JP6687022B2 - Refrigeration cycle equipment - Google Patents
Refrigeration cycle equipment Download PDFInfo
- Publication number
- JP6687022B2 JP6687022B2 JP2017515372A JP2017515372A JP6687022B2 JP 6687022 B2 JP6687022 B2 JP 6687022B2 JP 2017515372 A JP2017515372 A JP 2017515372A JP 2017515372 A JP2017515372 A JP 2017515372A JP 6687022 B2 JP6687022 B2 JP 6687022B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- water
- spiral
- insert
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/02—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/04—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/10—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
- F28D7/106—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/06—Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
本発明は、流体間で熱交換を行う熱交換器に関する。 The present invention relates to a heat exchanger that exchanges heat between fluids.
従来、この種の熱交換器として、水管と冷媒管を二重螺旋状に巻き付けた熱交換器が提案されている(例えば、特許文献1参照)。また、水管に冷媒管を巻付けた熱交換器が提案されている(例えば、特許文献2)。 Conventionally, as this type of heat exchanger, a heat exchanger in which a water pipe and a refrigerant pipe are wound in a double spiral shape has been proposed (for example, see Patent Document 1). Further, a heat exchanger in which a refrigerant pipe is wound around a water pipe has been proposed (for example, Patent Document 2).
この種の熱交換器を搭載しているヒートポンプ給湯機は、主として夜間に一定の時間をかけて湯を沸かす装置であり、沸き上げ運転時に、同給湯機が備える熱交換器を流れる水の流速は比較的小さい。 A heat pump water heater equipped with this type of heat exchanger is a device that boils hot water mainly at night for a certain period of time, and the flow velocity of water flowing through the heat exchanger of the water heater during the boiling operation. Is relatively small.
したがって、熱交換器を流れる水の流れは層流であることから、熱交換器としての伝熱性能を向上させるためには、水の流れを乱れさせ、水側の伝熱性能を向上させることが必須である。 Therefore, since the flow of water flowing through the heat exchanger is laminar, in order to improve the heat transfer performance of the heat exchanger, the water flow should be disturbed to improve the heat transfer performance on the water side. Is mandatory.
図11は、特許文献1に記載された従来の熱交換器の概要図(一部断面図)である。図12は、図11の熱交器の断面を示す拡大図である。 FIG. 11 is a schematic view (partially sectional view) of a conventional heat exchanger described in Patent Document 1. FIG. 12 is an enlarged view showing a cross section of the heat exchanger of FIG. 11.
熱交換器201は、水管202と、1本の水管202に対して1本以上の冷媒管203とを備えている。水管202は、螺旋巻きされることにより略円筒形状に形成されている。冷媒管203は、略円筒形状に形成された水管202の外周に所定のピッチで螺旋巻きされている。さらに、冷媒管203は少なくとも一箇所以上が水管202の略全長にわたり接合されている。水管202を流れる水の流れ方向と、冷媒管203の内部を流れる冷媒の流れ方向とは反対方向である。 The heat exchanger 201 includes a water pipe 202 and one or more refrigerant pipes 203 for one water pipe 202. The water pipe 202 is formed into a substantially cylindrical shape by being spirally wound. The refrigerant pipe 203 is spirally wound around the water pipe 202 formed in a substantially cylindrical shape at a predetermined pitch. Further, at least one place of the refrigerant pipe 203 is joined over substantially the entire length of the water pipe 202. The flow direction of water flowing through the water pipe 202 is opposite to the flow direction of the refrigerant flowing inside the refrigerant pipe 203.
上記のように水管202が螺旋状に巻き回されることにより、水管を流れる水に遠心力が働き、管軸に垂直な断面内に、図12に記載の矢印のような二次流れが生じる。ここで、螺旋状流路を流れる水に働く遠心力の大きさは力のつり合いから、 As the water pipe 202 is spirally wound as described above, a centrifugal force acts on the water flowing through the water pipe, and a secondary flow as shown by the arrow in FIG. 12 is generated in the cross section perpendicular to the pipe axis. . Here, the magnitude of the centrifugal force that acts on the water flowing through the spiral flow path is based on the balance of forces,
と表される。なお、式(1)において、Fは遠心力、M(M=V×ρ)は質量、Vは体積、ρは密度、vは回転速度、rは回転半径を示している。 Is expressed as In the formula (1), F is centrifugal force, M (M = V × ρ) is mass, V is volume, ρ is density, v is rotational speed, and r is rotational radius.
式(1)からもわかるように、温度が低く密度の大きい流体ほどより大きな遠心力が働き、螺旋状流路の外側に向かう。このため、伝熱面での水と冷媒との温度差が拡大し、伝熱が促進される。 As can be seen from the equation (1), a fluid having a lower temperature and a higher density has a larger centrifugal force, and moves toward the outside of the spiral flow path. Therefore, the temperature difference between the water and the refrigerant on the heat transfer surface increases, and heat transfer is promoted.
したがって、水の流れが層流であっても二次流れにより、主流に垂直な断面内の温度場が改善されるので、水管と冷媒管を接合した直管状の熱交換器に比べて大幅に伝熱性能を向上させることができる。 Therefore, even if the flow of water is laminar, the secondary flow improves the temperature field in the cross section perpendicular to the main flow, which is significantly larger than that of a straight tube heat exchanger in which a water pipe and a refrigerant pipe are joined. The heat transfer performance can be improved.
図13は、特許文献2に記載された従来の熱交換器の概略図である。 FIG. 13 is a schematic view of a conventional heat exchanger described in Patent Document 2.
熱交換器301は、直線部を有する水管302と、1本の水管302に対して1本以上の冷媒管303とを備えている。冷媒管303は水管302に巻き付けられており、水管302の内部には伝熱促進手段としてねじりテープが挿入されている。 The heat exchanger 301 includes a water pipe 302 having a straight line portion and one or more refrigerant pipes 303 for one water pipe 302. The refrigerant pipe 303 is wound around the water pipe 302, and a twisting tape is inserted inside the water pipe 302 as a heat transfer promoting means.
このように、水管にねじりテープを挿入し、旋回流を発生させることで、水側の流れを乱し、伝熱性能を向上させている。 In this way, by inserting the twisting tape into the water pipe and generating the swirling flow, the flow on the water side is disturbed and the heat transfer performance is improved.
しかしながら、上記特許文献1における構成では、管を螺旋状に巻き回して熱交換器が形成されるため、管の材質、及び、管径や肉厚によっては、水管が扁平したり、また、座屈したりする可能性がある。 However, in the configuration described in Patent Document 1, since the heat exchanger is formed by spirally winding the pipe, depending on the material of the pipe, the pipe diameter and the wall thickness, the water pipe may be flat or the seat You may bend.
そのため、扁平による減肉を考慮して水管の肉厚を厚くして、座屈が起こらないように螺旋管の曲率直径Dを大きくとる必要がある。これは、コストアップにつながるとともに、熱交換器の容積が大きくなってしまう。さらに、遠心力による二次流れでの伝熱促進効果が小さくなってしまうという課題を有していた。 Therefore, it is necessary to increase the wall thickness of the water tube in consideration of the thinning due to flattening and to increase the curvature diameter D of the spiral tube so that buckling does not occur. This leads to an increase in cost and increases the volume of the heat exchanger. Further, there is a problem that the effect of promoting heat transfer in the secondary flow due to the centrifugal force becomes small.
また、管の巻きピッチを広くとれば、座屈のリスクは減少するが、デッドスペースが多い冗長な熱交換器となってしまい、熱交換器の容積が不必要に大きくなるという課題も有していた。 Further, if the winding pitch of the pipe is widened, the risk of buckling is reduced, but there is also a problem that it becomes a redundant heat exchanger with many dead spaces and the volume of the heat exchanger becomes unnecessarily large. Was there.
また、上記特許文献2における構成では、ねじりテープにより発生した旋回流で伝熱面近傍の温度分布は改善されるが、伝熱面からの距離が最も離れている水管の中心軸上の温度分布の改善効果は伝熱面近傍に比べて小さい。 Further, in the configuration of Patent Document 2, the temperature distribution near the heat transfer surface is improved by the swirling flow generated by the twisting tape, but the temperature distribution on the central axis of the water pipe farthest from the heat transfer surface is improved. The improvement effect of is smaller than that near the heat transfer surface.
すなわち、水管の中心軸上には伝熱の寄与が小さい死水域ができてしまう。また、死水域を減らすために水管の管径を小さくすると、水圧損が過大になってしまい、水搬送ポンプの動力が大きくなる。これにより、熱交換器を搭載した機器のランニングコストが増加してしまうという課題を有していた。 That is, a dead water region where the contribution of heat transfer is small is formed on the central axis of the water pipe. Further, if the diameter of the water pipe is reduced to reduce the dead water area, the water pressure loss becomes excessive and the power of the water transfer pump increases. As a result, there is a problem that the running cost of the device equipped with the heat exchanger increases.
本発明は、上記従来の課題を解決するもので、コンパクトで経済性に優れ、品質性能および熱交換性能の高い熱交換器を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a heat exchanger that is compact, has excellent economical efficiency, and has high quality performance and high heat exchange performance.
上記目的を達成するために、本発明の冷凍サイクル装置は、少なくとも圧縮機、熱交換器、減圧装置、および蒸発器を環状に接続した冷媒回路と、制御装置と、前記圧縮機で圧縮された高温の冷媒が、前記熱交換器および前記減圧装置を通り、前記蒸発器に流入し、前記蒸発器の着霜を溶かし、前記圧縮機に吸入される除霜運転モードと、を備え、前記熱交換器は、水が流れる内管と、前記内管に挿入される挿入体と、前記内管の外周に設けられ、前記冷媒が流れる外管と、を有し、前記挿入体は、軸部と前記軸部の外表面に形成された螺旋状突部とを備え、前記水は、前記内管の内面と前記軸部と前記螺旋状突部とで形成される螺旋状流路を流れ、前記水と前記冷媒との流れが対向流となるように構成され、前記除霜運転モード時には、前記熱交換器における前記水の流れは停止しており、前記挿入体は樹脂製である。 In order to achieve the above object, the refrigeration cycle apparatus of the present invention, at least a compressor, a heat exchanger, a pressure reducing device, and a refrigerant circuit annularly connected to the evaporator, a control device, was compressed by the compressor A high-temperature refrigerant passes through the heat exchanger and the pressure reducing device, flows into the evaporator, melts frost on the evaporator, and is defrosted to be sucked into the compressor. exchanger, and the inner tube which water flows, and insert that is inserted into the inner tube, provided on an outer periphery of the inner tube, having a an outer tube in which the refrigerant flows, said insert is shaft portion And a spiral protrusion formed on the outer surface of the shaft portion, the water flows in a spiral flow path formed by the inner surface of the inner tube, the shaft portion and the spiral protrusion, flow of the refrigerant and the water is configured to be counter-flow, wherein the defrosting operation mode, before The water flow in the heat exchanger is stopped, the insert is made of resin.
これにより、水の流路の一部を金属よりも比熱の大きな樹脂で形成することにより、熱交換器の蓄熱量が増加し、除霜時により多くの熱量を熱交換器から利用できる。Thus, by forming a part of the water flow path with a resin having a larger specific heat than metal, the heat storage amount of the heat exchanger increases, and a larger amount of heat can be utilized from the heat exchanger during defrosting.
したがって、短時間で除霜運転を終えることができ、機器の除霜性能が向上する。Therefore, the defrosting operation can be completed in a short time, and the defrosting performance of the device is improved.
これにより、水が流れる螺旋状流路は、内管と螺旋状突部を有する挿入体との二部品で形成できるので、流路の形成に内管を巻き回す必要がない。そのため、内管が座屈や扁平することがないので、管の肉厚を必要最小限にすることができ、経済性に優れた軽量な熱交換器を提供できる。 As a result , the spiral flow passage through which water flows can be formed of two parts, the inner pipe and the insert having the spiral protrusion, so that it is not necessary to wind the inner pipe to form the flow passage. Therefore, since the inner tube does not buckle or flatten, the wall thickness of the tube can be minimized and a lightweight heat exchanger with excellent economy can be provided.
また、螺旋状流路の曲率直径を従来よりも小さく設定できるので、二次流れによる伝熱促進効果が大きく、かつ、コンパクトな熱交換器を提供できる。 Further, since the curvature diameter of the spiral flow passage can be set smaller than that of the conventional one, it is possible to provide a compact heat exchanger having a large effect of promoting heat transfer by the secondary flow.
加えて、水の伝熱面からの最長距離は、挿入体の軸径と螺旋状突部の突部高さで決定される。これにより、流路断面積は水搬送ポンプが許容できる水圧損となるように、螺旋状突部のピッチを変更できる。したがって、水圧損制約範囲内で死水域を大幅に低減した熱交換性能の高い熱交換器を提供できる。 In addition , the maximum distance from the heat transfer surface of water is determined by the shaft diameter of the insert and the height of the protrusion of the spiral protrusion. Accordingly, the pitch of the spiral protrusions can be changed so that the flow passage cross-sectional area has a water pressure loss that the water transport pump can tolerate. Therefore, it is possible to provide a heat exchanger with high heat exchange performance in which the dead water area is significantly reduced within the water pressure loss restriction range.
本発明によれば、コンパクトで経済性に優れ、品質性能および熱交換性能の高い熱交換器を提供できる。 According to the present invention, it is possible to provide a compact and economical heat exchanger having high quality performance and high heat exchange performance.
第1の発明に係る冷凍サイクル装置は、少なくとも圧縮機、熱交換器、減圧装置、および蒸発器を環状に接続した冷媒回路と、制御装置と、前記圧縮機で圧縮された高温の冷媒が、前記熱交換器および前記減圧装置を通り、前記蒸発器に流入し、前記蒸発器の着霜を溶かし、前記圧縮機に吸入される除霜運転モードと、を備え、前記熱交換器は、水が流れる内管と、前記内管に挿入される挿入体と、前記内管の外周に設けられ、前記冷媒が流れる外管と、を有し、前記挿入体は、軸部と前記軸部の外表面に形成された螺旋状突部とを備え、前記水は、前記内管の内面と前記軸部と前記螺旋状突部とで形成される螺旋状流路を流れ、前記水と前記冷媒との流れが対向流となるように構成され、前記除霜運転モード時には、前記熱交換器における前記水の流れは停止しており、前記挿入体は樹脂製である。 A refrigeration cycle apparatus according to a first aspect of the present invention includes a refrigerant circuit in which at least a compressor, a heat exchanger, a decompression device, and an evaporator are connected in an annular shape, a control device, and a high-temperature refrigerant compressed by the compressor, The heat exchanger and the decompressor, the defrosting operation mode of flowing into the evaporator, melting the frost of the evaporator, and sucked into the compressor, the heat exchanger is and the inner tube from flowing, and insert that is inserted into the inner tube, provided on an outer periphery of the inner tube, having a an outer tube in which the refrigerant flows, said insert includes a shaft portion of the shaft portion and a spiral projection formed on an outer surface, the water flows through the spiral flow path formed by the inner surface of the inner tube and the shaft portion and the helical projection, the said water coolant is configured such that flow between the counter flow, wherein the defrosting operation mode, in the heat exchanger Serial water flow is stopped, the insert is made of resin.
これにより、水の流路の一部を金属よりも比熱の大きな樹脂で形成することにより、熱交換器の蓄熱量が増加し、除霜時により多くの熱量を熱交換器から利用できる。Thus, by forming a part of the water flow path with a resin having a larger specific heat than metal, the heat storage amount of the heat exchanger increases, and a larger amount of heat can be utilized from the heat exchanger during defrosting.
したがって、短時間で除霜運転を終えることができ、機器の除霜性能が向上する。Therefore, the defrosting operation can be completed in a short time, and the defrosting performance of the device is improved.
また、水が流れる螺旋状流路は、内管と螺旋状突部を有する挿入体との二部品で形成できる。 Also, the spiral flow path through which water flows can be formed by two parts, an inner tube and an insert having a spiral protrusion .
これにより、内管が座屈や扁平することがなく、管の肉厚を必要最小限とした経済性に優れ、かつ、軽量な熱交換器が提供できる。 Thereby , the inner tube does not buckle or flatten, and it is possible to provide a lightweight heat exchanger with excellent economical efficiency in which the wall thickness of the tube is minimized.
また、螺旋状流路の曲率直径を従来よりも小さくとれるので、二次流れによる伝熱促進効果が大きく、かつ、コンパクトな熱交換器が提供できる。 Further, since the curvature diameter of the spiral flow passage can be made smaller than that of the conventional one, it is possible to provide a compact heat exchanger having a large effect of promoting heat transfer by the secondary flow.
加えて、水の伝熱面からの最長距離は、挿入体の軸径と螺旋状突部高さに設定され、流路断面積は、搬送ポンプが許容できる圧力損失となるようにできる。 In addition , the longest distance from the heat transfer surface of water is set to the axial diameter of the insert and the height of the spiral protrusion, and the flow passage cross-sectional area can be set to a pressure loss that the transport pump can tolerate .
これにより、圧力損失制約範囲内で死水域を大幅に低減した従来よりも熱交換性能の高い熱交換器を提供できる。 As a result , it is possible to provide a heat exchanger having a higher heat exchange performance than the conventional one in which the dead water area is significantly reduced within the pressure loss restriction range.
第2の発明は、特に第1の発明の熱交換器において、外管の巻付け方向と螺旋状突部の螺旋方向とは同じ方向で構成されている。 A second invention is, in particular, the heat exchanger of the first aspect of the invention, which consists in the same way direction from the helical direction of the winding direction and the spiral protrusion of the outer tube.
これにより、水と冷媒とが対向流で熱交換できるので、熱交換性能の高い熱交換器を提供できる。 As a result, the water and the refrigerant can exchange heat with each other in a counterflow, so that a heat exchanger with high heat exchange performance can be provided.
第3の発明は、特に第1または第2の発明の熱交換器において、内管の外周で螺旋状流路の対向部に、外管が配置されている。 In a third aspect of the invention, particularly in the heat exchanger of the first or second aspect of the invention, the outer pipe is arranged on the outer periphery of the inner pipe at a portion facing the spiral flow path.
これにより、熱交換器略全域において、水と冷媒とが熱交換できるので、より熱交換性能の高い熱交換器を提供できる。 As a result, the water and the refrigerant can exchange heat in substantially the entire area of the heat exchanger, so that it is possible to provide a heat exchanger having higher heat exchange performance.
第4の発明は、特に第1〜第3のいずれかの発明の熱交換器において、内管、挿入体をそれぞれ固定する継手を備えている。 A fourth aspect of the invention is the heat exchanger according to any one of the first to third aspects of the present invention , which further includes joints for fixing the inner pipe and the insert.
これにより、如何なる設置状態(縦置き、横置き、斜め置き)においても、内管内における螺旋状突部を有する挿入体の配置位置が固定されるので、設置自由度の向上した熱交換器を提供できる。 As a result, in any installation state (vertical installation, horizontal installation, diagonal installation), the placement position of the insert body having the spiral projection in the inner tube is fixed, and thus a heat exchanger with improved installation flexibility is provided. it can.
第5の発明は、特に第1〜第4のいずれかの発明の熱交換器において、螺旋状突部の先端幅をt1、根元幅をt2としたとき、t1<t2の関係である。 A fifth aspect of the invention is a heat exchanger according to any one of the first to fourth aspects of the invention, in which t1 <t2 when the tip width of the spiral protrusion is t1 and the root width is t2.
これにより、外管の内部を流れる冷媒への、内管と挿入体との間に形成された螺旋状流路を流れる水の伝熱面積が拡大できるため、熱交換性能が高い熱交換器を提供することができる。 Thus, to the refrigerant flowing through the inside of the outer tube, because it can enlarge the heat transfer area of the formed flow Ru water spiral flow path between the inner tube and the insert, the heat exchange performance high heat exchanger Can be provided .
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.
(実施の形態1)
図1は、本発明の実施の形態1における熱交換器11の概略図(一部断面図)である。
(Embodiment 1)
FIG. 1 is a schematic diagram (partial cross-sectional view) of a heat exchanger 11 according to Embodiment 1 of the present invention.
本発明の実施の形態1における熱交換器11は、内管1と、内管1の外表面に密着するように螺旋状に巻き付けられた外管3と、内管1の内部に挿入される挿入体2とから構成されている。挿入体2は、挿入体軸部21と螺旋状突部22とから構成されている。 The heat exchanger 11 according to Embodiment 1 of the present invention is inserted into the inner tube 1, the outer tube 3 spirally wound so as to be in close contact with the outer surface of the inner tube 1, and the inner tube 1. It is composed of an insert body 2. The insert 2 is composed of an insert shaft 21 and a spiral projection 22.
そして、外管3の螺旋状の巻付け方向と螺旋状突部22の螺旋方向とは同じ方向であり、また、巻付けピッチも同じとなるように構成されている。 The spiral winding direction of the outer tube 3 and the spiral direction of the spiral protrusion 22 are the same direction, and the winding pitch is also the same.
以上のように構成された熱交換器について、以下にその動作を説明する。 The operation of the heat exchanger configured as described above will be described below.
熱交換器11は、第1流体である水と第2流体である二酸化炭素とが、内管1及び外管3を介して熱交換する構成である。 The heat exchanger 11 is configured such that water, which is the first fluid, and carbon dioxide, which is the second fluid, exchange heat with each other via the inner pipe 1 and the outer pipe 3.
熱交換器11において、水が流れる流路は、内管1の内面と、挿入体軸部21の外面と、隣接する螺旋状突部22とで形成される螺旋状流路であり、内管1と、内管1に挿入される挿入体2との二部品によって形成される。 In the heat exchanger 11, the flow path of water is a spiral flow path formed by the inner surface of the inner tube 1, the outer surface of the insert body shaft portion 21, and the adjacent spiral projections 22, 1 and an insert 2 inserted into the inner tube 1 are formed.
したがって、その水流路を形成するために曲げ加工を行う必要がないため、内管1が座屈、扁平することがなく、内管1の肉厚を設計思想(耐圧を考慮した肉厚+腐れ代)に基づいた最少肉厚とすることができる。これにより、経済性に優れた軽量な熱交換器を提供できる。 Therefore, since it is not necessary to perform a bending process to form the water flow path, the inner pipe 1 does not buckle or flatten, and the wall thickness of the inner pipe 1 is a design concept (wall thickness in consideration of pressure + rot). The minimum wall thickness based on (age). This makes it possible to provide a lightweight heat exchanger with excellent economy.
次に、螺旋状流路の曲率直径Dと管内の熱伝達率について説明する。 Next, the curvature diameter D of the spiral flow path and the heat transfer coefficient in the tube will be described.
螺旋管のような曲がった円管内の発達した領域における熱伝達率については、日本機械学会 伝熱工学資料 改定第5版に、以下のように示されている。 The heat transfer coefficient in the developed region in a curved circular pipe such as a spiral pipe is shown as follows in the Japan Society of Mechanical Engineers Heat Transfer Engineering Material Revised 5th Edition.
ここで、Nuはヌセルト数、Prはプラントル数、Reはレイノルズ数を示している。そして、Dは螺旋状流路中心軸の曲率直径で、dは管の相当直径である。図4は、レイノルズ数Re=2000、水温40℃の条件において、(d/D)を変化させたときのヌセルト数Nuを上記数式(3)を用いて試算したものである。縦軸はヌセルト数Nuを示し、横軸はd/Dを示す。 Here, Nu represents the Nusselt number, Pr represents the Prandtl number, and Re represents the Reynolds number. D is the curvature diameter of the central axis of the spiral flow path, and d is the equivalent diameter of the tube. FIG. 4 is a trial calculation of Nusselt number Nu when (d / D) was changed under the conditions of Reynolds number Re = 2000 and water temperature of 40 ° C. by using the above formula (3). The vertical axis represents the Nusselt number Nu, and the horizontal axis represents d / D.
上記数式(2)、数式(3)、及び図4からもわかるように、同レイノルズ数、同プラントル数下では、管の相当直径dが大きいほど、または、曲率直径Dが小さいほど円管内のヌセルト数は大きくなる。 As can be seen from the formulas (2) and (3) and FIG. 4, under the same Reynolds number and the Prandtle number, the larger the equivalent diameter d of the pipe or the smaller the curvature diameter D is, Nusselt number becomes large.
すなわち、管内の熱伝達率は高くなるので、熱交換器の伝熱性能が向上する。既存のヒートポンプ給湯機に搭載されている特許文献1に類する熱交換器の(d/D)は0.2以下である。これに対し、本発明の熱交換器11は、螺旋状流路が二部品で構成されているため、水の流れる螺旋状流路の曲率直径Dを、従来よりも大幅に小さくすることができる。したがって、(d/D)が大きくなり、二次流れによる攪拌効果が増加する。これにより、伝熱促進効果が向上するとともに、コンパクトな熱交換器を提供できる。 That is, since the heat transfer coefficient in the pipe is increased, the heat transfer performance of the heat exchanger is improved. The (d / D) of the heat exchanger similar to that of Patent Document 1 mounted on the existing heat pump water heater is 0.2 or less. On the other hand, in the heat exchanger 11 of the present invention, since the spiral flow passage is composed of two parts, the curvature diameter D of the spiral flow passage through which water flows can be made significantly smaller than in the conventional case. . Therefore, (d / D) is increased, and the stirring effect due to the secondary flow is increased. As a result, the heat transfer promotion effect is improved, and a compact heat exchanger can be provided.
図2AおよびBは、本発明の実施の形態1における熱交換器11を流れる流体の流れを示す斜視図である。 2A and 2B are perspective views showing the flow of fluid flowing through the heat exchanger 11 according to Embodiment 1 of the present invention.
第1流体である水は、内管1の内面と、挿入体軸部21の外面と、隣接する螺旋状突部22とで形成された螺旋状流路を流れる。挿入体2の螺旋状突部22と巻付け方向とはピッチが同期しており、螺旋状流路の対向部に巻き付けられた外管3の内部を流れる第2流体である二酸化炭素と第1流体である水とは熱交換をする構成である。 Water, which is the first fluid, flows through a spiral flow path formed by the inner surface of the inner tube 1, the outer surface of the insert shaft portion 21, and the adjacent spiral protrusion 22. The pitch between the spiral projection 22 of the insert 2 and the winding direction is synchronized, and carbon dioxide, which is the second fluid flowing inside the outer tube 3 wound around the opposite portion of the spiral flow path, and the first Water, which is a fluid, is configured to exchange heat.
ここで、内管1と挿入体2との間の螺旋状流路を流れる水と、外管3の内部を流れる二酸化炭素は流れる方向が反対であるため、図2AおよびBに示した流れのように、熱交換器11の略全域にわたって対向流で熱交換でき、高効率な熱交換器が提供できる。 Here, since water flowing in the spiral flow path between the inner pipe 1 and the insert body 2 and carbon dioxide flowing in the outer pipe 3 have opposite flow directions, the flow of the flow shown in FIGS. As described above, heat can be exchanged in a counter flow over substantially the entire area of the heat exchanger 11, and a highly efficient heat exchanger can be provided.
なお、巻き付ける外管3のすべての部位が、螺旋状流路の対向部に巻き付けられていなくとも、搭載する機器が必要する熱交換効率を実現できる範囲であれば良い。また、第2流体が流れる外管3を複数本備え、交互に螺旋状流路の対向部に巻き付けていても良い。 It should be noted that even if all the parts of the outer tube 3 to be wound are not wound around the facing portion of the spiral flow path, it is sufficient if the heat exchange efficiency required by the mounted device is realized. In addition, a plurality of outer tubes 3 through which the second fluid flows may be provided, and the outer tubes 3 may be alternately wound around the facing portions of the spiral flow path.
図3は、本発明の実施の形態1における熱交換器11の断面図である。熱交換器の水流路は、内管1と挿入体2との二部品で構成されるので、水側伝熱面からの最長距離は、挿入体軸部21の直径aと螺旋状突部22の突部高さthとから設計できる。 FIG. 3 is a cross-sectional view of heat exchanger 11 according to Embodiment 1 of the present invention. Since the water flow path of the heat exchanger is composed of two parts, the inner tube 1 and the insert body 2, the maximum distance from the water-side heat transfer surface is the diameter a of the insert body shaft portion 21 and the spiral protrusion 22. It can be designed based on the protrusion height th.
また、流路断面積Sは、機器において、水を搬送する水搬送ポンプが許容できる水圧損となるように、挿入体2の螺旋状突部22の巻きピッチPを変更して設計できる。これにより、水圧損制約範囲内で、死水域を大幅に低減することができる。ここで、挿入体軸部21の直径aと螺旋状突部22の突部高さthは、下記の(式4)の範囲内で、熱交換性能が所定の性能を満たすように設計されることが望ましい。 In addition, the flow path cross-sectional area S can be designed by changing the winding pitch P of the spiral protrusion 22 of the insert body 2 so that the water pressure loss that can be allowed by the water transfer pump that transfers water in the device. As a result, the dead water area can be significantly reduced within the water pressure loss constraint range. Here, the diameter a of the insert shaft portion 21 and the projection height th of the spiral projection 22 are designed so that the heat exchange performance satisfies a predetermined performance within the range of the following (Equation 4). Is desirable.
また、本発明の実施の形態1においては、水流路である螺旋状流路の流路断面を、内管1の内面と挿入体軸部21と螺旋状突部22とで矩形断面に形成しており、断面が円形の場合に比べて渦が発生しやすく二次流れの効果が大きくなる。 Further, in the first embodiment of the present invention, the flow passage cross section of the spiral flow passage that is the water flow passage is formed in a rectangular cross section by the inner surface of the inner pipe 1, the insert body shaft portion 21, and the spiral protrusion 22. As compared with the case where the cross section is circular, vortices are more likely to be generated, and the effect of the secondary flow is increased.
以上のように、本実施の形態1においては、水流路を内管1と螺旋状突部22を有する挿入体2との二部品で構成したことにより、内管1を巻き回すことなく螺旋流路を形成している。これにより、内管1の肉厚を必要最小限とした軽量で経済性に優れた熱交換器が提供できる。 As described above, in the first embodiment, the water flow path is configured by the two parts of the inner tube 1 and the insert 2 having the spiral protrusion 22, so that the inner tube 1 can be spirally wound without being wound. Forming a road. As a result, it is possible to provide a light-weight heat exchanger with the inner tube 1 having a minimum necessary wall thickness and excellent in economic efficiency.
また、従来よりも螺旋状流路の曲率直径Dを大幅に小さくできるので、コンパクトで伝熱性能が高い熱交換器を提供できる。 Further, since the curvature diameter D of the spiral flow path can be made significantly smaller than in the conventional case, it is possible to provide a compact heat exchanger having high heat transfer performance.
加えて、水側流路の伝熱面からの最長距離は、挿入体軸部21の直径aと螺旋状突部22の突部の高さthで設計でき、流路断面積Sは、水圧損が制約内となるよう、螺旋状突部22の巻きピッチPを変更して設計できる。これにより、水圧損の制約範囲内で、死水域を大幅に低減した伝熱性能の高い熱交換器を提供できる。 In addition, the longest distance from the heat transfer surface of the water side flow passage can be designed by the diameter a of the insert shaft portion 21 and the height th of the protrusion of the spiral protrusion 22, and the flow passage cross-sectional area S is The winding pitch P of the spiral protrusion 22 can be changed and designed so that the loss is within the constraint. As a result, it is possible to provide a heat exchanger with high heat transfer performance in which the dead water area is significantly reduced within the restriction range of water pressure loss.
(実施の形態2)
図5AおよびBは、本実施の形態2における熱交換器11の挿入体2の螺旋状突部22の拡大図である。図6AおよびBは、同実施の形態における熱交換器の断面図である。図7は、同実施の形態における熱交換器の継手と挿入体の斜視図である。
(Embodiment 2)
5A and 5B are enlarged views of the spiral protrusion 22 of the insert 2 of the heat exchanger 11 according to the second embodiment. 6A and 6B are cross-sectional views of the heat exchanger according to the same embodiment. FIG. 7 is a perspective view of a joint and an insert of the heat exchanger according to the same embodiment.
尚、本発明の実施の形態1と同一部品については、同一符号を付して、詳細な説明を省略する。 The same parts as those of the first embodiment of the present invention are designated by the same reference numerals, and detailed description thereof will be omitted.
図5Bに示すように、本実施の形態2の熱交換器11を構成する挿入体2の螺旋状突部22の外表面には、熱交換器11の軸方向、すなわち、挿入体2の軸方向に沿って、連続して並んだ突起25が設けられている。また、図7に示すように、挿入体2の軸方向の端部は凸部23となっており、継手4は、挿入体2の端部の凸部23と篏合する凹部24を有している。 As shown in FIG. 5B, on the outer surface of the spiral protrusion 22 of the insert 2 that constitutes the heat exchanger 11 of the second embodiment, the axial direction of the heat exchanger 11, that is, the axis of the insert 2 is formed. Protrusions 25 that are continuously arranged are provided along the direction. In addition, as shown in FIG. 7, the end of the insert 2 in the axial direction is a protrusion 23, and the joint 4 has a recess 24 that fits into the protrusion 23 of the end of the insert 2. ing.
挿入体2は、挿入体2の軸方向の端部の凸部23と、継手4の凹部24を篏合して、螺旋状突部22の外表面の突起25が、内管1と接するように固定されている。 In the insert 2, the projection 23 on the axial end of the insert 2 and the recess 24 of the joint 4 are fitted together so that the projection 25 on the outer surface of the spiral projection 22 contacts the inner tube 1. It is fixed to.
尚、挿入体2と継手4の篏合部の形状について、本実施の形態2では凸部と凹部としたが、篏合できるほかの如何なる形状であっても構わない。 In addition, regarding the shape of the joint portion of the insert body 2 and the joint 4, although the convex portion and the concave portion are used in the second embodiment, any shape other than the joint portion may be used.
以上のように構成された熱交換器について、以下その動作を説明する。 The operation of the heat exchanger configured as described above will be described below.
本実施の形態においては、突起25を除いた螺旋状突部22と内管1との間に隙間が生じているので、実施の形態1に記載の螺旋状流路に加えて、熱交換器11の軸方向、すなわち、挿入体2の軸方向に沿って連通した流路(バイパス流路50)が形成されている。 In the present embodiment, since a gap is formed between the spiral projection 22 excluding the projection 25 and the inner pipe 1, in addition to the spiral flow passage described in the first embodiment, the heat exchanger A flow path (bypass flow path 50) communicating with the axial direction of 11, that is, the axial direction of the insert body 2 is formed.
本実施の形態2の熱交換器11も、実施の形態1と同様に内管1と挿入体2との間に形成された螺旋状流路を流れる第1流体である水と、第2流体である外管3の内部を流れる二酸化炭素とが、内管1及び外管3を介して対向流で熱交換する構成である。 Similarly to the first embodiment, the heat exchanger 11 of the second embodiment also includes water, which is the first fluid flowing through the spiral flow path formed between the inner tube 1 and the insert body 2, and the second fluid. The carbon dioxide flowing inside the outer tube 3 is a structure in which heat is exchanged with the opposite flow via the inner tube 1 and the outer tube 3.
ここで、熱交換器11に流入する入水温度が高い場合は、加熱された水が熱交換器11内で沸騰する恐れがあるため、熱交換器11に搬送される水の流量を増やして出湯温度が所定の温度以下となるように調整される。 Here, when the temperature of the incoming water flowing into the heat exchanger 11 is high, the heated water may boil in the heat exchanger 11, so the flow rate of the water conveyed to the heat exchanger 11 is increased and the hot water is discharged. The temperature is adjusted so as to be equal to or lower than a predetermined temperature.
しかしながら、上記特許文献1に記載の従来の熱交換器では、管を巻き回して螺旋状流路を形成しているため、直線上流路に比べて流路長が長くなる。したがって、大流量時には熱交換器での水圧損が大きくなるので、水を搬送する機器のポンプ動力が過大となり機器の省エネルギー性を損ねるという課題があった。 However, in the conventional heat exchanger described in Patent Document 1, since the tube is wound to form the spiral flow path, the flow path length is longer than the linear flow path. Therefore, when the flow rate is large, the water pressure loss in the heat exchanger becomes large, so that the pump power of the device that conveys water becomes excessive and the energy saving of the device is impaired.
また、熱交換器11での水圧損が、ポンプの搬送能力を超える場合には、出湯温度を所定の温度以下に留めることができず、機器の信頼性を損ねてしまうという課題も有していた。 In addition, when the water pressure loss in the heat exchanger 11 exceeds the transport capacity of the pump, the hot water outlet temperature cannot be kept below a predetermined temperature, and the reliability of the device is impaired. It was
一方、本実施の形態2の熱交換器11は、螺旋状流路に加えて、図6に示すように、内管1と突起25を除いた、内管1の内面と螺旋状突部22との間に、熱交換器11の軸方向、すなわち、挿入体2の軸方向に沿って連通したバイパス流路50を持つ。 On the other hand, in the heat exchanger 11 according to the second embodiment, in addition to the spiral flow path, as shown in FIG. 6, the inner surface of the inner pipe 1 and the spiral protrusion 22 excluding the inner pipe 1 and the protrusions 25 are removed. And a bypass flow path 50 communicating with each other along the axial direction of the heat exchanger 11, that is, the axial direction of the insert body 2.
このため、二次流れにより流れを攪拌しつつ、水に作用する遠心力が大きな大流量時には、熱交換器11の軸方向、すなわち、挿入体2の軸方向に連通した流路を流れる水のバイパス量が増加する。 Therefore, while stirring the flow by the secondary flow, when the centrifugal force acting on the water is large and the flow rate is large, the water flowing through the flow path communicating with the axial direction of the heat exchanger 11, that is, the axial direction of the insert body 2. Bypass amount increases.
したがって、大流量時の圧力損失の増加を、上記特許文献1に記載の従来の熱交換器に比べて抑制でき、搬送ポンプの要する動力が少なくなるため、機器の省エネルギー性が向上する。 Therefore, an increase in pressure loss at the time of a large flow rate can be suppressed as compared with the conventional heat exchanger described in Patent Document 1 described above, and the power required by the transfer pump is reduced, so that the energy saving of the device is improved.
また、水圧損の増加を抑制でき、同揚程のポンプで搬送できる流量が増加するので、流出する水の出湯温度を所定の温度以下に留めるのに十分な流量を確保することができ、機器の信頼性が向上する。 In addition, since the increase in water pressure loss can be suppressed and the flow rate that can be carried by the pump of the same head is increased, it is possible to secure a sufficient flow rate to keep the temperature of discharged water flowing out below a predetermined temperature. Improves reliability.
さらに、継手4は、挿入体2と篏合し、内管1を外方から覆い挿入ピン5等の締結体にて固定する構成(図1参照)としており、挿入体2と内管1との位置が固定されている。これにより、如何なる設置状態(縦置き、横置き、斜め置き)においても、螺旋状突部22と内管1との間に熱交換器11の軸方向、すなわち、挿入体2の軸方向に沿って連通した流路を確保できる。 Further, the joint 4 is configured to be fitted to the insert body 2 and cover the inner pipe 1 from the outside with a fastening body such as the insertion pin 5 (see FIG. 1). The position of is fixed. As a result, in any installation state (vertical installation, horizontal installation, diagonal installation), the axial direction of the heat exchanger 11, that is, the axial direction of the insert 2 is provided between the spiral projection 22 and the inner tube 1. It is possible to secure a flow path communicating with each other.
したがって、圧力損失の増加を抑制しつつ、設置自由度の向上した熱交換器を提供できる。 Therefore, it is possible to provide a heat exchanger with improved installation flexibility while suppressing an increase in pressure loss.
以上のように、本実施の形態2においては、挿入体2の螺旋状突部22の外表面に熱交換器11の軸方向に沿って連続して並んだ突起25を有し、突起25と内管1の内面とが接するように継手4で、内管1、挿入体2を固定している。これにより、螺旋状流路に加えて、熱交換器11の軸方向にも流路を形成できるので、熱交換器11を流れる水が大流量の場合においても、水圧損の増加を抑制した熱交換器11が提供できる。これにより、本実施の形態2の熱交換器11を搭載した機器の省エネルギー性が向上する。 As described above, in the second embodiment, the protrusions 25 that are continuously arranged along the axial direction of the heat exchanger 11 are provided on the outer surface of the spiral protrusion 22 of the insert body 2. The inner tube 1 and the insert 2 are fixed by a joint 4 so that the inner surface of the inner tube 1 contacts. Thereby, in addition to the spiral flow path, a flow path can be formed in the axial direction of the heat exchanger 11, so that even if the flow rate of the water flowing through the heat exchanger 11 is large, the heat loss that suppresses an increase in water pressure loss can be suppressed. A switch 11 can be provided. As a result, the energy saving property of the device equipped with the heat exchanger 11 according to the second embodiment is improved.
なお、突起25がない場合においても、継手4は、挿入体2と篏合し、内管1を外方から覆い締結体にて固定する構成(図5A参照)とすることにより、如何なる設置状態(縦置き、横置き、斜め置き)においても、螺旋状突部22と内管1との間に熱交換器11の軸方向、すなわち、挿入体2の軸方向に沿って連通した流路(バイパス流路50)を確保できる。これにより、螺旋状突部22と内管1との間を適正な距離で設定することで、水圧損の増加を抑制しつつ、設置自由度の向上した熱交換器11を提供できる。 Even if there is no protrusion 25, the joint 4 is fitted with the insert body 2 to cover the inner pipe 1 from the outside, and is fixed by the fastening body (see FIG. 5A). Also in (vertical installation, horizontal installation, diagonal installation), the flow path communicating between the spiral projection 22 and the inner tube 1 along the axial direction of the heat exchanger 11, that is, the axial direction of the insert 2 ( The bypass flow path 50) can be secured. Thus, by setting the distance between the spiral projection 22 and the inner pipe 1 at an appropriate distance, it is possible to provide the heat exchanger 11 with improved installation flexibility while suppressing an increase in water pressure loss.
(実施の形態3)
図8は、本実施の形態3における熱交換器の断面図である。尚、本発明の実施の形態1、2と同一部品については、同一符号を付して、詳細な説明を省略する。
(Embodiment 3)
FIG. 8 is a sectional view of the heat exchanger according to the third embodiment. The same parts as those of the first and second embodiments of the present invention are designated by the same reference numerals, and detailed description thereof will be omitted.
本発明の実施の形態4における熱交換器は、挿入体2の螺旋状突部22の先端幅t1と、根元幅t2の関係がt1<t2となるように構成されている。 The heat exchanger according to Embodiment 4 of the present invention is configured such that the relationship between the tip width t1 of the spiral protrusion 22 of the insert 2 and the root width t2 is t1 <t2.
以上のように構成された熱交換器について、以下にその動作を記載する。 The operation of the heat exchanger configured as described above will be described below.
本実施の形態4の熱交換器11も、実施の形態1、2と同様に、内管1と挿入体2との間に形成された螺旋状流路を流れる第1流体である水と、外管3の内部を流れる第2流体である二酸化炭素が、内管1及び外管3を介して対向流で熱交換する構成である。 Similarly to Embodiments 1 and 2, the heat exchanger 11 according to Embodiment 4 also includes water, which is the first fluid flowing through the spiral flow path formed between the inner tube 1 and the insert body 2, Carbon dioxide, which is the second fluid flowing inside the outer pipe 3, is heat-exchanged in a counterflow via the inner pipe 1 and the outer pipe 3.
熱交換器11の、外管3の内部を流れる第2流体である二酸化炭素への、内管1と挿入体2との間に形成された螺旋状流路を流れる第1流体である水の伝熱面の幅Lは、図8に示すように、螺旋状突部22の螺旋ピッチPから螺旋状突部22の先端幅t1を差し引いたP−t1である。 Water, which is the first fluid flowing through the spiral flow path formed between the inner tube 1 and the insert 2, to carbon dioxide, which is the second fluid flowing inside the outer tube 3, of the heat exchanger 11. As shown in FIG. 8, the width L of the heat transfer surface is P-t1 obtained by subtracting the tip width t1 of the spiral projection 22 from the spiral pitch P of the spiral projection 22.
本実施の形態においては、図8に示すように、挿入体2の螺旋状突部22の形状がt1<t2となるように構成されている。これにより、実施の形態1の図3に示すような、螺旋状突部22の厚みが一定の場合と同様の水側流路断面積Sを維持しつつ、螺旋状突部22が厚み一定の場合よりも、外管3の内部を流れる第2流体である二酸化炭素への、内管1と挿入体2との間に形成された螺旋状流路を流れる第1流体である水の伝熱面の幅Lを、拡大することができる。 In the present embodiment, as shown in FIG. 8, the shape of the spiral projection 22 of the insert 2 is configured so that t1 <t2. Thereby, as shown in FIG. 3 of the first embodiment, the spiral protrusion 22 has a constant thickness while maintaining the same water-side flow passage cross-sectional area S as in the case where the thickness of the spiral protrusion 22 is constant. Heat transfer of water, which is the first fluid flowing through the spiral flow path formed between the inner tube 1 and the insert 2, to carbon dioxide, which is the second fluid flowing inside the outer tube 3, than in the case The width L of the surface can be increased.
すなわち、外管3の内部を流れる第2流体である二酸化炭素への、内管1と挿入体2との間に形成された螺旋状流路を流れる第1流体である水の伝熱面積が拡大するため、より熱交換性能が高い熱交換器を提供できる。 That is, the heat transfer area of water, which is the first fluid flowing through the spiral flow path formed between the inner tube 1 and the insert 2, to carbon dioxide, which is the second fluid flowing inside the outer tube 3, Since it expands, a heat exchanger with higher heat exchange performance can be provided.
図9は、内管1と挿入体2との間に形成された螺旋状流路の長さ及び水側流路断面積Sを一定、すなわち、水側圧力損失同等条件での、挿入体突部先端幅t1と熱交換能力Qの関係を示したものである。 FIG. 9 shows that the length of the spiral flow path formed between the inner pipe 1 and the insert 2 and the cross-sectional area S of the water-side flow path are constant, that is, the insert projection under the same water-side pressure loss condition. The relationship between the tip width t1 and the heat exchange capacity Q is shown.
図9からわかるように、螺旋状突部22の先端幅t1が小さいほど、外管3の内部を流れる第2流体である二酸化炭素への、内管1と挿入体2との間に形成された螺旋状流路を流れる第1流体である水の伝熱面積が拡大する。これにより、熱交換能力が向上する。 As can be seen from FIG. 9, the smaller the tip width t1 of the spiral projection 22, the more the carbon dioxide which is the second fluid flowing inside the outer tube 3 is formed between the inner tube 1 and the insert 2. The heat transfer area of water, which is the first fluid flowing through the spiral flow path, is expanded. This improves the heat exchange capacity.
また、螺旋状突部22の根元形状は、根元部での二次流れの剥離を抑制し、水側圧力損失を低減するためにR形状であってもよい。これにより、渦による水の摩擦損失を低減できるので、本実施の形態の熱交換器やそれを搭載した機器のエネルギー効率を向上するこ
とができる。
Further, the root shape of the spiral protrusion 22 may be an R shape in order to suppress separation of the secondary flow at the root portion and reduce water side pressure loss. As a result, the friction loss of water due to the vortex can be reduced, so that the energy efficiency of the heat exchanger of the present embodiment and the equipment equipped with it can be improved.
以上のように、本実施の形態3においては、挿入体2の螺旋状突部22の先端幅t1と、根元幅t2の関係がt1<t2となるように構成されている。これにより、水側流路条件(内管1と挿入体2との間に形成された螺旋状流路の長さ及び水側流路断面積S)を変更することなく、すなわち、水側圧力損失同等条件下でありながら、外管3の内部を流れる第2流体である二酸化炭素への、内管1と挿入体2との間に形成された螺旋状流路を流れる第1流体である水の伝熱面の長さを長くできる。その結果、伝熱面積を拡大することができるため、熱交換性能の高い熱交換器が提供できる。 As described above, in the third embodiment, the relationship between the tip width t1 of the spiral projection 22 of the insert 2 and the root width t2 is configured to be t1 <t2. Thus, the water side flow path conditions (the length of the spiral flow path formed between the inner tube 1 and the insert 2 and the water side flow path cross-sectional area S) are not changed, that is, the water side pressure is It is the first fluid flowing through the spiral flow path formed between the inner tube 1 and the insert body 2 to carbon dioxide which is the second fluid flowing inside the outer tube 3 under the loss equal condition. The length of the water heat transfer surface can be increased. As a result, since the heat transfer area can be expanded, a heat exchanger with high heat exchange performance can be provided.
(実施の形態4)
図10は、本実施の形態4における冷凍サイクル装置の構成図である。
(Embodiment 4)
FIG. 10 is a configuration diagram of the refrigeration cycle device according to the fourth embodiment.
尚、本発明の実施の形態1〜3と同一構成については、同一符号を付して詳細な説明を省略する。 The same components as those of the first to third embodiments of the present invention are designated by the same reference numerals and detailed description thereof will be omitted.
図10は、例えば、ヒートポンプ給湯機に搭載される冷凍サイクル装置である。冷凍サイクル装置は、圧縮機101、本発明の実施の形態1から3に記載の熱交換器11である放熱器102、電子膨張弁である減圧装置103、および蒸発器104を備え、それらを環状に接続して冷媒回路105を構成している。 FIG. 10 shows a refrigeration cycle device mounted on, for example, a heat pump water heater. The refrigeration cycle apparatus includes a compressor 101, a radiator 102 that is the heat exchanger 11 described in the first to third embodiments of the present invention, a decompression device 103 that is an electronic expansion valve, and an evaporator 104. To form the refrigerant circuit 105.
冷媒回路は、蒸発器104から流出した冷媒の温度を検知する蒸発器出口温度検知手段107を備え、冷凍サイクル装置は、制御装置110と、除霜運転モードを備えている。 The refrigerant circuit includes an evaporator outlet temperature detection unit 107 that detects the temperature of the refrigerant that has flowed out of the evaporator 104, and the refrigeration cycle apparatus includes a controller 110 and a defrosting operation mode.
冷媒回路105内には、冷媒として二酸化炭素が封入されており、圧縮機101の運転時は、高圧側が超臨界状態で運転される。 Carbon dioxide is enclosed as a refrigerant in the refrigerant circuit 105, and when the compressor 101 is operating, the high pressure side is operated in a supercritical state.
また、放熱器102(本発明の実施の形態1または実施の形態2に記載の熱交換器11)を構成する螺旋状突部22を有する挿入体2は、金属よりも比熱の大きい樹脂製である。 Further, the radiator 102 insert 2 having a helical projection 22 constituting the (heat exchanger 11 according to Embodiment 1 or Embodiment 2 of the present invention), large tree butter made of specific heat than metal it is.
以上のように構成された冷凍サイクル装置について、以下にその動作および作用を説明する。 The operation and action of the refrigeration cycle apparatus configured as described above will be described below.
圧縮機101を運転すると、高圧に圧縮され吐出された冷媒は、放熱器102に送られ、水搬送ポンプ113によって入水配管111を通って送水された低温水と熱交換して放熱する。これにより加熱された低温水は高温水となり、出湯配管112を通り、貯湯タンク(図示せず)に送られ高温の温水として貯湯される。 When the compressor 101 is operated, the refrigerant that has been compressed to a high pressure and discharged is sent to the radiator 102 and exchanges heat with the low temperature water that has been sent by the water transport pump 113 through the water inlet pipe 111 to radiate heat. The low-temperature water thus heated becomes high-temperature water, passes through the hot water discharge pipe 112, is sent to a hot-water storage tank (not shown), and is stored as high-temperature hot water.
放熱器102から流出される冷媒は、減圧装置103に供給されて減圧膨張され、蒸発器104に送られて、送風機106により導入された空気と熱交換し、蒸発してガス化する。ガス化した冷媒は、圧縮機101に吸入される。 The refrigerant flowing out from the radiator 102 is supplied to the decompression device 103, expanded under reduced pressure, sent to the evaporator 104, exchanges heat with the air introduced by the blower 106, and is evaporated and gasified. The gasified refrigerant is sucked into the compressor 101.
次に、ヒートポンプ給湯機の除霜運転動作について説明する。 Next, the defrosting operation operation of the heat pump water heater will be described.
外気温度が低い状態で貯湯運転動作を行うと、蒸発器104に霜が付き、蒸発器104の熱交換能力が大幅に低下してしまう。 When the hot water storage operation is performed in a state where the outside air temperature is low, the evaporator 104 is frosted, and the heat exchange capacity of the evaporator 104 is significantly reduced.
そこで、制御装置110は、蒸発器104に付着した霜を除霜し、蒸発器104の熱交換能力を回復させる除霜運転動作を行う。除霜運転動作は、蒸発器104に霜が付着し、蒸発器出口温度検知手段107で検知した温度が、所定の温度を下回ると実行される。以下、除霜運転動作を具体的に説明する。 Therefore, the control device 110 performs a defrosting operation operation of defrosting the frost attached to the evaporator 104 and restoring the heat exchange capacity of the evaporator 104. The defrosting operation operation is executed when frost adheres to the evaporator 104 and the temperature detected by the evaporator outlet temperature detecting means 107 falls below a predetermined temperature. The defrosting operation operation will be specifically described below.
まず、制御装置110は、放熱器102に水を送水する水搬送ポンプ113と送風機106を停止させ、減圧装置103の流路抵抗を小さくする。圧縮機101で圧縮された高温の冷媒は、放熱器102および減圧装置103を通り、蒸発器104に流入し、冷媒の持つ熱で除霜を行い、圧縮機101に吸入される。 First, the control device 110 stops the water transfer pump 113 that supplies water to the radiator 102 and the blower 106 to reduce the flow path resistance of the decompression device 103. The high-temperature refrigerant compressed by the compressor 101 passes through the radiator 102 and the pressure reducing device 103, flows into the evaporator 104, defrosts with the heat of the refrigerant, and is sucked into the compressor 101.
そして、蒸発器出口温度検知手段107で検知された温度が、所定の温度を上回ると、除霜運転動作は終了し、沸き上げ運転が行われる。 Then, when the temperature detected by the evaporator outlet temperature detection means 107 exceeds a predetermined temperature, the defrosting operation operation ends and the boiling operation is performed.
この除霜運転時には、圧縮機101から吐出された冷媒の熱量に加え、放熱器102に蓄熱された熱量も活用されて蒸発器104を除霜する。 During this defrosting operation, in addition to the amount of heat of the refrigerant discharged from the compressor 101, the amount of heat stored in the radiator 102 is also utilized to defrost the evaporator 104.
放熱器102の流路の一部である挿入体2を金属よりも比熱の大きな樹脂とすることにより、放熱器102の蓄熱量が増加し、除霜時により多くの熱量を、放熱器102から利用できる。これにより、短時間で除霜運転を終えることができ、機器の除霜性能が向上する。 By using the insert 2 which is a part of the flow path of the radiator 102 as a resin having a larger specific heat than metal, the heat storage amount of the radiator 102 is increased, and a larger amount of heat is released from the radiator 102 during defrosting. Available. As a result, the defrosting operation can be completed in a short time, and the defrosting performance of the device improves.
尚、本発明の実施の形態4では、螺旋状突部22を有する挿入体2を樹脂製(PPS)としたが、PPS以外の樹脂、または、比熱の大きな材料であれば同様の作用効果を期待できる。 In addition, in the fourth embodiment of the present invention, the insert 2 having the spiral protrusion 22 is made of resin (PPS), but similar effects can be obtained if a resin other than PPS or a material having a large specific heat is used. Can be expected.
また、本発明の実施の形態1〜3では、外管3を流れる冷媒を二酸化炭素としたが、ハイドロカーボン系やHFC系(R410A等)の冷媒、あるいはこれらの代替冷媒とすることも同様の作用効果が期待できる。 In addition, in Embodiments 1 to 3 of the present invention, the refrigerant flowing through the outer tube 3 is carbon dioxide, but a hydrocarbon-based or HFC-based (R410A, etc.) refrigerant or an alternative refrigerant thereof is also the same. The effect can be expected.
なお、以上のそれぞれの実施形態だけでなく、以上のあらゆる実施形態の組み合わせも本発明の範囲内である。 It should be noted that not only the respective embodiments described above but also combinations of all the above embodiments are within the scope of the present invention.
以上のように、本発明にかかる熱交換器は、コンパクトで経済性に優れ、品質性能および熱交換性能の高い熱交換器を提供できる。したがって、本発明は流体間で熱交換を行う熱交換器を搭載した機器に適用できる。 INDUSTRIAL APPLICABILITY As described above, the heat exchanger according to the present invention can provide a heat exchanger that is compact, has excellent economical efficiency, and has high quality performance and high heat exchange performance. Therefore, the present invention can be applied to a device equipped with a heat exchanger that exchanges heat between fluids.
1 内管
2 挿入体
3 外管
4 継手
5 トメワ(挿入ピン)
11 熱交換器
21 挿入体軸部
22 螺旋状突部
23 凸部
24 凹部
25 突起
50 バイパス流路
101 圧縮機
102 放熱器
103 減圧装置
104 蒸発器
105 冷媒回路
1 Inner tube 2 Insert body 3 Outer tube 4 Joint 5 Tomoewa (insertion pin)
11 Heat Exchanger 21 Insert Shaft Part 22 Spiral Protrusion 23 Protrusion 24 Concave 25 Protrusion 50 Bypass Flow Path 101 Compressor 102 Radiator 103 Pressure Reduction Device 104 Evaporator 105 Refrigerant Circuit
Claims (5)
制御装置と、
前記圧縮機で圧縮された高温の冷媒が、前記熱交換器および前記減圧装置を通り、前記蒸発器に流入し、前記蒸発器の着霜を溶かし、前記圧縮機に吸入される除霜運転モードと、を備え、
前記熱交換器は、水が流れる内管と、前記内管に挿入される挿入体と、前記内管の外周に設けられ、前記冷媒が流れる外管と、を有し、
前記挿入体は、軸部と前記軸部の外表面に形成された螺旋状突部とを備え、
前記水は、前記内管の内面と前記軸部と前記螺旋状突部とで形成される螺旋状流路を流れ、前記水と前記冷媒との流れが対向流となるように構成され、
前記除霜運転モード時には、前記熱交換器における前記水の流れは停止しており、
前記挿入体は樹脂製であることを特徴とする冷凍サイクル装置。 At least a compressor, a heat exchanger, a pressure reducing device, and a refrigerant circuit in which an evaporator is annularly connected,
A control device,
A high-temperature refrigerant compressed by the compressor passes through the heat exchanger and the pressure reducing device, flows into the evaporator, melts frost on the evaporator, and is taken into the compressor in a defrosting operation mode. And
The heat exchanger includes an inner tube which water flows, and insert that is inserted into the inner tube, provided on an outer periphery of the inner tube, an outer tube in which the refrigerant flows, and
The insert includes a shaft portion and a spiral protrusion formed on an outer surface of the shaft portion,
The water is configured to flow in a spiral flow path formed by the inner surface of the inner pipe, the shaft portion and the spiral protrusion, and the water and the refrigerant flow in opposite directions .
During the defrosting operation mode, the flow of water in the heat exchanger is stopped,
The refrigerating cycle device, wherein the insert is made of resin .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015091026 | 2015-04-28 | ||
JP2015091026 | 2015-04-28 | ||
PCT/JP2016/001909 WO2016174826A1 (en) | 2015-04-28 | 2016-04-05 | Heat exchanger and refrigeration cycle device using same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016174826A1 JPWO2016174826A1 (en) | 2018-02-22 |
JP6687022B2 true JP6687022B2 (en) | 2020-04-22 |
Family
ID=57199099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017515372A Active JP6687022B2 (en) | 2015-04-28 | 2016-04-05 | Refrigeration cycle equipment |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3290854B1 (en) |
JP (1) | JP6687022B2 (en) |
CN (1) | CN107532870B (en) |
WO (1) | WO2016174826A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6743968B2 (en) * | 2017-04-13 | 2020-08-19 | 三菱電機株式会社 | Water-refrigerant heat exchanger and heat pump device including water heat exchanger |
WO2019087311A1 (en) * | 2017-10-31 | 2019-05-09 | 学校法人上智学院 | Heat radiation device |
JP6861848B2 (en) * | 2017-12-25 | 2021-04-21 | 三菱電機株式会社 | Heat exchanger manufacturing method and heat exchanger |
EP3760948B1 (en) * | 2018-02-27 | 2024-12-18 | Mitsubishi Electric Corporation | Heat pump apparatus |
JP7012204B2 (en) * | 2018-12-06 | 2022-01-28 | パナソニックIpマネジメント株式会社 | Heat exchanger and water heater equipped with it |
JP7129602B2 (en) * | 2019-05-31 | 2022-09-02 | パナソニックIpマネジメント株式会社 | Heat exchanger and refrigeration cycle device provided with the same |
JP7336634B2 (en) * | 2019-11-22 | 2023-09-01 | パナソニックIpマネジメント株式会社 | Heat exchanger and hot water generator equipped with the same |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19909368C1 (en) * | 1999-03-03 | 2000-08-10 | Hde Metallwerk Gmbh | Heat exchanger tube with inner and outer tubes involves at least one tube with rib type formations forming screw-line flow channel over axial length |
JP2002162175A (en) * | 2000-11-22 | 2002-06-07 | Sunpot Co Ltd | Double tube heat exchanger |
JP2002228370A (en) * | 2001-01-30 | 2002-08-14 | Daikin Ind Ltd | Heat exchanger |
JP2003329376A (en) * | 2002-05-13 | 2003-11-19 | Atago Seisakusho:Kk | Double tube type heat exchanger |
CN100451531C (en) * | 2005-03-25 | 2009-01-14 | 清华大学 | Water heater heat exchange tube |
JP4805179B2 (en) * | 2007-02-05 | 2011-11-02 | 株式会社コロナ | Water refrigerant heat exchanger |
JP2008292107A (en) * | 2007-05-28 | 2008-12-04 | Furukawa Electric Co Ltd:The | Heat exchanger, heat exchange system, and construction method of heat exchange system |
JP5141486B2 (en) * | 2008-10-03 | 2013-02-13 | ダイキン工業株式会社 | Heat exchanger and hot water system |
JP2010127610A (en) * | 2008-12-01 | 2010-06-10 | Atago Seisakusho:Kk | Heat exchanger |
KR200459178Y1 (en) * | 2011-07-26 | 2012-03-22 | 최건식 | Double tube type heat exchange pipe |
JP5785883B2 (en) * | 2012-02-08 | 2015-09-30 | 日立アプライアンス株式会社 | Heat exchanger and heat pump type water heater using the same |
JP2015034664A (en) * | 2013-08-08 | 2015-02-19 | 大日本印刷株式会社 | Underground heat exchanger and helical air guide member for underground heat exchanger |
-
2016
- 2016-04-05 EP EP16786106.1A patent/EP3290854B1/en active Active
- 2016-04-05 CN CN201680023056.6A patent/CN107532870B/en active Active
- 2016-04-05 WO PCT/JP2016/001909 patent/WO2016174826A1/en active Application Filing
- 2016-04-05 JP JP2017515372A patent/JP6687022B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107532870A (en) | 2018-01-02 |
WO2016174826A1 (en) | 2016-11-03 |
EP3290854A4 (en) | 2018-05-02 |
JPWO2016174826A1 (en) | 2018-02-22 |
CN107532870B (en) | 2019-08-30 |
EP3290854B1 (en) | 2021-12-22 |
EP3290854A1 (en) | 2018-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6687022B2 (en) | Refrigeration cycle equipment | |
US20190353427A1 (en) | Double-tube internal heat exchanger | |
JP2005133999A (en) | Heat pump water heater | |
JP4211041B2 (en) | Heat pump water heater | |
KR102048356B1 (en) | Refrigerant pipe, and fin type heat exchanger and air conditioner comprising the same | |
JP7199842B2 (en) | water heat exchanger, gas cooler | |
JP5785883B2 (en) | Heat exchanger and heat pump type water heater using the same | |
JP5929012B2 (en) | Heat exchanger and heat pump water heater | |
JP2008096043A (en) | Twisted tube type heat exchanger | |
CN115046419A (en) | Turbulator in reinforced pipe | |
JP5513738B2 (en) | Heat exchanger and heat pump water heater | |
JP7129602B2 (en) | Heat exchanger and refrigeration cycle device provided with the same | |
JP5171280B2 (en) | Heat exchanger and heat pump type water heater using the same | |
JP2010255856A (en) | Heat exchanger and heat pump water heater using the same | |
WO2013118762A1 (en) | Fin tube-type heat exchanger | |
JP6177195B2 (en) | Heat transfer tube for supercooled double tube heat exchanger | |
JP5540683B2 (en) | Heat exchanger and water heater provided with the same | |
JP6790129B2 (en) | Heat exchanger and heat pump water heater | |
JP2010255857A (en) | Heat exchanger and heat pump water heater using the same | |
JP2006105525A (en) | High pressure-side refrigerant radiator of supercritical refrigerating cycle | |
JP7345137B2 (en) | Heat exchanger unit and heat pump unit | |
CN109477690B (en) | Heat exchanger and refrigeration cycle device having the same | |
JP6735924B2 (en) | Heat exchanger and refrigeration cycle device | |
JP2013088045A (en) | Heat exchanger and heat pump type water heater using the same | |
JP7012351B2 (en) | Double tube heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A527 Effective date: 20170706 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181218 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20190123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200316 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6687022 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |