Nothing Special   »   [go: up one dir, main page]

JP6602908B2 - Zirconia slurry for thin film formation and manufacturing method thereof - Google Patents

Zirconia slurry for thin film formation and manufacturing method thereof Download PDF

Info

Publication number
JP6602908B2
JP6602908B2 JP2018044274A JP2018044274A JP6602908B2 JP 6602908 B2 JP6602908 B2 JP 6602908B2 JP 2018044274 A JP2018044274 A JP 2018044274A JP 2018044274 A JP2018044274 A JP 2018044274A JP 6602908 B2 JP6602908 B2 JP 6602908B2
Authority
JP
Japan
Prior art keywords
zirconia
slurry
thin film
forming
nanoparticle aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018044274A
Other languages
Japanese (ja)
Other versions
JP2018154550A (en
Inventor
弘樹 山下
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Publication of JP2018154550A publication Critical patent/JP2018154550A/en
Application granted granted Critical
Publication of JP6602908B2 publication Critical patent/JP6602908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、透明性に優れ、薄膜の形成性に優れた薄膜形成用ジルコニアスラリー及びその製造方法に関する。   The present invention relates to a zirconia slurry for forming a thin film that is excellent in transparency and excellent in the formation of a thin film, and a method for producing the same.

酸化ジルコニウムを用いた光学薄膜は、機械的強度や耐熱性に優れると共に、340nm〜8μmを透過波長域に持つ高屈折率材料とすることができることから、従来より、酸化ジルコニウムと透明な樹脂やフィルムとを複合化させる技術が種々開発されている。   An optical thin film using zirconium oxide is excellent in mechanical strength and heat resistance, and can be a high refractive index material having a transmission wavelength region of 340 nm to 8 μm. Therefore, zirconium oxide and transparent resins and films have been conventionally used. Various technologies have been developed to combine the above.

例えば、発光ダイオード(LED)を覆う封止樹脂に酸化ジルコニウムを用いる技術や、粒子径が1〜20nmの表面修飾したジルコニア粒子をシリコーン樹脂に配合したLEDの封止材を得るための技術等が知られている。   For example, there are a technique for using zirconium oxide as a sealing resin for covering a light emitting diode (LED), a technique for obtaining an LED sealing material in which surface-modified zirconia particles having a particle diameter of 1 to 20 nm are blended in a silicone resin, and the like. Are known.

このような酸化ジルコニウムを用いた光学薄膜を得る場合、酸化ジルコニウムの粒子径を透過光の波長(可視光の場合:380〜800nm)よりも十分に小さくする必要があることから、かかる酸化ジルコニウム粒子の微粒子化や、酸化ジルコニウム分散液の均質化を図る試みもなされている。   When obtaining such an optical thin film using zirconium oxide, it is necessary to make the particle diameter of zirconium oxide sufficiently smaller than the wavelength of transmitted light (in the case of visible light: 380 to 800 nm). Attempts have also been made to make the particles finer and homogenize the zirconium oxide dispersion.

例えば、特許文献1には、水酸化ジルコニウムのスラリーに塩酸を加えて加熱した酸化ジルコニウム分散液が開示されており、特許文献2には、カルボン酸とジルコニウム塩を含む水溶液にアルカリ水溶液を加えた水酸化ジルコニウムゲルから得られる酸化ジルコニウム分散液が開示されている。また特許文献3には、ジルコニウム塩をアルカリと反応させて得られた酸化ジルコニウムのスラリーを濾過、洗浄、リパルプ後、得られたスラリーに有機酸を加えて水熱処理することにより、酸化ジルコニウム分散水を得ている。   For example, Patent Document 1 discloses a zirconium oxide dispersion in which hydrochloric acid is added to a zirconium hydroxide slurry and heated, and Patent Document 2 adds an alkaline aqueous solution to an aqueous solution containing a carboxylic acid and a zirconium salt. Zirconium oxide dispersions obtained from zirconium hydroxide gel are disclosed. Further, in Patent Document 3, a zirconium oxide slurry obtained by reacting a zirconium salt with an alkali is filtered, washed, repulped, and then subjected to hydrothermal treatment by adding an organic acid to the resulting slurry, whereby zirconium oxide dispersed water is obtained. Have gained.

特開平5−24844号公報JP-A-5-24844 特開2006-143535号公報JP 2006-143535 A 特開2014−80361号公報JP 2014-80361 A

しかしながら、特許文献1に記載の酸化ジルコニウムでは、平均粒子径が50nm以上であって依然として微粒子化が不充分であり、また特許文献2に記載のジルコニア分散液では、充分な濃度を確保するのが困難である。さらに、特許文献3に記載のジルコニア分散液では、波長400nmにおける透過率が50%以下と低く、これらいずれの文献に記載の技術であっても、光透過率の高い薄膜を得るには未だ改善の余地がある。   However, the zirconium oxide described in Patent Document 1 has an average particle diameter of 50 nm or more and is still insufficient in the form of fine particles, and the zirconia dispersion described in Patent Document 2 ensures a sufficient concentration. Have difficulty. Furthermore, in the zirconia dispersion described in Patent Document 3, the transmittance at a wavelength of 400 nm is as low as 50% or less, and even with the techniques described in any of these documents, it is still improved to obtain a thin film with high light transmittance. There is room for.

したがって、本発明の課題は、優れた光透過性を有する薄膜を形成することのできる、酸化ジルコニウム(以下、「ジルコニア」と称する場合もある。)を用いた薄膜形成用ジルコニアスラリー及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to form a zirconia slurry for forming a thin film using zirconium oxide (hereinafter sometimes referred to as “zirconia”) capable of forming a thin film having excellent light transmittance and a method for producing the same. Is to provide.

そこで本発明者らは、種々検討したところ、特定の繊維径を有するセルロースナノファイバーを軸又は基材として、これに特定の粒子径を有する複数のジルコニア微粒子が直線的に連続して担持してなる、特異な形状を呈するジルコニアナノ粒子集合体を用いることにより、優れた光透過性を有する薄膜を形成することができるジルコニアスラリーが得られることを見出し、本発明を完成させるに至った。   Therefore, the present inventors have made various studies, and using a cellulose nanofiber having a specific fiber diameter as a shaft or a base material, a plurality of zirconia fine particles having a specific particle diameter are supported linearly and continuously on this. It has been found that a zirconia slurry capable of forming a thin film having excellent light transmittance can be obtained by using a zirconia nanoparticle aggregate exhibiting a unique shape, and the present invention has been completed.

すなわち、本発明は、次の成分(X)〜(Y):
(X)平均繊維径が50nm以下であるセルロースナノファイバーに、平均粒子径が0.1nm〜40nmである複数のジルコニアナノ粒子が、直線的に連続して担持してなるジルコニアナノ粒子集合体、
(Y)分散媒
を含有する薄膜形成用ジルコニアスラリーを提供するものである。
That is, the present invention includes the following components (X) to (Y):
(X) A zirconia nanoparticle aggregate in which a plurality of zirconia nanoparticles having an average particle diameter of 0.1 nm to 40 nm are linearly continuously supported on cellulose nanofibers having an average fiber diameter of 50 nm or less,
(Y) A zirconia slurry for forming a thin film containing a dispersion medium is provided.

さらに、本発明は、次の工程(I)〜(III):
(I)ジルコニウム原料化合物、セルロースナノファイバー、及びアルカリ溶液を用いてスラリーAを調製する工程、
(II)得られたスラリーAを、温度が100℃以上であり、かつ圧力が0.3MPa〜0.9MPaである水熱反応に付して、ジルコニアナノ粒子集合体(X)を含有するスラリーBを得る工程、
(III)得られたスラリーBをろ過して水洗した後、分散媒(Y)でリパルプする工程
を備える、上記薄膜形成用ジルコニアスラリーの製造方法を提供するものである。
Furthermore, the present invention provides the following steps (I) to (III):
(I) a step of preparing a slurry A using a zirconium raw material compound, cellulose nanofibers, and an alkaline solution;
(II) A slurry containing the zirconia nanoparticle aggregate (X) by subjecting the obtained slurry A to a hydrothermal reaction having a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to 0.9 MPa. Obtaining B,
(III) The method for producing the zirconia slurry for forming a thin film is provided, which includes a step of filtering and washing the obtained slurry B and then repulping with a dispersion medium (Y).

本発明の薄膜形成用ジルコニアスラリーによれば、非常に微細な複数のジルコニアナノ粒子がセルロースナノファイバーに直線的に連続して担持されている、特異な形状を呈するジルコニアナノ粒子集合体を含有しているため、かかるジルコニアナノ粒子が凝集して二次粒子となるおそれがなく、均質性の高い分散状態を保持することができる。したがって、かかる薄膜形成用ジルコニアスラリーを用いれば、光透過性を充分に高めることができるジルコニア薄膜を容易に製造することが可能である。   According to the zirconia slurry for forming a thin film of the present invention, it contains a zirconia nanoparticle aggregate exhibiting a unique shape in which a plurality of very fine zirconia nanoparticles are linearly and continuously supported on cellulose nanofibers. Therefore, there is no possibility that the zirconia nanoparticles aggregate to form secondary particles, and a highly homogeneous dispersion state can be maintained. Therefore, if such a zirconia slurry for forming a thin film is used, it is possible to easily produce a zirconia thin film that can sufficiently enhance light transmittance.

さらに、得られたジルコニア薄膜を焼成等することにより、ジルコニアナノ粒子集合体中のセルロースナノファイバーを炭化させ、これを構成していたセルロース分子鎖由来の周期的構造を有する炭素鎖軸を残存させることができるため、優れた導電性をも付与することが可能となる。   Furthermore, by firing the obtained zirconia thin film, the cellulose nanofibers in the zirconia nanoparticle aggregate are carbonized, and the carbon chain axis having a periodic structure derived from the cellulose molecular chain that constitutes the carbon nanofibers remains. Therefore, excellent conductivity can be imparted.

図1は、実施例1で得られた薄膜形成用ジルコニアスラリー中のジルコニアナノ粒子集合体を示すTEM写真である。FIG. 1 is a TEM photograph showing an aggregate of zirconia nanoparticles in the zirconia slurry for forming a thin film obtained in Example 1. 比較例1で得られた薄膜形成用ジルコニアスラリー中のジルコニアナノ粒子を示すTEM写真である。4 is a TEM photograph showing zirconia nanoparticles in a zirconia slurry for forming a thin film obtained in Comparative Example 1.

以下、本発明について詳細に説明する。
本発明の薄膜形成用ジルコニアスラリーは、成分(X)として、平均繊維径が50nm以下であるセルロースナノファイバー(以下、「CNF」とも称する。)に、平均粒子径が0.1nm〜40nmである複数のジルコニアナノ粒子が、直線的に連続して担持してなるジルコニアナノ粒子集合体を含有し、成分(Y)として分散媒を含有する、良好かつ均質に分散したスラリーである。
ここで、平均粒子径とは、SEM又はTEMの電子顕微鏡による観察において、数十個の粒子の粒子径(長軸の長さ)の測定値の平均値を意味する。
Hereinafter, the present invention will be described in detail.
The zirconia slurry for forming a thin film of the present invention has, as component (X), cellulose nanofibers (hereinafter also referred to as “CNF”) having an average fiber diameter of 50 nm or less and an average particle diameter of 0.1 nm to 40 nm. A good and homogeneously dispersed slurry containing a zirconia nanoparticle aggregate in which a plurality of zirconia nanoparticles are supported linearly and continuously, and containing a dispersion medium as a component (Y).
Here, the average particle diameter means an average value of measured values of the particle diameter (long axis length) of several tens of particles in observation with an electron microscope of SEM or TEM.

本発明の薄膜形成用ジルコニアスラリーは、含有するジルコニアナノ粒子集合体(X)が分散媒(Y)中において良好な分散性を発揮するので、凝集抑制を目的としてジルコニアナノ粒子等に表面修飾を施す必要がなく、さらにジルコニアナノ粒子が適度な分散状態を保持しているため、これを用いて簡便に薄膜への加工を行うことができる。   In the zirconia slurry for forming a thin film of the present invention, since the contained zirconia nanoparticle aggregate (X) exhibits good dispersibility in the dispersion medium (Y), the surface modification is performed on the zirconia nanoparticles for the purpose of suppressing aggregation. There is no need to apply the zirconia nanoparticles, and since the zirconia nanoparticles maintain an appropriate dispersion state, it can be easily processed into a thin film.

成分(X)のジルコニアナノ粒子集合体を構成するセルロースナノファイバー(CNF)とは、全ての植物細胞壁の約5割を占める骨格成分であって、かかる細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維であり、成分(Y)の分散媒への良好な分散性も有している。   Cellulose nanofiber (CNF) constituting the zirconia nanoparticle aggregate of component (X) is a skeletal component that occupies about 50% of all plant cell walls. It is a lightweight high-strength fiber that can be obtained by fine fiber, etc., and also has good dispersibility of the component (Y) in the dispersion medium.

CNFの平均繊維径は、50nm以下であって、好ましくは20nm以下であり、より好ましくは10nm以下である。下限値については特に制限はないが、通常1nm以上である。
またCNFの平均長さは、薄膜への加工を効率的に行う観点から、好ましくは100nm〜100μmであり、より好ましくは1μm〜100μmであり、さらに好ましくは5μm〜100μmである。
The average fiber diameter of CNF is 50 nm or less, preferably 20 nm or less, and more preferably 10 nm or less. Although there is no restriction | limiting in particular about a lower limit, Usually, it is 1 nm or more.
The average length of CNF is preferably 100 nm to 100 μm, more preferably 1 μm to 100 μm, and further preferably 5 μm to 100 μm, from the viewpoint of efficiently processing into a thin film.

さらに本発明で用いるCNFは、屈折率が1.4〜1.6、屈折率が1.58でのフレネル反射(表面反射)の理論値が5.1%であり、また多重フレネル反射を考慮した全光線透過率理論値が90.1%であり、非常に光透過性の高い透明な物質である。   Furthermore, the CNF used in the present invention has a theoretical value of Fresnel reflection (surface reflection) at a refractive index of 1.4 to 1.6 and a refractive index of 1.58, and takes into account multiple Fresnel reflections. The theoretical value of the total light transmittance is 90.1%, and it is a transparent material with very high light transmittance.

成分(X)のジルコニアナノ粒子集合体を構成するジルコニアナノ粒子は、微結晶粒子からなる微細な粒子である。具体的には、かかるジルコニアナノ粒子の平均粒子径は、40nm以下であって、好ましくは20nm以下であり、下限値は0.1nm以上である。   The zirconia nanoparticles constituting the zirconia nanoparticle aggregate of component (X) are fine particles composed of microcrystalline particles. Specifically, the average particle diameter of such zirconia nanoparticles is 40 nm or less, preferably 20 nm or less, and the lower limit is 0.1 nm or more.

また、ジルコニアナノ粒子の晶癖(結晶の外形)としては、板状、針状、立方体、直方体、六角柱等が挙げられる。なかでも、CNFとの担持が強固である観点から、CNFの軸長方向に伸延した六面体粒子が好ましい。
なお、光学特性を安定させるため、かかるジルコニアナノ粒子集合体は、粒子径や形状が均一なジルコニアナノ粒子の集合体であることが好ましい。
Further, examples of the crystal habit (crystal outer shape) of the zirconia nanoparticles include a plate shape, a needle shape, a cube shape, a rectangular parallelepiped shape, a hexagonal column, and the like. Among these, hexahedral particles that are elongated in the axial length direction of CNF are preferable from the viewpoint of strong support with CNF.
In order to stabilize the optical properties, the zirconia nanoparticle aggregate is preferably an aggregate of zirconia nanoparticles having a uniform particle diameter and shape.

本発明の薄膜形成用ジルコニアスラリーは、成分(Y)として分散媒を含有する。かかる分散媒としては、水、有機溶媒、又はこれらの混合物を適用することができる。
上記有機溶媒としては、特に限定されるものではなく、例えば、メタノール、エタノール、2−プロパノール等の脂肪族アルコール類、酢酸エチル、ギ酸メチル等の脂肪族カルボン酸エステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等の脂肪族ケトン類、エチレングリコール、グリセリン等の多価アルコール類、又はこれらの混合物から選ばれる。なかでも、好ましくは、メタノール、メチルエチルケトン、メチルイソブチルケトン又はこれらの混合物である。
The zirconia slurry for forming a thin film of the present invention contains a dispersion medium as the component (Y). As such a dispersion medium, water, an organic solvent, or a mixture thereof can be applied.
The organic solvent is not particularly limited, and examples thereof include aliphatic alcohols such as methanol, ethanol and 2-propanol, aliphatic carboxylic acid esters such as ethyl acetate and methyl formate, acetone, methyl ethyl ketone and methyl isobutyl. It is selected from aliphatic ketones such as ketones, polyhydric alcohols such as ethylene glycol and glycerin, or mixtures thereof. Among these, methanol, methyl ethyl ketone, methyl isobutyl ketone, or a mixture thereof is preferable.

本発明の薄膜形成用ジルコニアスラリーにおける成分(X)のジルコニアナノ粒子集合体の含有量は、薄膜形成用ジルコニアスラリー中の成分(Y)の分散媒100質量部に対して、好ましくは0.5質量部〜25質量部であり、より好ましくは1質量部〜18質量部であり、さらに好ましくは1.5質量部〜14質量部である。また、本発明の薄膜形成用ジルコニアスラリーにおけるジルコニアナノ粒子集合体(X)の含有量は、スラリー中にジルコニアナノ粒子集合体(X)を十分に分散させる観点から、薄膜形成用ジルコニアスラリー100質量%中に、0.5質量%〜20質量%が好ましく、より好ましくは1質量%〜15質量%であり、さらに好ましくは1.5質量%〜12質量%である。   The content of the zirconia nanoparticle aggregate of component (X) in the zirconia slurry for thin film formation of the present invention is preferably 0.5 with respect to 100 parts by mass of the dispersion medium of component (Y) in the zirconia slurry for thin film formation. It is mass part-25 mass parts, More preferably, it is 1 mass part-18 mass parts, More preferably, it is 1.5 mass parts-14 mass parts. The content of the zirconia nanoparticle aggregate (X) in the zirconia slurry for thin film formation of the present invention is 100 masses from the viewpoint of sufficiently dispersing the zirconia nanoparticle aggregate (X) in the slurry. % Is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 15% by mass, and still more preferably 1.5% by mass to 12% by mass.

本発明の薄膜形成用ジルコニアスラリーは、次の工程(I)〜(III):
(I)ジルコニウム原料化合物、セルロースナノファイバー、及びアルカリ溶液を用いてスラリーAを調製する工程、及び
(II)得られたスラリーAを、温度が100℃以上であり、かつ圧力が0.3MPa〜0.9MPaである水熱反応に付してジルコニアナノ粒子集合体を含有するスラリーBを得る工程
(III)得られたスラリーBをろ過して水洗した後、分散媒(Y)でリパルプする工程
を備える製造方法により、得ることができる。
The zirconia slurry for forming a thin film of the present invention includes the following steps (I) to (III):
(I) A step of preparing slurry A using a zirconium raw material compound, cellulose nanofibers, and an alkaline solution, and (II) the obtained slurry A has a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to Step of obtaining slurry B containing zirconia nanoparticle aggregate by subjecting to hydrothermal reaction at 0.9 MPa (III) Step of filtering and washing the obtained slurry B with water and then repulping with dispersion medium (Y) It can obtain by a manufacturing method provided with.

工程(I)は、ジルコニウム原料化合物、セルロースナノファイバー、及びアルカリ溶液を用いてスラリーAを調製する工程である。
かかる工程(I)では、先ず、ジルコニウム原料化合物、及びセルロースナノファイバーとともに水を混合してスラリーを得るのがよい。
かかるジルコニウム原料化合物としては、ジルコニウムの硫酸塩、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、酸化物、水酸化物、ハロゲン化物等を好適に使用することができる。
Step (I) is a step of preparing slurry A using a zirconium raw material compound, cellulose nanofibers, and an alkaline solution.
In the step (I), first, it is preferable to obtain a slurry by mixing water together with a zirconium raw material compound and cellulose nanofibers.
As the zirconium raw material compound, zirconium sulfate, nitrate, carbonate, acetate, oxalate, oxide, hydroxide, halide and the like can be suitably used.

水の使用量は、ジルコニウム原料化合物及びCNFの溶解性又は分散性、撹拌の容易性、及び水熱反応の効率等の点から、原料中のジルコニウム1モルに対して10モル〜300モルが好ましく、さらに50モル〜200モルが好ましい。
また、スラリーA中におけるセルロースナノファイバーの含有量は、スラリーA中の水100質量部に対し、炭素原子換算量で、好ましくは0.01質量部〜10質量部であり、より好ましくは0.05質量部〜8質量部である。
The amount of water used is preferably 10 mol to 300 mol with respect to 1 mol of zirconium in the raw material from the viewpoints of solubility or dispersibility of the zirconium raw material compound and CNF, easiness of stirring, and efficiency of hydrothermal reaction. Further, 50 to 200 mol is preferable.
Moreover, content of the cellulose nanofiber in the slurry A is 0.01 mass part-10 mass parts with respect to 100 mass parts of water in the slurry A, Preferably it is 0.01 mass part-10 mass parts, More preferably, it is 0.00. It is 05 mass parts-8 mass parts.

工程(I)では、ジルコニウム原料化合物、CNF及び水を混合して得られたスラリーに、アルカリ溶液を添加してスラリーAとし、中和反応によって、スラリーA中に溶解又は分散しているジルコニウムを水酸化物にする。アルカリ溶液は、スラリーAのpHを7〜14に保持するのに充分な量を滴下するのが好ましい。かかるアルカリ溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液を用いることができるが、水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いることが好ましい。   In step (I), an alkali solution is added to a slurry obtained by mixing a zirconium raw material compound, CNF and water to form slurry A, and zirconium dissolved or dispersed in slurry A is neutralized by a neutralization reaction. Make hydroxide. The alkaline solution is preferably added dropwise in an amount sufficient to maintain the pH of the slurry A at 7-14. As such an alkaline solution, for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia or the like can be used, but sodium hydroxide, sodium carbonate or a mixed solution thereof is preferably used.

上記スラリーAは、ジルコニウム水酸化物を良好に生成させる観点から、撹拌して中和反応を進行させるのが好ましい。中和反応中におけるスラリーAの温度は、5℃以上が好ましく、より好ましくは10℃〜60℃である。また、スラリーAの撹拌時間は、5分間〜120分間が好ましく、30分間〜60分間がより好ましい。   The slurry A is preferably stirred to advance the neutralization reaction from the viewpoint of satisfactorily producing zirconium hydroxide. The temperature of the slurry A during the neutralization reaction is preferably 5 ° C or higher, more preferably 10 ° C to 60 ° C. Further, the stirring time of the slurry A is preferably 5 minutes to 120 minutes, more preferably 30 minutes to 60 minutes.

工程(II)は、工程(I)で得られたスラリーAを、温度が100℃以上であり、かつ圧力が0.3MPa〜0.9MPaの水熱反応に付して、ジルコニアナノ粒子集合体(X)を含有するスラリーBを得る工程である。
かかる水熱反応の温度は、100℃以上であればよく、130℃〜180℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130℃〜180℃で反応を行う場合、この時の圧力は0.3MPa〜0.9MPaであるのが好ましく、140℃〜160℃で反応を行う場合の圧力は0.3MPa〜0.6MPaであるのが好ましい。水熱反応時間は、0.5時間〜24時間が好ましく、さらに0.5時間〜15時間が好ましい。
In the step (II), the slurry A obtained in the step (I) is subjected to a hydrothermal reaction having a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to 0.9 MPa to obtain a zirconia nanoparticle aggregate. In this step, a slurry B containing (X) is obtained.
The temperature of this hydrothermal reaction should just be 100 degreeC or more, and 130 to 180 degreeC is preferable. The hydrothermal reaction is preferably performed in a pressure vessel. When the reaction is performed at 130 ° C to 180 ° C, the pressure at this time is preferably 0.3 MPa to 0.9 MPa, and the reaction is performed at 140 ° C to 160 ° C. The pressure in carrying out is preferably 0.3 MPa to 0.6 MPa. The hydrothermal reaction time is preferably 0.5 hours to 24 hours, more preferably 0.5 hours to 15 hours.

工程(III)では、工程(II)で得られたスラリーBをろ過して水洗した後、分散媒(Y)でリパルプする工程であり、かかる工程を経ることにより、薄膜形成用ジルコニアスラリーを得ることができる。
工程(II)で得られたスラリーB中の水熱反応生成物は、セルロースナノファイバーとジルコニアナノ粒子からなるジルコニアナノ粒子集合体(X)であり、スラリーBをろ過して水で洗浄することにより、これを単離することができる。
ろ過手段には、減圧ろ過、加圧ろ過、遠心ろ過等を用いることができるが、操作の簡便性等からフィルタープレス等の加圧ろ過が好ましい。また、ろ過後のジルコニアナノ粒子集合体(X)を水で洗浄する際、ジルコニアナノ粒子集合体(X)1質量部に対し、水を5質量部〜100質量部用いるのが好ましい。
In the step (III), the slurry B obtained in the step (II) is filtered and washed with water, and then repulped with the dispersion medium (Y). Through this step, a zirconia slurry for forming a thin film is obtained. be able to.
The hydrothermal reaction product in the slurry B obtained in the step (II) is a zirconia nanoparticle aggregate (X) composed of cellulose nanofibers and zirconia nanoparticles, and the slurry B is filtered and washed with water. This can be isolated.
As the filtration means, vacuum filtration, pressure filtration, centrifugal filtration, or the like can be used, but pressure filtration such as a filter press is preferable from the viewpoint of simplicity of operation. Moreover, when wash | cleaning the zirconia nanoparticle aggregate | assembly (X) after filtration with water, it is preferable to use 5 mass parts-100 mass parts with respect to 1 mass part of zirconia nanoparticle aggregates (X).

分散媒(Y)でリパルプする前に、予め水洗後のジルコニアナノ粒子集合体(X)中の水を有機溶媒と置換するには、洗浄水を含むジルコニアナノ粒子集合体(X)を一旦乾燥してから、新たに有機溶媒を加えればよい。この際の乾燥方法としては、恒温乾燥、温風乾燥、噴霧乾燥、凍結乾燥、真空乾燥等が挙げられる。なかでも、得られるジルコニアナノ粒子集合体(X)が凝集するのを有効に制御できる観点から、凍結乾燥又は噴霧乾燥が好ましい。   Before replacing the water in the zirconia nanoparticle aggregate (X) after washing with water with an organic solvent before repulping with the dispersion medium (Y), the zirconia nanoparticle aggregate (X) containing the washing water is once dried. Then, a new organic solvent may be added. Examples of the drying method at this time include constant temperature drying, warm air drying, spray drying, freeze drying, and vacuum drying. Among these, freeze drying or spray drying is preferable from the viewpoint of effectively controlling aggregation of the obtained zirconia nanoparticle aggregate (X).

また、例えば、ジルコニアナノ粒子集合体(X)を所定の有機溶媒に浸漬して、ジルコニアナノ粒子集合体中の水をかかる有機溶媒と置換して、有機溶媒を分散媒とする薄膜形成用ジルコニアスラリーを得ることもできる。なお、この溶媒の置換操作は、有機溶媒の濃度を変えながら複数回の操作を行って完了してもよい。   Further, for example, the zirconia nanoparticle aggregate (X) is immersed in a predetermined organic solvent, the water in the zirconia nanoparticle aggregate is replaced with the organic solvent, and the zirconia for forming a thin film using the organic solvent as a dispersion medium. A slurry can also be obtained. The solvent replacement operation may be completed by performing a plurality of operations while changing the concentration of the organic solvent.

次に、ジルコニアナノ粒子集合体(X)を分散媒(Y)でリパルプ(再懸濁)して、本発明の薄膜形成用ジルコニアスラリーを得る。リパルプする手段としては特に制限はなく、ジルコニアナノ粒子集合体(X)の含有量が上記範囲となるような量の分散媒(Y)を用いてリパルプすればよい。   Next, the zirconia nanoparticle aggregate (X) is repulped (resuspended) with the dispersion medium (Y) to obtain the zirconia slurry for forming a thin film of the present invention. There is no restriction | limiting in particular as a means to repulp, What is necessary is just to repulp using the dispersion medium (Y) of the quantity that content of a zirconia nanoparticle aggregate | assembly (X) becomes the said range.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[実施例1:ジルコニアナノ粒子集合体]
Zr(NO・5HO1.81g、CNF19.29g(スギノマシン社製TMa−10002、含水量98質量%)、及び水55mLを60分間混合してスラリーA1を作製した。得られたスラリーA1に、10質量%濃度のNaOH水溶液20mLを添加し、5分間混合してスラリーB1を作製した。スラリーB1をオートクレーブに投入し、140℃で1時間水熱反応を行った。得られた水熱反応生成物を放冷した後、ろ過して水洗し、次いでエタノールでリパルプして、分散媒(Y)100質量部に対し、ジルコニアナノ粒子集合体(X)を1質量部含有する薄膜形成用ジルコニアスラリーを得た。なお、薄膜形成用ジルコニアスラリー中の、ジルコニアナノ粒子集合体のBET比表面積は150m/g、ジルコニアナノ粒子の平均粒子径は10nmであった。
得られた薄膜形成用ジルコニアスラリーに含有されるジルコニアナノ粒子集合体のTEM観察像を図1に示す。なお、使用したTEMは、日本電子株式会社製JEM−ARM200Fであった。
[Example 1: Aggregation of zirconia nanoparticles]
Zr (NO 3) 4 · 5H 2 O1.81g, CNF19.29g ( Sugino Machine Ltd. TMa-10002, water content 98 wt%), and water 55mL were mixed for 60 minutes to prepare a slurry A1. To the resulting slurry A1, 20 mL of a 10% strength by weight aqueous NaOH solution was added and mixed for 5 minutes to produce slurry B1. Slurry B1 was put into an autoclave and subjected to a hydrothermal reaction at 140 ° C. for 1 hour. The resulting hydrothermal reaction product is allowed to cool, then filtered, washed with water, then repulped with ethanol, and 1 part by mass of the zirconia nanoparticle aggregate (X) with respect to 100 parts by mass of the dispersion medium (Y). A zirconia slurry for forming a thin film was obtained. In addition, the BET specific surface area of the zirconia nanoparticle aggregate | assembly in the zirconia slurry for thin film formation was 150 m < 2 > / g, and the average particle diameter of the zirconia nanoparticle was 10 nm.
A TEM observation image of the zirconia nanoparticle aggregate contained in the obtained zirconia slurry for forming a thin film is shown in FIG. The TEM used was JEM-ARM200F manufactured by JEOL Ltd.

[比較例1:ジルコニアナノ粒子(ゾルゲル法)]
Zr(NO・5HO20gと脱水エタノ−ル60mLを混合後、40℃に加熱してZr(NO・5HOが溶解した溶液A2を得た。得られたスラリー溶液A2を90℃で加熱してエタノールを揮発させて、多孔質ジルコニアのゲルを得た。得られたゲルを2時間乾燥した後、大気中で600℃×2時間焼成して、ジルコニアナノ粒子を得た。かかるジルコニアナノ粒子の、BET比表面積は130m/g、平均粒子径は7nmであった。得られたジルコニアナノ粒子は、乳鉢で解砕後、エタノールと混合して、かかるエタノール100質量部に対し、ジルコニアナノ粒子が1質量部となるように調製した後、超音波分散機で分散させて薄膜形成用ジルコニアスラリーを得た。
得られた薄膜形成用ジルコニアスラリーに含有されるジルコニアナノ粒子のTEM写真を図2に示す。
[Comparative Example 1: Zirconia nanoparticles (sol-gel method)]
Zr (NO 3) 4 · 5H 2 O20g dehydrated ethanol - were mixed le 60 mL, was obtained was heated to 40 ℃ Zr (NO 3) 4 · 5H 2 O was dissolved solution A2. The obtained slurry solution A2 was heated at 90 ° C. to volatilize ethanol to obtain a porous zirconia gel. The obtained gel was dried for 2 hours and then calcined in the atmosphere at 600 ° C. for 2 hours to obtain zirconia nanoparticles. The zirconia nanoparticles had a BET specific surface area of 130 m 2 / g and an average particle size of 7 nm. The obtained zirconia nanoparticles are crushed in a mortar, mixed with ethanol, and prepared so that the zirconia nanoparticles are 1 part by mass with respect to 100 parts by mass of ethanol, and then dispersed with an ultrasonic disperser. Thus, a zirconia slurry for forming a thin film was obtained.
A TEM photograph of the zirconia nanoparticles contained in the obtained zirconia slurry for forming a thin film is shown in FIG.

≪ジルコニア薄膜の光透過性の評価≫
実施例1及び比較例1で得られた薄膜形成用ジルコニアスラリーを、ガラス基板にディップコーティングしてジルコニア薄膜を作製した。具体的には、ガラス基板を各々の薄膜形成用ジルコニアスラリーに浸漬した後、5μm/秒の速度でガラス基板を引き上げた。得られたガラス基板を80℃で12時間乾燥した後、大気中で500℃×3時間焼成した。
作製したジルコニア薄膜に波長440nmの光を照射し、紫外可視近赤外分光光度計(島津製作所製、UV3600Plus)を用いて透過光の強度を測定した後、下記式(1)により光透過率を算出した。結果を表1に示す。
光透過率(%)=
(ジルコニア薄膜を透過した光の強度)/(ブランク光の強度)×100・・・(I)
ブランク光の強度:空気での透過強度
≪Evaluation of light transmittance of zirconia thin film≫
The zirconia slurry for thin film formation obtained in Example 1 and Comparative Example 1 was dip coated on a glass substrate to prepare a zirconia thin film. Specifically, after immersing the glass substrate in each zirconia slurry for forming a thin film, the glass substrate was pulled up at a speed of 5 μm / second. The obtained glass substrate was dried at 80 ° C. for 12 hours and then baked in the air at 500 ° C. for 3 hours.
The prepared zirconia thin film is irradiated with light having a wavelength of 440 nm, and the intensity of transmitted light is measured using an ultraviolet-visible-near infrared spectrophotometer (manufactured by Shimadzu Corporation, UV3600 Plus). Calculated. The results are shown in Table 1.
Light transmittance (%) =
(Intensity of light transmitted through zirconia thin film) / (Intensity of blank light) × 100 (I)
Blank light intensity: transmission intensity in air

表1から明らかなように、実施例1で得られたジルコニアナノ粒子集合体を使用したジルコニア薄膜は、比較例1で得られたジルコニアナノ粒子を使用したジルコニア薄膜と比べ、光透過率が優れている。
これは、実施例1で得られたジルコニアナノ粒子集合体は、微細なジルコニアナノ粒子がセルロースナノファイバーに直線的に連続して担持してなる特異な形状を呈することにより、セルロースナノファイバーが介在して、ジルコニアナノ粒子自体が不要に凝集することがなくスラリー中に良好に分散していたためと考えられる。一方、比較例1のジルコニアナノ粒子は、微細ではあるものの、実施例1のようにセルロースナノファイバーに担持されることがないため、強い凝集状態が生じてしまったものと判断される。
As is clear from Table 1, the zirconia thin film using the zirconia nanoparticle aggregate obtained in Example 1 is superior in light transmittance to the zirconia thin film using the zirconia nanoparticle obtained in Comparative Example 1. ing.
This is because the aggregate of zirconia nanoparticles obtained in Example 1 has a unique shape in which fine zirconia nanoparticles are linearly continuously supported on cellulose nanofibers, thereby interposing cellulose nanofibers. This is considered to be because the zirconia nanoparticles themselves did not aggregate unnecessarily and were well dispersed in the slurry. On the other hand, although the zirconia nanoparticles of Comparative Example 1 are fine, they are not supported on cellulose nanofibers as in Example 1, and thus it is determined that a strong aggregation state has occurred.

Claims (3)

次の成分(X)〜(Y):
(X)平均繊維径が50nm以下であるセルロースナノファイバーに、平均粒子径が0.1nm〜40nmである複数のジルコニアナノ粒子が、直線的に連続して担持してなるジルコニアナノ粒子集合体、
(Y)脂肪族アルコール類、脂肪族カルボン酸エステル類、脂肪族ケトン類、多価アルコール類、及びこれらの混合物から選ばれる分散媒
を含有する薄膜形成用ジルコニアスラリー。
Next components (X) to (Y):
(X) A zirconia nanoparticle aggregate in which a plurality of zirconia nanoparticles having an average particle diameter of 0.1 nm to 40 nm are linearly continuously supported on cellulose nanofibers having an average fiber diameter of 50 nm or less,
(Y) A zirconia slurry for forming a thin film containing a dispersion medium selected from aliphatic alcohols, aliphatic carboxylic acid esters, aliphatic ketones, polyhydric alcohols, and mixtures thereof .
成分(X)の含有量が、成分(Y)100質量部に対して0.5質量部〜25質量部である、請求項に記載の薄膜形成用ジルコニアスラリー。 The content of the component (X) is the component (Y) is 0.5 parts by weight to 25 parts by weight per 100 parts by weight, film-forming zirconia slurry according to claim 1. 次の成分(X)〜(Y):
(X)平均繊維径が50nm以下であるセルロースナノファイバーに、平均粒子径が0.1nm〜40nmである複数のジルコニアナノ粒子が、直線的に連続して担持してなるジルコニアナノ粒子集合体、
(Y)分散媒
を含有する薄膜形成用ジルコニアスラリーの製造方法であって、次の工程(I)〜(III):
(I)ジルコニウム原料化合物、セルロースナノファイバー、及びアルカリ溶液を用いてスラリーAを調製する工程、
(II)得られたスラリーAを、温度が100℃以上であり、かつ圧力が0.3MPa〜0.9MPaである水熱反応に付して、ジルコニアナノ粒子集合体(X)を含有するスラリーBを得る工程、
(III)得られたスラリーBをろ過して水洗した後、分散媒(Y)でリパルプする工程
を備える薄膜形成用ジルコニアスラリーの製造方法。
Next components (X) to (Y):
(X) A zirconia nanoparticle aggregate in which a plurality of zirconia nanoparticles having an average particle diameter of 0.1 nm to 40 nm are linearly continuously supported on cellulose nanofibers having an average fiber diameter of 50 nm or less,
(Y) Dispersion medium
A method for producing a zirconia slurry for forming a thin film containing the following steps (I) to (III):
(I) a step of preparing a slurry A using a zirconium raw material compound, cellulose nanofiber, and an alkaline solution;
(II) A slurry containing the zirconia nanoparticle aggregate (X) by subjecting the obtained slurry A to a hydrothermal reaction having a temperature of 100 ° C. or higher and a pressure of 0.3 MPa to 0.9 MPa. Obtaining B,
(III) A method for producing a zirconia slurry for forming a thin film, comprising a step of filtering and washing the obtained slurry B with water and then repulping with a dispersion medium (Y).
JP2018044274A 2017-03-16 2018-03-12 Zirconia slurry for thin film formation and manufacturing method thereof Active JP6602908B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051281 2017-03-16
JP2017051281 2017-03-16

Publications (2)

Publication Number Publication Date
JP2018154550A JP2018154550A (en) 2018-10-04
JP6602908B2 true JP6602908B2 (en) 2019-11-06

Family

ID=63715695

Family Applications (12)

Application Number Title Priority Date Filing Date
JP2017157812A Active JP6442574B2 (en) 2017-03-16 2017-08-18 Nanoparticle aggregate, nanoparticle fired product, and production method thereof
JP2017181024A Active JP6505181B2 (en) 2017-03-16 2017-09-21 Catalyst for purifying automobile exhaust gas and method for producing the same
JP2018037045A Active JP6527258B2 (en) 2017-03-16 2018-03-02 Method of manufacturing positive electrode active material for nano-array like lithium ion secondary battery
JP2018042464A Active JP6646092B2 (en) 2017-03-16 2018-03-09 Oxide semiconductor nanoparticle aggregate for resistance type oxygen sensor and method for producing the same
JP2018044274A Active JP6602908B2 (en) 2017-03-16 2018-03-12 Zirconia slurry for thin film formation and manufacturing method thereof
JP2018044276A Active JP6590968B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for ammonia gas sensor and manufacturing method thereof
JP2018044275A Active JP6590967B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for carbon monoxide gas sensor and method for producing the same
JP2018044694A Active JP6595028B2 (en) 2017-03-16 2018-03-12 Method for producing exhaust gas purification catalyst
JP2018047662A Active JP6625153B2 (en) 2017-03-16 2018-03-15 Electrode active material for all-solid secondary battery, method for producing the same, and all-solid secondary battery
JP2018047660A Active JP6622838B2 (en) 2017-03-16 2018-03-15 Solid electrolyte for all solid state secondary battery, method for producing the same, and all solid state secondary battery
JP2019161035A Active JP7061100B2 (en) 2017-03-16 2019-09-04 Solid electrolytes for all-solid-state secondary batteries, their manufacturing methods, and all-solid-state secondary batteries
JP2019161173A Active JP7061101B2 (en) 2017-03-16 2019-09-04 Electrode active material for all-solid-state secondary battery, its manufacturing method, and all-solid-state secondary battery

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2017157812A Active JP6442574B2 (en) 2017-03-16 2017-08-18 Nanoparticle aggregate, nanoparticle fired product, and production method thereof
JP2017181024A Active JP6505181B2 (en) 2017-03-16 2017-09-21 Catalyst for purifying automobile exhaust gas and method for producing the same
JP2018037045A Active JP6527258B2 (en) 2017-03-16 2018-03-02 Method of manufacturing positive electrode active material for nano-array like lithium ion secondary battery
JP2018042464A Active JP6646092B2 (en) 2017-03-16 2018-03-09 Oxide semiconductor nanoparticle aggregate for resistance type oxygen sensor and method for producing the same

Family Applications After (7)

Application Number Title Priority Date Filing Date
JP2018044276A Active JP6590968B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for ammonia gas sensor and manufacturing method thereof
JP2018044275A Active JP6590967B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for carbon monoxide gas sensor and method for producing the same
JP2018044694A Active JP6595028B2 (en) 2017-03-16 2018-03-12 Method for producing exhaust gas purification catalyst
JP2018047662A Active JP6625153B2 (en) 2017-03-16 2018-03-15 Electrode active material for all-solid secondary battery, method for producing the same, and all-solid secondary battery
JP2018047660A Active JP6622838B2 (en) 2017-03-16 2018-03-15 Solid electrolyte for all solid state secondary battery, method for producing the same, and all solid state secondary battery
JP2019161035A Active JP7061100B2 (en) 2017-03-16 2019-09-04 Solid electrolytes for all-solid-state secondary batteries, their manufacturing methods, and all-solid-state secondary batteries
JP2019161173A Active JP7061101B2 (en) 2017-03-16 2019-09-04 Electrode active material for all-solid-state secondary battery, its manufacturing method, and all-solid-state secondary battery

Country Status (1)

Country Link
JP (12) JP6442574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112499678A (en) * 2020-11-23 2021-03-16 山东国瓷功能材料股份有限公司 Nano zirconium oxide powder, preparation method thereof, dispersion liquid obtained by preparation method and optical film

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3602661A4 (en) * 2017-03-31 2021-01-13 The Regents of The University of Michigan System and method for the formation of facile lithium metal anode interface with a solid state electrolyte
WO2019065066A1 (en) * 2017-09-28 2019-04-04 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
JP2020028577A (en) * 2018-08-24 2020-02-27 株式会社三共 Game machine
JP6962883B2 (en) * 2018-08-24 2021-11-05 株式会社三共 Pachinko machine
JP7165569B2 (en) * 2018-12-03 2022-11-04 太平洋セメント株式会社 Positive electrode paste for lithium ion secondary battery and method for producing the same
JP7152945B2 (en) * 2018-12-10 2022-10-13 太平洋セメント株式会社 Method for producing nanoparticle aggregate for negative electrode active material of lithium ion secondary battery
JP7165048B2 (en) * 2018-12-21 2022-11-02 太平洋セメント株式会社 METHOD FOR MANUFACTURING LISICON-TYPE CRYSTAL PARTICLES FOR SOLID ELECTROLYTE FOR LITHIUM-ION SECONDARY BATTERY
JP7224170B2 (en) * 2018-12-21 2023-02-17 太平洋セメント株式会社 LISICON type crystal particles for solid electrolyte of lithium ion secondary battery and method for producing the same
JP7189006B2 (en) * 2018-12-21 2022-12-13 太平洋セメント株式会社 Method for producing NASICON-type oxide particles for solid electrolyte of lithium-ion secondary battery
JP7224171B2 (en) * 2018-12-21 2023-02-17 太平洋セメント株式会社 Method for producing LISICON type crystal particles for solid electrolyte of lithium ion secondary battery
WO2020166429A1 (en) * 2019-02-13 2020-08-20 Semitec株式会社 Gas detection device and gas detection method
JP7165608B2 (en) * 2019-03-19 2022-11-04 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and method for producing the same
CN113543880B (en) * 2019-03-26 2023-10-03 樱花工业株式会社 Catalyst layer forming material, catalyst device constituent material, catalyst device, and method for producing the same
JP7385859B2 (en) * 2019-08-26 2023-11-24 国立大学法人東京工業大学 Gas sensor with nanogap electrode and manufacturing method thereof
JP7340995B2 (en) * 2019-09-02 2023-09-08 太平洋セメント株式会社 Method for producing chain-like lithium lanthanum titanate crystal particle aggregate for solid electrolyte
JP7403289B2 (en) * 2019-11-27 2023-12-22 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP7351736B2 (en) * 2019-12-11 2023-09-27 太平洋セメント株式会社 Method for producing lithium lanthanum zirconium oxide crystal particle aggregate for solid electrolyte
JP2021124405A (en) * 2020-02-06 2021-08-30 アズビル株式会社 CO2 sensor system
US11532813B2 (en) 2020-02-20 2022-12-20 Samsung Electronics Co., Ltd. Composite cathode active material, preparation method thereof, cathode layer including the same, and all-solid secondary battery including the cathode layer
CN111977658B (en) * 2020-08-26 2021-03-02 成都新柯力化工科技有限公司 Method for continuously producing silicon-carbon negative electrode material of lithium battery

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903181B2 (en) * 2002-06-27 2007-04-11 独立行政法人産業技術総合研究所 Resistance oxygen sensor, oxygen sensor device using the same, and air-fuel ratio control system
JP4543618B2 (en) * 2003-04-14 2010-09-15 ソニー株式会社 Non-aqueous electrolyte battery
KR100534708B1 (en) * 2003-10-15 2005-12-07 현대자동차주식회사 Oxygen sensor heating control method of vehicle
JP2007139669A (en) * 2005-11-21 2007-06-07 Ngk Spark Plug Co Ltd Gas sensor
KR100812357B1 (en) * 2005-12-23 2008-03-11 한국과학기술연구원 Ultra-sensitive metal oxide gas sensor and fbrication method thereof
JP2007229640A (en) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd Catalyst for purification of exhaust gas and its manufacturing method
EP2022562B1 (en) * 2006-04-03 2021-06-09 Nissan Motor Company Limited Exhaust gas purifying catalyst
CA2669438C (en) * 2006-04-24 2015-06-16 Axcelon Biopolymers Corporation Nanosilver coated bacterial cellulose
JP2008121127A (en) * 2006-11-08 2008-05-29 Ehime Prefecture Method for producing pulp
JP5551329B2 (en) * 2006-11-14 2014-07-16 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP5661989B2 (en) * 2007-04-20 2015-01-28 日産自動車株式会社 High heat resistant catalyst and process for producing the same
JP2009014610A (en) * 2007-07-06 2009-01-22 Yamaha Motor Co Ltd Resistance oxygen sensor, air-fuel ratio controller, and transport machine
CA2638410A1 (en) * 2008-07-28 2010-01-28 Hydro-Quebec Composite electrode material
JP5272738B2 (en) * 2009-01-05 2013-08-28 コニカミノルタ株式会社 Polymer film with cellulose coating film
JP5566368B2 (en) * 2009-02-18 2014-08-06 日本製紙株式会社 Composite comprising cellulose nanofiber and metal nanoparticle, and production method thereof
JP6057893B2 (en) * 2011-04-28 2017-01-11 昭和電工株式会社 Positive electrode material for lithium secondary battery and method for producing the same
SE536780C2 (en) * 2011-10-26 2014-08-05 Stora Enso Oyj Process for preparing a dispersion comprising nanoparticles and a dispersion prepared according to the process
EP2812900B1 (en) * 2012-02-10 2019-10-23 Cellutech AB Cellulose nanofibril decorated with magnetic nanoparticles
JP5895600B2 (en) * 2012-03-01 2016-03-30 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2013209779A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Formed body and method for producing the same
JP5921960B2 (en) * 2012-06-04 2016-05-24 第一工業製薬株式会社 Composition containing inorganic fine particles and film using the same
JP2014026809A (en) * 2012-07-26 2014-02-06 Toyota Motor Corp Fibrous oxide solid electrolyte, all solid battery, and method for manufacturing the same
JP5896034B2 (en) * 2012-09-19 2016-03-30 信越化学工業株式会社 Visible light responsive photocatalyst fine particle dispersion, method for producing the same, and member having photocatalytic thin film on surface
JP6224311B2 (en) * 2012-11-06 2017-11-01 Nissha株式会社 Semiconductor gas sensor element
WO2015038735A1 (en) * 2013-09-11 2015-03-19 Candace Chan Nanowire-based solid electrolytes and lithium-ion batteries including the same
JP6345925B2 (en) * 2013-10-03 2018-06-20 中越パルプ工業株式会社 Nanocomposite and method for producing nanocomposite
JP6310716B2 (en) * 2014-02-10 2018-04-11 古河機械金属株式会社 Solid electrolyte sheet, all solid-state lithium ion battery, and method for producing solid electrolyte sheet
JP5802811B1 (en) * 2014-08-27 2015-11-04 株式会社ジーエル・マテリアルズホールディングス Method for producing nanoparticles
JP6070661B2 (en) * 2014-09-10 2017-02-01 トヨタ自動車株式会社 Positive electrode mixture, positive electrode, solid state battery, and production method thereof
JP6748990B2 (en) * 2014-09-17 2020-09-02 国立大学法人東海国立大学機構 Thermally conductive composition and method for producing the same
KR101610354B1 (en) * 2014-09-18 2016-04-11 재단법인대구경북과학기술원 Production method of a metal oxide supported carbon nano fiber electrode using electro deposition method, and an energy storage device and a filter using the same
CN106575768B (en) * 2014-09-26 2019-07-23 太平洋水泥株式会社 Active material for anode of secondary cell and its manufacturing method
JP2016069616A (en) * 2014-09-28 2016-05-09 第一工業製薬株式会社 Inorganic fine particle-containing composition and coating using the same
JP6023295B2 (en) * 2015-03-26 2016-11-09 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP6243372B2 (en) * 2015-03-27 2017-12-06 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2016207418A (en) * 2015-04-21 2016-12-08 トヨタ自動車株式会社 Electrode mixture
EP3306731A4 (en) * 2015-06-08 2018-06-06 FUJI-FILM Corporation Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
KR101745128B1 (en) * 2015-09-01 2017-06-08 현대자동차주식회사 Chemochromic nanoparticles, method for manufacturing the same, and hydrogen sensor comprising the same
JP6910026B2 (en) * 2016-10-03 2021-07-28 国立研究開発法人産業技術総合研究所 Composite materials and their manufacturing methods and thermally conductive materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112499678A (en) * 2020-11-23 2021-03-16 山东国瓷功能材料股份有限公司 Nano zirconium oxide powder, preparation method thereof, dispersion liquid obtained by preparation method and optical film
CN112499678B (en) * 2020-11-23 2021-12-28 山东国瓷功能材料股份有限公司 Nano zirconium oxide powder, preparation method thereof, dispersion liquid obtained by preparation method and optical film

Also Published As

Publication number Publication date
JP7061100B2 (en) 2022-04-27
JP2018154550A (en) 2018-10-04
JP2018155749A (en) 2018-10-04
JP6505181B2 (en) 2019-04-24
JP6622838B2 (en) 2019-12-18
JP6590967B2 (en) 2019-10-16
JP2018156940A (en) 2018-10-04
JP6442574B2 (en) 2018-12-19
JP2018153794A (en) 2018-10-04
JP2018156935A (en) 2018-10-04
JP6625153B2 (en) 2019-12-25
JP7061101B2 (en) 2022-04-27
JP2018155748A (en) 2018-10-04
JP6527258B2 (en) 2019-06-05
JP6595028B2 (en) 2019-10-23
JP6590968B2 (en) 2019-10-16
JP2018154545A (en) 2018-10-04
JP2018156941A (en) 2018-10-04
JP2018155746A (en) 2018-10-04
JP2019212637A (en) 2019-12-12
JP2018153803A (en) 2018-10-04
JP6646092B2 (en) 2020-02-14
JP2019204800A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP6602908B2 (en) Zirconia slurry for thin film formation and manufacturing method thereof
JP5870041B2 (en) Flaked mesoporous granules and method for producing the same
RU2529219C2 (en) Zirconium oxide dispersion and method of obtaining it
JP4705361B2 (en) Method for producing zirconia sol
CN105463620B (en) A kind of graphene/PET composite fibre and preparation method thereof
JP6011749B1 (en) Organic solvent dispersion of titanium oxide particles and method for producing the same
JP2015101694A (en) Cellulose nanofiber dispersion and cellulose modified body and manufacturing method
JP2008031023A (en) Zirconia sol and method for producing the same
CN110934153B (en) Zirconium phosphate carrier, zirconium phosphate copper-carrying antibacterial agent, zirconium phosphate antibacterial agent, preparation method and application thereof
KR102537747B1 (en) Method for producing an organic solvent dispersion of titanium oxide particles
JP2005179111A (en) Method for manufacturing zirconia sol
JP5594326B2 (en) Dispersion of zinc oxide fine particles
CN112429771B (en) Nano zirconium oxide powder, preparation method thereof, dispersion liquid obtained by preparation method and optical film
JP2007238422A (en) Organic solvent-dispersed zirconia sol and its production method
KR20130079983A (en) Zirconium oxide nanoparticles and hydrosol of the same and composition and method for manufacturing zirconium oxide nanoparticles
KR102262689B1 (en) Zirconia sol and method for manufacturing the same
CN108689431A (en) A kind of preparation method of water phase nano zircite particle dispersion
JP5644877B2 (en) Method for producing dispersion of photocatalyst particles
WO2015037312A1 (en) Method for producing catalyst particles for hydrogenation, and catalyst particles for hydrogenation
CN106430303B (en) A kind of classification titanium dioxide of mixed structure and preparation method thereof
JP2017509567A (en) Method for producing single crystal TiO2 flakes
JP2018188673A (en) Film using cellulose nanofiber dispersion and manufacturing method of dispersion
JP6373650B2 (en) Method for producing nano hollow particles
CZ302299B6 (en) Nanotubes based on titanium white and process for producing thereof
JP2017122041A (en) Boride particle and boride particle dispersion liquid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190326

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250