Nothing Special   »   [go: up one dir, main page]

JP6177195B2 - Heat transfer tube for supercooled double tube heat exchanger - Google Patents

Heat transfer tube for supercooled double tube heat exchanger Download PDF

Info

Publication number
JP6177195B2
JP6177195B2 JP2014119069A JP2014119069A JP6177195B2 JP 6177195 B2 JP6177195 B2 JP 6177195B2 JP 2014119069 A JP2014119069 A JP 2014119069A JP 2014119069 A JP2014119069 A JP 2014119069A JP 6177195 B2 JP6177195 B2 JP 6177195B2
Authority
JP
Japan
Prior art keywords
tube
groove
fluid
axis direction
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014119069A
Other languages
Japanese (ja)
Other versions
JP2015232415A (en
Inventor
宏行 高橋
宏行 高橋
岩本 秀樹
秀樹 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2014119069A priority Critical patent/JP6177195B2/en
Publication of JP2015232415A publication Critical patent/JP2015232415A/en
Application granted granted Critical
Publication of JP6177195B2 publication Critical patent/JP6177195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、空気調和機の凝縮器の出口側に設置され、凝縮器の冷媒を過冷却させるために使用される二重管式熱交換器に組み込まれる伝熱管に関し、特に、二重管のリング状環状部を流れる単相流流体と、管中央の内管内を流れる流体(単相流又は相変化する二相流)との間の熱交換に適した過冷却二重管式熱交換器用伝熱管に関する。   The present invention relates to a heat transfer tube that is installed on the outlet side of a condenser of an air conditioner and is incorporated in a double-pipe heat exchanger that is used to supercool the refrigerant of the condenser. For a supercooled double-tube heat exchanger suitable for heat exchange between a single-phase fluid flowing through the ring-shaped annular part and a fluid (single-phase flow or phase-changing two-phase flow) flowing in the inner tube at the center of the tube It relates to heat transfer tubes.

空気調和機は、例えば、特許文献1に記載されている。この空気調和機においては、図7に示すように、凝縮器1を出た冷媒は、主回路F1と、バイパス回路F2とを通流して、凝縮器1に戻る。主回路F1においては、凝縮器1を出た冷媒は、分岐点A1を経て、過冷却熱交換器2に組み込まれる二重管式伝熱管の外管と内管との間のリング状の環状部を流れ、次いで、膨張弁3を経て減圧した後、蒸発器4に入る。そして、蒸発器4を出た冷媒は、合流点A2を経て、圧縮器5に入り、圧縮器5を出た冷媒は、凝縮器1に戻る。一方、バイパス回路F2は、凝縮器1を出た冷媒が、分岐点A1から膨張弁6を経て減圧し、その後、過冷却熱交換器2に組み込まれる二重管式伝熱管の内管の内部を流れる。その後、この冷媒は、合流点A2を経て、圧縮器5に入り、圧縮器5を出た冷媒は、凝縮器1に戻る。   An air conditioner is described in Patent Document 1, for example. In this air conditioner, as shown in FIG. 7, the refrigerant that has exited the condenser 1 flows through the main circuit F <b> 1 and the bypass circuit F <b> 2 and returns to the condenser 1. In the main circuit F1, the refrigerant exiting the condenser 1 passes through the branch point A1, and has a ring-like annular shape between the outer tube and the inner tube of the double-tube heat transfer tube incorporated in the supercooling heat exchanger 2. And then the pressure is reduced through the expansion valve 3 before entering the evaporator 4. Then, the refrigerant that has exited the evaporator 4 enters the compressor 5 through the junction A <b> 2, and the refrigerant that has exited the compressor 5 returns to the condenser 1. On the other hand, in the bypass circuit F2, the refrigerant exiting the condenser 1 is depressurized from the branch point A1 through the expansion valve 6, and then the inside of the inner tube of the double-tube heat transfer tube incorporated in the supercooling heat exchanger 2 Flowing. Thereafter, the refrigerant enters the compressor 5 through the junction A <b> 2, and the refrigerant exiting the compressor 5 returns to the condenser 1.

この空気調和機においては、凝縮器1で凝縮された冷媒は、主に、主回路F1を流れて、蒸発器4で蒸発した後、圧縮機5で圧縮される。一方、凝縮器1で凝縮された冷媒の一部は、バイパス回路F2を流れて膨張弁6にて膨張して減圧され、液相及び気相の二相状態となって冷却され、この低温の冷媒は、過冷却熱交換器2にて、主回路F1を流れる冷媒を過冷却させる。これにより、主回路F1側の液冷媒が冷却されて温度が下がり、主回路F1の膨張弁3を経て、蒸発器4に流れ込む。このため、この蒸発器4の入口に流入する冷媒と、蒸発器4の出口から出る冷媒との間のエンタルピー差、即ち蒸発潜熱が大きくなり、冷凍能力が高まる。これにより、主回路F1を流れる冷媒による空気調和機の冷凍能力を向上させることができる。また、冷媒の一部をバイパス回路F2に流すことにより、主回路F1の冷媒流量が減少し、蒸発器4及び圧縮器5の入り口における圧力損失を低減することができる。このように、二重管式熱交換器を使用して、冷媒を過冷却させることにより、空気調和機の冷凍能力の高性能化及び省エネルギ化が図られている。   In this air conditioner, the refrigerant condensed in the condenser 1 mainly flows through the main circuit F1, evaporates in the evaporator 4, and is then compressed in the compressor 5. On the other hand, a part of the refrigerant condensed in the condenser 1 flows through the bypass circuit F2 and is expanded and depressurized by the expansion valve 6 to be cooled into a liquid phase and a gas phase two-phase state. In the supercooling heat exchanger 2, the refrigerant supercools the refrigerant flowing through the main circuit F1. As a result, the liquid refrigerant on the main circuit F1 side is cooled to lower the temperature, and flows into the evaporator 4 through the expansion valve 3 of the main circuit F1. For this reason, the enthalpy difference between the refrigerant that flows into the inlet of the evaporator 4 and the refrigerant that flows out of the outlet of the evaporator 4, that is, the latent heat of vaporization increases, and the refrigerating capacity increases. Thereby, the refrigerating capacity of the air conditioner by the refrigerant flowing through the main circuit F1 can be improved. Further, by flowing a part of the refrigerant to the bypass circuit F2, the refrigerant flow rate of the main circuit F1 is reduced, and the pressure loss at the inlets of the evaporator 4 and the compressor 5 can be reduced. As described above, by using the double pipe heat exchanger to supercool the refrigerant, high performance and energy saving of the refrigeration capacity of the air conditioner are achieved.

この過冷却二重管式熱交換器に使用される伝熱管においては、二重管伝熱管の環状部に流す冷媒として、低粘性流体を使用するが、従来の二重管式伝熱管は、その低粘性流体の流量が多い場合に、熱伝達率が低いという問題点がある。   In the heat transfer tube used in this supercooled double tube heat exchanger, a low-viscosity fluid is used as the refrigerant flowing through the annular portion of the double tube heat transfer tube, but the conventional double tube heat transfer tube is When the flow rate of the low viscosity fluid is large, there is a problem that the heat transfer coefficient is low.

平滑管は、管表面が平滑であり、この管内に流体を流すと、管壁面に速度境界層及び温度境界層が形成され、この境界層が流体間の熱交換を阻害するため、伝熱性能が低い。   The smooth tube has a smooth tube surface, and when a fluid flows through the tube, a velocity boundary layer and a temperature boundary layer are formed on the wall surface of the tube, and this boundary layer inhibits heat exchange between the fluids. Is low.

特許文献2には、管外面にくさび状の突起を設け、管内面に螺旋状の溝を多数設けて、乱流を促進することにより、流体を撹拌して、管壁面での速度境界層及び温度境界層の形成を抑制した伝熱管が開示されている。   In Patent Document 2, a wedge-shaped protrusion is provided on the outer surface of the tube, and a number of spiral grooves are provided on the inner surface of the tube to promote turbulent flow, thereby stirring the fluid, A heat transfer tube that suppresses the formation of a temperature boundary layer is disclosed.

また、特許文献3には、管外面に螺旋状のフィンを設け、管内面に螺旋状の溝を多数設けて、乱流を促進することにより、流体を撹拌して、管壁面での速度境界層及び温度境界層の形成を抑制した過冷却器用伝熱管が開示されている。   In Patent Document 3, a spiral fin is provided on the outer surface of the tube, and a number of spiral grooves are provided on the inner surface of the tube to promote turbulence. A heat transfer tube for a subcooler in which formation of a layer and a temperature boundary layer is suppressed is disclosed.

特開平10−54616号公報Japanese Patent Laid-Open No. 10-54616 特開昭61−265499号公報JP-A 61-265499 特開2013−79763号公報JP 2013-79763 A

しかしながら、特許文献2に開示された伝熱管は、管内に形成された多数の溝のリード角が16〜35°と小さいため、過冷却熱交換器に使用した場合に、管内の流体が管外の流体と熱交換する前に、熱交換器出口から抜けてしまい、熱交換性能の向上に限界がある。また、管外面に形成されたくさび状の突起は、管外側の性能向上に寄与し、管外(環状部)に低粘性流体を使用した場合に、その乱流が促進されるものの、特に、環状部の流量が多い場合に、くさび状突起先端部において剥離流が発生することにより、圧力損失が増大すると共に、伝熱性能が飽和するという問題点がある。また、この伝熱管を過冷却式熱交換器に使用した場合に、圧力損失が増大して、冷凍サイクル側の冷媒搬送動力、即ち、圧縮器の動力が増大するという問題点がある。   However, in the heat transfer tube disclosed in Patent Document 2, the lead angle of many grooves formed in the tube is as small as 16 to 35 °. Therefore, when used in a supercooling heat exchanger, the fluid in the tube is outside the tube. Before exchanging heat with the other fluid, the fluid exits from the outlet of the heat exchanger, and there is a limit to improving the heat exchange performance. In addition, the wedge-shaped protrusion formed on the outer surface of the tube contributes to the performance improvement on the outer side of the tube, and when a low-viscosity fluid is used outside the tube (annular part), the turbulence is promoted, When the flow rate of the annular portion is large, a separation flow is generated at the front end portion of the wedge-shaped protrusion, which causes a problem that pressure loss increases and heat transfer performance is saturated. Further, when this heat transfer tube is used in a supercooling heat exchanger, there is a problem that pressure loss increases and refrigerant transport power on the refrigeration cycle side, that is, power of the compressor increases.

また、特許文献3に開示された伝熱管は、管内面に成形された多数の溝のリード角が12〜20°と小さいことから、過冷却式熱交換器に使用した場合に、管内の流体が管外の流体と熱交換する前に、熱交換器出口から抜けてしまい、熱交換性能の向上に限界があるという問題点がある。また、管外面に形成されたフィンも、管外面側の性能向上に寄与し、低粘性流体を使用した場合に、乱流が促進されるものの、特に環状部の流量が多い場合に、フィン先端部において剥離流が発生することにより圧力損失が増大すると共に、伝熱性能が飽和してしまう。また、この伝熱管を過冷却熱交換器に使用した場合、圧力損失の増大により冷凍サイクル側の冷媒搬送動力である圧縮器の動力が増大するという問題点がある。   Further, the heat transfer tube disclosed in Patent Document 3 has a small lead angle of 12 to 20 ° formed on the inner surface of the tube, so that when the tube is used in a supercooled heat exchanger, the fluid in the tube Before the heat exchange with the fluid outside the tube, the heat exchanger exits from the outlet of the heat exchanger, and there is a problem that there is a limit to the improvement of the heat exchange performance. Also, the fin formed on the pipe outer surface contributes to the performance improvement on the pipe outer surface side, and the turbulent flow is promoted when a low-viscosity fluid is used. When the separation flow occurs in the portion, the pressure loss increases and the heat transfer performance is saturated. Further, when this heat transfer tube is used in a supercooling heat exchanger, there is a problem that the power of the compressor, which is the refrigerant conveyance power on the refrigeration cycle side, increases due to an increase in pressure loss.

本発明はかかる問題点に鑑みてなされたものであって、二重管式熱交換器の環状部に低粘性流体を高流量で流す場合に、熱伝達率を向上させると共に、環状部流体の圧力損失を低減できる過冷却二重管式熱交換器用伝熱管を提供することを目的とする。   The present invention has been made in view of such problems, and in the case where a low-viscosity fluid is caused to flow at a high flow rate through the annular portion of the double-pipe heat exchanger, the heat transfer coefficient is improved and the annular portion fluid is improved. An object of the present invention is to provide a heat transfer tube for a supercooled double-pipe heat exchanger that can reduce pressure loss.

本発明に係る過冷却二重管式熱交換器用伝熱管は、
外管と内管との間の管状部に、粘性係数が350μPa・s以下の低粘性の単相流流体からなる冷媒を流し、内管に、液体からなる単相流体又は気液二相流流体からなる冷媒を流す過冷却二重管式熱交換器の前記内管に使用される伝熱管において、
管外表面に平面視で矩形をなして管軸方向及び管周方向に整列するように形成され、台形台状をなす複数個の突起と、
管内表面に螺旋状に形成された1又は複数個のリブと、
を有し、
前記突起は、管軸方向に隣接する突起間の第1溝の底の幅が0.3乃至0.80mmであり、管周方向に隣接する突起間の第2溝の底の幅が0.10乃至0.30mmであり、
前記リブは、管軸方向に隣接するリブ間の溝の底の幅が0.15乃至1.10mmであり、
前記リブの管軸方向に対してなす角度であるリード角が、40乃至65°であり、前記リブの管軸方向の山頂角は、55乃至110°であることを特徴とする。
The heat transfer tube for a supercooled double tube heat exchanger according to the present invention is:
A refrigerant composed of a low-viscosity single-phase flow fluid having a viscosity coefficient of 350 μPa · s or less flows through a tubular portion between the outer tube and the inner tube, and a single-phase fluid or gas-liquid two-phase flow composed of a liquid flows through the inner tube. In the heat transfer tube used for the inner tube of the supercooled double-tube heat exchanger for flowing a refrigerant consisting of fluid,
A plurality of protrusions that are formed in a rectangular shape on the outer surface of the tube and aligned in the tube axis direction and the tube circumferential direction, forming a trapezoidal trapezoidal shape;
One or more ribs spirally formed on the inner surface of the tube;
Have
The protrusion has a bottom width of the first groove between the protrusions adjacent to each other in the tube axis direction of 0.3 to 0.80 mm, and a bottom width of the second groove between the protrusions adjacent in the tube circumferential direction is 0. 0 mm. 10 to 0.30 mm,
The rib has a width of the bottom of the groove between the ribs adjacent to each other in the tube axis direction of 0.15 to 1.10 mm,
The lead angle, which is the angle formed with respect to the tube axis direction of the rib, is 40 to 65 °, and the peak angle of the rib in the tube axis direction is 55 to 110 °.

なお、この伝熱管は、二重管式熱交換器の内管に使用される。従って、この伝熱管の外面に、二重管のリング状環状部を流れる流体が接触し、通常、この流体が単相流流体であり、この伝熱管の内面に、二重管式熱交換器の内管内を流れる流体が接触し、通常、この流体が単相流又は相変化する二相流である。そして、この伝熱管の内面と外面に接触する流体間で、熱交換がなされる。二重管式熱交換器の外管は、この外管と内管との間のリング状の環状部に、流体を流すための環状部を規定する。   This heat transfer tube is used as an inner tube of a double tube heat exchanger. Therefore, the fluid flowing through the ring-shaped annular portion of the double tube is in contact with the outer surface of the heat transfer tube, and usually this fluid is a single-phase flow fluid, and the double tube heat exchanger is disposed on the inner surface of the heat transfer tube. The fluid flowing in the inner pipe is in contact and is usually a single-phase flow or a two-phase flow in which the phase changes. And heat exchange is performed between the fluid which contacts the inner surface and outer surface of this heat exchanger tube. The outer tube of the double tube heat exchanger defines an annular portion for allowing fluid to flow in a ring-shaped annular portion between the outer tube and the inner tube.

この過冷却二重管式熱交換器用伝熱管において、好ましくは、
前記リブの管軸方向の形成ピッチは、0.60乃至1.24mmであり、
前記リブの高さは、0.12乃至0.35mmである。
In this supercooled double-tube heat exchanger heat transfer tube, preferably,
The formation pitch of the rib in the tube axis direction is 0.60 to 1.24 mm,
The height of the rib is 0.12 to 0.35 mm.

また、好ましくは、
前記突起の高さは、0.18乃至0.50mmであり、
前記突起の管軸方向の形成ピッチは、0.65乃至1.15mmであり、
管周方向の前記突起間の第2溝の管周方向のピッチは、0.51乃至1.04mmであり、前記突起の管軸方向の山頂角は、4乃至65°であり、前記突起の管軸直角方向の山頂角は、25乃至75°である。
Also preferably,
The height of the protrusion is 0.18 to 0.50 mm,
The formation pitch of the projections in the tube axis direction is 0.65 to 1.15 mm,
The pitch in the tube circumferential direction of the second groove between the projections in the tube circumferential direction is 0.51 to 1.04 mm, and the peak angle in the tube axis direction of the projection is 4 to 65 °. The peak angle in the direction perpendicular to the tube axis is 25 to 75 °.

更に、好ましくは、
管軸方向の前記突起間の第1溝及び管周方向の前記突起間の第2溝の断面形状は、逆台形である。
Furthermore, preferably,
The cross-sectional shapes of the first groove between the protrusions in the tube axis direction and the second groove between the protrusions in the tube circumferential direction are inverted trapezoids.

本発明によれば、二重管式熱交換器の環状部に低粘性流体を高流量で流す過冷却二重管式熱交換器用伝熱管において、伝熱管の熱伝達率を向上させることができると共に、環状部流体の圧力損失を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat transfer rate of a heat exchanger tube can be improved in the heat exchanger tube for supercooled double tube type heat exchangers which flow a low-viscosity fluid at a high flow rate to the annular part of a double tube type heat exchanger. At the same time, the pressure loss of the annular fluid can be reduced.

本発明の実施形態に係る伝熱管の外面の突起31を示す平面分解図である。It is a plane exploded view which shows the protrusion 31 of the outer surface of the heat exchanger tube which concerns on embodiment of this invention. (a)は同じく実施形態の伝熱管の管軸方向の断面図(一部斜視図)、(b)は伝熱管の管軸直角方向の断面図である。(A) is sectional drawing (partially perspective view) of the tube axis direction of the heat exchanger tube of embodiment similarly, (b) is sectional drawing of the tube axis perpendicular direction of a heat exchanger tube. 外面の流体の流れを示す模式図である。It is a schematic diagram which shows the flow of the fluid of an outer surface. 同じく外面の流体の流れを示す模式図である。It is a schematic diagram which similarly shows the flow of the fluid of an outer surface. 溝形状を示す図である。It is a figure which shows a groove shape. 熱交換量及び圧力損失の試験装置である。It is a test device for heat exchange and pressure loss. 過冷却二重管式熱交換器を示す回路図である。It is a circuit diagram which shows a supercooled double tube type heat exchanger.

以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。本発明の実施形態の伝熱管は、過冷却二重管式熱交換器に組み込まれる内管となる伝熱管である。この内管の外側に、外管が同心的に配置されて、二重管となる。そして、この二重管の内管の伝熱管の外面に、二重管のリング状環状部を流れる流体が接触し、通常、この流体が単相流流体である。また、この二重管の内管の伝熱管の内面に、二重管式熱交換器の内管内を流れる流体が接触し、通常、この流体が単相流又は相変化する二相流である。そして、この伝熱管の内面と外面に接触する流体間で、熱交換がなされる。二重管式熱交換器の外管は、この外管と内管との間のリング状の環状部を規定するものであり、前記外管の内面が、流体が流れる環状部の外面を規定する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. The heat transfer tube of the embodiment of the present invention is a heat transfer tube serving as an inner tube incorporated in a supercooled double tube heat exchanger. An outer tube is concentrically disposed outside the inner tube to form a double tube. And the fluid which flows through the ring-shaped annular part of a double tube contacts the outer surface of the heat transfer tube of the inner tube of this double tube, and this fluid is usually a single-phase flow fluid. In addition, the fluid flowing in the inner pipe of the double pipe heat exchanger is in contact with the inner surface of the heat transfer pipe of the inner pipe of the double pipe, and this fluid is usually a single-phase flow or a two-phase flow in which the phase changes. . And heat exchange is performed between the fluid which contacts the inner surface and outer surface of this heat exchanger tube. The outer tube of the double tube heat exchanger defines a ring-shaped annular portion between the outer tube and the inner tube, and the inner surface of the outer tube defines the outer surface of the annular portion through which the fluid flows. To do.

図1は、この内管の伝熱管の外表面を示し、図2は、この伝熱管の管軸に沿う断面図(一部斜視図)及び管軸直角方向の断面図である。本実施形態の伝熱管11は、二重管式熱交換器の内管となるものであり、この伝熱管11と同心的に、外管12が内管の伝熱管の外側に配置される。外管12の内面15と、内管(伝熱管11)の外面13との間の空間が、リング状の環状部となり、例えば、単相流流体が流れる。内管(伝熱管11)の内面14に囲まれる空間は、二重管の中心部であり、例えば、単相流流体又は相変化する二相流流体が流れる。   FIG. 1 shows the outer surface of the heat transfer tube of this inner tube, and FIG. 2 is a cross-sectional view (partially perspective view) along the tube axis of this heat transfer tube and a cross-sectional view in the direction perpendicular to the tube axis. The heat transfer tube 11 of this embodiment is an inner tube of a double tube heat exchanger, and the outer tube 12 is arranged outside the heat transfer tube of the inner tube concentrically with the heat transfer tube 11. A space between the inner surface 15 of the outer tube 12 and the outer surface 13 of the inner tube (heat transfer tube 11) becomes a ring-shaped annular portion, for example, a single-phase fluid flows. The space surrounded by the inner surface 14 of the inner tube (heat transfer tube 11) is the center of the double tube, and for example, a single-phase fluid or a two-phase fluid that changes in phase flows.

伝熱管11の外面13には、平面視で矩形をなす複数個の突起31が形成されている。この突起31は高さがh1の台形台状をなす。そして、この突起31は、管外面に螺旋状に配列されており、従って、円周方向及び管軸方向に整列する位置に形成されている。管軸方向に隣接する突起31の間には、第1の溝33が形成され、この第1の溝33は管周方向に連なっている。また、管周方向に隣接する突起31の間には、第2の溝34が形成され、この第2の溝34は管軸方向に連なっている。但し、突起31は伝熱管11の管外周面に螺旋状に配列されているので、第1の溝33は厳密に管周方向に延びているのではなく、管周方向から若干傾斜している。また、第2の溝34は、同様に、厳密には管軸方向に延びているのではなく、管軸方向から若干傾斜している。突起31の高さはh1、溝33、34の深さはh2である。そして、第1の溝33の第1の溝33の延長方向に垂直の方向のピッチはP2、第2の溝34の第2の溝34の延長方向に垂直の方向のピッチはP1である。但し、このピッチP1は、突起31の管周方向のピッチでもあり、ピッチP2は、突起31の管軸方向のピッチでもある。なお、突起31間の第1溝33の幅は、0.3乃至0.80mmであり、第2溝の幅は、0.10乃至0.30mmである。流体が通流する溝の幅として、この範囲が適切である。   On the outer surface 13 of the heat transfer tube 11, a plurality of protrusions 31 that are rectangular in plan view are formed. The protrusion 31 has a trapezoidal trapezoidal shape with a height h1. The protrusions 31 are spirally arranged on the outer surface of the tube, and thus are formed at positions aligned in the circumferential direction and the tube axis direction. A first groove 33 is formed between the projections 31 adjacent to each other in the tube axis direction, and the first groove 33 is continuous in the tube circumferential direction. Further, a second groove 34 is formed between the protrusions 31 adjacent to each other in the pipe circumferential direction, and the second groove 34 is continuous in the pipe axis direction. However, since the protrusions 31 are spirally arranged on the outer peripheral surface of the heat transfer tube 11, the first groove 33 does not extend strictly in the tube circumferential direction, but is slightly inclined from the tube circumferential direction. . Similarly, strictly speaking, the second groove 34 does not extend in the tube axis direction, but is slightly inclined from the tube axis direction. The height of the protrusion 31 is h1, and the depth of the grooves 33 and 34 is h2. The pitch of the first groove 33 in the direction perpendicular to the extending direction of the first groove 33 is P2, and the pitch of the second groove 34 in the direction perpendicular to the extending direction of the second groove 34 is P1. However, the pitch P1 is also the pitch in the tube circumferential direction of the protrusions 31, and the pitch P2 is also the pitch in the tube axis direction of the protrusions 31. The width of the first groove 33 between the protrusions 31 is 0.3 to 0.80 mm, and the width of the second groove is 0.10 to 0.30 mm. This range is appropriate as the width of the groove through which the fluid flows.

また、伝熱管11の内面には、螺旋状に延びるリブ32が形成されており、隣接するリブ32の間には、溝35が形成されている。リブ32の高さはh3、リブ32の管軸方向に対してなす角度(リード角)はθ、リブ32の管軸方向のピッチはP3である。なお、伝熱管11の内面14の最大直径(溝35の底面から構成される周面の直径)はDである。なお、リブ32間の溝35の幅は、0.15乃至1.10mmである。同様に、流体が通流する溝の幅として、適切なものである。   Further, a rib 32 extending in a spiral shape is formed on the inner surface of the heat transfer tube 11, and a groove 35 is formed between adjacent ribs 32. The height of the rib 32 is h3, the angle (lead angle) formed with respect to the tube axis direction of the rib 32 is θ, and the pitch of the rib 32 in the tube axis direction is P3. The maximum diameter of the inner surface 14 of the heat transfer tube 11 (the diameter of the peripheral surface formed from the bottom surface of the groove 35) is D. The width of the groove 35 between the ribs 32 is 0.15 to 1.10 mm. Similarly, the width of the groove through which the fluid flows is appropriate.

次に、このように構成された伝熱管の動作について説明する。過冷却二重管式熱交換器においては、その管状部に、低粘性の単相流流体からなる冷媒を流し、内管に、気液二層流流体からなる冷媒を流して、両冷媒間の熱交換を行う。内管に流れる冷媒は、気液二相状態の流体であり、管状部を流れる単相流流体の熱を奪って、これを冷却させると共に、内管内を流れる液体冷媒は、熱を受けて蒸発し、気化する。よって、内管内には、液体からなる単相流体又は液体及び気体からなる二相流体が流れる。この場合に、二重管内で完全に熱交換がなされると、内管内の液体は、全て気体に変化する。よって、内管から出てくる冷媒が、全量が気体ではなく、液体が残存し、気体と液体との2相流体である場合は、熱交換が不十分であったことになる。本発明に係る伝熱管は、内管の伝熱管11の外面に、突起31を螺旋状に設け、内面にリブ32を螺旋状に設けて、突起31及びリブ32の形状因子等を適切に規定したため、内管内を流れる冷媒が、管状部を流れる冷媒との熱交換により、全て気体になり、このため、内管から出てくる冷媒中に、液体が熱交換されずに残存するという状態を回避できる。   Next, operation | movement of the heat exchanger tube comprised in this way is demonstrated. In a supercooled double-pipe heat exchanger, a refrigerant composed of a low-viscosity single-phase fluid flows through the tubular part, and a refrigerant composed of a gas-liquid two-layer fluid flows through the inner pipe. Heat exchange. The refrigerant flowing in the inner pipe is a gas-liquid two-phase fluid that takes the heat of the single-phase fluid flowing in the tubular portion and cools it, and the liquid refrigerant flowing in the inner pipe is evaporated by receiving heat. And vaporize. Therefore, a single-phase fluid made of liquid or a two-phase fluid made of liquid and gas flows in the inner pipe. In this case, when the heat exchange is completely performed in the double pipe, all the liquid in the inner pipe is changed to gas. Therefore, when the refrigerant that comes out of the inner pipe is not a gas in all amounts but a liquid remains and is a two-phase fluid of a gas and a liquid, heat exchange is insufficient. In the heat transfer tube according to the present invention, the protrusion 31 is provided in a spiral shape on the outer surface of the heat transfer tube 11 of the inner tube, and the rib 32 is provided in a spiral shape on the inner surface, so that the shape factors of the protrusion 31 and the rib 32 are appropriately defined. For this reason, the refrigerant flowing in the inner tube is entirely converted into gas by heat exchange with the refrigerant flowing in the tubular portion, and therefore, the liquid remains in the refrigerant that comes out of the inner tube without heat exchange. Can be avoided.

低粘性流体とは、一例として、フロン冷媒が挙げられる。その代表的なものとして、空調用に使用されるフロンR410A、R32、R134a、R245fa等がある。各種液体流体の粘性を、下記表1に示す。   An example of the low-viscosity fluid is a chlorofluorocarbon refrigerant. Typical examples include Freon R410A, R32, R134a, R245fa, etc. used for air conditioning. The viscosities of various liquid fluids are shown in Table 1 below.

Figure 0006177195
Figure 0006177195

フロン冷媒は、水よりも粘性係数が小さく、フロンの中で粘性係数が大きなR245faであっても、水の粘性係数と比較して約53%と粘性係数が小さい。本発明は、管状部に低粘性流体を流す過冷却二重管式熱交換器に適用されるが、低粘性流体としては、フロンに限らず、水よりも粘性係数が低い流体、概ね粘性係数が350μPa・s以下の流体が使用される。   CFC refrigerant has a smaller viscosity coefficient than water, and even R245fa, which has a larger viscosity coefficient than CFC, has a viscosity coefficient of about 53% smaller than that of water. The present invention is applied to a supercooled double-pipe heat exchanger in which a low-viscosity fluid is caused to flow through a tubular portion. However, the low-viscosity fluid is not limited to chlorofluorocarbon, and is generally a fluid having a lower viscosity coefficient than water. A fluid having a flow rate of 350 μPa · s or less is used.

伝熱管の材質は、銅、銅合金、アルミニウム、アルミニウム合金、鉄、又はステンレス等の金属材料が使用される。特に、銅又は銅合金は熱伝導率が高いために好適である。また、高強度銅合金を使用することにより、薄い素材を使用して伝熱管を構成することができるので、管状部側の圧力が高い場合でも、薄い素材を使用することができ、材料の使用量が低減されると共に、熱交換における熱抵抗が小さくなり、伝熱性能がより向上する。   As the material of the heat transfer tube, a metal material such as copper, copper alloy, aluminum, aluminum alloy, iron, or stainless steel is used. In particular, copper or a copper alloy is suitable because of its high thermal conductivity. Also, by using a high-strength copper alloy, a heat transfer tube can be constructed using a thin material, so even if the pressure on the tubular part side is high, a thin material can be used, and the use of the material The amount is reduced, the heat resistance in heat exchange is reduced, and the heat transfer performance is further improved.

「内面リブのリード角θ:40乃至65°」
本発明においては、内面リブ32のリード角θは、40乃至65°である。内面リブ32のリード角θが40°未満であると、管内面の溝35の長さが短くなり、管内の液相状態の冷媒の保有量が少なくなり、かつ冷媒の滞留時間が短くなり、長さが短い伝熱管、又は長さが短い熱交換器の場合は、液体冷媒が完全に気化せず、熱交換効率が低下する。内面リブのリード角θが65°より大きくなると、管内面の溝35の長さが長くなりすぎ、管内二相状態の冷媒の保有量がより多くなり、かつ滞留時間が長くなる。このため、主回路である管状部に流す単相流流体の流量が、相対的に減少する。つまり、凝縮器1を出た冷媒は、主回路とバイパス回路に分離するが、内管内のバイパス回路を流れる流体冷媒の保有量が多くなると、相対的に、管状部を流れる主回路の流体冷媒の量が減少する。このため、内面リブ32のリード角θは、40乃至65°とする。この範囲にリード角シータを設定することにより、伝熱管内面に形成されたリブ32間の溝35の長さが適切なものとなり、管内面の液相状態の冷媒の保有量が十分に多く適切なものとなり、且つ、伝熱管内面における冷媒の滞留時間が十分に長くなり、熱効率が高く、長さが短い伝熱管又は長さが短い熱交換器でも、液体冷媒が完全に気化し、熱交換効率が向上する。
“Lead angle θ of inner rib: 40 to 65 °”
In the present invention, the lead angle θ of the inner rib 32 is 40 to 65 °. When the lead angle θ of the inner surface rib 32 is less than 40 °, the length of the groove 35 on the inner surface of the tube is shortened, the amount of refrigerant in the liquid phase in the tube is reduced, and the residence time of the refrigerant is shortened, In the case of a heat transfer tube having a short length or a heat exchanger having a short length, the liquid refrigerant is not completely vaporized, and the heat exchange efficiency is lowered. When the lead angle θ of the inner surface rib is larger than 65 °, the length of the groove 35 on the inner surface of the tube becomes too long, the amount of refrigerant in the two-phase state in the tube increases, and the residence time becomes longer. For this reason, the flow rate of the single-phase flow fluid flowing through the tubular portion which is the main circuit is relatively reduced. That is, the refrigerant exiting the condenser 1 is separated into a main circuit and a bypass circuit, but when the amount of fluid refrigerant flowing through the bypass circuit in the inner pipe increases, the fluid refrigerant of the main circuit flowing relatively through the tubular portion becomes relatively large. The amount of decreases. For this reason, the lead angle θ of the inner rib 32 is set to 40 to 65 °. By setting the lead angle theta in this range, the length of the groove 35 between the ribs 32 formed on the inner surface of the heat transfer tube becomes appropriate, and the amount of refrigerant in the liquid phase state on the inner surface of the tube is sufficiently large and appropriate. In addition, the residence time of the refrigerant on the inner surface of the heat transfer tube is sufficiently long, the heat efficiency is high, the heat efficiency is high, and the liquid refrigerant is completely vaporized and heat exchange even with a short heat transfer tube or a short heat exchanger Efficiency is improved.

「前記リブの管軸方向の山頂角:55乃至110°」
本発明においては,リブの管軸方向の山頂角は55乃至110°である。内面リブの山頂角が55°よりも小さくなると、リブ間溝部が狭くなり、液相冷媒が溝部に保持され難くなり、長さの短い伝熱管又は長さの短い熱交換器は、伝熱管内の液冷媒が完全に気化しにくくなり、熱交換効率が向上し難くなる。内面リブの山頂角が110°よりも大きくなると、リブ間溝部が広がり、液相冷媒が保持されにくく、かつ溝部の液相冷媒が溝長手方向に流れやすくなることで、滞留時間が短くなり、長さの短い伝熱管又は長さの短い熱交換器であると、管内の液冷媒が完全に気化しにくくなり、熱交換効率が向上し難くなる。このため、リブの管軸方向の山頂角は55乃至110°とする。この範囲に内面リブの山頂角を設定することにより、リブ間溝部においても、液相冷媒が保持されやすくなり、かつ滞留時間がより長くなり、長さの短い伝熱管又は長さの短い熱交換器でも、液冷媒がより完全に気化し、熱交換効率が向上する。
“Crest angle in the tube axis direction of the rib: 55 to 110 °”
In the present invention, the crest angle in the tube axis direction of the rib is 55 to 110 °. When the crest angle of the inner rib is smaller than 55 °, the groove between the ribs is narrowed and the liquid refrigerant becomes difficult to be held in the groove, and the heat transfer tube having a short length or the heat exchanger having a short length is formed in the heat transfer tube. This makes it difficult for the liquid refrigerant to completely evaporate, making it difficult to improve the heat exchange efficiency. When the crest angle of the inner surface rib is larger than 110 °, the groove portion between the ribs is widened, the liquid refrigerant is difficult to be held, and the liquid phase refrigerant in the groove portion easily flows in the longitudinal direction of the groove. If the heat transfer tube has a short length or the heat exchanger has a short length, the liquid refrigerant in the tube is not easily vaporized, and the heat exchange efficiency is difficult to improve. For this reason, the peak angle in the tube axis direction of the rib is 55 to 110 °. By setting the crest angle of the inner rib within this range, the liquid refrigerant is easily held in the groove between the ribs, and the residence time becomes longer, and the heat transfer tube having a shorter length or the heat exchange having a shorter length is used. Even in the oven, the liquid refrigerant is more completely vaporized and the heat exchange efficiency is improved.

「内面リブの管軸方向の形成ピッチP3:0.60乃至1.24mm」
内面リブの管軸方向ピッチP3:0.60乃至1.24mm」
内面リブ32の管軸方向ピッチP3を0.60乃至1.24mmの範囲にすることにより、内面の溝35において、液相冷媒が保持されやすくなり、且つ滞留時間がより長くなる。このため、長さが短い伝熱管(又は長さが短い熱交換器)でも、その伝熱管内で、液相冷媒が完全に気化し、高い熱交換効率を得ることができる。内面リブ32のピッチP3が1.24mmより大きくなると、リブ間の溝35が広がりやすくなり、液相冷媒を溝35内に保持しにくくなる。また、溝35内の液相冷媒が溝35の長手方向に流れやすくなり、滞留時間が短くなり、長さが短い伝熱管(又は長さが短い熱交換器)の場合に、液体冷媒が伝熱管内で完全に気化することが困難となり、熱交換効率が低下する。一方、内面リブ32のピッチP3が0.60mm未満であると、リブ32間の溝35の幅が狭くなりやすく、液相冷媒を溝35内に保持しにくくなり、長さが短い伝熱管(又は長さが短い熱交換器)の場合に、液体冷媒が伝熱管内で完全に気化することが困難となり、熱交換効率が低下する。よって、内面リブ32の管軸方向のピッチP3は、0.60乃至1.24mmとすることが好ましい。
“Formation pitch P3 of the inner rib in the tube axis direction: 0.60 to 1.24 mm”
Pipe pitch P3 of inner rib: 0.60 to 1.24 mm "
By setting the pipe pitch P3 of the inner ribs 32 in the range of 0.60 to 1.24 mm, the liquid phase refrigerant is easily held in the inner groove 35, and the residence time becomes longer. For this reason, even in a heat transfer tube having a short length (or a heat exchanger having a short length), the liquid phase refrigerant is completely vaporized in the heat transfer tube, and high heat exchange efficiency can be obtained. When the pitch P3 of the inner surface ribs 32 is larger than 1.24 mm, the grooves 35 between the ribs are likely to be widened, and the liquid refrigerant is not easily held in the grooves 35. Further, the liquid refrigerant in the groove 35 tends to flow in the longitudinal direction of the groove 35, the residence time is shortened, and the liquid refrigerant is transferred in the case of a heat transfer tube (or a heat exchanger with a short length). It becomes difficult to vaporize completely in the heat pipe, and the heat exchange efficiency is lowered. On the other hand, when the pitch P3 of the inner surface ribs 32 is less than 0.60 mm, the width of the grooves 35 between the ribs 32 tends to be narrow, and it becomes difficult to hold the liquid-phase refrigerant in the grooves 35. In the case of a heat exchanger having a short length), it becomes difficult for the liquid refrigerant to completely evaporate in the heat transfer tube, and the heat exchange efficiency is lowered. Therefore, the pitch P3 in the tube axis direction of the inner ribs 32 is preferably 0.60 to 1.24 mm.

「内面リブの高さh3:0.12乃至0.35mm」
内面リブ32の高さh3を0.12乃至0.35mmの範囲にすることにより、溝35において、液相冷媒を保持しやすくなり、長さが短い伝熱管(又は長さが短い熱交換器)であっても、液体冷媒がより一層完全に気化しやすくなり、熱交換効率が高まる。内面リブ32の高さh3が0.12mmより小さくなると、溝35の断面積が小さくなり、溝35内に液相冷媒を保持しにくくなり、滞留時間が短くなることにより、長さが短い伝熱管(又は長さが短い熱交換器)の場合に、液体冷媒が完全には気化しにくくなり、熱交換効率が低下してしまう。一方、内面リブ高さh3が0.35mmより高くなると、管内を流れる液相冷媒の溝内の保有量が過剰となり、液相冷媒の管内面の保持膜厚が厚くなり、熱伝導にとって抵抗となるため、熱交換量が減少する。よって、内面リブ32の高さh3は、0.12乃至0.35mmとすることが好ましい。
“Inner rib height h3: 0.12 to 0.35 mm”
By setting the height h3 of the inner rib 32 in the range of 0.12 to 0.35 mm, the liquid phase refrigerant can be easily held in the groove 35, and the heat exchanger tube (or the heat exchanger having a short length) has a short length. ), The liquid refrigerant is more easily vaporized and the heat exchange efficiency is increased. When the height h3 of the inner rib 32 is smaller than 0.12 mm, the cross-sectional area of the groove 35 is reduced, it becomes difficult to hold the liquid-phase refrigerant in the groove 35, and the residence time is shortened. In the case of a heat pipe (or a heat exchanger having a short length), the liquid refrigerant is not easily vaporized, and the heat exchange efficiency is lowered. On the other hand, if the inner surface rib height h3 is higher than 0.35 mm, the amount of liquid phase refrigerant flowing in the pipe becomes excessive, the retained film thickness of the liquid phase refrigerant on the pipe inner surface is increased, and resistance to heat conduction is increased. Therefore, the amount of heat exchange is reduced. Therefore, the height h3 of the inner surface rib 32 is preferably 0.12 to 0.35 mm.

「外面突起の高さh1:0.18乃至0.50mm」
図3に示すように、流体F1が第2溝34を下流側に向けて流れる。このとき、上流側の突起31間の第2溝34から下流側の突起31間の第2溝34間に冷媒が流入しようとするが、この上流側の突起31間の第2溝34を流れてきた冷媒は、その一部が流体F1として、下流側の突起31間の第2溝34に流入し、残部が流体F2,F3として、第1溝33に分かれて流入する。一方、第1溝33間を流れてきた冷媒は、その一部の流体F4、F5が、下流側の突起31間の第2溝34間に流れ込む。よって、下流側の突起31間の第2溝34には、流体F1、F4,F5が流れる。伝熱管(内管)11の外面と、外管12との間の管状部を流れる冷媒は、このように突起31間の第1溝33及び第2溝34を流れて、伝熱管11内を流れる冷媒との間で、熱交換を行う。
“Height of outer protrusion h1: 0.18 to 0.50 mm”
As shown in FIG. 3, the fluid F1 flows through the second groove 34 toward the downstream side. At this time, the refrigerant tends to flow from the second groove 34 between the upstream protrusions 31 to the second groove 34 between the downstream protrusions 31, but flows through the second groove 34 between the upstream protrusions 31. A part of the refrigerant flows into the second groove 34 between the protrusions 31 on the downstream side as a fluid F1, and the remaining part flows into the first groove 33 as fluids F2 and F3. On the other hand, part of the fluids F4 and F5 of the refrigerant flowing between the first grooves 33 flows between the second grooves 34 between the protrusions 31 on the downstream side. Therefore, the fluids F1, F4, and F5 flow through the second groove 34 between the protrusions 31 on the downstream side. The refrigerant flowing through the tubular portion between the outer surface of the heat transfer tube (inner tube) 11 and the outer tube 12 flows in the first groove 33 and the second groove 34 between the protrusions 31 in this way, and passes through the heat transfer tube 11. Heat exchange is performed with the flowing refrigerant.

このとき、伝熱管11の外面突起31の高さh1を、0.18乃至0.50mmにすることにより、上述のように流れる流体の流動性が向上する。この冷媒流体の流動性が高いことにより、伝熱管11の熱交換性が向上すると共に、冷媒の圧力損失が低減される。   At this time, by setting the height h1 of the outer surface protrusion 31 of the heat transfer tube 11 to 0.18 to 0.50 mm, the fluidity of the fluid flowing as described above is improved. Since the fluidity of the refrigerant fluid is high, the heat exchange performance of the heat transfer tube 11 is improved and the pressure loss of the refrigerant is reduced.

突起高さh1が0.50mmよりも高くなると、管軸方向と平行に単相流を流した場合、第2溝34を管軸方向と平行に流れる冷媒の流速は更に増加するものの、第1溝33の流体が下流側の第2溝34に流体が流れ込む際に、第2溝34が抵抗となり、その結果、圧力損失が増加する。即ち、第2溝34において、上流側の突起31間の部分から、第1溝33を交差して、下流側の突起31間の部分に移る際に、突起31の高さが高いと、突起31が抵抗となって、圧力損失が増加する。一方、外面突起31の高さh1が0.18mmより低いと、管軸方向に平行に単相流を流した場合に、第2溝34を流れる流体の流速が低下すると共に、上流側の突起31間の第2溝34から、第1溝33及び下流側の突起31間の第2溝34に流体が流れるときの流体の流入力が低下する。その結果、冷媒の流動性が低下することにより、熱交換性が低下する。従って、突起高さh1は、0.18乃至0.50mmとすることが好ましい。   When the projection height h1 is higher than 0.50 mm, when a single-phase flow is caused to flow parallel to the tube axis direction, the flow velocity of the refrigerant flowing in the second groove 34 parallel to the tube axis direction further increases. When the fluid in the groove 33 flows into the second groove 34 on the downstream side, the second groove 34 becomes a resistance, and as a result, the pressure loss increases. That is, in the second groove 34, when the height of the protrusion 31 is high when crossing the first groove 33 from the portion between the upstream protrusions 31 and moving to the portion between the downstream protrusions 31, 31 becomes resistance and pressure loss increases. On the other hand, when the height h1 of the outer surface protrusion 31 is lower than 0.18 mm, the flow velocity of the fluid flowing through the second groove 34 is reduced and the upstream protrusion is caused when a single-phase flow is made parallel to the tube axis direction. The fluid flow input when the fluid flows from the second groove 34 between 31 to the first groove 33 and the second groove 34 between the protrusions 31 on the downstream side decreases. As a result, the fluidity of the refrigerant decreases, so that the heat exchange performance decreases. Accordingly, the projection height h1 is preferably 0.18 to 0.50 mm.

「外面突起の管軸方向のピッチP2:0.65乃至1.15mm」
外面突起31の管軸方向の形成ピッチP2を0.65乃至1.15mmの範囲にすることにより、管軸方向と平行に単相流を流した場合に、上流側の突起31間の第2溝34から、第1溝33及び下流側の突起31間の第2溝34に流体が流れる際に、第1溝33から下流側の突起31間の第2溝34への冷媒の流入が促進され、第1溝33内の流体の停滞が抑制される。これにより、冷媒の流動性が向上することにより、圧力損失の増加が抑制されると共に、流体の流出入により、更に熱交換が促進される。
“Pitch P2 in the tube axis direction of the outer protrusion: 0.65 to 1.15 mm”
By setting the formation pitch P2 of the outer surface projections 31 in the tube axis direction to a range of 0.65 to 1.15 mm, when a single-phase flow is caused to flow in parallel with the tube axis direction, the second pitch between the upstream projections 31 is increased. When the fluid flows from the groove 34 to the second groove 34 between the first groove 33 and the downstream projection 31, the inflow of refrigerant from the first groove 33 to the second groove 34 between the downstream projection 31 is promoted. Thus, the stagnation of the fluid in the first groove 33 is suppressed. Thereby, the fluidity of the refrigerant is improved, so that an increase in pressure loss is suppressed, and heat exchange is further promoted by the inflow and outflow of the fluid.

外面突起31のピッチP2が1.15mmより大きくなると、管軸方向と平行に単相流を流した場合に、上流側の突起31間の第2溝34から、第1溝33及び下流側の突起31間の第2溝34に流体が流れる際に、第1溝33から下流側の突起31間の第2溝34への冷媒の流入力が低下し、第1溝33内の流体が停滞することにより、冷媒の流動性が低下し、熱交換が阻害される。一方、外面突起31のピッチP2が0.65mmより小さいと、管軸方向と平行に単相流を流した場合に、上流側の突起31間の第2溝34から、第1溝33及び下流側の突起31間の第2溝34に流体が流れる際に、第1溝33から下流側の突起31間の第2溝34への冷媒の流入が阻害されると共に、溝内の流体が管外周方向に流れてしまい、また溝内の流体の流動性が低下することにより、冷媒の圧力損失が増加する。従って、突起ピッチP2は、0.65乃至1.15mmとすることが好ましい。   When the pitch P2 of the outer protrusions 31 is larger than 1.15 mm, when a single-phase flow is caused to flow in parallel with the tube axis direction, the first grooves 33 and the downstream grooves are separated from the second grooves 34 between the upstream protrusions 31. When the fluid flows in the second groove 34 between the protrusions 31, the refrigerant flow input from the first groove 33 to the second groove 34 between the protrusions 31 on the downstream side decreases, and the fluid in the first groove 33 stagnates. By doing so, the fluidity of the refrigerant is lowered and heat exchange is hindered. On the other hand, when the pitch P2 of the outer surface protrusions 31 is smaller than 0.65 mm, the first groove 33 and the downstream are formed from the second groove 34 between the upstream protrusions 31 when a single-phase flow is made parallel to the tube axis direction. When the fluid flows in the second groove 34 between the projections 31 on the side, the inflow of the refrigerant from the first groove 33 to the second groove 34 between the projections 31 on the downstream side is inhibited, and the fluid in the groove is The refrigerant flows in the outer peripheral direction, and the fluidity of the fluid in the groove decreases, so that the pressure loss of the refrigerant increases. Accordingly, the protrusion pitch P2 is preferably set to 0.65 to 1.15 mm.

「外面突起の管周方向のピッチP1:0.51乃至1.04mm」
外面突起31の管周方向の形成ピッチP1を0.51乃至1.04mmの範囲にすることにより、管軸方向と平行に単相流を流した場合に、上流側の突起31間の第2溝34から、第1溝33及び下流側の突起31間の第2溝34に流体が流れる際に、第1溝33から下流側の突起31間の第2溝34への冷媒の流入が促進され、第1溝33内の流体の停滞が抑制される。これにより、冷媒の流動性が向上することにより、圧力損失の増加が抑制されると共に、流体の流出入により、更に熱交換が促進される。
"Pitch P1: 0.51 to 1.04 mm in the circumferential direction of the outer protrusions"
By setting the formation pitch P1 of the outer circumferential protrusions 31 in the pipe circumferential direction in the range of 0.51 to 1.04 mm, when a single-phase flow is caused to flow in parallel with the pipe axis direction, the second pitch between the upstream projections 31 is increased. When the fluid flows from the groove 34 to the second groove 34 between the first groove 33 and the downstream projection 31, the inflow of refrigerant from the first groove 33 to the second groove 34 between the downstream projection 31 is promoted. Thus, the stagnation of the fluid in the first groove 33 is suppressed. Thereby, the fluidity of the refrigerant is improved, so that an increase in pressure loss is suppressed, and heat exchange is further promoted by the inflow and outflow of the fluid.

外面突起31のピッチP1が1.04mmより大きくなると、管軸方向と平行に単相流を流した場合に、上流側の突起31間の第2溝34から、第1溝33及び下流側の突起31間の第2溝34に流体が流れる際に、第1溝33から下流側の突起31間の第2溝34への冷媒の流入力が低下し、第1溝33内の流体が停滞することにより、冷媒の流動性が低下し、熱交換が阻害される。一方、外面突起31のピッチP1が0.51mmより小さいと、管軸方向と平行に単相流を流した場合に、管軸方向への冷媒の流入性は向上するものの、第1溝33内の流体が熱交換に寄与する前に、下流側に流れやすくなるため、熱交換が阻害される。従って、突起ピッチP1は、0.51乃至1.04mmとすることが好ましい。   When the pitch P1 of the outer protrusions 31 is larger than 1.04 mm, when a single-phase flow is caused to flow in parallel with the tube axis direction, the first grooves 33 and the downstream grooves are separated from the second grooves 34 between the upstream protrusions 31. When the fluid flows in the second groove 34 between the protrusions 31, the refrigerant flow input from the first groove 33 to the second groove 34 between the protrusions 31 on the downstream side decreases, and the fluid in the first groove 33 stagnates. By doing so, the fluidity of the refrigerant is lowered and heat exchange is hindered. On the other hand, when the pitch P1 of the outer surface protrusions 31 is smaller than 0.51 mm, the flowability of the refrigerant in the tube axis direction is improved when a single-phase flow is made parallel to the tube axis direction, but the inside of the first groove 33 is increased. Before the fluid contributes to heat exchange, it tends to flow downstream, so heat exchange is hindered. Accordingly, the protrusion pitch P1 is preferably 0.51 to 1.04 mm.

「外面突起の管軸方向の山頂角:4乃至65°」
突起部の管軸方向の山頂角をこの範囲にすることにより、管軸方向と平行に単相流を流した際、この単相流は溝部2と略平行に流れ、溝部1に流体が到達する際、溝部2から溝部1に流体が流入する際に、溝底部への流体が流入しやすくなる。その結果、流体の停滞が抑制され、流体の流動性が向上することにより、圧力損失の増加が抑制されると共に、流体の流出入により更に熱交換が促進される。
“Crest angle in the tube axis direction of the external projection: 4 to 65 °”
By setting the peak angle of the protrusion in the tube axis direction within this range, when a single-phase flow flows parallel to the tube axis direction, the single-phase flow flows substantially parallel to the groove 2 and the fluid reaches the groove 1. When the fluid flows into the groove portion 1 from the groove portion 2, the fluid easily flows into the groove bottom portion. As a result, the stagnation of the fluid is suppressed and the fluidity of the fluid is improved, so that an increase in pressure loss is suppressed and heat exchange is further promoted by the inflow and outflow of the fluid.

突起部の管軸方向の山頂角_が4°よりも小さくなると、溝部1への流体が流入しにくく、管外周方向へ流体が流れやすく、かつ溝部1の流体が停滞することにより流体の熱交換が阻害され、かつ二重管に組み込んだ場合に、環状部の外管内周側に流体が流れ、その後、内管外面突起を基点に外管内周側の流体が溝部1に流入しやすくなることで、流体の流動性が阻害され、圧力損失が増加する。   When the peak angle _ in the tube axis direction of the projection is smaller than 4 °, the fluid does not easily flow into the groove 1, the fluid easily flows in the outer circumferential direction of the tube, and the fluid in the groove 1 stagnates. When the exchange is hindered and incorporated in the double pipe, the fluid flows to the inner peripheral side of the outer pipe of the annular part, and thereafter, the fluid on the inner peripheral side of the outer pipe tends to flow into the groove part 1 with the protrusion on the outer surface of the inner pipe as a base point. As a result, the fluidity of the fluid is hindered and the pressure loss increases.

突起部の管軸方向の山頂角_が65°よりも大きくなると、管軸方向と平行に単相流を流した際、上流側の溝部2から溝部1に流体が流入し、下流側の溝部2に流体が流れる際に、溝部1の流体が下流側の溝部2への流入力が低下し、溝部1の流体が停滞することにより流体の流動性が低下し、熱交換が阻害される。従って、外面突起の管軸方向の山頂角は4乃至65°とすることが好ましい。   When the peak angle_ of the protrusion in the tube axis direction is larger than 65 °, when a single-phase flow is caused to flow parallel to the tube axis direction, the fluid flows into the groove portion 1 from the upstream groove portion 2, and the downstream groove portion. When the fluid flows through 2, the flow input of the fluid in the groove portion 1 to the downstream groove portion 2 decreases, the fluid in the groove portion 1 stagnates, the fluidity of the fluid decreases, and heat exchange is inhibited. Therefore, it is preferable that the crest angle in the tube axis direction of the outer protrusion is 4 to 65 °.

「外面突起の管軸直角方向の山頂角:25乃至75°」
外面突起の管軸直角方向の山頂角をこの範囲にすることにより、管軸方向と平行に単相流を流した際、単相流は溝部2と略平行に流れ、溝部1に流体が到達する際、溝部2から溝部1に流体が流入する際に、溝底部への流体が流入しやすくなる。その結果、流体の停滞が抑制されることにより、流体の流動性が向上し、圧力損失の増加が抑制されると共に、流体の流出入により、更に熱交換が促進される。
“Crest angle in the direction perpendicular to the tube axis of the outer protrusion: 25 to 75 °”
By setting the crest angle in the direction perpendicular to the tube axis of the outer protrusion in this range, when a single-phase flow flows in parallel to the tube axis direction, the single-phase flow flows substantially parallel to the groove 2 and the fluid reaches the groove 1. When the fluid flows into the groove portion 1 from the groove portion 2, the fluid easily flows into the groove bottom portion. As a result, the stagnation of the fluid is suppressed, the fluidity of the fluid is improved, the increase in pressure loss is suppressed, and the heat exchange is further promoted by the inflow and outflow of the fluid.

外面突起の管軸直角方向の山頂角が25°よりも小さくなると、溝部2への流体が流入しにくく、管外周方向へ流体が流れやすく、かつ溝部2の流体が停滞することにより流体の熱交換が阻害され、かつ二重管に組み込んだ場合に環状部の外管内周側に流体が流れ、その後、内管外面突起を基点に外管内周側の流体が溝部1に流入しやすくなることで、流体の流動性が阻害され、圧力損失が増加する。   If the crest angle in the direction perpendicular to the tube axis of the outer projection is smaller than 25 °, the fluid into the groove 2 is difficult to flow in, the fluid tends to flow toward the outer periphery of the tube, and the fluid in the groove 2 stagnates. When the exchange is hindered and incorporated in the double pipe, the fluid flows to the inner peripheral side of the outer tube of the annular portion, and then the fluid on the inner peripheral side of the outer tube tends to flow into the groove portion 1 with the protrusion on the outer surface of the inner tube as a base point. Thus, the fluidity of the fluid is hindered and the pressure loss increases.

外面突起の管軸直角方向の山頂角が75°よりも大きくなると、管軸方向と平行に単相流を流した際、単相流が上流側の溝部2から溝部1に流体が流入し、下流側の溝部2に流体が流れる際に、溝部1の流体が下流側の溝部2への流入力が低下し、溝部1の流体が停滞することにより流体の流動性が低下し、熱交換が阻害される。従って、外面突起の管軸直角方向の山頂角は25乃至75°とすることが好ましい。   When the crest angle in the direction perpendicular to the tube axis of the outer protrusion is greater than 75 °, when a single-phase flow is caused to flow parallel to the tube axis direction, the fluid flows into the groove 1 from the upstream groove 2, When the fluid flows in the downstream groove 2, the flow input of the fluid in the groove 1 decreases to the downstream groove 2, and the fluidity of the fluid decreases due to stagnation of the fluid in the groove 1. Be inhibited. Therefore, it is preferable that the crest angle in the direction perpendicular to the tube axis of the outer protrusion is 25 to 75 °.

「第1溝及び第2溝の溝形状:逆台形」
第1溝33及び第2溝34の断面形状は、逆台形であることが好ましい。第1溝33及び第2溝34の溝形状を逆台形とすることにより、管軸方向と平行に単相流を流した場合に、流体は、第2溝34とほぼ並行に流れ、第1溝33に流体が到達する際、第2溝34から第1溝33に流体が流入する。その際、溝形状が逆台形状であれば、溝の底部に流体が流入しやすくなり、その結果、流体の溝内の停滞が抑制され、流体の流動性が向上する。これにより、流体の圧力損失の増加が抑制されると共に、流体の流出入により、更に熱交換が促進される。
“Groove shape of first and second grooves: inverted trapezoid”
The cross-sectional shapes of the first groove 33 and the second groove 34 are preferably inverted trapezoids. By making the first groove 33 and the second groove 34 into inverted trapezoidal shapes, when a single-phase flow is made parallel to the tube axis direction, the fluid flows almost in parallel with the second groove 34, and the first When the fluid reaches the groove 33, the fluid flows from the second groove 34 into the first groove 33. At that time, if the groove shape is an inverted trapezoidal shape, the fluid easily flows into the bottom of the groove, and as a result, the stagnation of the fluid in the groove is suppressed and the fluidity of the fluid is improved. Thereby, an increase in pressure loss of the fluid is suppressed, and heat exchange is further promoted by the inflow and outflow of the fluid.

図4(a)に示すように、第1溝33の断面形状が逆台形であると、溝の底部に平坦な面があるため、上述のように流体の流動性が向上する。しかし、図4(b)に示すように、突起41間の溝43の形状が逆三角形であると、溝43の根元部への流体の流入力が小さく、管外面から離隔する方向の流体が流れやすい。即ち、台形状溝以外の例えば溝底に平坦部を有しない逆三角形状断面の場合、管軸方向と平行に単相流を流すと、上流側の突起41間の第2溝43とほぼ平行に冷媒が流れ、第1溝に流体が到達する際、第2溝43から第1溝に流体が流入するものの、溝部が台形状ではないために、溝底部へ流体が流入しにくく、管外周方向、即ち、突起41の表面から遠ざかる方向に流体が流れやすい。また、溝底部に流体が滞留しやすく、流体の熱交換性が阻害される。更に、三角形断面の溝形状の場合、台形断面の場合よりも、溝部断面積が小さくなりやすい。更にまた、二重管構造に組み込んだ場合に、環状部の外管内周部側に先ず流体が流れ、その後、内管の外面突起を起点として、外管内周面側の流体が台1溝に流入する。このため、流体の流動性が阻害され、圧力損失が増加する。   As shown in FIG. 4A, when the cross-sectional shape of the first groove 33 is an inverted trapezoid, the fluidity of the fluid is improved as described above because there is a flat surface at the bottom of the groove. However, as shown in FIG. 4B, when the shape of the groove 43 between the protrusions 41 is an inverted triangle, the fluid flow input to the root portion of the groove 43 is small, and the fluid in the direction away from the outer surface of the tube Easy to flow. That is, in the case of an inverted triangular cross-section having no flat portion at the groove bottom other than the trapezoidal groove, when a single-phase flow is caused to flow parallel to the tube axis direction, the second groove 43 between the upstream protrusions 41 is substantially parallel. When the refrigerant flows into the first groove and the fluid flows into the first groove, the fluid flows from the second groove 43 into the first groove. However, since the groove is not trapezoidal, it is difficult for the fluid to flow into the groove bottom, The fluid easily flows in the direction, that is, the direction away from the surface of the protrusion 41. Further, the fluid tends to stay at the bottom of the groove, and the heat exchange property of the fluid is hindered. Further, in the case of the groove shape having a triangular cross section, the cross sectional area of the groove portion tends to be smaller than in the case of the trapezoidal cross section. Furthermore, when it is incorporated in the double pipe structure, the fluid first flows to the inner peripheral side of the outer tube of the annular portion, and then the fluid on the inner peripheral surface side of the outer tube starts from the outer surface protrusion of the inner tube into the groove on the base 1. Inflow. For this reason, the fluidity | liquidity of a fluid is inhibited and a pressure loss increases.

なお、前述の如く、溝の断面形状は図5(d)に示す逆台形が好ましいが、図5(a)に示す逆三角形の外、図5(b)に示す底面を有し溝内に中心を設けた曲面溝、図5(c)に示す底面を有し溝外に中心を設けた曲面溝にしても良い。また、図5(e)に示すように、上に凸の曲面の底面を有する台形溝、図5(f)に示すように、下に凸の曲面の底面を有する台形溝等でも良い。   As described above, the cross-sectional shape of the groove is preferably the inverted trapezoid shown in FIG. 5 (d). However, the groove has a bottom shown in FIG. 5 (b) in addition to the inverted triangle shown in FIG. 5 (a). A curved groove having a center, or a curved groove having a bottom surface shown in FIG. Further, as shown in FIG. 5E, a trapezoidal groove having a convexly curved bottom surface may be used, and as shown in FIG. 5F, a trapezoidal groove having a convexly curved bottom surface may be used.

「その他」
なお、伝熱管11の外面の突起の上面の直径は、例えば、7.95乃至13.5mmである。また、伝熱管11の突起部における内径Dは、6.00乃至11.5mmである。また、伝熱管11の内面に形成されたリブ32の数は、内面リブ32のピッチ及び内面リブ32のリード角より算出可能である。
"Other"
In addition, the diameter of the upper surface of the protrusion on the outer surface of the heat transfer tube 11 is, for example, 7.95 to 13.5 mm. Moreover, the internal diameter D in the protrusion part of the heat exchanger tube 11 is 6.00 to 11.5 mm. Further, the number of ribs 32 formed on the inner surface of the heat transfer tube 11 can be calculated from the pitch of the inner ribs 32 and the lead angle of the inner ribs 32.

次に、本発明の実施例について、本発明の範囲から外れる比較例と対比して説明する。図6は、熱交換性能及び圧力損失の試験装置を示す。この試験装置は、夫々独立した冷凍サイクル及び液冷媒のサイクルを構成している。試験部になる供試部は、二重管式熱交換器を使用しており、外管に平滑管を配置し、内管には本発明の実施例及び比較例の伝熱管を配置して、比較試験を行った。   Next, examples of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention. FIG. 6 shows a test apparatus for heat exchange performance and pressure loss. This test apparatus constitutes an independent refrigeration cycle and a liquid refrigerant cycle. The test part that becomes the test part uses a double-pipe heat exchanger, arranges a smooth tube on the outer tube, and arranges the heat transfer tubes of the examples and comparative examples of the present invention on the inner tube. A comparative test was conducted.

内管の管内は、冷凍サイクルを構成した回路に接続し、内管の入口には、凝縮器で液化した冷媒を、膨張弁により減圧した冷媒を供給した。この内管の管内に供給する冷媒は、気液二相流状態(ガスと液体冷媒とが混在した状態)である。一方、外管の内面と内管の外面との間の環状部には、評価条件に昇温した液体冷媒を供給して、内管内の流体と対向流で熱交換させる。下記表2は実施例・比較例の評価条件を示す。   The inside of the inner pipe was connected to a circuit constituting a refrigeration cycle, and the refrigerant liquefied by the condenser was supplied to the inlet of the inner pipe by reducing the pressure by the expansion valve. The refrigerant supplied into the pipe of the inner pipe is in a gas-liquid two-phase flow state (a state where gas and liquid refrigerant are mixed). On the other hand, the liquid refrigerant heated to the evaluation condition is supplied to the annular portion between the inner surface of the outer tube and the outer surface of the inner tube to exchange heat with the fluid in the inner tube in a counter flow. Table 2 below shows the evaluation conditions of the examples and comparative examples.

Figure 0006177195
Figure 0006177195

評価のために、評価条件に装置を安定化させた後、環状部流体の流量、供試部出入口の温度,供試部環状部出入口の圧力差を測定した。その後、環状部の流体の流量及び供試部の出入口の温度を使用して、交換熱量QRを下記数式1に従って算出した。   For the evaluation, after stabilizing the apparatus to the evaluation conditions, the flow rate of the annular part fluid, the temperature of the entrance and exit of the test part, and the pressure difference of the entrance and exit of the test part annular part were measured. Thereafter, the exchange heat quantity QR was calculated according to the following formula 1, using the flow rate of the fluid in the annular part and the temperature at the entrance and exit of the test part.

Figure 0006177195
Figure 0006177195

下記表3−1、表3−2及び表4−1,表4−2は、本発明の実施例及び比較例の伝熱管の突起部外面及び突起部内面の突起及びリブ形状を示す。また、下記表5は、その熱交換の性能(交換熱量比及び圧力損失)を示す。   The following Table 3-1, Table 3-2, Table 4-1, and Table 4-2 show the protrusions and rib shapes of the protrusion outer surface and the protrusion inner surface of the heat transfer tubes of Examples and Comparative Examples of the present invention. Table 5 below shows the heat exchange performance (exchange heat quantity ratio and pressure loss).

Figure 0006177195
Figure 0006177195

Figure 0006177195
Figure 0006177195

Figure 0006177195
Figure 0006177195

Figure 0006177195
Figure 0006177195

Figure 0006177195
Figure 0006177195

この表3−1、表3−2、表4−1、表4−2に示すように、実施例1〜22は、請求項1を満たす。しかし、実施例1は突起高さが請求項3から外れ、実施例2は突起ピッチが請求項3から外れ、実施例3は突起間の第2溝の管周方向ピッチが請求項3から外れ、実施例4は突起の管軸方向の山頂角が請求項3から外れ、実施例5は突起の管軸直角方向の山頂角が請求項3から外れるものである。また、実施例19及び20は、リブの管軸方向の形成ピッチ及びリブの高さが請求項2から外れ、実施例21はリブの管軸方向の形成ピッチが請求項2から外れ、実施例22はリブの高さが請求項2から外れるものである。一方、実施例6〜18は、請求項1、請求項2及び請求項3の全ての要件を満たす。これに対し、比較例17,18は、請求項1のみ外れるものである。また、比較例1,2,3,8,9,10,11,12,13,14は、請求項1,2,3の要件の全てが外れるものである。比較例4,5,6,7,15,16は、請求項1、3の要件が外れるものである。   As shown in Table 3-1, Table 3-2, Table 4-1, and Table 4-2, Examples 1 to 22 satisfy Claim 1. However, the projection height of Example 1 deviates from Claim 3, the projection pitch of Example 2 deviates from Claim 3, and the pitch of the second groove between the projections in the circumferential direction of Example 3 deviates from Claim 3. In Example 4, the peak angle of the projection in the tube axis direction deviates from Claim 3, and in Example 5, the peak angle of the projection in the direction perpendicular to the tube axis deviates from Claim 3. Further, in Examples 19 and 20, the formation pitch of the ribs in the tube axis direction and the height of the ribs deviate from Claim 2, and in Example 21, the formation pitch of the ribs in the tube axis direction deviates from Claim 2. No. 22 has a rib height deviating from the second aspect. On the other hand, Examples 6-18 satisfy | fill all the requirements of Claim 1, Claim 2, and Claim 3. On the other hand, Comparative Examples 17 and 18 are different from those in Claim 1 only. Further, Comparative Examples 1, 2, 3, 8, 9, 10, 11, 12, 13, and 14 are all out of the requirements of claims 1, 2, and 3. In Comparative Examples 4, 5, 6, 7, 15, and 16, the requirements of claims 1 and 3 are not satisfied.

表5は実施例1〜22及び比較例1〜18の熱交換の交換熱量比及び圧力損失比を、比較例1に対する相対値として示す。実施例1乃至22は、本発明の請求項1を満たすものであり、熱交換の交換熱量比及び圧力損失比のいずれも、優れたものであった。特に、実施例6乃至18は、請求項2及び3も満たすため、実施例1乃至5及び実施例19乃至22に比して、熱交換の交換熱量比が優れたものであった。一方、比較例1乃至13は、熱交換の交換熱量比又は圧力損失比の少なくともいずれかが、実施例よりも劣るものであった。   Table 5 shows the heat exchange ratio and pressure loss ratio of heat exchange in Examples 1 to 22 and Comparative Examples 1 to 18 as relative values with respect to Comparative Example 1. Examples 1 to 22 satisfy Claim 1 of the present invention, and both the exchange heat amount ratio and the pressure loss ratio of heat exchange were excellent. In particular, Examples 6 to 18 satisfied Claims 2 and 3, so that the heat exchange ratio of heat exchange was superior to Examples 1 to 5 and Examples 19 to 22. On the other hand, in Comparative Examples 1 to 13, at least one of the heat exchange ratio and the pressure loss ratio was inferior to that of the example.

1:凝縮器
2:過冷却熱交換器
3、5:膨張弁
4:凝縮器
5:圧縮器
11:伝熱管
12:外管
22:環状部
31:突起
32:リブ
33:第1溝
34:第2溝
35:溝
1: Condenser 2: Supercooling heat exchanger 3, 5: Expansion valve 4: Condenser 5: Compressor 11: Heat transfer tube 12: Outer tube 22: Annular portion 31: Projection 32: Rib 33: First groove 34: Second groove 35: groove

Claims (4)

外管と内管との間の管状部に、粘性係数が350μPa・s以下の低粘性の単相流流体からなる冷媒を流し、内管に、液体からなる単相流体又は気液二相流流体からなる冷媒を流す過冷却二重管式熱交換器の前記内管に使用される伝熱管において、
管外表面に平面視で矩形をなして管軸方向及び管周方向に整列するように形成され、台形台状をなす複数個の突起と、
管内表面に螺旋状に形成された1又は複数個のリブと、
を有し、
前記突起は、管軸方向に隣接する突起間の第1溝の底の幅が0.3乃至0.80mmであり、管周方向に隣接する突起間の第2溝の底の幅が0.10乃至0.30mmであり、
前記リブは、管軸方向に隣接するリブ間の溝の底の幅が0.15乃至1.10mmであり、
前記リブの管軸方向に対してなす角度であるリード角が、40乃至65°であり、前記リブの管軸方向の山頂角は、55乃至110°であることを特徴とする過冷却二重管式熱交換器用伝熱管。
A refrigerant composed of a low-viscosity single-phase flow fluid having a viscosity coefficient of 350 μPa · s or less flows through the tubular portion between the outer tube and the inner tube, and a single-phase fluid or gas-liquid two-phase flow composed of liquid flows through the inner tube. In the heat transfer tube used for the inner tube of the supercooled double-tube heat exchanger for flowing a refrigerant consisting of fluid,
A plurality of protrusions that are formed in a rectangular shape on the outer surface of the tube and aligned in the tube axis direction and the tube circumferential direction, forming a trapezoidal trapezoidal shape;
One or more ribs spirally formed on the inner surface of the tube;
Have
The protrusion has a bottom width of the first groove between the protrusions adjacent to each other in the tube axis direction of 0.3 to 0.80 mm, and a bottom width of the second groove between the protrusions adjacent in the tube circumferential direction is 0. 0 mm. 10 to 0.30 mm,
The rib has a width of the bottom of the groove between the ribs adjacent to each other in the tube axis direction of 0.15 to 1.10 mm,
The supercooling double characterized in that a lead angle, which is an angle formed with respect to the tube axis direction of the rib, is 40 to 65 °, and a peak angle of the rib in the tube axis direction is 55 to 110 °. Heat transfer tube for tube heat exchanger.
前記リブの管軸方向の形成ピッチは、0.60乃至1.24mmであり、
前記リブの高さは、0.12乃至0.35mmであることを特徴とする請求項1に記載の過冷却二重管式熱交換器用伝熱管。
The formation pitch of the rib in the tube axis direction is 0.60 to 1.24 mm,
The heat transfer tube for a supercooled double-tube heat exchanger according to claim 1, wherein a height of the rib is 0.12 to 0.35 mm.
前記突起の高さは、0.18乃至0.50mmであり、
前記突起の管軸方向の形成ピッチは、0.65乃至1.15mmであり、
管周方向の前記突起間の第2溝の管周方向のピッチは、0.51乃至1.04mmであり、前記突起の管軸方向の山頂角は、4乃至65°であり、前記突起の管軸直角方向の山頂角は、25乃至75°であることを特徴とする請求項1又は2に記載の過冷却二重管式熱交換器用伝熱管。
The height of the protrusion is 0.18 to 0.50 mm,
The formation pitch of the projections in the tube axis direction is 0.65 to 1.15 mm,
The pitch in the tube circumferential direction of the second groove between the projections in the tube circumferential direction is 0.51 to 1.04 mm, and the peak angle in the tube axis direction of the projection is 4 to 65 °. The heat transfer tube for a supercooled double-tube heat exchanger according to claim 1 or 2, wherein a peak angle in a direction perpendicular to the tube axis is 25 to 75 °.
管軸方向の前記突起間の第1溝及び管周方向の前記突起間の第2溝の断面形状は、逆台形であることを特徴とする請求項1乃至3のいずれか1項に記載の過冷却二重管式熱交換器用伝熱管。 The cross-sectional shape of the 1st groove | channel between the said protrusions of a pipe-axis direction and the 2nd groove | channel between the said protrusions of a pipe | tube circumferential direction is an inverted trapezoid, The one of Claim 1 thru | or 3 characterized by the above-mentioned. Heat transfer tube for supercooled double tube heat exchanger.
JP2014119069A 2014-06-09 2014-06-09 Heat transfer tube for supercooled double tube heat exchanger Active JP6177195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119069A JP6177195B2 (en) 2014-06-09 2014-06-09 Heat transfer tube for supercooled double tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014119069A JP6177195B2 (en) 2014-06-09 2014-06-09 Heat transfer tube for supercooled double tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2015232415A JP2015232415A (en) 2015-12-24
JP6177195B2 true JP6177195B2 (en) 2017-08-09

Family

ID=54933963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119069A Active JP6177195B2 (en) 2014-06-09 2014-06-09 Heat transfer tube for supercooled double tube heat exchanger

Country Status (1)

Country Link
JP (1) JP6177195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059595A1 (en) * 2017-09-19 2019-03-28 삼성전자주식회사 Heat exchanger and air conditioner comprising same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3916114B2 (en) * 1998-03-31 2007-05-16 三洋電機株式会社 Absorption type refrigerator and heat transfer tube used therefor
JP3862584B2 (en) * 2002-03-28 2006-12-27 株式会社コベルコ マテリアル銅管 Heat transfer tube for falling film evaporator
JP2004301440A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Heat transfer pipe for falling liquid film type evaporator
JP2006090657A (en) * 2004-09-24 2006-04-06 Furukawa Electric Co Ltd:The Heat exchanger tube for heat exchanger, and its manufacturing method
JP4921410B2 (en) * 2007-03-31 2012-04-25 株式会社コベルコ マテリアル銅管 Copper alloy member and heat exchanger
JP5916330B2 (en) * 2011-10-04 2016-05-11 株式会社Uacj銅管 Heat exchanger tube for supercooler and supercooler using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059595A1 (en) * 2017-09-19 2019-03-28 삼성전자주식회사 Heat exchanger and air conditioner comprising same
US11125505B2 (en) 2017-09-19 2021-09-21 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner including the same

Also Published As

Publication number Publication date
JP2015232415A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP2020016339A (en) Radiator, condenser unit, and refrigeration cycle
JP2014224670A (en) Double-pipe heat exchanger
JP5435460B2 (en) Heat transfer tube
EP3244156B1 (en) Heat exchanger and refrigeration cycle apparatus having said heat exchanger
EP3191784B1 (en) Turbulators in enhanced tubes
JP6177195B2 (en) Heat transfer tube for supercooled double tube heat exchanger
JPWO2018154650A1 (en) Heat exchanger
JP6053693B2 (en) Air conditioner
JP5003968B2 (en) Heat exchanger tube for subcooler and method for manufacturing the same
JP5646257B2 (en) Refrigeration cycle equipment
JP2013134024A (en) Refrigeration cycle device
CN111556950A (en) Heat exchanger for refrigerator
JP6141514B2 (en) Refrigeration cycle equipment
CN103225934A (en) Condenser with variable-toothform internal-thread enhanced tube
JP5566001B2 (en) Internally grooved heat transfer tube for gas coolers using carbon dioxide refrigerant
JP2009162389A (en) Heat transfer tube and its manufacturing method
US10480872B2 (en) Turbulators in enhanced tubes
JP2015017762A (en) Double-tube type heat exchanger
JP4948136B2 (en) Heat transfer tube and radiator
JP2011058771A (en) Heat exchanger, and refrigerator and air conditioner including the heat exchanger
JP7012351B2 (en) Double tube heat exchanger
JP2010096453A (en) Heat-transfer tube for heat exchanger of heat pump type air conditioner
JP2006105525A (en) High pressure-side refrigerant radiator of supercritical refrigerating cycle
JP2014009852A (en) Fin tube heat exchanger
JPWO2020178965A1 (en) Heat exchanger and refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170711

R150 Certificate of patent or registration of utility model

Ref document number: 6177195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250