−A凝集粒子に変えてモメンティブ社製PTX25を用いた以外は実施例1と同様に行った。表1に結果を示す。
(比較例5)
実施例1のBN−A凝集粒子に変えて電気化学工業社製SGPSを用いた以外は実施例1と同様にBN凝集粒子含有樹脂組成物及び成形体の製造を行った。表1に結果を示す。
(比較例6)
実施例1のBN−A凝集粒子に変えてサンゴバン社製CTS7Mを用いた以外は実施例1と同様にBN凝集粒子含有樹脂組成物及び成形体の製造を行った。表1に結果を示す。
(比較例7)
実施例1と同様にスラリーの調製および造粒を行い、BN凝集粒子作製時の焼成温度を1600℃、保持時間を24hとした以外は実施例1と同様にBN凝集粒子を作製した(凝集BN−F)。このBN凝集粒子を用いて、実施例1と同様の方法でBN凝集粒子含有樹脂組成物の作製、成形体の製造を行った。表1に結果を示す。
(比較例8)
実施例2において、スラリーBの原料の配合比を以下に変更したBNスラリー(スラリーE)とした以外は、実施例1と同様に行った。
[BNスラリー(スラリーE)]
(原料)
原料h−BN粉末:10000g
純水:7750g
バインダー:5750g
(スラリー調製)
原料h−BN粉末を樹脂製のボトルに所定量計量し、次いで純水、バインダーの順に所定量添加した。さらに、ジルコニア性のセラミックボールを添加して、ポットミル回転台で1時間撹拌した。スラリーの粘度は、8000mPa・sであった。
BN凝集粒子成形圧縮成形体におけるh−BN一次粒子の(100)/(004)面のピーク面積強度比の評価
実施例4
錠剤成形機(10mmφ)に約0.2gの実施例1で作製したBN−A凝集粒子を充填し、手動油圧式ポンプ(理研精機社製P-1B-041)を用いて、表2に記載の種々のプレス圧で錠剤成形した。得られた試料について、粉末X線回折測定と同様の装置を用いて、h−BN一次粒子の(100)面および(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
実施例5
錠剤成形機(10mmφ)に約0.2gのBN凝集粒子として実施例2で作製したBN−B凝集粒子を用いた以外は、実施例3と同様にしてh−BN一次粒子の(100)面および(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
比較例9
BN凝集粒子としてBN−E凝集粒子を用いた以外は、実施例3と同様にしてh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
比較例10
BN凝集粒子としてモメンティブ社製PTX60凝集粒子を用いた以外は、実施例3と同様にしてh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
比較例11
BN凝集粒子としてモメンティブ社製PTX25を用いた以外は、実施例3と同様にしてh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
比較例12
BN凝集粒子として電気化学工業社製SGPSを用いた以外は、実施例3と同様にしてh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
比較例13
BN凝集粒子としてサンゴバン社製CTS7Mを用いた以外は、実施例3と同様にしてh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
比較例14
BN凝集粒子としてBN−F凝集粒子を用いた以外は、実施例3と同様にしてh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))を求めた。結果を表2に示した。
表1から、本発明のBN凝集粒子を用いることにより、成形体として高い熱伝導性を示すことがわかる。h−BN一次粒子の平均結晶子径が375Å未満の比較例では、熱伝導性が低く、平均結晶子径が375Åを超えるものの、BN凝集粒子の粉末X線回折測定によるh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以下である比較例も高い熱伝導率を達成することができない。従って、BN凝集粒子を構成するh−BN一次粒子の平均結晶子径が375Å以上であり、かつ粉末X線回折測定によるh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上である本発明のBN凝集粒子は、熱伝導性フィラーとして従来にはない性能を発揮し、熱の課題が多い電気電子分野など様々な用途に幅広く適用可能である。
さらに、表1の結果と表2から、特定の圧力以上でもh−BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.25以上であり、h−BN一次粒子の平均結晶子径が375Åより大きい凝集粒子を用いることで、厚み方向に高い熱伝導性を発現するシートを得ることができる。
本発明のBN凝集粒子を用いることにより、例えばパワー半導体デバイスで必要とされる熱伝導性の高い、高品質の放熱シートを形成することができる。該放熱シートを有するパワー半導体デバイスは、次世代のSiC、GaNなど、高温動作が可能な高効率基板を用いたパワー半導体デバイスの作製に有用である。

Claims (11)

  1. 窒化ホウ素一次粒子(以下「BN一次粒子」と称する。)が凝集してなる窒化ホウ素凝集粒子(以下「BN凝集粒子」と称す。)であって、
    該BN一次粒子の長軸が10μm以下であり、
    10mmφの粉末錠剤成形機で0.85ton/cm2以上2.54ton/cm2以下の成形圧力で成形して得られたペレット状の試料を粉末X線回折測定して得られる、BN一次粒子の(100)面と(004)面のピーク面積強度比((100)/(004))が0.40以上2.0以下であり、かつ該BN凝集粒子を0.2mm深さのガラス試料板に表面が平滑になるように充填し、粉末X線回折測定して得られる、BN一次粒子の(002)面ピークから求めたBN一次粒子の平均結晶子径が375Å以上1000Å以下であることを特徴とするBN凝集粒子。
  2. 球状である請求項1に記載のBN凝集粒子。
  3. BN凝集粒子がカードハウス構造を有する請求項1または2に記載のBN凝集粒子。
  4. 前記BN一次粒子が、h−BN一次粒子である請求項1ないし3のいずれか1項に記載のBN凝集粒子。
  5. 樹脂と、請求項1ないしのいずれか1項に記載のBN凝集粒子を含むBN凝集粒子含有樹脂組成物。
  6. BN凝集粒子含有樹脂組成物中におけるBN凝集粒子の含有割合が、前記BN凝集粒子と前記樹脂の合計を100質量%とした際、5質量%以上95質量%以下である請求項に記載のBN凝集粒子含有樹脂組成物。
  7. 前記樹脂が熱硬化性樹脂および/または熱可塑性樹脂である請求項又はに記載のBN凝集粒子含有樹脂組成物。
  8. 請求項1ないしのいずれか1項に記載のBN凝集粒子を含む成形体。
  9. 請求項ないしのいずれか1項に記載のBN凝集粒子含有樹脂組成物を成形してなる成形体。
  10. 請求項またはに記載の成形体を含むパワー半導体デバイス。
  11. 原料窒化ホウ素粉末のスラリー(以下「BNスラリー」と称す。)を造粒し、加熱処理をすることによって請求項1ないしの何れか1項に記載のBN凝集粒子を製造する方法であって、
    原料窒化ホウ素粉末中の全酸素濃度が質量%以上10質量%以下であり、
    前記原料窒化ホウ素粉末の粉末X線回折測定により得られる(002)面のピーク半値幅が、2θの角度で、0.4°以上2.0°以下であり、
    該BNスラリーがバインダーを含み、
    該BNスラリーの粘度が200mPa・s以上5000mPa・s以下であり、
    前記加熱処理を1800℃以上2300℃以下で行うことを特徴とするBN凝集粒子の製造方法。
JP2015021246A 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体 Active JP6794613B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020187065A JP7455047B2 (ja) 2014-02-05 2020-11-10 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2014020423 2014-02-05
JP2014020424 2014-02-05
JP2014020423 2014-02-05
JP2014020424 2014-02-05
JP2014207522 2014-10-08
JP2014207522 2014-10-08
JP2014259221 2014-12-22
JP2014259221 2014-12-22
JP2015005424 2015-01-14
JP2015005428 2015-01-14
JP2015005424 2015-01-14
JP2015005428 2015-01-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020187065A Division JP7455047B2 (ja) 2014-02-05 2020-11-10 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体

Publications (3)

Publication Number Publication Date
JP2016135731A JP2016135731A (ja) 2016-07-28
JP2016135731A5 JP2016135731A5 (ja) 2018-03-08
JP6794613B2 true JP6794613B2 (ja) 2020-12-02

Family

ID=53777999

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2015021255A Active JP6447202B2 (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子含有組成物、該窒化ホウ素凝集粒子含有樹脂組成物を用いた成形体
JP2015021224A Pending JP2016135729A (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、該粒子の製造方法、該粒子を含む組成物、及び該粒子を含む成形体
JP2015021246A Active JP6794613B2 (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体
JP2015021240A Pending JP2016135730A (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、該粒子の製造方法、該粒子を含む組成物、及び該粒子を含む成形体
JP2015561028A Active JP6493226B2 (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP2019039094A Active JP6773153B2 (ja) 2014-02-05 2019-03-05 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP2020165695A Active JP7207384B2 (ja) 2014-02-05 2020-09-30 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP2020187065A Active JP7455047B2 (ja) 2014-02-05 2020-11-10 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体
JP2023196054A Pending JP2024003261A (ja) 2014-02-05 2023-11-17 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015021255A Active JP6447202B2 (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子含有組成物、該窒化ホウ素凝集粒子含有樹脂組成物を用いた成形体
JP2015021224A Pending JP2016135729A (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、該粒子の製造方法、該粒子を含む組成物、及び該粒子を含む成形体

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2015021240A Pending JP2016135730A (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、該粒子の製造方法、該粒子を含む組成物、及び該粒子を含む成形体
JP2015561028A Active JP6493226B2 (ja) 2014-02-05 2015-02-05 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP2019039094A Active JP6773153B2 (ja) 2014-02-05 2019-03-05 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP2020165695A Active JP7207384B2 (ja) 2014-02-05 2020-09-30 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、成形体、及びシート
JP2020187065A Active JP7455047B2 (ja) 2014-02-05 2020-11-10 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体
JP2023196054A Pending JP2024003261A (ja) 2014-02-05 2023-11-17 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体

Country Status (8)

Country Link
US (2) US10106413B2 (ja)
EP (1) EP3103766A4 (ja)
JP (9) JP6447202B2 (ja)
KR (1) KR102400206B1 (ja)
CN (2) CN106029561B (ja)
MY (2) MY179291A (ja)
TW (2) TWI687393B (ja)
WO (1) WO2015119198A1 (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3103766A4 (en) * 2014-02-05 2017-03-01 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
WO2016156288A1 (en) * 2015-03-31 2016-10-06 Struers A/S A mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium
JP6683715B2 (ja) * 2015-08-26 2020-04-22 デンカ株式会社 熱伝導性樹脂組成物
CN107848801B (zh) * 2015-09-03 2021-01-12 昭和电工株式会社 六方晶氮化硼粉末、其制造方法、树脂组合物及树脂片
JP6497291B2 (ja) * 2015-10-14 2019-04-10 信越化学工業株式会社 絶縁放熱シート
US20190160785A1 (en) * 2016-07-05 2019-05-30 Namics Corporation Resin composition for film, film, film with base material, metal/resin laminate body, resin cured product, semiconductor device, and method for producing film
JP6682644B2 (ja) 2016-10-07 2020-04-15 デンカ株式会社 窒化ホウ素塊状粒子、その製造方法及びそれを用いた熱伝導樹脂組成物
CN109790026B (zh) * 2016-10-21 2023-03-28 电化株式会社 球状氮化硼微粉、其制造方法及使用了其的导热树脂组合物
JP6822836B2 (ja) * 2016-12-28 2021-01-27 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP6795409B2 (ja) * 2017-01-19 2020-12-02 積水化学工業株式会社 硬化性材料、硬化性材料の製造方法及び積層体
JP6828503B2 (ja) * 2017-02-22 2021-02-10 大日本印刷株式会社 無機層状材料積層体、放熱部材、及びパワーデバイス装置
JP6414260B2 (ja) * 2017-03-23 2018-10-31 三菱マテリアル株式会社 放熱回路基板
JP7510241B2 (ja) * 2017-04-28 2024-07-03 積水化学工業株式会社 硬化シートの製造方法
US11492528B2 (en) 2017-06-23 2022-11-08 Sekisui Chemical Co., Ltd. Heat dissipation sheet, method for producing heat dissipation sheet, and laminate
EP3653574B1 (en) * 2017-07-14 2021-01-06 FUJIFILM Corporation Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
JP7104503B2 (ja) * 2017-10-13 2022-07-21 デンカ株式会社 塊状窒化ホウ素粉末の製造方法及びそれを用いた放熱部材
EP3696140B1 (en) * 2017-10-13 2021-07-21 Denka Company Limited Boron nitride powder, method for producing same, and heat-dissipating member produced using same
JP7069485B2 (ja) * 2017-12-27 2022-05-18 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
CN109988409B (zh) 2017-12-29 2021-10-19 广东生益科技股份有限公司 一种氮化硼团聚体、包含其的热固性树脂组合物及其用途
JP7188070B2 (ja) * 2018-01-05 2022-12-13 三菱ケミカル株式会社 放熱絶縁シートおよび該シート硬化物を絶縁層とする積層構造体
JP7196905B2 (ja) 2018-03-30 2022-12-27 三菱ケミカル株式会社 放熱シート、放熱部材及び半導体デバイス
CN109054302A (zh) * 2018-08-02 2018-12-21 中国科学院深圳先进技术研究院 热界面材料及其制备方法
EP3647265A4 (en) 2018-09-07 2020-09-16 Showa Denko K.K. HEXAGONAL BORON NITRIDE POWDER, ITS PRODUCTION PROCESS, COMPOSITION AND HEAT DISSIPATING MATERIAL USING IT
JP7172319B2 (ja) * 2018-09-12 2022-11-16 富士通株式会社 放熱構造体、電子装置、及び放熱構造体の製造方法
JP6963100B2 (ja) * 2018-11-16 2021-11-05 富士高分子工業株式会社 熱伝導性シート及びその製造方法
US11781053B2 (en) * 2018-12-25 2023-10-10 Fuji Polymer Industries Co., Ltd. Thermally conductive composition and thermally conductive sheet using the same
KR20210135997A (ko) * 2019-02-27 2021-11-16 미쯔비시 케미컬 주식회사 질화붕소 응집 분말, 방열 시트 및 반도체 디바이스
CN113677648A (zh) * 2019-03-22 2021-11-19 福吉米株式会社 填料、成形体及散热材料
CN113573895A (zh) * 2019-03-26 2021-10-29 三菱化学株式会社 热传导性树脂片、层叠散热片、散热性电路基板及功率半导体器件
WO2020196643A1 (ja) * 2019-03-27 2020-10-01 デンカ株式会社 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
JP7059441B2 (ja) * 2019-03-27 2022-04-25 富士フイルム株式会社 放熱シート前駆体、及び放熱シートの製造方法
WO2020196679A1 (ja) * 2019-03-28 2020-10-01 デンカ株式会社 窒化ホウ素粉末及びその製造方法、並びに、複合材及び放熱部材
WO2021035383A1 (en) * 2019-08-23 2021-03-04 Evonik Specialty Chemicals (Shanghai) Co., Ltd. Thermal conductive filler and preparation method thereof
JP7152617B2 (ja) * 2019-09-25 2022-10-12 富士フイルム株式会社 放熱シート
CN114402706B (zh) * 2019-09-25 2024-04-30 富士胶片株式会社 散热片
KR102695100B1 (ko) * 2019-09-27 2024-08-13 후지필름 가부시키가이샤 열전도 재료 형성용 조성물, 열전도 재료, 열전도 시트, 열전도층 부착 디바이스
TW202124505A (zh) 2019-10-30 2021-07-01 日商三菱化學股份有限公司 樹脂組合物、硬化物、複合成形體、半導體裝置
JP7378284B2 (ja) * 2019-12-11 2023-11-13 デンカ株式会社 複合粒子を含有する粉体及びその製造方法、並びに、該粉体を含有する樹脂組成物
JP7372140B2 (ja) * 2019-12-25 2023-10-31 デンカ株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びに化粧料及びその製造方法
KR102724547B1 (ko) 2020-02-13 2024-10-30 삼성전자주식회사 반도체 패키지
CN112225186B (zh) * 2020-10-21 2023-07-21 江西联锴科技有限公司 一种球形氮化硼的制备方法
TW202302740A (zh) 2021-03-29 2023-01-16 日商三菱化學股份有限公司 樹脂組合物、片材硬化物、複合成形體及半導體裝置
CN113336203B (zh) * 2021-07-09 2024-06-25 丹东市化工研究所有限责任公司 一种小粒径氮化硼团聚体颗粒及其制备方法
WO2023089452A1 (en) * 2021-11-22 2023-05-25 3M Innovative Properties Company Spherical boron nitride particles having low surface roughness
WO2023120923A1 (ko) * 2021-12-22 2023-06-29 한국세라믹기술원 방열 소재, 이를 포함하는 조성물, 및 그 제조 방법
KR20240146066A (ko) 2022-02-22 2024-10-07 덴카 주식회사 질화붕소 분말의 제조 방법, 질화붕소 분말 및 수지 밀봉재
TW202402964A (zh) 2022-03-24 2024-01-16 日商三菱化學股份有限公司 熱硬化性樹脂組合物、熱傳導性樹脂片材、散熱積層體、散熱性電路基板、半導體裝置及功率模組
CN118382656A (zh) 2022-03-28 2024-07-23 三菱化学株式会社 热固性树脂组合物、树脂固化物和复合成型体
WO2023218372A1 (en) * 2022-05-11 2023-11-16 Church & Dwight Co., Inc. Elastomeric articles with improved properties
KR20240003087A (ko) 2022-06-30 2024-01-08 이예진 질화붕소 시트가 탑재된 자율주행 방역로봇
CN115974011A (zh) * 2022-12-23 2023-04-18 雅安百图高新材料股份有限公司 球形六方氮化硼及其制备方法
JP7438443B1 (ja) 2023-10-12 2024-02-26 古河電子株式会社 窒化ホウ素凝集粒子、シート部材および窒化ホウ素凝集粒子の製造方法
JP7438442B1 (ja) 2023-10-12 2024-02-26 古河電子株式会社 窒化ホウ素凝集粒子、シート部材および窒化ホウ素凝集粒子の製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817785B1 (ja) 1967-03-29 1973-05-31
JP3461651B2 (ja) * 1996-01-24 2003-10-27 電気化学工業株式会社 六方晶窒化ほう素粉末及びその用途
JP3839539B2 (ja) * 1997-01-20 2006-11-01 修 山本 結晶性乱層構造窒化硼素粉末とその製造方法
JPH1160216A (ja) * 1997-08-04 1999-03-02 Shin Etsu Chem Co Ltd 熱伝導性窒化ホウ素フィラー及び絶縁放熱シート
US20060121068A1 (en) * 1999-08-31 2006-06-08 General Electric Company Boron nitride particles of spherical geometry and process for making thereof
US7445797B2 (en) 2005-03-14 2008-11-04 Momentive Performance Materials Inc. Enhanced boron nitride composition and polymer-based compositions made therewith
US20070241303A1 (en) 1999-08-31 2007-10-18 General Electric Company Thermally conductive composition and method for preparing the same
US7976941B2 (en) * 1999-08-31 2011-07-12 Momentive Performance Materials Inc. Boron nitride particles of spherical geometry and process for making thereof
US6645612B2 (en) 2001-08-07 2003-11-11 Saint-Gobain Ceramics & Plastics, Inc. High solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them
JP4089636B2 (ja) 2004-02-19 2008-05-28 三菱電機株式会社 熱伝導性樹脂シートの製造方法およびパワーモジュールの製造方法
JP5305656B2 (ja) 2004-08-23 2013-10-02 モーメンティブ・パフォーマンス・マテリアルズ・インク 熱伝導性組成物およびその作製方法
JP4817785B2 (ja) 2005-09-30 2011-11-16 三菱エンジニアリングプラスチックス株式会社 高熱伝導絶縁性ポリカーボネート系樹脂組成物および成形体
JP5081488B2 (ja) * 2006-04-20 2012-11-28 Jfeスチール株式会社 六方晶窒化ホウ素粉末
JP5607928B2 (ja) * 2006-10-07 2014-10-15 モーメンティブ・パフォーマンス・マテリアルズ・インク 混合窒化ホウ素組成物およびその製造方法
WO2009041300A1 (ja) * 2007-09-26 2009-04-02 Mitsubishi Electric Corporation 熱伝導性シート及びパワーモジュール
JP2010138097A (ja) * 2008-12-10 2010-06-24 Kao Corp 液状化粧料
JP5036696B2 (ja) * 2008-12-26 2012-09-26 三菱電機株式会社 熱伝導性シート及びパワーモジュール
JP5208060B2 (ja) 2009-06-26 2013-06-12 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
WO2011021366A1 (ja) * 2009-08-20 2011-02-24 株式会社カネカ 球状化窒化ほう素の製造法
JP5497458B2 (ja) * 2010-01-13 2014-05-21 電気化学工業株式会社 熱伝導性樹脂組成物
WO2012026012A1 (ja) * 2010-08-26 2012-03-01 電気化学工業株式会社 樹脂組成物及び該樹脂組成物からなる成形体と基板材並びに該基板材を含んでなる回路基板
DE102010050900A1 (de) * 2010-11-10 2012-05-10 Esk Ceramics Gmbh & Co. Kg Bornitrid-Agglomerate, Verfahren zu deren Herstellung und deren Verwendung
JP5653280B2 (ja) * 2011-04-15 2015-01-14 三菱電機株式会社 熱伝導性シート用樹脂組成物、熱伝導性シート及びパワーモジュール
JP5594782B2 (ja) * 2011-04-29 2014-09-24 独立行政法人産業技術総合研究所 凝集体の製造方法
JP6044880B2 (ja) * 2011-06-07 2016-12-14 国立研究開発法人産業技術総合研究所 無機有機複合組成物からなる複合材料及びその製造方法
JP2013040062A (ja) 2011-08-12 2013-02-28 Mitsubishi Chemicals Corp 六方晶窒化ホウ素粉末、それを含有する熱伝導性樹脂組成物及びそれによる成形体
EP3269682B1 (en) * 2011-11-29 2020-01-01 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
JP2013147403A (ja) 2012-01-23 2013-08-01 Mitsubishi Chemicals Corp 金属化合物含有窒化ホウ素、及びそれを含有する複合材組成物
DE102012104049A1 (de) 2012-05-09 2013-11-28 Esk Ceramics Gmbh & Co. Kg Bornitrid-Agglomerate, Verfahren zu deren Herstellung und deren Verwendung
US9334391B2 (en) 2012-06-27 2016-05-10 Mizushima Ferroalloy Co., Ltd. Sintered spherical BN particles, method of producing the same, and polymer material
JP5969314B2 (ja) * 2012-08-22 2016-08-17 デンカ株式会社 窒化ホウ素粉末及びその用途
EP3103766A4 (en) * 2014-02-05 2017-03-01 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet

Also Published As

Publication number Publication date
TWI757686B (zh) 2022-03-11
US10414653B2 (en) 2019-09-17
US20160340191A1 (en) 2016-11-24
JP7455047B2 (ja) 2024-03-25
JP2016135730A (ja) 2016-07-28
JP2016135729A (ja) 2016-07-28
TWI687393B (zh) 2020-03-11
EP3103766A4 (en) 2017-03-01
JP2021006507A (ja) 2021-01-21
CN106029561B (zh) 2021-11-02
JP2019137608A (ja) 2019-08-22
KR20160117472A (ko) 2016-10-10
JP7207384B2 (ja) 2023-01-18
JP6493226B2 (ja) 2019-04-03
JP2016135731A (ja) 2016-07-28
MY179291A (en) 2020-11-03
JPWO2015119198A1 (ja) 2017-03-23
CN113788465A (zh) 2021-12-14
WO2015119198A1 (ja) 2015-08-13
JP2016135732A (ja) 2016-07-28
JP6447202B2 (ja) 2019-01-09
JP6773153B2 (ja) 2020-10-21
JP2024003261A (ja) 2024-01-11
EP3103766A1 (en) 2016-12-14
CN106029561A (zh) 2016-10-12
KR102400206B1 (ko) 2022-05-19
TW201536715A (zh) 2015-10-01
TW202026270A (zh) 2020-07-16
US20180354793A1 (en) 2018-12-13
MY195160A (en) 2023-01-11
CN113788465B (zh) 2024-01-12
US10106413B2 (en) 2018-10-23
JP2021038140A (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7455047B2 (ja) 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子の製造方法、該窒化ホウ素凝集粒子含有樹脂組成物、及び成形体
JP6786778B2 (ja) 放熱樹脂シート及び該放熱樹脂シートを含むデバイス
JP6950148B2 (ja) 窒化アルミニウム−窒化ホウ素複合凝集粒子およびその製造方法
JP6500339B2 (ja) 放熱シートおよび放熱シート用塗布液、並びにパワーデバイス装置
JP7467980B2 (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイスの製造方法
JP2015193752A (ja) 窒化ホウ素粒子および窒化ホウ素粒子の製造方法、該窒化ホウ素粒子を含む放熱シート用塗布液、該窒化ホウ素粒子を含む放熱シート、並びにパワーデバイス装置
JP7517323B2 (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
JP2017036190A (ja) 窒化ホウ素凝集粒子組成物、bn凝集粒子含有樹脂組成物及びそれらの成形体、並びに窒化ホウ素凝集粒子の製造方法、
JP6394115B2 (ja) 樹脂組成物、樹脂組成物からなる放熱シート、及び放熱シートを含むパワーデバイス装置
JP6379579B2 (ja) 窒化ホウ素シート
JP2015189609A (ja) 窒化ホウ素シートの製造方法
JP2024152598A (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイスモジュール

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R151 Written notification of patent or utility model registration

Ref document number: 6794613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157