Nothing Special   »   [go: up one dir, main page]

JP2018154545A - Nanoparticle aggregate, nanoparticle calcined product, and method of producing these - Google Patents

Nanoparticle aggregate, nanoparticle calcined product, and method of producing these Download PDF

Info

Publication number
JP2018154545A
JP2018154545A JP2017157812A JP2017157812A JP2018154545A JP 2018154545 A JP2018154545 A JP 2018154545A JP 2017157812 A JP2017157812 A JP 2017157812A JP 2017157812 A JP2017157812 A JP 2017157812A JP 2018154545 A JP2018154545 A JP 2018154545A
Authority
JP
Japan
Prior art keywords
nanoparticle
nanoparticles
metal
slurry
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017157812A
Other languages
Japanese (ja)
Other versions
JP6442574B2 (en
Inventor
弘樹 山下
Hiroki Yamashita
弘樹 山下
大神 剛章
Takeaki Ogami
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Publication of JP2018154545A publication Critical patent/JP2018154545A/en
Application granted granted Critical
Publication of JP6442574B2 publication Critical patent/JP6442574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a peculiarly shaped nanoparticle aggregate capable of producing by an easy method dispensing with surface modification by an organic substance, and a nanoparticle calcined product.SOLUTION: The nanoparticle calcined product comprises a plurality of ceramic nanoparticles or metal nanoparticles having an average particle diameter of 30 nm or less linearly and continuously supported on a carbon chain having an average fiber diameter of 50 nm or less derived from a cellulose nanofiber, or the nanoparticle calcined product comprises a plurality of ceramic nanoparticles or metal nanoparticles having an average particle diameter of 30 nm or less linearly and continuously arranged by being induced by a cellulose nanofiber having an average fiber diameter of 50 nm or less.SELECTED DRAWING: Figure 1

Description

本発明は、セラミックスナノ粒子又は金属ナノ粒子を含み、かつ特異な形状を有するナノ粒子集合体及びナノ粒子焼成物、並びにこれらの製造方法に関する。   The present invention relates to a nanoparticle assembly and a nanoparticle fired product containing ceramic nanoparticles or metal nanoparticles and having a unique shape, and a method for producing them.

粒径が1〜100nmのセラミックス粒子(以下、「セラミックスナノ粒子」と称する。)や金属ナノ粒子(以下、「金属ナノ粒子」と称する。)は、これよりも大きな粒径のセラミックス粒子や金属粒子に比べて、比表面積が大きく、光学的、電気的、又は磁気的性質において、量子効果が発現することが特徴の一つとして挙げられる。例えば、セラミックス粒子の比表面積が増大すると、粒子表面に露出する原子の割合も増大し、触媒化学反応のような外部の物質との化学反応の効率が高まるため、セラミックスナノ粒子や金属ナノ粒子(以下、「ナノ粒子」とも総称する。)は、あらゆる分野で有用性の高い材料として知られている。   Ceramic particles having a particle diameter of 1 to 100 nm (hereinafter referred to as “ceramic nanoparticles”) and metal nanoparticles (hereinafter referred to as “metal nanoparticles”) are ceramic particles or metals having a larger particle diameter. One of the features is that the specific surface area is larger than that of particles, and the quantum effect is manifested in optical, electrical, or magnetic properties. For example, when the specific surface area of ceramic particles increases, the proportion of atoms exposed on the particle surface also increases, and the efficiency of chemical reactions with external substances such as catalytic chemical reactions increases, so ceramic nanoparticles and metal nanoparticles ( Hereinafter, it is also referred to as “nanoparticle”.) Is known as a highly useful material in all fields.

より具体的には、例えば、酸化チタン(TiO)は、ダイヤモンドより高い屈折率を有し、可視光を吸収せず、化学的安定性にも優れる等の特徴を有することから、白色顔料・着色料や紫外線吸収剤として塗料等に広く用いられているが、これをナノ粒子とすることによって、日焼け止め化粧品や、アナターゼ型については光触媒機能(太陽光のみでのセルフクリーニング、空気清浄、水質浄化、抗菌・防かび)を有する塗料、触媒担体等の有用な材料として、より広い分野での活用が期待できる。 More specifically, for example, titanium oxide (TiO 2 ) has a higher refractive index than diamond, does not absorb visible light, and has excellent chemical stability. Widely used in paints as colorants and UV absorbers, but by making them nanoparticles, photocatalytic functions for sunscreen cosmetics and anatase type (self-cleaning only with sunlight, air purification, water quality As a useful material such as a paint having a purification, antibacterial / antifungal) and a catalyst carrier, it can be expected to be used in a wider range of fields.

また、アルミナ(Al)は、高い化学的安定性や機械的強度、小さい熱膨張率、及び大きな電気絶縁抵抗等を有することから、陶磁器、セラミックス材料、研削・研磨材等として利用されているが、これをナノ粒子とすることによって、さらに各種電子部品や触媒の担体における有用な材料としても活用することが可能となる。さらに、アルミナの一水和物であるベーマイト(AlOOH)も、化学的安定性に優れており、樹脂添加剤等として利用されているが、これをナノ粒子とすることによって、表面コート材、酵素固定化担体、アルコール脱水膜等への利用が可能となる。また、研磨剤として利用される酸化セリウム(CeO)も、酸素貯蔵能及び紫外線遮蔽効果に優れており、これをナノ粒子とすることによって、有用な触媒としての利用が可能になる。 Alumina (Al 2 O 3 ) has high chemical stability, mechanical strength, a small coefficient of thermal expansion, a large electrical insulation resistance, etc., and is therefore used as a ceramic, ceramic material, grinding / polishing material, etc. However, if this is made into nanoparticles, it can be further utilized as a useful material in various electronic parts and catalyst carriers. Furthermore, boehmite (AlOOH), which is a monohydrate of alumina, is also excellent in chemical stability and is used as a resin additive, etc., but by making it into nanoparticles, surface coating materials, enzymes It can be used for immobilization carriers, alcohol dehydration membranes, and the like. Further, cerium oxide (CeO 2 ) used as an abrasive is also excellent in oxygen storage ability and ultraviolet shielding effect, and by using it as nanoparticles, it can be used as a useful catalyst.

こうしたナノ粒子の特性を有効に引き出すためには、かかるナノ粒子の結晶性や表面特性の制御、さらに粒径の制御や化学組成の均質化が重要となる。また、かかるナノ粒子の製造方法としては、気相化学析出(CVD)法等の気相法による方法や、或いは共沈法、アルコキシド法、ゾルーゲル法、又は水熱法等の液相法による方法が用いられているが、より効率的に粒子の大きさ、形状、化学組成等を精密に制御できる製造方法の実現も望まれており、種々の検討がなされている。   In order to effectively bring out the properties of such nanoparticles, it is important to control the crystallinity and surface properties of such nanoparticles, further control the particle size and homogenize the chemical composition. In addition, as a method for producing such nanoparticles, a method by a gas phase method such as a vapor phase chemical deposition (CVD) method, or a method by a liquid phase method such as a coprecipitation method, an alkoxide method, a sol-gel method, or a hydrothermal method is used. However, the realization of a production method capable of precisely controlling the size, shape, chemical composition and the like of particles more efficiently is also desired, and various studies have been made.

例えば、特許文献1には、金属酸化物微粒子表面を有機物が修飾した有機修飾金属酸化物微粒子が開示されており、かかる粒子は超臨界流体を用いる超臨界水熱法により製造できることも記載されている。また、特許文献2には、最表面が酸素イオン層により構成された結晶面からなる酸化物微結晶粒子が50質量%以上を占めている酸化物微結晶粒子からなる粉体が開示されており、これも特許文献1と同様、超臨界水熱法により得られることが記載されている。   For example, Patent Document 1 discloses organically modified metal oxide fine particles in which the surface of the metal oxide fine particles is modified with an organic substance, and describes that such particles can be produced by a supercritical hydrothermal method using a supercritical fluid. Yes. Patent Document 2 discloses a powder composed of oxide microcrystal particles in which 50% by mass or more of oxide microcrystal particles composed of a crystal plane whose outermost surface is constituted by an oxygen ion layer. It is also described that this can be obtained by the supercritical hydrothermal method as in Patent Document 1.

一方、リチウムイオン二次電池等の正極や負極を作製する際に用いるバインダーとして、ポリフッ化ビニリデン(PVDF)やポリイミド等の有機溶剤系バインダーが多用されている。こうしたなか、環境面への配慮や電極作製工程の簡略化の視点から、スチレンブタジエンゴム(SBR)やポリアクリル酸のような水系バインダーが活用されつつあるほか、特許文献3に記載されるように、セルロースナノファイバー(CNF)を用いれば、二次電池におけるサイクル特性の改善が期待される。   On the other hand, organic solvent-based binders such as polyvinylidene fluoride (PVDF) and polyimide are frequently used as binders used when producing positive electrodes and negative electrodes such as lithium ion secondary batteries. Under these circumstances, water-based binders such as styrene butadiene rubber (SBR) and polyacrylic acid are being used from the viewpoint of environmental considerations and simplification of the electrode manufacturing process, as described in Patent Document 3. If cellulose nanofiber (CNF) is used, improvement of cycle characteristics in the secondary battery is expected.

特開2005−193237号公報JP 2005-193237 A 特開2007−217265号公報JP 2007-217265 A 国際公開第2013/042720号International Publication No. 2013/042720

しかしながら、上記特許文献1〜2において、ナノ粒子を製造する際に用いる超臨界水熱法は、温度が350〜450℃で、圧力が16〜50MPa(160〜500bar)という、高温高圧での特殊な条件を要するものである上、粒子を回収した後も凝集等を回避して微粒子のまま分散安定化させるべく、有機物質によってかかる粒子の表面修飾がなされている。
また、上記特許文献3のように、CNFを二次電池の電極用バインダーとして用いると、界面活性剤が介在していたとしても、疎水性である導電助剤と均一に混合するのは困難であるため、二次電池の充放電サイクル時に電極合材層が集電体から剥離しやすく、依然としてサイクル特性を充分に高めるには至っていない。
However, in the above-mentioned Patent Documents 1 and 2, the supercritical hydrothermal method used when producing nanoparticles is a special high-temperature and high-pressure method in which the temperature is 350 to 450 ° C. and the pressure is 16 to 50 MPa (160 to 500 bar). In addition, after the particles are collected, the surface of the particles is modified with an organic substance so as to avoid agglomeration and stabilize the dispersion as fine particles.
Further, as in Patent Document 3, when CNF is used as an electrode binder for a secondary battery, even if a surfactant is present, it is difficult to uniformly mix with a hydrophobic conductive aid. Therefore, the electrode mixture layer easily peels off from the current collector during the charge / discharge cycle of the secondary battery, and the cycle characteristics have not been sufficiently improved.

したがって、本発明の課題は、有機物質による表面修飾を要することなく、簡便な方法で製造することができる特異な形状を有するナノ粒子集合体及びナノ粒子焼成物を提供することにある。   Accordingly, an object of the present invention is to provide a nanoparticle aggregate and a fired nanoparticle having a specific shape that can be produced by a simple method without requiring surface modification with an organic substance.

そこで本発明者らは、種々検討したところ、セルロースナノファイバーを軸又は基材として、これにセラミックスナノ粒子又は金属ナノ粒子が複数連なって担持又は配列してなる形状を呈することにより、有用性の高いナノ粒子集合体又はナノ粒子焼成物が得られることを見出し、本発明を完成させるに至った。   Therefore, the present inventors have made various studies, and by using cellulose nanofibers as a shaft or base material and presenting a shape in which a plurality of ceramic nanoparticles or metal nanoparticles are supported or arranged in succession, the usefulness of the present invention can be improved. It has been found that a high nanoparticle aggregate or nanoparticle fired product can be obtained, and the present invention has been completed.

すなわち、本発明は、平均繊維径が50nm以下のセルロースナノファイバーに、複数のセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して担持してなる、ナノ粒子集合体を提供するものである。   That is, the present invention provides a nanoparticle aggregate in which a plurality of ceramic nanoparticles or metal nanoparticles are linearly continuously supported on cellulose nanofibers having an average fiber diameter of 50 nm or less.

また、本発明は、平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に、複数のセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して担持してなる、ナノ粒子焼成物、或いは平均繊維径が50nm以下のセルロースナノファイバーに誘導されて、複数のセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して配列してなる、ナノ粒子焼成物を提供するものである。   Further, the present invention is a nanoparticle fired product in which a plurality of ceramic nanoparticles or metal nanoparticles are linearly continuously supported on a carbon chain derived from cellulose nanofibers having an average fiber diameter of 50 nm or less, or an average The present invention provides a nanoparticle fired product that is derived from cellulose nanofibers having a fiber diameter of 50 nm or less, and in which a plurality of ceramic nanoparticles or metal nanoparticles are linearly continuously arranged.

さらに、本発明は、次の工程(I)〜(II):
(I)少なくとも1種の金属元素を含むセラミックス原料化合物又は金属原料化合物、並びにセルロースナノファイバーを含有するスラリーを調製する工程、
(II)得られたスラリーを、温度が100℃以上、圧力が0.3〜0.9MPaの水熱反応に付してナノ粒子集合体を得る工程
を備える、上記ナノ粒子集合体の製造方法を提供するものである。
Furthermore, the present invention provides the following steps (I) to (II):
(I) a step of preparing a slurry containing a ceramic raw material compound or metal raw material compound containing at least one metal element, and cellulose nanofibers;
(II) The method for producing a nanoparticle aggregate, comprising the step of obtaining the nanoparticle aggregate by subjecting the obtained slurry to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 to 0.9 MPa. Is to provide.

本発明のナノ粒子集合体又はナノ粒子焼成物によれば、セラミックスナノ粒子又は金属ナノ粒子がセルロースナノファイバーに担持又は誘導されてなる特異な形状を呈していることによって、これらセラミックスナノ粒子又は金属ナノ粒子の凝集が生じ難いため、これを用いた多孔質構造体やフィルム等の成型体を容易に製造することが可能である。また、酸素雰囲気下で焼成することによって、成型体中からセルロースナノファイバーを容易に除去できるので、セラミックスナノ粒子又は金属ナノ粒子のみからなる製品を簡便に得ることもできる。さらに、還元雰囲気下で焼成することによって、セルロースナノファイバーを鎖状の炭素として成型体中に残存させることができ、得られる製品に簡便に導電性を付与することもできる。   According to the nanoparticle aggregate or the nanoparticle fired product of the present invention, the ceramic nanoparticles or the metal nanoparticles are formed by presenting a unique shape in which the ceramic nanoparticles or the metal nanoparticles are supported or induced on the cellulose nanofibers. Since nanoparticles do not easily aggregate, it is possible to easily produce a molded body such as a porous structure or a film using the nanoparticles. In addition, since the cellulose nanofibers can be easily removed from the molded body by firing in an oxygen atmosphere, a product composed only of ceramic nanoparticles or metal nanoparticles can be easily obtained. Furthermore, by firing in a reducing atmosphere, the cellulose nanofibers can be left as chain carbon in the molded body, and conductivity can be easily imparted to the resulting product.

また、本発明のナノ粒子集合体によれば、必要に応じてナノ粒子が有する特異な機能をセルロースナノファイバーに付加することができる。例えば、導電性を有するセラミックスナノ粒子又は金属ナノ粒子をセルロースナノファイバーに担持させることによって、二次電池を構成する電極を作製する際のバインダーに高い導電性を付与することができ、別途導電助剤や界面活性剤を必要とすることなく電極を作製することができる。そのため、電極材料同士や電極材料と集電体との間の結着力を効果的に増強しつつ、電極合材層に占める活物質の割合を増やすことが可能となり、充放電サイクル時における剥離の発生を有効に抑制し、エネルギー密度及びサイクル特性に優れる二次電池の実現が可能である。   Moreover, according to the nanoparticle aggregate | assembly of this invention, the specific function which a nanoparticle has can be added to a cellulose nanofiber as needed. For example, by supporting ceramic nanoparticles or metal nanoparticles having conductivity on cellulose nanofibers, it is possible to impart high conductivity to the binder used in the production of an electrode constituting a secondary battery. An electrode can be produced without requiring an agent or a surfactant. Therefore, it is possible to increase the ratio of the active material in the electrode mixture layer while effectively enhancing the binding force between the electrode materials or between the electrode material and the current collector, and the separation of the peeling during the charge / discharge cycle can be increased. It is possible to realize a secondary battery that effectively suppresses generation and is excellent in energy density and cycle characteristics.

図1(a)は、実施例1で得られたベーマイト(AlOOH)のナノ粒子集合体を示すTEM写真であり、図1(b)は、使用したセルロースナノファイバー示すTEM写真である。FIG. 1 (a) is a TEM photograph showing the nanoparticle aggregate of boehmite (AlOOH) obtained in Example 1, and FIG. 1 (b) is a TEM photograph showing the cellulose nanofibers used. 比較例1で得られたベーマイト(AlOOH)のナノ粒子を示すTEM写真である。4 is a TEM photograph showing nanoparticles of boehmite (AlOOH) obtained in Comparative Example 1. 二次電池の電極用バインダーとして用いるための、セルロースナノファイバーに担持したナノ粒子集合体を示すTEM写真であり、図3(a)は、実施例2で得られたコバルト酸リチウムのナノ粒子集合体であり、図3(b)は、実施例3で得られた酸化スズのナノ粒子集合体であり、図3(c)は、実施例4で得られた酸化亜鉛のナノ粒子集合体である。FIG. 3A is a TEM photograph showing a nanoparticle aggregate supported on cellulose nanofibers for use as a binder for an electrode of a secondary battery, and FIG. 3A is a nanoparticle aggregate of lithium cobaltate obtained in Example 2; FIG. 3B is a nanoparticle aggregate of tin oxide obtained in Example 3, and FIG. 3C is a nanoparticle aggregate of zinc oxide obtained in Example 4. is there.

以下、本発明について詳細に説明する。
本発明のナノ粒子集合体(以下、「ナノアレイ」とも称する。)は、平均繊維径が50nm以下のセルロースナノファイバー(以下、「CNF」とも称する。)に、複数のセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して担持してなる。ナノアレイとは、一方のナノスケールの構造体に、他方のナノスケールの構造体が配列化されてなる形状を意味し、本発明のナノアレイは、平均繊維径が50nm以下のCNF、すなわち一方のナノスケールの構造体に、複数のセラミックスナノ粒子又は金属ナノ粒子、すなわち他方のナノスケールの構造体が直線的に連続して担持してなる、串団子様又はトウモロコシ様の形状を呈している。
ここで、平均粒子径とは、SEM又はTEMの電子顕微鏡による観察において、数十個の粒子の粒子径(長軸の長さ)の測定値の平均値を意味する。
Hereinafter, the present invention will be described in detail.
The nanoparticle aggregate of the present invention (hereinafter also referred to as “nanoarray”) includes a plurality of ceramic nanoparticles or metal nanoparticles on cellulose nanofibers (hereinafter also referred to as “CNF”) having an average fiber diameter of 50 nm or less. Are supported continuously in a straight line. The nanoarray means a shape in which one nanoscale structure is arranged on the other nanoscale structure, and the nanoarray of the present invention is a CNF having an average fiber diameter of 50 nm or less, that is, one nanoscale. The scale structure has a skewer-like or corn-like shape in which a plurality of ceramic nanoparticles or metal nanoparticles, that is, the other nanoscale structure is supported linearly and continuously.
Here, the average particle diameter means an average value of measured values of the particle diameter (long axis length) of several tens of particles in observation with an electron microscope of SEM or TEM.

このように、本発明のナノアレイは、セラミックスナノ粒子又は金属ナノ粒子がCNFに直線的に連続して担持してなるため、凝集抑制を目的としてナノ粒子に表面修飾を施す必要がなく、さらに適度な分散状態を保持していることから、これを用いて簡便に成型体へと加工することができる。また、セラミックスナノ粒子又は金属ナノ粒子自体が導電性を有しているため、別途導電助剤を必要とせず、二次電池の電極を作製するためのバインダーとしても有用性が高い。   As described above, the nanoarray of the present invention is such that ceramic nanoparticles or metal nanoparticles are supported linearly and continuously on CNF, so that it is not necessary to modify the surface of the nanoparticles for the purpose of suppressing aggregation. Since it maintains a dispersed state, it can be easily processed into a molded body using this. In addition, since the ceramic nanoparticles or the metal nanoparticles themselves have electrical conductivity, no additional conductive aid is required, and they are highly useful as binders for producing secondary battery electrodes.

本発明のナノアレイは、内包するCNFの表面がセラミックス又は金属の不均質核生成の核生成部位となり、セラミックスナノ粒子又は金属ナノ粒子が極細のCNFを囲い込むように、又は太いCNF表面に付着するように結晶成長しつつ、同様に結晶成長中の隣接するナノ粒子と接するまで結晶成長を継続することによって、ナノ粒子が不要に凝集することなく、整然と連なりながらCNFに連続して堅固に担持されて、串団子様又はトウモロコシ用の特異な形状が形成されてなるものと考えられる。   In the nanoarray of the present invention, the surface of the encapsulated CNF becomes a nucleation site for heterogeneous nucleation of ceramics or metal, and the ceramic nanoparticles or metal nanoparticles surround the ultrafine CNF or adhere to the thick CNF surface. In the same manner, the crystal growth is continued until the adjacent nanoparticle is in contact with the crystal growing, so that the nanoparticles are not firmly aggregated and are supported firmly and continuously on the CNF without being agglomerated unnecessarily. Thus, it is considered that a unique shape for skewers or corn is formed.

本発明のナノアレイを構成するセルロースナノファイバー(CNF)とは、全ての植物細胞壁の約5割を占める骨格成分であって、かかる細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維であり、水への良好な分散性も有している。
また、CNFを構成するセルロース分子鎖では、炭素による周期的構造が形成されていることから、これが炭化されて導電パスとなりつつ鎖状の軸を形成し、ナノアレイに効果的に導電性を付与することもできる。
The cellulose nanofiber (CNF) constituting the nanoarray of the present invention is a skeletal component that occupies about 50% of all plant cell walls, and is obtained by defibrating the plant fibers constituting such cell walls to a nano size. It is a lightweight high-strength fiber that can be used and has good dispersibility in water.
In addition, since the cellulose molecular chain constituting the CNF has a periodic structure formed of carbon, it is carbonized to form a chain axis while forming a conductive path, effectively imparting conductivity to the nanoarray. You can also.

CNFの平均繊維径は、50nm以下であって、好ましくは20nm以下であり、より好ましくは10nm以下である。下限値については特に制限はないが、通常1nm以上である。
また、CNFの平均長さは、ナノアレイからの成型体の加工を効率的に行う観点から、好ましくは100nm〜100μmであり、より好ましくは1μm〜100μmであり、さらに好ましくは5μm〜100μmである。
The average fiber diameter of CNF is 50 nm or less, preferably 20 nm or less, and more preferably 10 nm or less. Although there is no restriction | limiting in particular about a lower limit, Usually, it is 1 nm or more.
In addition, the average length of CNF is preferably 100 nm to 100 μm, more preferably 1 μm to 100 μm, and further preferably 5 μm to 100 μm, from the viewpoint of efficiently processing the molded body from the nanoarray.

さらに、本発明のナノ粒子集合体を二次電池の電極用バインダーとして用いる場合、CNFの平均長さは、二次電池の電極用バインダーとしての結着性の観点から、好ましくは100nm〜200μmであり、より好ましくは1μm〜200μmであり、さらに好ましくは10μm〜100μmである。またこの場合における、5質量%濃度のCNFスラリーの25℃における粘度は、好ましくは30000〜200000mPa・sであり、より好ましくは40000〜150000mPa・sであり、さらに好ましくは45000〜120000mPa・sである。   Furthermore, when the nanoparticle aggregate of the present invention is used as a binder for electrodes of a secondary battery, the average length of CNF is preferably 100 nm to 200 μm from the viewpoint of binding properties as a binder for electrodes of a secondary battery. More preferably, it is 1 micrometer-200 micrometers, More preferably, it is 10 micrometers-100 micrometers. In this case, the viscosity at 25 ° C. of the CNF slurry having a concentration of 5% by mass is preferably 30,000 to 200,000 mPa · s, more preferably 40000 to 150,000 mPa · s, and further preferably 45,000 to 120,000 mPa · s. .

本発明のナノアレイを構成するセラミックスナノ粒子又は金属ナノ粒子としては、少なくとも1種の金属元素を含み、かつナノサイズの粒子を形成することが可能であって、導電性を有しているものであればよく、特に限定されない。このようなセラミックスナノ粒子又は金属ナノ粒子を構成する金属元素としては、例えば、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt等の第VIII族の元素;Cu、Ag、Au等の第IB族の元素;Zn、Cd、Hg等の第IIB族の元素;B、Al、Ga、In、Tl等の第IIIB族の元素;Si、Ge、Sn、Pb等の第IVB族の元素;As、Sb、Bi等の第VB族の元素;Te、Po等の第VIB族の元素;Li等の第IA〜VIIA族の元素が挙げられる。なかでも、Li、Co、Ag、Au、Zn、In、Pt、Rh、Pd、Ru、Fe、Ni、Cu、Cd、Hg、Al、Ga、Tl、Si、Ge、Sn、Pb、Ti、Zr、Mn、Eu、Y、Nb、Ce、Ba等の金属元素を含むのが好ましい。なかでも本発明のナノ粒子集合体を二次電池の電極用バインダーとして用いるには、かかるセラミックスナノ粒子又は金属ナノ粒子は、Li、Co、Ag、Au、Zn、In、Pt、Rh、Pd、及びRuから選ばれる金属元素を含むのがより好ましい。   The ceramic nanoparticles or metal nanoparticles constituting the nanoarray of the present invention contain at least one kind of metal element and can form nano-sized particles and have conductivity. There is no particular limitation as long as it is present. Examples of metal elements constituting such ceramic nanoparticles or metal nanoparticles include Group VIII elements such as Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt; Cu, Ag, Au Group IB elements such as Zn, Cd and Hg; Group IIB elements such as Zn, Cd and Hg; Group IIIB elements such as B, Al, Ga, In and Tl; Group IVB such as Si, Ge, Sn and Pb Elements; Group VB elements such as As, Sb and Bi; Group VIB elements such as Te and Po; and Group IA to VIIA elements such as Li. Among them, Li, Co, Ag, Au, Zn, In, Pt, Rh, Pd, Ru, Fe, Ni, Cu, Cd, Hg, Al, Ga, Tl, Si, Ge, Sn, Pb, Ti, Zr , Mn, Eu, Y, Nb, Ce, Ba and the like are preferable. Among these, in order to use the nanoparticle aggregate of the present invention as a binder for an electrode of a secondary battery, such ceramic nanoparticles or metal nanoparticles are Li, Co, Ag, Au, Zn, In, Pt, Rh, Pd, And a metal element selected from Ru is more preferable.

かかるセラミックスナノ粒子又は金属ナノ粒子としては、具体的には、上記金属元素の単体、酸化物又は水酸化物、或いは複合酸化物等の粒子が挙げられ、例えば、SiO、TiO、ZnO、SnO、Al、MnO、MnO、NiO、Eu、Y、Nb、Nb、InO、ZnO、Fe、Fe、Co、ZrO、CeO、VO、V、AlOOH、YAl12、BaTiO、In−SnO、MgO−Al−SiO、SiO−Al、SiO−TiO、SiO−ZrO、TiO−ZrO、SiO−Al−ZrO等が挙げられる。また、本発明のナノ粒子集合体を二次電池の電極用バインダーとして用いるには、かかるセラミックスナノ粒子又は金属ナノ粒子として、水熱合成が可能である観点から、LiCoO、SnO、ZnO、Au、Ag、In、Pt、Rh、Pd、及びRuから選ばれる1種又は2種以上がより好ましい。 Specific examples of such ceramic nanoparticles or metal nanoparticles include particles of the above-mentioned metal elements, such as simple substances, oxides or hydroxides, or composite oxides. For example, SiO 2 , TiO 2 , ZnO 2. , SnO 2, Al 2 O 3 , MnO, MnO 2, NiO, Eu 2 O 3, Y 2 O 3, Nb 2 O 3, Nb 2 O 5, InO, ZnO, Fe 2 O 3, Fe 3 O 4, Co 3 O 4 , ZrO 2 , CeO 2 , VO 2 , V 2 O 5 , AlOOH, Y 3 Al 5 O 12 , BaTiO 3 , In 2 O 3 —SnO 2 , MgO—Al 2 O 3 —SiO 2 , SiO 2 -Al 2 O 3, SiO 2 -TiO 2, SiO 2 -ZrO 2, TiO 2 -ZrO 2, SiO 2 -Al 2 O 3 -ZrO 2 , and the like. Moreover, in order to use the nanoparticle aggregate of the present invention as a binder for an electrode of a secondary battery, LiCoO 2 , SnO 2 , ZnO, One or more selected from Au, Ag, In, Pt, Rh, Pd, and Ru are more preferable.

また、セラミックスナノ粒子又は金属ナノ粒子を構成する金属元素の取り得る原子価が複数存在する場合、ナノアレイの最表面において酸素が容易に脱離して、結晶面の活性がより向上するため、本発明のナノアレイを触媒活性が優れた触媒として活用できる可能性が高まることから、本発明のナノアレイを構成するセラミックスナノ粒子又は金属ナノ粒子は、金属元素が複数の原子価を取り得る遷移金属を含むことが好ましい。なかでも、人体への影響を加味する観点から、かかる遷移金属が、Ce、Pr、Fe、Ni、Cu、V及びCoからなる群から選択されるものであることがより好ましい。   Further, when there are a plurality of valences that can be taken by the metal elements constituting the ceramic nanoparticles or metal nanoparticles, oxygen is easily desorbed on the outermost surface of the nanoarray, and the activity of the crystal plane is further improved. Therefore, the ceramic nanoparticle or metal nanoparticle constituting the nanoarray of the present invention contains a transition metal capable of taking a plurality of valences. Is preferred. Especially, it is more preferable that such a transition metal is selected from the group consisting of Ce, Pr, Fe, Ni, Cu, V, and Co from the viewpoint of taking into consideration the influence on the human body.

本発明のナノアレイを構成するセラミックスナノ粒子又は金属ナノ粒子は、微結晶粒子からなる。具体的には、かかるナノ粒子の平均粒子径は、好ましくは30nm以下であり、より好ましくは20nm以下である。下限値については特に制限はないが、通常3nm以上である。   The ceramic nanoparticles or metal nanoparticles constituting the nanoarray of the present invention are composed of microcrystalline particles. Specifically, the average particle diameter of such nanoparticles is preferably 30 nm or less, more preferably 20 nm or less. Although there is no restriction | limiting in particular about a lower limit, Usually, it is 3 nm or more.

また、本発明のナノ粒子集合体を二次電池の電極用バインダーとして用いる場合、ナノ粒子の平均粒子径は、好ましくは30nm以下であり、より好ましくは25nm以下である。下限値については特に制限はないが、通常0.1nm以上である。   Moreover, when using the nanoparticle aggregate | assembly of this invention as a binder for electrodes of a secondary battery, the average particle diameter of a nanoparticle becomes like this. Preferably it is 30 nm or less, More preferably, it is 25 nm or less. Although there is no restriction | limiting in particular about a lower limit, Usually, it is 0.1 nm or more.

また、セラミックスナノ粒子又は金属ナノ粒子の晶癖としては、板状、針状、六面体、柱状等が挙げられる。なかでも、CNFとの担持が強固である観点及び電極内での導電パスを確保する観点から、CNFの軸長方向に伸延した六面体粒子が好ましい。   In addition, examples of the crystal habit of ceramic nanoparticles or metal nanoparticles include a plate shape, a needle shape, a hexahedron shape, and a column shape. Among these, hexahedral particles that are elongated in the axial length direction of CNF are preferable from the viewpoint of being firmly supported with CNF and securing a conductive path in the electrode.

なお、本発明のナノアレイは、粒子径や形状が均一なセラミックスナノ粒子又は金属ナノ粒子の集合体であることが好ましいが、粒子径や形状が異なるセラミックスナノ粒子又は金属ナノ粒子の集合体であってもよく、また化学組成が異なる2種以上のセラミックスナノ粒子又は金属ナノ粒子の集合体であってもよい。   The nanoarray of the present invention is preferably an aggregate of ceramic nanoparticles or metal nanoparticles having a uniform particle diameter or shape, but is an aggregate of ceramic nanoparticles or metal nanoparticles having different particle diameters or shapes. Alternatively, it may be an aggregate of two or more kinds of ceramic nanoparticles or metal nanoparticles having different chemical compositions.

本発明のナノ粒子焼成物は、平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に、複数のセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して担持してなり、或いは平均繊維径が50nm以下のセルロースナノファイバーに誘導されて、複数のセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して配列してなる。ここで、セルロースナノファイバー、及びセラミックスナノ粒子又は金属ナノ粒子は、上記と同義である。
これらナノ粒子焼成物は、焼成によりセルロースナノファイバーが炭化されてなる鎖状の炭素となり、これにセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して担持してなるものであり、或いは焼成によりセルロースナノファイバーが除去されてセラミックスナノ粒子又は金属ナノ粒子が残存してなり、これらナノ粒子が除去されたセルロースナノファイバーに誘導されてなるかのように、直線的に連続して配列してなるものである。いずれも上記ナノアレイ由来の特異な形状を有しており、上記ナノアレイと同様、有用な成型体へと加工することができ、種々の分野での活用が期待される。
The fired nanoparticle of the present invention has a plurality of ceramic nanoparticles or metal nanoparticles supported linearly and continuously on a carbon chain derived from cellulose nanofibers having an average fiber diameter of 50 nm or less, or an average fiber diameter. Is induced by cellulose nanofibers of 50 nm or less, and a plurality of ceramic nanoparticles or metal nanoparticles are linearly continuously arranged. Here, the cellulose nanofiber and the ceramic nanoparticle or metal nanoparticle have the same meaning as described above.
These nanoparticle fired products are chain carbons in which cellulose nanofibers are carbonized by firing, and ceramic nanoparticles or metal nanoparticles are supported linearly and continuously on this, or by firing. Cellulose nanofibers are removed to leave ceramic nanoparticles or metal nanoparticles, and these nanoparticles are arrayed linearly and continuously as if guided by the removed cellulose nanofibers. Is. Each of them has a unique shape derived from the nanoarray, and like the nanoarray, can be processed into a useful molded body, and is expected to be used in various fields.

本発明のナノアレイは、次の工程(I)〜(II):
(I)少なくとも1種の金属元素を含むセラミックス原料化合物又は金属原料化合物、並びにセルロースナノファイバーを含有するスラリーを調製する工程、
(II)得られたスラリーを、温度が100℃以上、圧力が0.3〜0.9MPaの水熱反応に付してナノ粒子集合体を得る工程
を備える製造方法により、得ることができる。
かかる製造方法を用いることにより、上記特許文献1〜2に記載されるような、高温高圧での特殊な条件を要する超臨界水熱法を用いることなく、特異な形状を呈する本発明のナノアレイを得ることができる。また、上記特許文献3に記載されるバインダーのように、別途導電助剤を必要とすることのないバインダーとして有用性の高いナノアレイを得ることができる。
The nanoarray of the present invention comprises the following steps (I) to (II):
(I) a step of preparing a slurry containing a ceramic raw material compound or metal raw material compound containing at least one metal element, and cellulose nanofibers;
(II) The obtained slurry can be obtained by a production method including a step of obtaining a nanoparticle aggregate by subjecting the obtained slurry to a hydrothermal reaction at a temperature of 100 ° C. or more and a pressure of 0.3 to 0.9 MPa.
By using such a production method, the nanoarray of the present invention exhibiting a unique shape can be obtained without using a supercritical hydrothermal method requiring special conditions at high temperature and high pressure as described in Patent Documents 1 and 2 above. Can be obtained. Moreover, a highly useful nanoarray can be obtained as a binder which does not require a separate conductive auxiliary agent like the binder described in Patent Document 3 above.

工程(I)は、少なくとも1種の金属元素を含むセラミックス原料化合物又は金属原料化合物、並びにセルロースナノファイバーを含有するスラリーを調製する工程である。
かかる工程(I)では、先ず、少なくとも1種の金属元素を含むセラミックス原料化合物又は金属原料化合物、水、並びにセルロースナノファイバーを混合してスラリーAを得る。セラミックス原料化合物又は金属原料化合物に含まれる金属元素は、上記と同義である。
かかるセラミックス原料化合物又は金属原料化合物としては、具体的には、例えば、アルミニウム化合物、ケイ素化合物、チタン化合物、セリウム化合物、亜鉛化合物、スズ化合物、リチウム化合物、又はコバルト化合物等の金属化合物が挙げられる。なかでも、上記金属元素の硫酸塩、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、酸化物、水酸化物、ハロゲン化物等を好適に使用することができる。
Step (I) is a step of preparing a slurry containing a ceramic raw material compound or metal raw material compound containing at least one metal element, and cellulose nanofibers.
In the step (I), first, a slurry A is obtained by mixing a ceramic raw material compound or metal raw material compound containing at least one metal element, water, and cellulose nanofibers. The metal element contained in the ceramic raw material compound or the metal raw material compound has the same meaning as described above.
Specific examples of such ceramic raw material compounds or metal raw material compounds include metal compounds such as aluminum compounds, silicon compounds, titanium compounds, cerium compounds, zinc compounds, tin compounds, lithium compounds, and cobalt compounds. Of these, sulfates, nitrates, carbonates, acetates, oxalates, oxides, hydroxides, halides, and the like of the above metal elements can be preferably used.

これらセラミックス原料化合物又は金属原料化合物、並びにセルロースナノファイバーを混合してスラリーAを調製する際、水を用いる。かかる水の使用量は、各原料の溶解性又は分散性、撹拌の容易性、及び水熱反応の効率等の点から、セラミックス原料化合物又は金属原料化合物の金属元素1モルに対して10〜300モルが好ましく、さらに50〜200モルが好ましい。
また、スラリーA中におけるセルロースナノファイバーの含有量は、スラリーA中の水100質量部に対し、炭素原子換算で、好ましくは0.01〜10質量部であり、より好ましくは0.05〜8質量部である。
When preparing the slurry A by mixing these ceramic raw material compound or metal raw material compound and cellulose nanofiber, water is used. The amount of water used is 10 to 300 with respect to 1 mol of the metal element of the ceramic raw material compound or the metal raw material compound in terms of the solubility or dispersibility of each raw material, the ease of stirring, the efficiency of the hydrothermal reaction, and the like. Mole is preferable, and 50 to 200 mol is more preferable.
Further, the content of cellulose nanofibers in the slurry A is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 8 parts in terms of carbon atoms with respect to 100 parts by mass of water in the slurry A. Part by mass.

工程(I)では、次に、上記スラリーAにアルカリ溶液を添加してスラリーBとし、中和反応によって、スラリーB中に溶解又は分散している金属成分を金属水酸化物にする。アルカリ溶液を添加するには、スラリーBのpHが10〜14に保持するのに充分な量を滴下するのが好ましい。かかるアルカリ溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液を用いることができるが、水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いることが好ましい。   In step (I), an alkaline solution is then added to the slurry A to form a slurry B, and the metal component dissolved or dispersed in the slurry B is converted to a metal hydroxide by a neutralization reaction. In order to add the alkaline solution, it is preferable to add dropwise an amount sufficient to keep the pH of the slurry B at 10-14. As such an alkaline solution, for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia or the like can be used, but sodium hydroxide, sodium carbonate or a mixed solution thereof is preferably used.

上記スラリーBは、金属水酸化物を良好に生成させる観点から、撹拌して中和反応を進行させるのが好ましい。中和反応中におけるスラリーBの温度は、5℃以上が好ましく、より好ましくは10〜60℃である。また、スラリーBの撹拌時間は、5分〜120分が好ましく、30〜60分がより好ましい。   The slurry B is preferably stirred to cause the neutralization reaction to proceed from the viewpoint of satisfactorily producing the metal hydroxide. The temperature of the slurry B during the neutralization reaction is preferably 5 ° C. or higher, more preferably 10 to 60 ° C. Further, the stirring time of the slurry B is preferably 5 minutes to 120 minutes, more preferably 30 to 60 minutes.

工程(II)は、得られたスラリーBを、温度が100℃以上、圧力が0.3〜0.9MPaの水熱反応に付してナノ粒子集合体を得る工程である。
かかる水熱反応中の温度は、100℃以上であればよく、130〜180℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜180℃で反応を行う場合、この時の圧力は0.3〜0.9MPaであるのが好ましく、140〜160℃で反応を行う場合の圧力は0.3〜0.6MPaであるのが好ましい。水熱反応時間は、0.5〜24時間が好ましく、さらに0.5〜15時間が好ましい。
Step (II) is a step of obtaining the nanoparticle aggregate by subjecting the obtained slurry B to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 to 0.9 MPa.
The temperature during the hydrothermal reaction may be 100 ° C. or higher, and preferably 130 to 180 ° C. The hydrothermal reaction is preferably carried out in a pressure vessel, and when the reaction is carried out at 130 to 180 ° C, the pressure at this time is preferably 0.3 to 0.9 MPa, and the reaction is carried out at 140 to 160 ° C. The pressure is preferably 0.3 to 0.6 MPa. The hydrothermal reaction time is preferably 0.5 to 24 hours, more preferably 0.5 to 15 hours.

得られた水和反応生成物は、セルロースナノファイバーと金属酸化物、又はセルロースナノファイバーと結晶水を有する金属酸化物、或いはセルロースナノファイバーと金属からなるナノアレイであり、ろ過後、水で洗浄し、乾燥することによりこれを単離できる。かかるナノアレイを水で洗浄する際、ナノアレイ1質量部に対し、水を5〜100質量部用いるのが好ましい。
乾燥手段は、凍結乾燥、真空乾燥が用いられ、凍結乾燥が好ましい。
The obtained hydration reaction product is a nanoarray composed of cellulose nanofibers and metal oxides, or cellulose nanofibers and metal oxides containing crystal water, or cellulose nanofibers and metals. After filtration, it is washed with water. It can be isolated by drying. When washing the nanoarray with water, it is preferable to use 5 to 100 parts by mass of water with respect to 1 part by mass of the nanoarray.
As the drying means, freeze drying or vacuum drying is used, and freeze drying is preferable.

また、本発明のナノ粒子集合体を二次電池の電極用バインダーとして用いる場合、ナノアレイの凝集を低減できる観点から、ナノアレイの洗浄後、乾燥を行わず、リパルプすることによって所望の濃度のナノアレイを含有するスラリーを調製してもよい。かかるナノアレイの濃度は、二次電池の電極スラリー作製時のハンドリングの観点から、スラリー中に、好ましくは0.5〜20質量%であり、より好ましくは1.0〜15質量%であり、さらに好ましくは1.5〜12質量%である。
なお、本発明のナノ粒子集合体を二次電池の電極用バインダーとして用いる場合、セルロースナノファイバーの分散性を高める観点から、セルロースナノファイバーのスラリーを予め水熱処理した後、セラミックス原料化合物又は金属原料化合物のスラリーを添加して水熱反応に付すことによって、ナノ粒子集合体を得てもよい。
In addition, when the nanoparticle assembly of the present invention is used as a binder for an electrode of a secondary battery, from the viewpoint of reducing aggregation of the nanoarray, a nanoarray having a desired concentration can be obtained by repulping the nanoarray after washing without drying. You may prepare the slurry to contain. The concentration of such a nanoarray is preferably 0.5 to 20% by mass, more preferably 1.0 to 15% by mass in the slurry from the viewpoint of handling during the preparation of the electrode slurry of the secondary battery, Preferably it is 1.5-12 mass%.
In addition, when using the nanoparticle aggregate of the present invention as a binder for an electrode of a secondary battery, from the viewpoint of enhancing the dispersibility of the cellulose nanofiber, the cellulose nanofiber slurry is hydrothermally treated in advance, and then the ceramic raw material compound or the metal raw material A nanoparticle aggregate may be obtained by adding a slurry of the compound and subjecting it to a hydrothermal reaction.

本発明のナノ粒子焼成物の製造方法は、工程(II)で得られたナノ粒子集合体を、さらに還元雰囲気下での焼成に付する工程(III)を備えてもよい。これにより、工程(II)において単離して得られたナノアレイに含まれるセルロースナノファーバーを炭化させ、良好な導電性が付与された焼成物を得ることができる。
ここで、ナノ粒子同士の焼結を予防する観点から、焼成温度は、好ましくは200〜800℃であり、より好ましくは200〜700℃である。また焼成時間は、好ましくは5分〜10時間であり、より好ましくは5分〜5時間である。
The method for producing a fired nanoparticle of the present invention may further include a step (III) of subjecting the nanoparticle aggregate obtained in the step (II) to firing in a reducing atmosphere. Thereby, the cellulose nanofabric contained in the nanoarray obtained by isolation in the step (II) can be carbonized, and a fired product with good conductivity can be obtained.
Here, from the viewpoint of preventing sintering of the nanoparticles, the firing temperature is preferably 200 to 800 ° C, more preferably 200 to 700 ° C. The firing time is preferably 5 minutes to 10 hours, and more preferably 5 minutes to 5 hours.

また、本発明のナノ粒子焼成物の製造方法は、上記工程(III)を備える代わりに、工程(II)で得られたナノ粒子集合体を、さらに酸素雰囲気下での焼成に付する工程(III)’を備えることもできる。これにより、工程(II)において単離して得られたナノアレイに含まれるセルロースナノファイバーを除去することができ、残存する複数のセラミックスナノ粒子又は金属ナノ粒子を、除去されたセルロースナノファイバーに誘導されてなるかのように、直線的に連続して配列させてなる焼成物を得ることができる。
なお、工程(III)’における焼成温度及び焼成時間は、上記工程(III)と同様である。
Moreover, the manufacturing method of the nanoparticle fired product of the present invention includes a step of subjecting the nanoparticle aggregate obtained in the step (II) to firing in an oxygen atmosphere instead of including the step (III) ( III) 'can also be provided. Thereby, the cellulose nanofibers contained in the nanoarray obtained by isolation in the step (II) can be removed, and a plurality of remaining ceramic nanoparticles or metal nanoparticles are guided to the removed cellulose nanofibers. As a result, it is possible to obtain a fired product that is arranged linearly and continuously.
The firing temperature and firing time in step (III) ′ are the same as in step (III).

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[実施例1:ベーマイト(AlOOH)からなるナノアレイ]
Al(SO・16HO 3.15g、セルロースナノファイバー 3.89g(ダイセルファインケム社製、KY100G、含水量90質量%)、及び水 55mLを60分間混合してスラリーA1を作製した。得られたスラリーA1に、10質量%濃度のNaOH水溶液 12.0gを添加し、5分間混合してスラリーA2を作製した。
スラリーA2をオートクレーブに投入し、140℃で1時間水熱反応を行った。得られた水熱反応生成物を放冷した後、ろ過して、水で洗浄し、約4時間にわたり80℃で温風乾燥して、ベーマイト(AlOOH)のナノアレイ(BET比表面積 250m−1)を得た。
[Example 1: Nanoarray made of boehmite (AlOOH)]
Al 2 (SO 4) 3 · 16H 2 O 3.15g, cellulose nanofibers 3.89 g (Daicel FineChem Co., KY100G, water content 90 wt%), and water 55mL were mixed for 60 minutes to prepare a slurry A1 . 12.0 g of 10 mass% NaOH aqueous solution was added to the obtained slurry A1 and mixed for 5 minutes to prepare slurry A2.
Slurry A2 was charged into an autoclave and subjected to a hydrothermal reaction at 140 ° C. for 1 hour. The resulting hydrothermal reaction product was allowed to cool, then filtered, washed with water, dried in hot air at 80 ° C. for about 4 hours, and a boehmite (AlOOH) nanoarray (BET specific surface area 250 m 2 g − 1 ) was obtained.

得られたベーマイト(AlOOH)のナノアレイのTEM観察像を図1(a)に示すとともに、使用したセルロースナノファイバー(KY100G)のTEM観察像を図1(b)に示す。なお、使用したTEMは、日本電子株式会社製JEM−ARM200Fであった。   A TEM observation image of the obtained boehmite (AlOOH) nanoarray is shown in FIG. 1 (a), and a TEM observation image of the used cellulose nanofiber (KY100G) is shown in FIG. 1 (b). The TEM used was JEM-ARM200F manufactured by JEOL Ltd.

[比較例1:ベーマイト(AlOOH)のナノ粒子集合体]
セルロースナノファイバーを添加しなかった以外、実施例1と同様にしてベーマイト(AlOOH)のナノ粒子集合体(BET比表面積 200m−1)を得た。
得られたベーマイト(AlOOH)のナノ粒子集合体の凝集状態を確認するためTEM観察を行った。得られたTEM写真を図2に示す。
[Comparative Example 1: Boehmite (AlOOH) nanoparticle aggregate]
A boehmite (AlOOH) nanoparticle aggregate (BET specific surface area 200 m 2 g −1 ) was obtained in the same manner as in Example 1 except that cellulose nanofibers were not added.
TEM observation was performed in order to confirm the aggregation state of the nanoparticle aggregate of the obtained boehmite (AlOOH). The obtained TEM photograph is shown in FIG.

[実施例2:コバルト酸リチウムのナノ粒子集合体]
Co(OH) 1.90g、セルロースナノファイバー19.29g(スギノマシン社製、TMa−10002、含水量98質量%)、及び水55mLを60分間混合してスラリーA1を作製した。得られたスラリーA1に、10質量%濃度のLiOH水溶液12.0gを添加し、5分間混合してスラリーA2を作製した。スラリーA2をオートクレーブに投入し、140℃で1時間水熱反応を行った。得られた水熱反応生成物を放冷した後、ろ過して、水で洗浄し、水でリパルプして、二次電池の電極用バインダーとして用いるためのコバルト酸リチウムのナノアレイ(BET比表面積160m−1)をスラリー(濃度10質量%)として得た。
[Example 2: Aggregate of lithium cobaltate nanoparticles]
A slurry A1 was prepared by mixing 1.90 g of Co (OH) 2 , 19.29 g of cellulose nanofiber (manufactured by Sugino Machine Co., Ltd., TMa-1202, water content 98 mass%), and 55 mL of water for 60 minutes. To the obtained slurry A1, 12.0 g of a 10% by mass concentration LiOH aqueous solution was added and mixed for 5 minutes to prepare a slurry A2. Slurry A2 was charged into an autoclave and subjected to a hydrothermal reaction at 140 ° C. for 1 hour. The resulting hydrothermal reaction product was allowed to cool, then filtered, washed with water, repulped with water, and a lithium cobaltate nanoarray (BET specific surface area of 160 m) for use as a binder for a secondary battery electrode. 2 g −1 ) was obtained as a slurry (concentration 10% by mass).

[実施例3:酸化スズのナノ粒子集合体]
SnCl・2HO 4.60g、セルロースナノファイバー19.29g(スギノマシン社製、TMa−10002、含水量98質量%)、及び水55mLを60分間混合してスラリーB1を作製した。得られたスラリーB1に、10質量%濃度のNaOH水溶液12.0gを添加し、5分間混合してスラリーB2を作製した。スラリーB2をオートクレーブに投入し、140℃で1時間水熱反応を行った。得られた水熱反応生成物を放冷した後、ろ過して、水で洗浄し、水でリパルプして、二次電池の電極用バインダーとして用いるための酸化スズのナノアレイ(BET比表面積200m−1)をスラリー(濃度10質量%)として得た。
[Example 3: Aggregation of tin oxide nanoparticles]
A slurry B1 was prepared by mixing 4.60 g of SnCl 2 .2H 2 O, 19.29 g of cellulose nanofiber (manufactured by Sugino Machine Co., Ltd., TMa-1202, water content 98 mass%), and 55 mL of water for 60 minutes. To the obtained slurry B1, 12.0 g of a 10% by mass NaOH aqueous solution was added and mixed for 5 minutes to prepare slurry B2. Slurry B2 was charged into an autoclave and subjected to a hydrothermal reaction at 140 ° C. for 1 hour. The resulting hydrothermal reaction product was allowed to cool, then filtered, washed with water, repulped with water, and a tin oxide nanoarray (BET specific surface area of 200 m 2) for use as a binder for an electrode of a secondary battery. g- 1 ) was obtained as a slurry (concentration: 10% by mass).

[実施例4:酸化亜鉛のナノ粒子集合体]
(CHCOO)Zn 3.75g、セルロースナノファイバー19.29g(スギノマシン社製、TMa−10002、含水量98質量%)、及び水55mLを60分間混合してスラリーC1を作製した。得られたスラリーC1に、10質量%濃度のNaOH水溶液12.0gを添加し、5分間混合してスラリーC2を作製した。スラリーC2をオートクレーブに投入し、140℃で1時間水熱反応を行った。得られた水熱反応生成物を放冷した後、ろ過して、水で洗浄し、水でリパルプして、二次電池の電極用バインダーとして用いるための酸化亜鉛のナノアレイ(BET比表面積200m−1)をスラリー(濃度10質量%)として得た。
[Example 4: Aggregate of zinc oxide nanoparticles]
(CH 3 COO) 2 Zn 3.75 g, cellulose nanofiber 19.29 g (manufactured by Sugino Machine, TMa-1202, water content 98 mass%), and water 55 mL were mixed for 60 minutes to prepare slurry C1. To the obtained slurry C1, 12.0 g of a 10% by mass NaOH aqueous solution was added and mixed for 5 minutes to prepare slurry C2. Slurry C2 was charged into an autoclave and subjected to a hydrothermal reaction at 140 ° C. for 1 hour. The resulting hydrothermal reaction product is allowed to cool, then filtered, washed with water, repulped with water, and a zinc oxide nanoarray (BET specific surface area of 200 m 2) for use as a binder for an electrode of a secondary battery. g- 1 ) was obtained as a slurry (concentration: 10% by mass).

[比較例2:CNFバインダー]
市販のセルロース粉末(Celite社製、Fibra−Cell BH−100)の1wt.%水分散液を作製し、スターバースト(スギノマシン社製)を用いて200MPaで50回の解繊処理を行い、二次電池の電極用バインダーとして用いるためのCNFバインダーを得た。
[Comparative Example 2: CNF binder]
A 1 wt.% Aqueous dispersion of a commercially available cellulose powder (Fibra-Cell BH-100, manufactured by Celite) was prepared, and defibrated 50 times at 200 MPa using Starburst (manufactured by Sugino Machine). A CNF binder for use as a binder for an electrode of a secondary battery was obtained.

[比較例2:SBRバインダー]
市販のSBR(スチレンブタジエンゴム)バインダー(MTI Japan社製、EQ−Lib−SBR)を二次電池の電極用バインダーとしてそのまま用いた。
[Comparative Example 2: SBR binder]
A commercially available SBR (styrene butadiene rubber) binder (manufactured by MTI Japan, EQ-Lib-SBR) was used as it was as a binder for an electrode of a secondary battery.

≪粒子形状の観察≫
実施例2〜4で得られた、二次電池の電極用バインダーとして用いるためのナノアレイの粒子形状を、TEMにより観察した。得られたTEM写真を図3に示す。
<Observation of particle shape>
The particle shape of the nanoarray obtained in Examples 2 to 4 for use as a binder for an electrode of a secondary battery was observed by TEM. The obtained TEM photograph is shown in FIG.

≪二次電池におけるサイクル特性の評価≫
実施例2〜4、比較例2〜3で得られた二次電池の電極用バインダーを用い、リチウムイオン二次電池の正極を作製した。
まず、予め以下の方法により、正極活物質(LiMn0.7Fe0.3PO4)を製造した。
≪Evaluation of cycle characteristics in secondary batteries≫
The positive electrode of the lithium ion secondary battery was produced using the binder for electrodes of the secondary battery obtained in Examples 2-4 and Comparative Examples 2-3.
First, a positive electrode active material (LiMn 0.7 Fe 0.3 PO 4 ) was produced in advance by the following method.

<LiMn0.7Fe0.3PO4の製造>
LiOH・HO 1272g、及び水4Lを混合してスラリーX1を得た。次いで、得られたスラリーX1を、25℃の温度に保持しながら3分間撹拌しつつ85%のリン酸水溶液1153gを35mL/分で滴下し、続いてCNF(Wma−10002、スギノマシン社製、繊維径4〜20nm)5892gを添加して、速度400rpmで12時間撹拌して、LiPOを含むスラリーY1を得た。
得られたスラリーY1に窒素パージして、スラリーY1の溶存酸素濃度を0.5mg/Lとした後、スラリーY1全量に対し、MnSO・5HO 1688g、FeSO・7HO 834gを添加してスラリーZ1を得た。添加したMnSOとFeSOのモル比(マンガン化合物:鉄化合物)は、70:30であった。
次いで、得られたスラリーZ1をオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は0.8MPaであった。水熱反応後、生成した結晶をろ過し、次いで結晶1質量部に対し12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体X2を得た。
得られた複合体X2を1000g分取し、これに水1Lを添加して、スラリーY2を得た。得られたスラリーY2を超音波攪拌機(T25、IKA社製)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(MDL−050M、藤崎電機株式会社製)を用いてスプレードライに付して造粒体Z2を得た。
得られた造粒体Z2を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のCNF由来の炭素が担持されたリン酸マンガン鉄リチウム(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、平均粒径:100nm)を得た。
<Production of LiMn 0.7 Fe 0.3 PO 4 >
1272 g of LiOH.H 2 O and 4 L of water were mixed to obtain slurry X1. Next, 1153 g of 85% phosphoric acid aqueous solution was dropped at 35 mL / min while stirring the obtained slurry X1 at a temperature of 25 ° C. for 3 minutes, followed by CNF (Wma-1202, manufactured by Sugino Machine, (Fiber diameter 4-20 nm) 5892 g was added and stirred at a speed of 400 rpm for 12 hours to obtain a slurry Y1 containing Li 3 PO 4 .
The obtained slurry Y1 was purged with nitrogen so that the dissolved oxygen concentration of the slurry Y1 was 0.5 mg / L, and then 1688 g of MnSO 4 · 5H 2 O and 834 g of FeSO 4 · 7H 2 O were added to the total amount of the slurry Y1. Thus, slurry Z1 was obtained. The molar ratio of MnSO 4 and FeSO 4 added (manganese compound: iron compound) was 70:30.
Next, the obtained slurry Z1 was charged into an autoclave and subjected to a hydrothermal reaction at 170 ° C. for 1 hour. The pressure in the autoclave was 0.8 MPa. After the hydrothermal reaction, the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystal was lyophilized at −50 ° C. for 12 hours to obtain Complex X2.
1000 g of the obtained composite X2 was collected, and 1 L of water was added thereto to obtain a slurry Y2. The obtained slurry Y2 was dispersed with an ultrasonic stirrer (T25, manufactured by IKA) for 1 minute to uniformly color the whole, and then spray-dried (MDL-050M, manufactured by Fujisaki Electric Co., Ltd.). Then, it was subjected to spray drying to obtain a granulated body Z2.
The obtained granulated body Z2 was calcined at 700 ° C. for 1 hour in an argon hydrogen atmosphere (hydrogen concentration: 3%), and lithium manganese iron phosphate (LiMn) on which 2.0% by mass of CNF-derived carbon was supported. 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, average particle size: 100 nm).

<リチウムイオン二次電池の製造>
次に、上記で得られた正極活物質(LiMn0.7Fe0.3PO4)、並びに実施例2〜4及び比較例2〜3で得られたバインダーを用いてコイン型リチウムイオン二次電池を製造した。具体的には、実施例2〜4のバインダーを用いる場合、上記で得られた正極活物質とバインダーとを質量比90:10の配合割合で混合し、これに水を加えて充分混練し、正極スラリーを調製した。比較例2〜3のバインダーを用いる場合、上記で得られた正極活物質、アセチレンブラック、バインダー、カルボキシメチルセルロースナトリウムを質量比90:5:2.5:2.5の配合割合で混合し、これに水を加えて充分混練し、正極スラリーを調製した。
次いで、塗工機を用いて、得られた正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR−2032)を得た。
得られた二次電池を用いて、サイクル特性を評価した。具体的には、電流密度170mA/g、電圧4.5Vの定電流充電と、電流密度170mA/g、終止電圧2.0Vの定電流放電とし、電流密度170mA/g(1.0CA)における放電容量を求めた。さらに、同じ充放電条件の100サイクル繰り返し試験を行い、下記式(I)により容量保持率(%)を求めた。なお、充放電試験は全て30℃で行った。
容量保持率(%)=(100サイクル後の放電容量)/(1サイクル後の放電容量)
×100・・・(I)
結果を表1に示す。
<Manufacture of lithium ion secondary batteries>
Next, a coin-type lithium ion secondary battery was manufactured using the positive electrode active material (LiMn 0.7 Fe 0.3 PO 4 ) obtained above and the binders obtained in Examples 2 to 4 and Comparative Examples 2 to 3. . Specifically, when using the binders of Examples 2 to 4, the positive electrode active material and the binder obtained above were mixed at a mixing ratio of 90:10 by mass ratio, and water was added to this and kneaded sufficiently. A positive electrode slurry was prepared. When using the binders of Comparative Examples 2 to 3, the positive electrode active material, acetylene black, binder, and sodium carboxymethylcellulose obtained above were mixed at a mass ratio of 90: 5: 2.5: 2.5. Water was added to and kneaded sufficiently to prepare a positive electrode slurry.
Next, the obtained positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum-dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and accommodated in a conventional manner in an atmosphere having a dew point of −50 ° C. or lower to obtain a coin-type secondary battery (CR-2032).
The cycle characteristics were evaluated using the obtained secondary battery. Specifically, a constant current charge with a current density of 170 mA / g and a voltage of 4.5 V and a constant current discharge with a current density of 170 mA / g and a final voltage of 2.0 V, and a discharge at a current density of 170 mA / g (1.0 CA). The capacity was determined. Furthermore, a 100-cycle repeated test under the same charge / discharge conditions was performed, and the capacity retention rate (%) was determined by the following formula (I). All charge / discharge tests were performed at 30 ° C.
Capacity retention (%) = (discharge capacity after 100 cycles) / (discharge capacity after 1 cycle)
× 100 ... (I)
The results are shown in Table 1.

Claims (9)

平均繊維径が50nm以下のセルロースナノファイバーに、複数のセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して担持してなる、ナノ粒子集合体。   A nanoparticle aggregate in which a plurality of ceramic nanoparticles or metal nanoparticles are supported linearly and continuously on cellulose nanofibers having an average fiber diameter of 50 nm or less. セラミックスナノ粒子又は金属ナノ粒子の平均粒径が、30nm以下である、請求項1に記載のナノ粒子集合体。   The nanoparticle aggregate according to claim 1, wherein the ceramic nanoparticles or metal nanoparticles have an average particle size of 30 nm or less. 二次電池の電極用バインダーである、請求項1又は2に記載のナノ粒子集合体。   The nanoparticle aggregate according to claim 1 or 2, which is a binder for an electrode of a secondary battery. 平均繊維径が50nm以下のセルロースナノファイバー由来の炭素鎖に、複数のセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して担持してなる、ナノ粒子焼成物。   A fired nanoparticle product in which a plurality of ceramic nanoparticles or metal nanoparticles are supported linearly and continuously on a carbon chain derived from cellulose nanofibers having an average fiber diameter of 50 nm or less. 平均繊維径が50nm以下のセルロースナノファイバーに誘導されて、複数のセラミックスナノ粒子又は金属ナノ粒子が直線的に連続して配列してなる、ナノ粒子焼成物。   A nanoparticle fired product that is derived from cellulose nanofibers having an average fiber diameter of 50 nm or less and in which a plurality of ceramic nanoparticles or metal nanoparticles are linearly continuously arranged. セラミックスナノ粒子又は金属ナノ粒子の平均粒径が、30nm以下である、請求項4又は5に記載のナノ粒子焼成物。   The nanoparticle fired product according to claim 4 or 5, wherein the average particle size of the ceramic nanoparticles or metal nanoparticles is 30 nm or less. 次の工程(I)〜(II):
(I)少なくとも1種の金属元素を含むセラミックス原料化合物又は金属原料化合物、並びにセルロースナノファイバーを含有するスラリーを調製する工程、
(II)得られたスラリーを、温度が100℃以上、圧力が0.3〜0.9MPaの水熱反応に付してナノ粒子集合体を得る工程
を備える、請求項1又は2に記載のナノ粒子集合体の製造方法。
Next steps (I) to (II):
(I) a step of preparing a slurry containing a ceramic raw material compound or metal raw material compound containing at least one metal element, and cellulose nanofibers;
(II) The obtained slurry is provided with the process of attaching | subjecting the obtained slurry to hydrothermal reaction with a temperature of 100 degreeC or more and a pressure of 0.3-0.9 MPa, and obtaining a nanoparticle aggregate | assembly. A method for producing a nanoparticle aggregate.
次の工程(I)〜(III):
(I)少なくとも1種の金属元素を含むセラミックス原料化合物又は金属原料化合物、並びにセルロースナノファイバーを含有するスラリーを調製する工程、
(II)得られたスラリーを、温度が100℃以上、圧力が0.3〜0.9MPaの水熱反応に付してナノ粒子集合体を得る工程
(III)得られたナノ粒子集合体を、さらに還元雰囲気下での焼成に付する工程
を備える、請求項4又は6に記載のナノ粒子焼成物の製造方法。
Next steps (I) to (III):
(I) a step of preparing a slurry containing a ceramic raw material compound or metal raw material compound containing at least one metal element, and cellulose nanofibers;
(II) A step of subjecting the obtained slurry to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 to 0.9 MPa to obtain a nanoparticle aggregate (III) Furthermore, the manufacturing method of the nanoparticle baked product of Claim 4 or 6 provided with the process attached | subjected to baking in a reducing atmosphere.
次の工程(I)〜(III)’:
(I)少なくとも1種の金属元素を含むセラミックス原料化合物又は金属原料化合物、並びにセルロースナノファイバーを含有するスラリーを調製する工程、
(II)得られたスラリーを、温度が100℃以上、圧力が0.3〜0.9MPaの水熱反応に付してナノ粒子集合体を得る工程
(III)’得られたナノ粒子集合体を、さらに酸素雰囲気下での焼成に付する工程
を備える、請求項5又は6に記載のナノ粒子焼成物の製造方法。
Next steps (I) to (III) ′:
(I) a step of preparing a slurry containing a ceramic raw material compound or metal raw material compound containing at least one metal element, and cellulose nanofibers;
(II) A step of subjecting the obtained slurry to a hydrothermal reaction at a temperature of 100 ° C. or higher and a pressure of 0.3 to 0.9 MPa to obtain a nanoparticle aggregate. (III) ′ Obtained nanoparticle aggregate The manufacturing method of the nanoparticle baked product of Claim 5 or 6 further equipped with the process of attaching | subjecting to baking by oxygen atmosphere.
JP2017157812A 2017-03-16 2017-08-18 Nanoparticle aggregate, nanoparticle fired product, and production method thereof Active JP6442574B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051281 2017-03-16
JP2017051281 2017-03-16

Publications (2)

Publication Number Publication Date
JP2018154545A true JP2018154545A (en) 2018-10-04
JP6442574B2 JP6442574B2 (en) 2018-12-19

Family

ID=63715695

Family Applications (12)

Application Number Title Priority Date Filing Date
JP2017157812A Active JP6442574B2 (en) 2017-03-16 2017-08-18 Nanoparticle aggregate, nanoparticle fired product, and production method thereof
JP2017181024A Active JP6505181B2 (en) 2017-03-16 2017-09-21 Catalyst for purifying automobile exhaust gas and method for producing the same
JP2018037045A Active JP6527258B2 (en) 2017-03-16 2018-03-02 Method of manufacturing positive electrode active material for nano-array like lithium ion secondary battery
JP2018042464A Active JP6646092B2 (en) 2017-03-16 2018-03-09 Oxide semiconductor nanoparticle aggregate for resistance type oxygen sensor and method for producing the same
JP2018044274A Active JP6602908B2 (en) 2017-03-16 2018-03-12 Zirconia slurry for thin film formation and manufacturing method thereof
JP2018044276A Active JP6590968B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for ammonia gas sensor and manufacturing method thereof
JP2018044275A Active JP6590967B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for carbon monoxide gas sensor and method for producing the same
JP2018044694A Active JP6595028B2 (en) 2017-03-16 2018-03-12 Method for producing exhaust gas purification catalyst
JP2018047662A Active JP6625153B2 (en) 2017-03-16 2018-03-15 Electrode active material for all-solid secondary battery, method for producing the same, and all-solid secondary battery
JP2018047660A Active JP6622838B2 (en) 2017-03-16 2018-03-15 Solid electrolyte for all solid state secondary battery, method for producing the same, and all solid state secondary battery
JP2019161035A Active JP7061100B2 (en) 2017-03-16 2019-09-04 Solid electrolytes for all-solid-state secondary batteries, their manufacturing methods, and all-solid-state secondary batteries
JP2019161173A Active JP7061101B2 (en) 2017-03-16 2019-09-04 Electrode active material for all-solid-state secondary battery, its manufacturing method, and all-solid-state secondary battery

Family Applications After (11)

Application Number Title Priority Date Filing Date
JP2017181024A Active JP6505181B2 (en) 2017-03-16 2017-09-21 Catalyst for purifying automobile exhaust gas and method for producing the same
JP2018037045A Active JP6527258B2 (en) 2017-03-16 2018-03-02 Method of manufacturing positive electrode active material for nano-array like lithium ion secondary battery
JP2018042464A Active JP6646092B2 (en) 2017-03-16 2018-03-09 Oxide semiconductor nanoparticle aggregate for resistance type oxygen sensor and method for producing the same
JP2018044274A Active JP6602908B2 (en) 2017-03-16 2018-03-12 Zirconia slurry for thin film formation and manufacturing method thereof
JP2018044276A Active JP6590968B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for ammonia gas sensor and manufacturing method thereof
JP2018044275A Active JP6590967B2 (en) 2017-03-16 2018-03-12 Oxide semiconductor for carbon monoxide gas sensor and method for producing the same
JP2018044694A Active JP6595028B2 (en) 2017-03-16 2018-03-12 Method for producing exhaust gas purification catalyst
JP2018047662A Active JP6625153B2 (en) 2017-03-16 2018-03-15 Electrode active material for all-solid secondary battery, method for producing the same, and all-solid secondary battery
JP2018047660A Active JP6622838B2 (en) 2017-03-16 2018-03-15 Solid electrolyte for all solid state secondary battery, method for producing the same, and all solid state secondary battery
JP2019161035A Active JP7061100B2 (en) 2017-03-16 2019-09-04 Solid electrolytes for all-solid-state secondary batteries, their manufacturing methods, and all-solid-state secondary batteries
JP2019161173A Active JP7061101B2 (en) 2017-03-16 2019-09-04 Electrode active material for all-solid-state secondary battery, its manufacturing method, and all-solid-state secondary battery

Country Status (1)

Country Link
JP (12) JP6442574B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020091938A (en) * 2018-12-03 2020-06-11 太平洋セメント株式会社 Positive electrode paste for lithium-ion secondary battery and manufacturing method of the same
JP2020095779A (en) * 2018-12-10 2020-06-18 太平洋セメント株式会社 Manufacturing method of nanoparticle assembly for negative electrode active material for lithium ion secondary battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3602661A4 (en) * 2017-03-31 2021-01-13 The Regents of The University of Michigan System and method for the formation of facile lithium metal anode interface with a solid state electrolyte
WO2019065066A1 (en) * 2017-09-28 2019-04-04 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
JP2020028577A (en) * 2018-08-24 2020-02-27 株式会社三共 Game machine
JP6962883B2 (en) * 2018-08-24 2021-11-05 株式会社三共 Pachinko machine
JP7165048B2 (en) * 2018-12-21 2022-11-02 太平洋セメント株式会社 METHOD FOR MANUFACTURING LISICON-TYPE CRYSTAL PARTICLES FOR SOLID ELECTROLYTE FOR LITHIUM-ION SECONDARY BATTERY
JP7224170B2 (en) * 2018-12-21 2023-02-17 太平洋セメント株式会社 LISICON type crystal particles for solid electrolyte of lithium ion secondary battery and method for producing the same
JP7189006B2 (en) * 2018-12-21 2022-12-13 太平洋セメント株式会社 Method for producing NASICON-type oxide particles for solid electrolyte of lithium-ion secondary battery
JP7224171B2 (en) * 2018-12-21 2023-02-17 太平洋セメント株式会社 Method for producing LISICON type crystal particles for solid electrolyte of lithium ion secondary battery
WO2020166429A1 (en) * 2019-02-13 2020-08-20 Semitec株式会社 Gas detection device and gas detection method
JP7165608B2 (en) * 2019-03-19 2022-11-04 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and method for producing the same
CN113543880B (en) * 2019-03-26 2023-10-03 樱花工业株式会社 Catalyst layer forming material, catalyst device constituent material, catalyst device, and method for producing the same
JP7385859B2 (en) * 2019-08-26 2023-11-24 国立大学法人東京工業大学 Gas sensor with nanogap electrode and manufacturing method thereof
JP7340995B2 (en) * 2019-09-02 2023-09-08 太平洋セメント株式会社 Method for producing chain-like lithium lanthanum titanate crystal particle aggregate for solid electrolyte
JP7403289B2 (en) * 2019-11-27 2023-12-22 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP7351736B2 (en) * 2019-12-11 2023-09-27 太平洋セメント株式会社 Method for producing lithium lanthanum zirconium oxide crystal particle aggregate for solid electrolyte
JP2021124405A (en) * 2020-02-06 2021-08-30 アズビル株式会社 CO2 sensor system
US11532813B2 (en) 2020-02-20 2022-12-20 Samsung Electronics Co., Ltd. Composite cathode active material, preparation method thereof, cathode layer including the same, and all-solid secondary battery including the cathode layer
CN111977658B (en) * 2020-08-26 2021-03-02 成都新柯力化工科技有限公司 Method for continuously producing silicon-carbon negative electrode material of lithium battery
CN112499678B (en) * 2020-11-23 2021-12-28 山东国瓷功能材料股份有限公司 Nano zirconium oxide powder, preparation method thereof, dispersion liquid obtained by preparation method and optical film

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121127A (en) * 2006-11-08 2008-05-29 Ehime Prefecture Method for producing pulp
WO2010095574A1 (en) * 2009-02-18 2010-08-26 国立大学法人 九州大学 Complex comprising cellulose nanofibers and metal nanoparticles, and process for producing same
US20130211308A1 (en) * 2006-04-24 2013-08-15 Axcelon Biopolymers Corporation Nanosilver coated bacterial cellulose
JP2013209779A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Formed body and method for producing the same
JP2014530946A (en) * 2011-10-26 2014-11-20 ストラ エンソ オサケ ユキチュアユルキネンStora Enso Oyj Method for producing dispersion containing nanoparticles and dispersion produced by said method
JP2015071843A (en) * 2013-10-03 2015-04-16 中越パルプ工業株式会社 Nano-composite body and method for producing nano-composite body
JP2015513569A (en) * 2012-02-10 2015-05-14 セルテック・アクチボラゲットCellutech Ab Cellulose nanofibrils modified with magnetic nanoparticles
WO2016043146A1 (en) * 2014-09-17 2016-03-24 国立大学法人名古屋大学 Thermally conductive composition and method for producing same
WO2016047491A1 (en) * 2014-09-26 2016-03-31 太平洋セメント株式会社 Positive-electrode active material for secondary cell, and method for manufacturing same
JP2016047940A (en) * 2014-08-27 2016-04-07 株式会社ジーエル・マテリアルズホールディングス Production method of nanoparticle
JP2018059057A (en) * 2016-10-03 2018-04-12 国立研究開発法人産業技術総合研究所 Composite material, method for producing the same and thermally conductive material

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903181B2 (en) * 2002-06-27 2007-04-11 独立行政法人産業技術総合研究所 Resistance oxygen sensor, oxygen sensor device using the same, and air-fuel ratio control system
JP4543618B2 (en) * 2003-04-14 2010-09-15 ソニー株式会社 Non-aqueous electrolyte battery
KR100534708B1 (en) * 2003-10-15 2005-12-07 현대자동차주식회사 Oxygen sensor heating control method of vehicle
JP2007139669A (en) * 2005-11-21 2007-06-07 Ngk Spark Plug Co Ltd Gas sensor
KR100812357B1 (en) * 2005-12-23 2008-03-11 한국과학기술연구원 Ultra-sensitive metal oxide gas sensor and fbrication method thereof
JP2007229640A (en) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd Catalyst for purification of exhaust gas and its manufacturing method
EP2022562B1 (en) * 2006-04-03 2021-06-09 Nissan Motor Company Limited Exhaust gas purifying catalyst
JP5551329B2 (en) * 2006-11-14 2014-07-16 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP5661989B2 (en) * 2007-04-20 2015-01-28 日産自動車株式会社 High heat resistant catalyst and process for producing the same
JP2009014610A (en) * 2007-07-06 2009-01-22 Yamaha Motor Co Ltd Resistance oxygen sensor, air-fuel ratio controller, and transport machine
CA2638410A1 (en) * 2008-07-28 2010-01-28 Hydro-Quebec Composite electrode material
JP5272738B2 (en) * 2009-01-05 2013-08-28 コニカミノルタ株式会社 Polymer film with cellulose coating film
JP6057893B2 (en) * 2011-04-28 2017-01-11 昭和電工株式会社 Positive electrode material for lithium secondary battery and method for producing the same
JP5895600B2 (en) * 2012-03-01 2016-03-30 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP5921960B2 (en) * 2012-06-04 2016-05-24 第一工業製薬株式会社 Composition containing inorganic fine particles and film using the same
JP2014026809A (en) * 2012-07-26 2014-02-06 Toyota Motor Corp Fibrous oxide solid electrolyte, all solid battery, and method for manufacturing the same
JP5896034B2 (en) * 2012-09-19 2016-03-30 信越化学工業株式会社 Visible light responsive photocatalyst fine particle dispersion, method for producing the same, and member having photocatalytic thin film on surface
JP6224311B2 (en) * 2012-11-06 2017-11-01 Nissha株式会社 Semiconductor gas sensor element
WO2015038735A1 (en) * 2013-09-11 2015-03-19 Candace Chan Nanowire-based solid electrolytes and lithium-ion batteries including the same
JP6310716B2 (en) * 2014-02-10 2018-04-11 古河機械金属株式会社 Solid electrolyte sheet, all solid-state lithium ion battery, and method for producing solid electrolyte sheet
JP6070661B2 (en) * 2014-09-10 2017-02-01 トヨタ自動車株式会社 Positive electrode mixture, positive electrode, solid state battery, and production method thereof
KR101610354B1 (en) * 2014-09-18 2016-04-11 재단법인대구경북과학기술원 Production method of a metal oxide supported carbon nano fiber electrode using electro deposition method, and an energy storage device and a filter using the same
JP2016069616A (en) * 2014-09-28 2016-05-09 第一工業製薬株式会社 Inorganic fine particle-containing composition and coating using the same
JP6023295B2 (en) * 2015-03-26 2016-11-09 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP6243372B2 (en) * 2015-03-27 2017-12-06 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2016207418A (en) * 2015-04-21 2016-12-08 トヨタ自動車株式会社 Electrode mixture
EP3306731A4 (en) * 2015-06-08 2018-06-06 FUJI-FILM Corporation Solid electrolyte composition, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing electrode sheet for all-solid-state secondary batteries, and method for producing all-solid-state secondary battery
KR101745128B1 (en) * 2015-09-01 2017-06-08 현대자동차주식회사 Chemochromic nanoparticles, method for manufacturing the same, and hydrogen sensor comprising the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130211308A1 (en) * 2006-04-24 2013-08-15 Axcelon Biopolymers Corporation Nanosilver coated bacterial cellulose
JP2008121127A (en) * 2006-11-08 2008-05-29 Ehime Prefecture Method for producing pulp
WO2010095574A1 (en) * 2009-02-18 2010-08-26 国立大学法人 九州大学 Complex comprising cellulose nanofibers and metal nanoparticles, and process for producing same
JP2014530946A (en) * 2011-10-26 2014-11-20 ストラ エンソ オサケ ユキチュアユルキネンStora Enso Oyj Method for producing dispersion containing nanoparticles and dispersion produced by said method
JP2015513569A (en) * 2012-02-10 2015-05-14 セルテック・アクチボラゲットCellutech Ab Cellulose nanofibrils modified with magnetic nanoparticles
JP2013209779A (en) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd Formed body and method for producing the same
JP2015071843A (en) * 2013-10-03 2015-04-16 中越パルプ工業株式会社 Nano-composite body and method for producing nano-composite body
JP2016047940A (en) * 2014-08-27 2016-04-07 株式会社ジーエル・マテリアルズホールディングス Production method of nanoparticle
WO2016043146A1 (en) * 2014-09-17 2016-03-24 国立大学法人名古屋大学 Thermally conductive composition and method for producing same
WO2016047491A1 (en) * 2014-09-26 2016-03-31 太平洋セメント株式会社 Positive-electrode active material for secondary cell, and method for manufacturing same
JP2018059057A (en) * 2016-10-03 2018-04-12 国立研究開発法人産業技術総合研究所 Composite material, method for producing the same and thermally conductive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020091938A (en) * 2018-12-03 2020-06-11 太平洋セメント株式会社 Positive electrode paste for lithium-ion secondary battery and manufacturing method of the same
JP7165569B2 (en) 2018-12-03 2022-11-04 太平洋セメント株式会社 Positive electrode paste for lithium ion secondary battery and method for producing the same
JP2020095779A (en) * 2018-12-10 2020-06-18 太平洋セメント株式会社 Manufacturing method of nanoparticle assembly for negative electrode active material for lithium ion secondary battery
JP7152945B2 (en) 2018-12-10 2022-10-13 太平洋セメント株式会社 Method for producing nanoparticle aggregate for negative electrode active material of lithium ion secondary battery

Also Published As

Publication number Publication date
JP7061100B2 (en) 2022-04-27
JP2018154550A (en) 2018-10-04
JP2018155749A (en) 2018-10-04
JP6505181B2 (en) 2019-04-24
JP6622838B2 (en) 2019-12-18
JP6590967B2 (en) 2019-10-16
JP2018156940A (en) 2018-10-04
JP6442574B2 (en) 2018-12-19
JP2018153794A (en) 2018-10-04
JP2018156935A (en) 2018-10-04
JP6625153B2 (en) 2019-12-25
JP6602908B2 (en) 2019-11-06
JP7061101B2 (en) 2022-04-27
JP2018155748A (en) 2018-10-04
JP6527258B2 (en) 2019-06-05
JP6595028B2 (en) 2019-10-23
JP6590968B2 (en) 2019-10-16
JP2018156941A (en) 2018-10-04
JP2018155746A (en) 2018-10-04
JP2019212637A (en) 2019-12-12
JP2018153803A (en) 2018-10-04
JP6646092B2 (en) 2020-02-14
JP2019204800A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP6442574B2 (en) Nanoparticle aggregate, nanoparticle fired product, and production method thereof
KR100944137B1 (en) Lithium-containing composite oxide and method for production thereof
JP6098612B2 (en) COMPOSITE PARTICLE, SOLID BATTERY ELECTRODE AND METHOD FOR PRODUCING COMPOSITE PARTICLE
KR101475514B1 (en) Manufacturing method of lithium-titanium composite doped by different metal, and lithium-titanium composite doped with different metal made by same
KR101650230B1 (en) Cathod active material for lithium rechargeable battery, preparing method thereof and lithium rechargeable battery containing the same
JP5612857B2 (en) TITANATE COMPOUND, PROCESS FOR PRODUCING THE SAME, ELECTRODE ACTIVE MATERIAL CONTAINING THE TITANATE COMPOUND, ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
JP5812682B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP2010254482A (en) Method for manufacturing alkali metal titanate compound, titanate compound or titanium oxide, and electrode active material and power storage device using them
JP5701863B2 (en) Novel lithium titanate and method for producing the same, electrode active material containing the lithium titanate, and power storage device using the electrode active material
KR20060041241A (en) Lithium-nickel-manganese composite oxide, process for producing the same and use thereof
KR20100069578A (en) Titanium oxide compound for use in electrode and lithium secondary battery comprising the same
KR20110044375A (en) Manufacturing method of lithium-nickel-cobalt-manganese complex oxide, lithium-nickel-cobalt-manganese complex oxide manufactured thereby and lithium secondary battery with the same
CN115072799A (en) Method for manufacturing positive electrode active material for lithium secondary battery
JP6243932B2 (en) Method for producing titanium niobium oxide, and method for producing titanium niobium oxide negative electrode active material using titanium niobium oxide obtained therefrom
JP6008610B2 (en) Positive electrode material for secondary battery and secondary battery using the positive electrode material
JP7351736B2 (en) Method for producing lithium lanthanum zirconium oxide crystal particle aggregate for solid electrolyte
CN113348150B (en) Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide
JP2012248333A (en) Electrode active substance, manufacturing method thereof and power storage device employing electrode active substance
KR102442201B1 (en) Ceramic powder material, manufacturing method of ceramic powder material, compact, sintered body and battery
JP7165569B2 (en) Positive electrode paste for lithium ion secondary battery and method for producing the same
JP6013435B2 (en) ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE USING THE ELECTRODE ACTIVE MATERIAL
KR101142517B1 (en) manufacturing method of cathode active material and lithium battery thereby
WO2014034696A1 (en) Process for producing composite material of metal oxide with conductive carbon
KR20240141786A (en) Single crystal sodium ion battery cathode active material and its manufacturing method and use
WO2001015252A1 (en) Positive electrode material for lithium secondary cell and positive electrode, and lithium secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180816

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180816

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6442574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250