JP6665957B2 - Substrate processing equipment - Google Patents
Substrate processing equipment Download PDFInfo
- Publication number
- JP6665957B2 JP6665957B2 JP2019028051A JP2019028051A JP6665957B2 JP 6665957 B2 JP6665957 B2 JP 6665957B2 JP 2019028051 A JP2019028051 A JP 2019028051A JP 2019028051 A JP2019028051 A JP 2019028051A JP 6665957 B2 JP6665957 B2 JP 6665957B2
- Authority
- JP
- Japan
- Prior art keywords
- scale
- encoder
- substrate
- encoder head
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 209
- 238000012545 processing Methods 0.000 title claims description 129
- 238000005259 measurement Methods 0.000 claims description 66
- 238000012937 correction Methods 0.000 claims description 60
- 230000002093 peripheral effect Effects 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 32
- 230000032258 transport Effects 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 14
- 238000012546 transfer Methods 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 210000003128 head Anatomy 0.000 description 314
- 238000005286 illumination Methods 0.000 description 98
- 239000011295 pitch Substances 0.000 description 90
- 238000009434 installation Methods 0.000 description 57
- 230000003287 optical effect Effects 0.000 description 48
- 238000010586 diagram Methods 0.000 description 35
- LWJKSVUJZBEXCH-UHFFFAOYSA-N n-[5-[2-chloro-5-(trifluoromethyl)phenyl]pyrazin-2-yl]-2,6-difluorobenzamide Chemical compound FC1=CC=CC(F)=C1C(=O)NC1=CN=C(C=2C(=CC=C(C=2)C(F)(F)F)Cl)C=N1 LWJKSVUJZBEXCH-UHFFFAOYSA-N 0.000 description 26
- 238000001514 detection method Methods 0.000 description 25
- 230000007246 mechanism Effects 0.000 description 23
- 230000004048 modification Effects 0.000 description 20
- 238000012986 modification Methods 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000003384 imaging method Methods 0.000 description 15
- 238000003825 pressing Methods 0.000 description 12
- 239000000523 sample Substances 0.000 description 11
- 239000010408 film Substances 0.000 description 8
- 230000004907 flux Effects 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 8
- 230000010287 polarization Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000007261 regionalization Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/36—Forming the light into pulses
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/24—Curved surfaces
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Advancing Webs (AREA)
- Controlling Sheets Or Webs (AREA)
- Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
Description
本発明は、基板処理装置に関する。 The present invention relates to a substrate processing apparatus.
フォトリソグラフィ工程で用いられる露光装置において、下記特許文献に開示されているような、円筒状又は円柱状のマスクを用いて基板を露光する露光装置が知られている(例えば、特許文献1)。 2. Description of the Related Art As an exposure apparatus used in a photolithography process, there is known an exposure apparatus that exposes a substrate using a cylindrical or cylindrical mask as disclosed in the following Patent Document (for example, Patent Document 1).
板状のマスクを用いる場合のみならず、円筒状又は円柱状のマスクを用いて基板を露光する場合においても、マスクのパターンの像を基板に良好に投影露光するために、特許文献1には、円筒状のマスクにおけるパターン形成面の所定領域に、パターンに対して所定の位置関係で位置情報取得用のマーク(スケール、アライメントマーク等)を形成し、エンコーダシステムでスケールを検出することにより、パターン形成面の周方向(又は回転軸方向)におけるパターンの位置情報を取得する構成が記載されている。
Not only when using a plate-shaped mask, but also when exposing a substrate using a cylindrical or cylindrical mask, in order to properly project and expose the image of the mask pattern onto the substrate,
また、円筒状のマスクを用いて可撓性の長尺シート基板に連続的に露光するために、長尺のシート基板を送りローラに巻き付けて支持し、その送りローラに巻き付いたシート基板に円筒マスクを接近させ、送りローラと円筒マスクとを回転させることで、量産性の高いデバイス製造(露光処理)を可能とする露光装置も提案されている(例えば、特許文献2参照)。 Also, in order to continuously expose a flexible elongate sheet substrate using a cylindrical mask, the elongate sheet substrate is wrapped around a feed roller and supported, and the cylindrical sheet is wound around the feed roller. There is also proposed an exposure apparatus which enables high-productivity device manufacturing (exposure processing) by bringing a mask closer and rotating a feed roller and a cylindrical mask (for example, see Patent Document 2).
上述したような送りローラ等の円筒部材の曲面にある被処理物体(シート基板)に処理を施す処理装置では、円筒部材の周方向における位置を精度よく検出することが求められる。特許文献1のように、位置情報取得用のマーク(スケール)を円筒状のマスクの外周面に刻設する場合でも、スケールの目盛の製造誤差又は温度による伸縮等により、エンコーダ計測の結果に誤差が生じ、円筒部材の周方向における位置の検出精度が低下する可能性がある。
In a processing apparatus for processing an object to be processed (sheet substrate) on a curved surface of a cylindrical member such as a feed roller as described above, it is required to accurately detect the position of the cylindrical member in the circumferential direction. Even when a mark (scale) for acquiring position information is engraved on the outer peripheral surface of a cylindrical mask as in
本発明の態様は、円筒部材の周方向における位置を検出するにあたって、位置検出用の目盛に発生した誤差を補正することを目的とする。 An object of an aspect of the present invention is to correct an error generated on a position detection scale when detecting a position of a cylindrical member in a circumferential direction.
本発明の第1の態様に従えば、可撓性を有する長尺のシート基板を長尺方向に搬送して、前記シート基板に所定の処理を施す基板処理装置であって、中心線から一定半径で円筒状に湾曲した外周面で前記シート基板を支持すると共に、前記中心線の回りに回転して前記シート基板を長尺方向に搬送する回転ドラムと、前記シート基板の前記回転ドラムの外周面で支持された周方向の範囲内の特定位置で、前記シート基板に処理を施す処理部と、前記回転ドラムが回転する周方向に沿って環状に設けられ、前記回転ドラムと共に前記中心線の回りに回転して、前記シート基板の周方向における位置変化をエンコーダ計測する為のスケール目盛と、周方向の第1の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第1エンコーダヘッドと、前記第1の方位に対して周方向に角度θqだけ回転した第2の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第2エンコーダヘッドと、周方向に関して前記第1の方位と前記第2の方位との間であって、前記第2の方位に対して周方向に角度θsだけ回転した第3の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第3エンコーダヘッドと、前記第1エンコーダヘッドによる第1読み取り値をCm1、前記第2エンコーダヘッドによる第2読み取り値をCm4、前記第3エンコーダヘッドによる第3読み取り値をCm5としたとき、ΔMs=(Cm1+Cm4)/2−Cm5で算出される計測値ΔMsを、前記スケール目盛の一定角度αの回転毎に逐次記憶し、前記スケール目盛の全周に渡るピッチ誤差に関する誤差情報を記憶する記憶部と、を備える基板処理装置が提供される。 According to a first aspect of the present invention, there is provided a substrate processing apparatus for conveying a long sheet substrate having flexibility in a long direction and performing a predetermined process on the sheet substrate, wherein the sheet processing apparatus is fixed from a center line. A rotating drum that supports the sheet substrate on an outer peripheral surface curved in a cylindrical shape with a radius, and rotates around the center line to convey the sheet substrate in a longitudinal direction; and an outer periphery of the rotating drum of the sheet substrate. A processing unit that performs processing on the sheet substrate at a specific position within a circumferential direction supported by a surface, and a processing unit that is provided in an annular shape along the circumferential direction in which the rotating drum rotates, and the center line of the center line together with the rotating drum. Rotating around, a scale graduation for encoder-measuring a position change in the circumferential direction of the sheet substrate, and a scale azimuth arranged in a first azimuth in the circumferential direction so as to face the scale graduation, and reading the scale graduation A first encoder head, a second encoder head arranged in a second direction rotated in the circumferential direction by an angle θq with respect to the first direction so as to face the scale scale, and reading the scale scale; Is disposed between the first azimuth and the second azimuth with respect to the scale graduation in a third azimuth rotated by an angle θs in the circumferential direction with respect to the second azimuth. A third encoder head for reading the scale, a first reading value of the first encoder head as Cm1, a second reading value of the second encoder head as Cm4, and a third reading value of the third encoder head as Cm5. , The measured value ΔMs calculated by ΔMs = (Cm1 + Cm4) / 2−Cm5 is sequentially calculated every rotation of the scale graduation at a fixed angle α. Stored, a storage unit for storing the error information about the pitch error over the entire circumference of the scale graduation, a substrate processing apparatus including a is provided.
本発明の態様によれば、円筒部材の周方向における位置を検出するにあたって、位置検出用の目盛に発生した誤差を補正することができる。 According to the aspect of the invention, when detecting the position of the cylindrical member in the circumferential direction, it is possible to correct an error generated on the position detection scale.
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下に記載の実施形態により本発明が限定されるものではない。以下の実施形態では、1種類のデバイスを製造するための各種の処理を、基板に対して連続して施す、いわゆる、ロール・ツー・ロール(Roll to Roll)方式に用いる露光装置として説明する。また、以下においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。一例として、水平面内の所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向(すなわち鉛直方向)をZ軸方向とする。 An embodiment (embodiment) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the embodiments described below. In the following embodiments, a description will be given of an exposure apparatus used in a so-called roll-to-roll method in which various processes for manufacturing one type of device are continuously performed on a substrate. In the following, an XYZ rectangular coordinate system is set, and the positional relationship between the components will be described with reference to the XYZ rectangular coordinate system. As an example, a predetermined direction in the horizontal plane is an X-axis direction, a direction orthogonal to the X-axis direction in the horizontal plane is a Y-axis direction, and a direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction. And
図1は、実施形態に係る基板処理装置(露光装置)の全体構成を示す模式図である。図2は、図1における照明領域及び投影領域の配置を示す模式図である。図3は、図1の基板処理装置(露光装置)に適用される投影光学系の構成を示す模式図である。図1に示すように、基板処理装置11は、露光装置(処理部)EXと、シート基板の搬送装置(以下、適宜、搬送装置と称する)9とを含む。露光装置EXは、搬送装置9により基板P(シート、フィルム等)を供給されている。例えば、図示しない供給ロールから引き出された可撓性(フレキシブル)の長尺のシートの基板Pが、順次、前工程用の基板処理装置を経て、基板処理装置(露光装置)11で処理され、搬送装置9により後工程用の基板処理装置に送出された後に、回収ロールに巻き上げられるデバイス製造システムがある。このように、基板処理装置11は、デバイス製造システム(フレキシブル・ディスプレイの製造ライン)の一部として使用され得る。
FIG. 1 is a schematic diagram illustrating an overall configuration of a substrate processing apparatus (exposure apparatus) according to the embodiment. FIG. 2 is a schematic diagram showing the arrangement of the illumination area and the projection area in FIG. FIG. 3 is a schematic diagram showing a configuration of a projection optical system applied to the substrate processing apparatus (exposure apparatus) of FIG. As shown in FIG. 1, the
基板処理装置11としての露光装置EXは、いわゆる走査露光装置であり、円筒マスクDMの回転と可撓性の基板Pの送りとを同期して駆動させつつ、円筒マスクDMに形成されているパターンの像を、投影倍率が等倍(×1)の投影光学系PL(PL1〜PL6)を介して基板Pに投影する。なお、図1に示す露光装置EXは、XYZ直交座標系のY軸を、円筒マスクDMを構成する第1ドラム部材21の回転中心線AX1と平行に設定している。同様に、基板Pの長尺方向の一部を円筒状に指示する円筒部材としての第2ドラム部材22の回転中心線AX2は、XYZ直交座標系のY軸と平行に設定されている。
The exposure apparatus EX serving as the
図1に示すように、露光装置EXは、マスク保持装置12、照明機構IU、投影光学系PL及び制御装置14を備える。露光装置EXは、マスク保持装置12に保持された円筒マスクDMを回転移動(旋回移動)させるとともに、搬送装置9によって基板Pを搬送する。照明機構IUとともにマスク保持装置12に保持された円筒マスクDMの一部(照明領域IR)を、照明光束EL1によって均一な明るさで照明する。投影光学系PLは、円筒マスクDM上の照明領域IRにおけるパターンの像を、搬送装置9によって搬送されている基板Pの一部(投影領域PA)に投影する。円筒マスクDMの移動に伴って、照明領域IRに配置される円筒マスクDM上の部位が変化する。また基板Pの移動に伴って、投影領域PAに配置される基板P上の部位が変化する。このようにすることで、円筒マスクDMの表面に形成された所定のパターン(マスクパターン)の像が、投影光学系PL(PL1〜PL6)を介して基板Pの円筒状の表面に投影される。制御装置14は、露光装置EXの各部を制御し、各部に処理を実行させる。また、本実施形態において、制御装置14は、搬送装置9を制御する。
As shown in FIG. 1, the exposure apparatus EX includes a
制御装置14は、上述したデバイス製造システムの複数の基板処理装置を統括して制御する上位制御装置の一部又は全部であってもよい。また、制御装置14は、上位制御装置に制御され、かつ上位制御装置とは別の装置であってもよい。制御装置14は、例えば、コンピュータシステムを含む。コンピュータシステムは、例えば、CPU(Central Processing Unit)、各種メモリーやOS(Operating System)及び周辺機器等のハードウェアを含む。基板処理装置11の各部の動作シーケンス及びパラメータ等は、コンピュータプログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータシステムが読み出して実行することによって、各種処理が行われる。
The
コンピュータシステムは、インターネット又はイントラネットシステムに接続可能な場合、ホームページ提供環境(あるいは表示環境)も含む。また、コンピュータ読み取り可能な記録媒体は、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体及びコンピュータシステムに内蔵されるハードディスク等の記憶装置を含む。コンピュータ読み取り可能な記録媒体は、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にコンピュータプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリーのように、一定時間プログラムを保持しているものも含む。また、コンピュータプログラムは、基板処理装置11の機能の一部を実現するためのものでもよく、基板処理装置11の機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものでもよい。上位制御装置は、制御装置14と同様に、コンピュータシステムを利用して実現することができる。
The computer system also includes a homepage providing environment (or display environment) if it can be connected to the Internet or an intranet system. The computer-readable recording medium includes a portable medium such as a flexible disk, a magneto-optical disk, a ROM, and a CD-ROM, and a storage device such as a hard disk built in the computer system. The computer-readable recording medium dynamically holds the computer program for a short time, such as a communication line for transmitting the program through a network such as the Internet or a communication line such as a telephone line. In this case, a program that holds a program for a certain period of time, such as a volatile memory in a computer system serving as a server or a client, is also included. Further, the computer program may be for realizing a part of the function of the
図1に示すように、マスク保持装置12は、円筒マスクDMを保持する第1ドラム部材21、第1ドラム部材21を支持するガイドローラ23、制御装置14の制御指令により第1駆動部26が第1ドラム部材21を駆動する駆動ローラ24及び第1ドラム部材21の位置を検出する第1検出器25を備える。
As shown in FIG. 1, the
第1ドラム部材21は、所定の軸となる回転中心線AX1(以下、適宜第1中心軸AX1ともいう)から一定の半径で湾曲した曲面を有する円筒部材であって、回転中心線AX1の周りを回転する。第1ドラム部材21は、円筒マスクDMの照明領域IRが配置される第1面P1を有し、その第1面P1は、線分(母線)を、この線分に平行な第1中心軸AX1周りに回転して形成される円筒面である。円筒面は、例えば、円筒の外周面又は円柱の外周面等である。第1ドラム部材21は、例えばガラス又は石英等で製造され、一定の肉厚を有する円筒状であり、その外周面(円筒面)が第1面P1となる。すなわち、本実施形態において、円筒マスクDMの照明領域IRは、回転中心線AX1から一定の半径r1を持つ円筒面状に湾曲している。このように、第1ドラム部材21は、回転中心線AX1から一定半径で湾曲した曲面(所定曲率の円筒面)を有している。
The
円筒マスクDMは、例えば平坦性が高い短冊状の極薄ガラス板(例えば厚さ100μm〜500μm)の一方の面に、クロム等の遮光層でパターンを形成した透過型の平面状シートマスクとして作成される。マスク保持装置12は、極薄ガラス板による円筒マスクDMを第1ドラム部材21の外周面の曲面に倣って湾曲させ、この曲面に巻き付けた(貼り付けた)状態で使用される。円筒マスクDMは、パターンが形成されていないパターン非形成領域を有し、パターン非形成領域が第1ドラム部材21に取り付けられている。円筒マスクDMは、第1ドラム部材21に対して取り付け及び取り外しが可能である。
The cylindrical mask DM is formed, for example, as a transmission-type planar sheet mask in which a pattern is formed on one surface of a strip-shaped ultra-thin glass plate (for example, having a thickness of 100 μm to 500 μm) having a high flatness with a light shielding layer such as chrome. Is done. The
なお、円筒マスクDMを極薄ガラス板で構成し、その円筒マスクDMを透明円筒母材による第1ドラム部材21に巻き付ける代わりに、第1ドラム部材21を、石英等の透明円筒母材で製造し、その外周面に直接クロム等の遮光層によるマスクパターンを描画形成してもよい。この場合も、第1ドラム部材21が円筒マスクDMのパターンの支持部材として機能する。
Note that, instead of forming the cylindrical mask DM from an extremely thin glass plate and winding the cylindrical mask DM around the
第1検出器25は、第1ドラム部材21の回転位置を光学的に検出するもので、例えばロータリーエンコーダ等で構成される。エンコーダはアブソリュート形式であってもインクリメント形式であってもよい。第1検出器25は、検出した第1ドラム部材21の回転位置を示す情報、例えば、後述するエンコーダヘッドからの2相信号等を制御装置14に出力する。電動モーター等のアクチュエータを含む第1駆動部26は、制御装置14から入力される制御信号に従って、駆動ローラ24を回転させるためのトルク及び回転速度を調整する。制御装置14は、第1検出器25による検出結果に基づいて第1駆動部26を制御することによって、第1ドラム部材21の回転位置を制御する。そして、制御装置14は、第1ドラム部材21に保持されている円筒マスクDMの回転位置と回転速度の一方又は双方を制御する。
The
搬送装置9は、駆動ローラDR4、第1ガイド部材31、基板Pの投影領域PAが配置される第2面P2を形成する第2ドラム部材22、第2ガイド部材33、駆動ローラDR4、DR5、第2検出器35及び第2駆動部36を備える。
The transport device 9 includes a driving roller DR4, a
本実施形態において、基板Pの搬送経路の上流、すなわち、基板Pの搬送(移動)方向とは反対側から駆動ローラDR4へ搬送されてきた基板Pは、駆動ローラDR4を経由して第1ガイド部材31へ搬送される。第1ガイド部材31を経由した基板Pは、半径r2の円筒状又は円柱状の第2ドラム部材22の表面に支持されて、第2ガイド部材33へ搬送される。第2ガイド部材33を経由した基板Pは、搬送経路の下流へ搬送される。なお、第2ドラム部材22の回転中心線AX2と、駆動ローラDR4、DR5の各回転中心線とは、いずれもY軸と平行になるように設定される。
In the present embodiment, the substrate P transported to the drive roller DR4 from the upstream side of the transport path of the substrate P, that is, from the side opposite to the transport (movement) direction of the substrate P, passes through the first guide via the drive roller DR4. It is transported to the
第1ガイド部材31及び第2ガイド部材33は、例えば、基板Pの搬送方向に移動することによって、搬送経路において基板Pに働く搬送方向のテンション等を調整する。また、第1ガイド部材31(及び駆動ローラDR4)と第2ガイド部材33(及び駆動ローラDR5)とは、例えば、基板Pの幅方向(基板Pの搬送方向と直交する方向であり、Y方向)に移動可能とすることによって、第2ドラム部材22の外周に巻き付く基板PのY方向の位置等を調整することができる。なお、搬送装置9は、投影光学系PLの投影領域PAに沿って基板Pを搬送可能であればよく、搬送装置9の構成は適宜変更することができる。
The
第2ドラム部材22は、所定の軸となる回転中心線AX2(以下、適宜第2中心軸AX2ともいう)から一定の半径で湾曲した曲面(所定曲率の円筒面)を有する円筒部材であって、第2中心軸AX2の周りを回転する回転ドラムである。第2ドラム部材22は、第2面(支持面)P2を形成する。第2面P2は、投影光学系PLからの結像光束が投射される基板Pの一部分であって、投影領域PAを含む部分を円弧状(円筒状)に支持する。本実施形態において、第2ドラム部材22は、搬送装置9の一部であるとともに、露光対象の基板Pを支持する支持部材(基板ステージ)を兼ねている。すなわち、第2ドラム部材22は、露光装置EXの一部であってもよい。このように、第2ドラム部材22は、その回転中心線AX2(第2中心軸AX2)の周りに回転可能であり、基板Pは、第2ドラム部材22上の外周面(円筒面)に倣って円筒面状に湾曲し、湾曲した基板Pの一部に投影領域PAが配置される。このため、基板Pは、半径r2の円筒面のうちの投影領域PAを含む周面部分では旋回移動することになる。
The
本実施形態において、第2ドラム部材22は、電動モーター等のアクチュエータを含む第2駆動部36から供給されるトルクによって回転する。第2検出器35は、例えばロータリーエンコーダ等で構成され、第2ドラム部材22の回転位置を光学的に検出する。第2検出器35は、検出した第2ドラム部材22の回転位置を示す情報(例えば、後述するエンコーダヘッドEN1、EN2、EN3、EN4、EN5からの2相信号等)を制御装置14に出力する。第2駆動部36は、制御装置14から供給される制御信号に従って、第2ドラム部材22を回転させるトルク及び回転速度を調整する。制御装置14は、第2検出器35による検出結果に基づいて第2駆動部36を制御することによって、第2ドラム部材22の回転位置を制御し、第1ドラム部材21(円筒マスクDM)と第2ドラム部材22とを同期移動(同期回転)させる。なお、第2検出器35の詳細については後述する。
In the present embodiment, the
露光装置EXは、いわゆるマルチレンズ方式の投影光学系PLを搭載することを想定した露光装置である。投影光学系PLは、円筒マスクDMのパターンにおける一部の像を投影する複数の投影モジュールを備える。例えば、図1では、円筒マスクDMの回転中心線AX1と第2ドラム部材22の第2中心軸AX2とを含み、YZ平面と平行な中心面P3に対して左側(基板Pの搬送方向とは反対側)に3台の投影モジュール(投影光学系)PL1、PL3、PL5がY方向に一定間隔で配置され、中心面P3の右側(基板Pの搬送方向側)にも3つの投影モジュール(投影光学系)PL2、PL4、PL6がY方向に一定間隔で配置される。
The exposure apparatus EX is an exposure apparatus on the assumption that a projection optical system PL of a so-called multi-lens system is mounted. The projection optical system PL includes a plurality of projection modules that project a part of an image in the pattern of the cylindrical mask DM. For example, in FIG. 1, the rotation center line AX1 of the cylindrical mask DM and the second center axis AX2 of the
このようなマルチレンズ方式の露光装置EXでは、複数の投影モジュールPL1〜PL6によって露光された領域(投影領域PA1〜PA6)のY方向における端部を走査によって互いに重ね合わせることによって、所望のパターンの全体像を投影する。このような露光装置EXは、円筒マスクDM上のパターンのY方向における寸法が大きくなり、必然的にY方向の幅が大きな基板Pを扱う必要性が生じた場合でも、投影モジュールPLと、投影モジュールPLに対応する照明機構IU側のモジュールとをY方向に増設するだけでよいので、容易に表示パネルサイズ(基板Pの幅)の大型化に対応できるという利点がある。 In such a multi-lens type exposure apparatus EX, the ends in the Y direction of the areas (projection areas PA1 to PA6) exposed by the plurality of projection modules PL1 to PL6 are overlapped with each other by scanning, so that a desired pattern is formed. Project the whole image. In such an exposure apparatus EX, even when the size of the pattern on the cylindrical mask DM in the Y direction becomes large and the necessity of handling a substrate P having a large width in the Y direction arises, the projection module PL and the projection module PL Since it is only necessary to add a module on the illumination mechanism IU side corresponding to the module PL in the Y direction, there is an advantage that the display panel size (width of the substrate P) can be easily increased.
なお、露光装置EXは、マルチレンズ方式でなくてもよい。例えば、基板Pの幅方向の寸法がある程度小さい場合等に、露光装置EXは、1台の投影モジュールによってパターンの全幅の像を基板Pに投影してもよい。また、複数の投影モジュールPL1〜PL6は、それぞれ、1個のデバイスに対応するパターンを投影してもよい。すなわち、露光装置EXは、複数個のデバイス用のパターンを、複数の投影モジュールによって並行して投影してもよい。 Note that the exposure apparatus EX need not be a multi-lens type. For example, when the dimension of the substrate P in the width direction is small to some extent, the exposure apparatus EX may project an image of the entire width of the pattern onto the substrate P by one projection module. Further, each of the plurality of projection modules PL1 to PL6 may project a pattern corresponding to one device. That is, the exposure apparatus EX may project the patterns for a plurality of devices in parallel by the plurality of projection modules.
照明機構IUは、光源装置13及び照明光学系を備える。照明光学系は、複数の投影モジュールPL1〜PL6の各々に対応してY軸方向に並んだ複数(例えば6つ)の照明モジュールILを備える。光源装置13は、例えば水銀ランプ等のランプ光源、レーザーダイオード、発光ダイオード(LED)等の固体光源又は気体レーザ光源を含む。光源装置が射出する照明光は、例えばランプ光源から射出される輝線(g線、h線、i線)、KrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)、ArFエキシマレーザ光(波長193nm)等である。光源装置13から射出された照明光は、照度分布が均一化されて、例えば光ファイバー等の導光部材を介して、複数の照明モジュールILに振り分けられる。
The illumination mechanism IU includes a
複数の照明モジュールILのそれぞれは、レンズ等の複数の光学部材を含む。本実施形態において、光源装置13から出射して複数の照明モジュールILのいずれかを通る光を照明光束EL1と称する。複数の照明モジュールILのそれぞれは、例えばインテグレータ光学系、ロッドレンズ、フライアイレンズ等を含み、均一な照度分布の照明光束EL1によって照明領域IRを照明する。本実施形態において、複数の照明モジュールILは、円筒マスクDMの内側に配置されている。複数の照明モジュールILのそれぞれは、円筒マスクDMの内側から円筒マスクDMの外周面に形成されたマスクパターンの各照明領域IRを照明する。
Each of the plurality of illumination modules IL includes a plurality of optical members such as lenses. In the present embodiment, light emitted from the
図2は、本実施形態における照明領域IR及び投影領域PAの配置を示す図である。なお、図2には、第1ドラム部材21に配置された円筒マスクDM上の照明領域IRを−Z側から見た平面図(図2中の左側の図)と、第2ドラム部材22に配置された基板P上の投影領域PAを+Z側から見た平面図(図2中の右側の図)とが図示されている。図2中の符号Xsは、第1ドラム部材21(円筒マスクDM)又は第2ドラム部材22の回転方向(移動方向)を示す。
FIG. 2 is a diagram showing the arrangement of the illumination area IR and the projection area PA in the present embodiment. FIG. 2 is a plan view of the illumination area IR on the cylindrical mask DM arranged on the
複数の照明モジュールILは、それぞれ、円筒マスクDM上の第1から第6照明領域IR1〜IR6を照明する。例えば、第1照明モジュールILは、第1照明領域IR1を照明し、第2照明モジュールILは第2照明領域IR2を照明する。 The plurality of illumination modules IL respectively illuminate the first to sixth illumination regions IR1 to IR6 on the cylindrical mask DM. For example, the first illumination module IL illuminates a first illumination region IR1, and the second illumination module IL illuminates a second illumination region IR2.
第1照明領域IR1は、Y方向に細長い台形状の領域として説明するが、投影光学系(投影モジュール)PLのように、中間像面を形成する投影光学系の場合は、その中間像の位置に台形開口を有する視野絞り板を配置できる。このため、第1照明領域IR1は、その台形開口を包含する長方形の領域としてもよい。第3照明領域IR3及び第5照明領域IR5は、それぞれ、第1照明領域IR1と同様の形状の領域であり、Y軸方向に一定間隔を空けて配置されている。また、第2照明領域IR2は、中心面P3に関して第1照明領域IR1と対称的な台形状(又は長方形)の領域である。第4照明領域IR4及び第6照明領域IR6は、それぞれ、第2照明領域IR2と同様の形状の領域であり、Y軸方向に一定間隔を空けて配置されている。 The first illumination region IR1 is described as a trapezoidal region elongated in the Y direction. However, in the case of a projection optical system that forms an intermediate image plane, such as a projection optical system (projection module) PL, the position of the intermediate image is set. A field stop plate having a trapezoidal opening can be arranged. Therefore, the first illumination region IR1 may be a rectangular region including the trapezoidal opening. The third illumination region IR3 and the fifth illumination region IR5 are each a region having the same shape as the first illumination region IR1, and are arranged at regular intervals in the Y-axis direction. The second illumination region IR2 is a trapezoidal (or rectangular) region symmetrical to the first illumination region IR1 with respect to the center plane P3. The fourth illumination region IR4 and the sixth illumination region IR6 are each a region having the same shape as the second illumination region IR2, and are arranged at regular intervals in the Y-axis direction.
図2に示すように、第1から第6照明領域IR1〜IR6のそれぞれは、第1面P1の周方向に沿って見た場合に、Y軸方向に隣り合う台形状の照明領域の斜辺部の三角部が重なるように(オーバーラップするように)配置されている。そのため、例えば、第1ドラム部材21の回転によって第1照明領域IR1を通過する円筒マスクDM上の第1領域A1は、第1ドラム部材21の回転によって第2照明領域IR2を通過する円筒マスクDM上の第2領域A2と一部重複する。
As shown in FIG. 2, each of the first to sixth illumination regions IR1 to IR6 is a hypotenuse portion of a trapezoidal illumination region adjacent in the Y-axis direction when viewed along the circumferential direction of the first surface P1. Are arranged so that the triangular portions overlap (overlap). Therefore, for example, the first area A1 on the cylindrical mask DM that passes through the first illumination area IR1 due to the rotation of the
本実施形態において、円筒マスクDMは、パターンが形成されているパターン形成領域A3と、パターンが形成されていないパターン非形成領域A4とを含む。パターン非形成領域A4は、パターン形成領域A3を枠状に囲むように配置されており、照明光束EL1を遮光する特性を有する。円筒マスクDMのパターン形成領域A3は、第1ドラム部材21の回転にともなって移動方向Xsに移動し、パターン形成領域A3のうちのY軸方向における各部分領域は、第1から第6照明領域IR1〜IR6のいずれかを通過する。すなわち、第1〜第6照明領域IR1〜IR6は、パターン形成領域A3のY軸方向の全幅をカバーするように配置されている。
In the present embodiment, the cylindrical mask DM includes a pattern formation region A3 where a pattern is formed, and a pattern non-formation region A4 where a pattern is not formed. The pattern non-formation area A4 is arranged so as to surround the pattern formation area A3 in a frame shape, and has a characteristic of shielding the illumination light beam EL1. The pattern formation area A3 of the cylindrical mask DM moves in the movement direction Xs with the rotation of the
図1に示すように、Y軸方向に並ぶ複数の投影モジュールPL1〜PL6のそれぞれは、第1〜第6照明モジュールILのそれぞれと1対1で対応しており、対応する照明モジュールILによって照明される照明領域IR内に現れる円筒マスクDMの部分的なパターンの像を、基板P上の各投影領域PAに投影する。例えば、第1投影モジュールPL1は、第1照明モジュールILに対応し、第1照明モジュールILによって照明される第1照明領域IR1(図2参照)における円筒マスクDMのパターンの像を、基板P上の第1投影領域PA1に投影する。第3投影モジュールPL3、第5投影モジュールPL5は、それぞれ、第3〜第5照明モジュールILと対応している。第3投影モジュールPL3及び第5投影モジュールPL5は、Y軸方向から見ると、第1投影モジュールPL1と重なる位置に配置されている。 As shown in FIG. 1, each of the plurality of projection modules PL1 to PL6 arranged in the Y-axis direction has a one-to-one correspondence with each of the first to sixth lighting modules IL, and is illuminated by the corresponding lighting module IL. An image of a partial pattern of the cylindrical mask DM appearing in the illumination area IR to be projected is projected onto each projection area PA on the substrate P. For example, the first projection module PL1 corresponds to the first illumination module IL, and transfers the image of the pattern of the cylindrical mask DM in the first illumination region IR1 (see FIG. 2) illuminated by the first illumination module IL onto the substrate P. To the first projection area PA1. The third projection module PL3 and the fifth projection module PL5 correspond to the third to fifth illumination modules IL, respectively. The third projection module PL3 and the fifth projection module PL5 are arranged at positions overlapping the first projection module PL1 when viewed from the Y-axis direction.
また、第2投影モジュールPL2は、第2照明モジュールILに対応し、第2照明モジュールILによって照明される第2照明領域IR2(図2参照)における円筒マスクDMのパターンの像を、基板P上の第2投影領域PA2に投影する。第2投影モジュールPL2は、Y軸方向から見ると、第1投影モジュールPL1に対して中心面P3を挟んで対称的な位置に配置されている。 The second projection module PL2 corresponds to the second illumination module IL, and transfers the image of the pattern of the cylindrical mask DM in the second illumination region IR2 (see FIG. 2) illuminated by the second illumination module IL onto the substrate P. To the second projection area PA2. The second projection module PL2 is disposed at a symmetrical position with respect to the first projection module PL1 with respect to the center plane P3 when viewed from the Y-axis direction.
第4投影モジュールPL4、第6投影モジュールPL6は、それぞれ、第4、第6照明モジュールILと対応して配置され、第4投影モジュールPL4及び第6投影モジュールPL6は、Y軸方向から見て、第2投影モジュールPL2と重なる位置に配置されている。このような配置により、奇数番の第1投影領域PA1、第3投影領域PA3及び第5投影領域PA5は、中心面P3から−X方向に一定量ずれて、Y軸方向に一列に並んで配置される。偶数番の第2投影領域PA2、第4投影領域PA4及び第6投影領域PA6は、中心面P3から+X方向に一定量ずれて、Y軸方向に一列に並んで配置される。 The fourth projection module PL4 and the sixth projection module PL6 are arranged corresponding to the fourth and sixth illumination modules IL, respectively. The fourth projection module PL4 and the sixth projection module PL6 are viewed from the Y-axis direction. It is arranged at a position overlapping with the second projection module PL2. With such an arrangement, the odd-numbered first projection area PA1, third projection area PA3, and fifth projection area PA5 are displaced from the center plane P3 by a fixed amount in the −X direction and arranged in a line in the Y-axis direction. Is done. The even-numbered second projection area PA2, fourth projection area PA4, and sixth projection area PA6 are arranged in a line in the Y-axis direction while being shifted from the center plane P3 by a certain amount in the + X direction.
本実施形態において、照明機構IUの各照明モジュールILから円筒マスクDM上の各照明領域IR1〜IR6に達する光を照明光束EL1とする。また、各照明領域IR1〜IR6中に現れる円筒マスクDMのパターンに応じた強度分布変調を受けて各投影モジュールPL1〜PL6に入射して各投影領域PA1〜PA6に達する光を、結像光束EL2とする。そして、各投影領域PA1〜PA6に達する結像光束EL2のうち、投影領域PA1〜PA6の各中心点を通る主光線は、図1に示すように、第2ドラム部材22の第2中心軸AX2から見て、中心面P3を挟んで周方向で角度θの位置(特定位置)にそれぞれ配置される。
In this embodiment, light reaching each of the illumination regions IR1 to IR6 on the cylindrical mask DM from each of the illumination modules IL of the illumination mechanism IU is defined as an illumination light beam EL1. Further, the light that has been subjected to intensity distribution modulation according to the pattern of the cylindrical mask DM appearing in each of the illumination regions IR1 to IR6, is incident on each of the projection modules PL1 to PL6, and reaches each of the projection regions PA1 to PA6 is formed into an imaging light flux EL2. And Then, of the imaging light flux EL2 reaching each of the projection areas PA1 to PA6, the principal ray passing through each central point of the projection areas PA1 to PA6 is, as shown in FIG. 1, the second central axis AX2 of the
第1から第6投影領域PA1〜PA6のそれぞれは、第2中心軸AX2に平行な方向において隣り合う投影領域(奇数番目と偶数番目)同士の端部(台形の三角部分)が、第2面P2の周方向において重なるように配置されている。そのため、例えば、第2ドラム部材22の回転によって第1投影領域PA1を通過する基板P上の第3領域A5は、第2ドラム部材22の回転によって第2投影領域PA2を通過する基板P上の第4領域A6と一部重複する。第1投影領域PA1と第2投影領域PA2は、第3領域A5と第4領域A6が重複する領域での露光量が、重複しない領域の露光量と実質的に同一となるように、それぞれの形状等が設定されている。
In each of the first to sixth projection areas PA1 to PA6, an end (trapezoidal triangular portion) between projection areas (odd and even) adjacent to each other in a direction parallel to the second central axis AX2 is the second surface. They are arranged so as to overlap in the circumferential direction of P2. Therefore, for example, the third area A5 on the substrate P passing through the first projection area PA1 due to the rotation of the
次に、本実施形態の投影光学系PLの詳細構成について図3を参照して説明する。なお、本実施形態において、第2投影モジュールPL2〜第5投影モジュールPL5のそれぞれは、第1投影モジュールPL1と同様の構成である。このため、投影光学系PLを代表して、第1投影モジュールPL1の構成について説明し、第2投影モジュールPL2〜第5投影モジュールPL5のそれぞれの説明は省略する。 Next, a detailed configuration of the projection optical system PL of the present embodiment will be described with reference to FIG. In the present embodiment, each of the second to fifth projection modules PL2 to PL5 has the same configuration as the first projection module PL1. Therefore, the configuration of the first projection module PL1 will be described as a representative of the projection optical system PL, and description of each of the second projection module PL2 to the fifth projection module PL5 will be omitted.
図3に示す第1投影モジュールPL1は、第1照明領域IR1に配置された円筒マスクDMのパターンの像を中間像面P7に結像する第1光学系41と、第1光学系41が形成した中間像の少なくとも一部を基板Pの第1投影領域PA1に再結像する第2光学系42と、中間像が形成される中間像面P7に配置された第1視野絞り43とを備える。
The first projection module PL1 shown in FIG. 3 includes a first
また、第1投影モジュールPL1は、フォーカス補正光学部材44、像シフト補正光学部材45、ローテーション補正機構46及び倍率補正用光学部材47を備えている。フォーカス補正光学部材44は、基板P上に形成されるマスクのパターン像(以下、投影像という)のフォーカス状態を微調整するフォーカス調整装置である。また、像シフト補正光学部材45は、投影像を像面内で微少に横シフトさせるシフト調整装置である。倍率補正用光学部材47は、投影像の倍率を微少補正するシフト調整装置である。ローテーション補正機構46は、投影像を像面内で微少回転させるシフト調整装置である。
Further, the first projection module PL1 includes a focus correction
円筒マスクDMのパターンからの結像光束EL2は、第1照明領域IR1から法線方向(D1)に出射し、フォーカス補正光学部材44を通って像シフト補正光学部材45に入射する。像シフト補正光学部材45を透過した結像光束EL2は、第1光学系41の要素である第1偏向部材50の第1反射面(平面鏡)p4で反射され、第1レンズ群51を通って瞳位置に配置される第1凹面鏡52で反射され、再び第1レンズ群51を通って第1偏向部材50の第2反射面(平面鏡)p5で反射されて、第1視野絞り43に入射する。第1視野絞り43を通った結像光束EL2は、第2光学系42の要素である第2偏向部材57の第3反射面(平面鏡)p8で反射され、第2レンズ群58を通って瞳位置に配置される第2凹面鏡59で反射され、再び第2レンズ群58を通って第2偏向部材57の第4反射面(平面鏡)p9で反射されて、倍率補正用光学部材47に入射する。倍率補正用光学部材47から出射した結像光束EL2は、基板P上の第1投影領域PA1に入射し、第1照明領域IR1内に現れるパターンの像が第1投影領域PA1に等倍(×1)で投影される。
The imaging light flux EL2 from the pattern of the cylindrical mask DM exits from the first illumination region IR1 in the normal direction (D1), passes through the focus correction
図1に示す円筒マスクDMの半径をr1とし、第2ドラム部材22に巻き付いた基板Pの円筒状の表面における半径をr2として、半径r1と半径r2とを等しくした場合、各投影モジュールPL1〜PL6のマスク側における結像光束EL2の主光線は、円筒マスクDMの中心軸AX1を通るように傾けられる。その傾き角は、基板P側における結像光束EL2の主光線の傾き角度θ(中心面P3に対して±θ)と同じになる。
When the radius of the cylindrical mask DM shown in FIG. 1 is r1 and the radius of the cylindrical surface of the substrate P wound around the
上述した傾き角度θを与えるため、図3に示した、光軸AX3に対する第1偏向部材50の第1反射面p4の角度θ1を45°よりもΔθ1だけ小さくし、光軸AX4に対する第2偏向部材57の第4反射面p9の角度θ4を45°よりもΔθ4だけ小さくする。Δθ1とΔθ4とは、図1中に示した角度θに対して、Δθ1=Δθ4=θ/2の関係に設定される。
In order to provide the above-described tilt angle θ, the angle θ1 of the first reflecting surface p4 of the
図4は、図1の基板処理装置(露光装置)に適用される第2ドラム部材22(回転ドラム)の斜視図である。図5は、図1の基板処理装置(露光装置)に適用される検出プローブと読み取り装置との関係を説明するための斜視図である。図6は、実施形態に係るエンコーダスケール円盤と読み取り装置との位置を、回転中心線AX2と直交するXZ面内で見た説明図である。なお、図4においては、便宜上、第2から第4投影領域PA2〜PA4のみを図示し、第1、第5、第6投影領域PA1、PA5、PA6の図示を省略している。 FIG. 4 is a perspective view of the second drum member 22 (rotary drum) applied to the substrate processing apparatus (exposure apparatus) of FIG. FIG. 5 is a perspective view for explaining the relationship between a detection probe applied to the substrate processing apparatus (exposure apparatus) of FIG. 1 and a reading apparatus. FIG. 6 is an explanatory diagram illustrating the positions of the encoder scale disk and the reading device according to the embodiment in an XZ plane orthogonal to the rotation center line AX2. In FIG. 4, for convenience, only the second to fourth projection areas PA2 to PA4 are shown, and the first, fifth, and sixth projection areas PA1, PA5, and PA6 are not shown.
図1に示す第2検出器35は、第2ドラム部材22の位置(より具体的には回転位置)を光学的に検出するものであって、図4から図6に示すようにスケール部材としての高真円度のエンコーダスケール円盤(円盤)SDと、読み取り部としてのエンコーダヘッドEN1、EN2、EN3、EN4、EN5を含む。
The
エンコーダスケール円盤SDは、第2ドラム部材22の回転軸STと直交する第2ドラム部材22の一方の端部に固定されている。このため、エンコーダスケール円盤SDは、回転中心線AX2周りに回転軸STとともに一体的に回転する。エンコーダスケール円盤SDは、第2ドラム部材22の両方の端部に固定されていてもよい。すなわち、エンコーダスケール円盤SDは、第2ドラム部材22の少なくとも一方の端部に固定されていればよい。
The encoder scale disk SD is fixed to one end of the
エンコーダスケール円盤SDの外周面には、第2ドラム部材22(円筒部材)の周方向における位置又は位置変化量を検出するための位置検出用の目盛としてのスケール(刻線)GPが複数刻設されている。以下において、スケールGPを、適宜、目盛GPと称する。エンコーダスケール円盤SDの、スケールGPが刻設されている部分は、スケール部である。複数の目盛GPは、第2ドラム部材22が回転する方向に沿って、例えば20μmピッチの格子線が環状に配列され、かつ第2ドラム部材22とともに回転軸ST(第2中心軸AX2)の周囲を回転する。
On the outer peripheral surface of the encoder scale disk SD, a plurality of scales (marked lines) GP are provided as scales for position detection for detecting the circumferential position of the second drum member 22 (cylindrical member) or the amount of position change. Have been. Hereinafter, the scale GP is appropriately referred to as a scale GP. The portion of the encoder scale disk SD where the scale GP is engraved is a scale portion. The plurality of graduations GP are arranged along a direction in which the
エンコーダヘッドEN1、EN2、EN3、EN4、EN5は、回転軸ST(第2回転中心線AX2)から見て目盛GPの周囲に、目盛GPと一定のギャップで対向して配置される。各エンコーダヘッドEN1〜EN5は、目盛GPに計測ビームを投射し、目盛GPで反射したビーム(回折光)を光電検出する非接触式のセンサーである。また、各エンコーダヘッドEN1〜EN5は、第2ドラム部材22の回転軸ST(第2回転中心線AX2)から見ると、スケール円盤SDの周方向において、互いに異なる方位(角度位置)に配置されている。
The encoder heads EN1, EN2, EN3, EN4, and EN5 are arranged around the scale GP as viewed from the rotation axis ST (second rotation center line AX2), facing the scale GP with a constant gap. Each of the encoder heads EN1 to EN5 is a non-contact sensor that projects a measurement beam on the scale GP and photoelectrically detects a beam (diffracted light) reflected on the scale GP. The encoder heads EN1 to EN5 are arranged in different directions (angular positions) in the circumferential direction of the scale disk SD when viewed from the rotation axis ST (second rotation center line AX2) of the
各エンコーダヘッドEN1〜EN5は、目盛GPの接線方向(XZ面内)における変位の変動に対して計測感度(検出感度)を有する読み取り装置である。図4に示すように、各エンコーダヘッドEN1〜EN5の設置方位(回転中心線AX2を中心としたXZ面内での角度方向)を設置方位線Le1、Le2、Le3、Le4、Le5で表す場合、図6に示すように、設置方位線Le1、Le2が、中心面P3に対して角度±θ°になるように、エンコーダヘッドEN1、EN2が配置される。なお、本実施形態では、一例として角度θは15°とするが、これに限定されるものではない。 Each of the encoder heads EN1 to EN5 is a reading device having a measurement sensitivity (detection sensitivity) with respect to a change in displacement in a tangential direction (in the XZ plane) of the scale GP. As shown in FIG. 4, when the installation orientations of the encoder heads EN1 to EN5 (angular directions in the XZ plane about the rotation center line AX2) are represented by installation orientation lines Le1, Le2, Le3, Le4, and Le5. As shown in FIG. 6, the encoder heads EN1 and EN2 are arranged such that the installation azimuth lines Le1 and Le2 are at an angle ± θ ° with respect to the center plane P3. In the present embodiment, the angle θ is set to 15 ° as an example, but is not limited thereto.
図3に示す投影モジュールPL1〜PL6は、基板Pを被処理物体とし、基板Pにパターン像となる光束を照射して露光処理を施す処理部でもある。このことから、露光装置EXは、奇数番の投影モジュールPL1、PL3、PL5からなる第1処理部と、偶数番の投影モジュールPL2、PL4、PL6からなる第2処理部とを備え、基板Pに対して第1処理部と第2処理部の各々からの結像光束EL2の主光線(例えば、投影領域PAの中心点を通る主光線)が、XZ面内で見たときに、基板Pに垂直に入射する。そのように、主光線が基板Pに入射する位置を、基板Pに処理(ここでは結像光束の照射)を施す特定位置とする。 The projection modules PL1 to PL6 illustrated in FIG. 3 are also processing units that perform exposure processing by irradiating the substrate P with a light beam that becomes a pattern image on the substrate P as an object to be processed. For this reason, the exposure apparatus EX includes a first processing unit including odd-numbered projection modules PL1, PL3, and PL5, and a second processing unit including even-numbered projection modules PL2, PL4, and PL6. On the other hand, when the principal ray (for example, the principal ray passing through the center point of the projection area PA) of the image forming light beam EL2 from each of the first processing unit and the second processing unit is viewed on the substrate P when viewed in the XZ plane. Incident vertically. In this way, the position where the principal ray is incident on the substrate P is a specific position where the substrate P is subjected to processing (here, irradiation of an imaging light beam).
特定位置は、第2ドラム部材22の第2中心軸AX2から見て、第2ドラム部材22の外周面に支持された基板Pにおいて、中心面P3から周方向に角度±θの位置に設定されている。図4及び図6に示すように、エンコーダヘッドEN1の設置方位線Le1は、奇数番目の投影モジュールPL1、PL3、PL5の各投影領域(投影視野)PA1、PA3、PA5の中心点を通る主光線の中心面P3に対する傾き角度θと一致するように配置される。同様に、エンコーダヘッドEN2の設置方位線Le2は、偶数番目の投影モジュールPL2、PL4、PL6の各投影領域(投影視野)PA2、PA4、PA6の中心点を通る主光線の中心面P3に対する傾き角度θと一致するように配置される。このため、エンコーダヘッドEN1、EN2は、各特定位置と第2中心軸AX2とを結ぶ方向に位置する目盛GP上の目盛を読み取ることになる。
The specific position is set at a position at an angle ± θ in the circumferential direction from the center plane P3 on the substrate P supported on the outer peripheral surface of the
エンコーダヘッドEN4は、エンコーダヘッドEN1よりも基板Pの搬送方向の上流側、つまり露光位置(投影領域)の手前に配置されている。そして、エンコーダヘッドEN4は、設置方位線Le4上に配置される。設置方位線Le4は、エンコーダヘッドEN1の設置方位線Le1を、基板Pの搬送方向の上流側に向かって回転中心線AX2の軸周りにほぼ90°回転した位置にある。また、エンコーダヘッドEN5は、設置方位線Le5上に配置される。設置方位線Le5は、エンコーダヘッドEN2の設置方位線Le2を、基板Pの搬送方向の上流側に向かって回転中心線AX2の軸周りにほぼ90°回転した位置にある。 The encoder head EN4 is disposed upstream of the encoder head EN1 in the transport direction of the substrate P, that is, before the exposure position (projection area). Then, the encoder head EN4 is arranged on the installation azimuth line Le4. The installation azimuth line Le4 is at a position where the installation azimuth line Le1 of the encoder head EN1 is rotated by about 90 ° around the axis of the rotation center line AX2 toward the upstream side in the transport direction of the substrate P. The encoder head EN5 is arranged on the installation azimuth line Le5. The installation azimuth line Le5 is at a position where the installation azimuth line Le2 of the encoder head EN2 is rotated by about 90 ° around the axis of the rotation center line AX2 toward the upstream side in the transport direction of the substrate P.
先に例示したように、奇数番の投影領域PA1、PA3、PA5の中心を通る結像光束EL2の主光線と、偶数番の投影領域PA2、PA4、PA6の中心を通る結像光束EL2の主光線との中心面P3に対する傾き角度±θを15°とした場合、設置方位線Le1と設置方位線Le2とのXZ面内での開き角は30°となる。そのため、設置方位線Le4と設置方位線Le5とのXZ面内での開き角も、ほぼ30°となる。 As exemplified above, the main rays of the imaging light beam EL2 passing through the centers of the odd-numbered projection areas PA1, PA3, and PA5 and the main rays of the imaging light flux EL2 passing through the centers of the even-numbered projection areas PA2, PA4, and PA6. If the inclination angle ± θ with respect to the center plane P3 with respect to the light ray is 15 °, the opening angle between the installation azimuth line Le1 and the installation azimuth line Le2 in the XZ plane is 30 °. Therefore, the opening angle between the installation azimuth line Le4 and the installation azimuth line Le5 in the XZ plane is also approximately 30 °.
エンコーダヘッドEN4及びEN5を上述したように配置することで、目盛GPを読み取るエンコーダヘッドEN4、EN5が配置される設置方位線Le4、Le5の方向が、XZ面内かつ回転中心線AX2から見たときに、基板Pに対して結像光束EL2の主光線が基板Pの特定位置に入射する方向とほぼ直交することになる。このため、回転軸STを支持する軸受(ベアリング)の僅かなガタ(2μm〜3μm程度)によって第2ドラム部材22がZ方向にシフトした場合でも、このシフトによって投影領域PA1〜PA6内で発生し得る結像光束EL2に沿う方向に関する位置誤差を、エンコーダヘッドEN1、EN2によって高精度に計測することができる。
By arranging the encoder heads EN4 and EN5 as described above, the directions of the installation azimuth lines Le4 and Le5 where the encoder heads EN4 and EN5 for reading the scale GP are arranged are in the XZ plane and viewed from the rotation center line AX2. In addition, the principal ray of the imaging light beam EL2 with respect to the substrate P is substantially orthogonal to the direction in which the principal ray enters the specific position of the substrate P. For this reason, even when the
また、エンコーダヘッドEN3は、設置方位線Le3上に配置される。設置方位線Le3は、エンコーダヘッドEN2の設置方位線Le2が回転中心線AX2の軸周りにほぼ120°回転し、かつエンコーダヘッドEN4の設置方位線Le4が回転中心線AX2の軸周りに、設置方位線Le2の回転方向とは反対方向にほぼ120°回転した位置に設定される。すなわち、XZ面内で見たとき、回転中心線AX2から延びる3本の設置方位線Le2、Le3、Le4は、ほぼ120°の間隔で設定される。 The encoder head EN3 is arranged on the installation azimuth line Le3. The installation azimuth line Le3 is such that the installation azimuth line Le2 of the encoder head EN2 rotates substantially 120 ° around the axis of the rotation center line AX2, and the installation azimuth line Le4 of the encoder head EN4 turns around the axis of the rotation center line AX2. It is set at a position rotated by approximately 120 ° in the direction opposite to the rotation direction of the line Le2. That is, when viewed in the XZ plane, the three installation azimuth lines Le2, Le3, Le4 extending from the rotation center line AX2 are set at approximately 120 ° intervals.
スケール部材であるエンコーダスケール円盤SDは、例えば、低熱膨張率の金属、ガラス又はセラミックス等を母材とする。エンコーダスケール円盤SDは、計測の分解能を高めるために、なるべく大きな直径(例えば直径20cm以上)になるように作られる。図4では、第2ドラム部材22の直径に対してエンコーダスケール円盤SDの直径は小さく図示されているが、第2ドラム部材22の外周面のうち、基板Pが巻き付けられる外周面の直径と、エンコーダスケール円盤SDの目盛GPの直径とを揃える(ほぼ一致させる)ことで、いわゆる、計測アッベ誤差をさらに小さくすることができる。
The encoder scale disk SD, which is a scale member, is made of, for example, a metal, glass, or ceramic having a low coefficient of thermal expansion as a base material. The encoder scale disk SD is made to have a diameter as large as possible (for example, 20 cm or more in diameter) in order to increase the resolution of measurement. 4, the diameter of the encoder scale disk SD is smaller than the diameter of the
エンコーダスケール円盤SDの周方向に刻設される目盛GPの最小ピッチは、エンコーダスケール円盤SDを加工する目盛刻線装置等の性能によって制限されている。このため、エンコーダスケール円盤SDの直径を大きくすれば、それに応じて最小ピッチに対応した角度計測分解能を高めることができる。目盛GPを読み取るエンコーダヘッドEN1、EN2が配置される設置方位線Le1、Le2の方向を、回転中心線AX2から見たときに、基板Pに対して結像光束EL2の主光線が基板Pに入射する方向と同一にすることにより、例えば、回転軸STを支持する軸受(ベアリング)の僅かなガタ(2μm〜3μm程度)によって第2ドラム部材22がX方向にシフトした場合でも、このシフトによって投影領域PA1〜PA6内で発生し得る基板Pの送り方向(Xs)に関する位置誤差を、エンコーダヘッドEN1、EN2によって高精度に計測することが可能となる。
The minimum pitch of the graduation GP engraved in the circumferential direction of the encoder scale disk SD is limited by the performance of a graduation marking device or the like that processes the encoder scale disk SD. Therefore, if the diameter of the encoder scale disk SD is increased, the angle measurement resolution corresponding to the minimum pitch can be increased accordingly. When the directions of the installation azimuth lines Le1 and Le2 where the encoder heads EN1 and EN2 for reading the scale GP are arranged are viewed from the rotation center line AX2, the principal ray of the imaging light beam EL2 enters the substrate P with respect to the substrate P. In this case, even if the
図5に示すように、第2ドラム部材22の曲面に支持される基板Pの一部分に、図1に示す投影光学系PLにより投影されたマスクパターンの一部分の像と基板Pとを相対的に位置合せ(アライメント)するために、基板Pに予め形成されたアライメントマーク等を検出する複数のアライメント顕微鏡AMG1、AMG2が設けられている。アライメント顕微鏡AMG1、AMG2は、第2ドラム部材22の周囲に配置されるパターン検出装置である。アライメント顕微鏡AMG1、AMG2は、基板P上に離散又は連続して形成された特定パターンを検出するための検出プローブである。この検出プローブによる検出領域は、上述した特定位置よりも基板Pの搬送方向の上流側に配置される。
As shown in FIG. 5, an image of a part of the mask pattern projected by the projection optical system PL shown in FIG. 1 and the substrate P are relatively formed on a part of the substrate P supported on the curved surface of the
図5に示すように、アライメント顕微鏡AMG1、AMG2は、Y軸方向(基板Pの幅方向)に一列に並んだ複数(例えば4つ)の検出プローブを有している。アライメント顕微鏡AMG1、AMG2は、第2ドラム部材22のY軸方向における両側端の検出プローブで、基板Pの幅方向における両端付近に形成されたアライメントマークを常時観察又は検出することができる。そして、アライメント顕微鏡AMG1、AMG2は、第2ドラム部材22のY軸方向(基板Pの幅方向)における両側端以外の検出プローブで、例えば、基板P上に長尺方向に沿って複数形成される表示パネルのパターン形成領域の間における余白部等に形成されるアライメントマークを観察又は検出することができる。
As shown in FIG. 5, the alignment microscopes AMG1 and AMG2 have a plurality (for example, four) of detection probes arranged in a line in the Y-axis direction (the width direction of the substrate P). The alignment microscopes AMG1 and AMG2 are detection probes at both ends in the Y-axis direction of the
図5に示すように、アライメント顕微鏡AMG1、AMG2による基板P上の各観察領域の中心(検出中心)を通り、第2中心軸AX2と直交する線を観察方位線AM1、AM2とする。この場合、4つのアライメント顕微鏡AMG1の各観察方位線AM1はY軸方向に平行に並び、同様に、4つのアライメント顕微鏡AMG2の各観察方位線AM2はY軸方向に平行に並ぶ。 As shown in FIG. 5, lines passing through the centers (detection centers) of the observation regions on the substrate P by the alignment microscopes AMG1 and AMG2 and orthogonal to the second central axis AX2 are defined as observation azimuth lines AM1 and AM2. In this case, the observation azimuth lines AM1 of the four alignment microscopes AMG1 are arranged in parallel in the Y-axis direction, and similarly, the observation azimuth lines AM2 of the four alignment microscopes AMG2 are arranged in parallel in the Y-axis direction.
図5及び図6に示すように、XZ面内で見たとき、エンコーダヘッドEN4の設置方位線Le4は、4つのアライメント顕微鏡AMG1の各観察方位線AM1と同じ方位に設定される。また、エンコーダヘッドEN5の設置方位線Le5は、4つのアライメント顕微鏡AMG2の各観察方位線AM2と同じ方位に設定される。 As shown in FIGS. 5 and 6, when viewed in the XZ plane, the installation azimuth line Le4 of the encoder head EN4 is set to the same azimuth as each observation azimuth line AM1 of the four alignment microscopes AMG1. The installation azimuth line Le5 of the encoder head EN5 is set to the same azimuth as each observation azimuth line AM2 of the four alignment microscopes AMG2.
このように、アライメント顕微鏡AMG1、AMG2の各検出プローブは、第2中心軸AX2から見て第2ドラム部材22の周囲に配置される。そして、アライメント顕微鏡AMG1、AMG2の検出プローブは、エンコーダヘッドEN4、EN5が配置された位置と第2中心軸AX2とを結ぶ方向(設置方位線Le4、Le5)が、第2中心軸AX2とアライメント顕微鏡AMG1、AMG2の検出中心とを結ぶ方向と一致するよう配置されている。なお、アライメント顕微鏡AMG1、AMG2の各観察領域(検出中心)に対応したエンコーダヘッドEN4、EN5及び投影モジュールPL1〜PL6の各投影領域PA1〜PA6に対応したエンコーダEN1、EN2が配置される回転中心線AX2周り方向の位置は、図6に示す、基板Pが第2ドラム部材22に接触し始めるシート進入領域IAと、第2ドラム部材22から基板Pが外れるシート離脱領域OAとの間に設定される。
As described above, the respective detection probes of the alignment microscopes AMG1 and AMG2 are arranged around the
アライメント顕微鏡AMG1、AMG2は、露光位置(投影領域PA)の手前に配置されている。アライメント顕微鏡AMG1、AMG2は、例えば、基板PのY方向の端部付近に形成されたアライメントマーク(数十μm〜数百μm角内の領域に形成)の像を、基板Pが所定速度で送られている状態で、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子等により高速に画像検出(サンプリング)するものである。そのサンプリングが行われた瞬間に、制御装置14は、エンコーダヘッドEN4によって逐次計測されるエンコーダスケール円盤SDの回転角度位置を記憶(ラッチ)することにより、基板P上のマーク位置と第2ドラム部材22の回転角度位置との対応関係が求められる。
The alignment microscopes AMG1 and AMG2 are arranged before the exposure position (projection area PA). The alignment microscopes AMG1 and AMG2 transmit, for example, an image of an alignment mark (formed in an area within several tens μm to several hundred μm square) formed near the end of the substrate P in the Y direction at a predetermined speed. In this state, image detection (sampling) is performed at a high speed by an image pickup device such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS). At the moment when the sampling is performed, the
アライメント顕微鏡AMG1で検出したマークを、後続のアライメント顕微鏡AMG2でも検出するようにすると、基板Pの伸縮や第2ドラム部材22上での僅かな滑りを計測することもできる。アライメント顕微鏡AMG1がマークをサンプリングしたときに、エンコーダヘッドEN4によって計測される角度位置Φa1と、アライメント顕微鏡AMG2が同じマークをサンプリングしたときに、エンコーダヘッドEN5によって計測される角度位置Φa2とを記憶する。
If the mark detected by the alignment microscope AMG1 is also detected by the subsequent alignment microscope AMG2, the expansion and contraction of the substrate P and the slight slip on the
なお、2つのエンコーダヘッドEN4、EN5(及びEN1、EN2、EN3)の各々に接続されて、角度位置に対応した計測値を出力するアップダウンカウンター(計数器)は、例えば、スケール円盤SDの外周面に刻設された原点マーク(不図示)が特定のエンコーダヘッド(EN1〜EN5のいずれか1つ)によって検出された瞬間又は任意の時間に、同時にゼロリセットされているものとする。このようにして求めた角度位置Φa1とΦa2の差分値を、予め精密に較正されている2つのアライメント顕微鏡AMG1、AMG2の設置方位線Le4、Le5の開き角Φ0と比較する。そして、差分値(Φa1−Φa2)と開き角Φ0との間に誤差が生じている場合は、シート進入領域IAとシート離脱領域OAとの間で、基板Pが第2ドラム部材22上で僅かに滑っている又は送り方向(周方向)に伸縮している可能性がある。
An up / down counter (counter) connected to each of the two encoder heads EN4 and EN5 (and EN1, EN2 and EN3) and outputting a measurement value corresponding to an angular position is, for example, an outer periphery of a scale disk SD. It is assumed that the origin mark (not shown) engraved on the surface is simultaneously reset to zero at the moment when it is detected by a specific encoder head (any one of EN1 to EN5) or at an arbitrary time. The difference value between the angular positions Φa1 and Φa2 obtained in this way is compared with the aperture angles Φ0 of the installation azimuth lines Le4 and Le5 of the two alignment microscopes AMG1 and AMG2 that have been precisely calibrated in advance. When there is an error between the difference value (Φa1−Φa2) and the opening angle Φ0, the substrate P slightly moves on the
一般に、パターニング時の位置誤差は、基板P上に形成されるデバイスパターンの微細度及び重ね合わせ精度に応じて決まるが、例えば、下地のパターン層に対して10μm幅の線条パターンを正確に重ね合わせ露光するためには、その数分の一以下の誤差、すなわち、基板P上の寸法に換算して、±2μm程度の位置誤差しか許されないことになる。このような高精度な計測を実現するためには、各アライメント顕微鏡AMG1、AMG2によるマーク画像の計測方向(XZ面内における第2ドラム部材22の外周接線方向)と、各エンコーダヘッドEN4、EN5の計測方向(XZ面内での目盛GPの外周接線方向)とを、許容角度誤差内で揃えておく必要がある。
In general, the position error at the time of patterning is determined according to the fineness and the overlay accuracy of the device pattern formed on the substrate P. For example, a linear pattern having a width of 10 μm is accurately overlapped with the underlying pattern layer. In order to perform the alignment exposure, only an error of a fraction or less thereof, that is, a positional error of about ± 2 μm in terms of the dimension on the substrate P is allowed. In order to realize such high-precision measurement, the measurement direction of the mark image by each of the alignment microscopes AMG1 and AMG2 (the direction of the tangent to the outer periphery of the
上述したように、エンコーダヘッドEN4、EN5は、アライメント顕微鏡AMG1、AMG2による基板P上のアライメントマークの計測方向(第2ドラム部材22の円周面の接線方向)と一致するように配置されている。このため、アライメント顕微鏡AMG1、AMG2による基板P(マーク)の位置検出時(画像サンプリング時)に、第2ドラム部材22(エンコーダスケール円盤SD)が、XZ面内において設置方位線Le4又はLe5と直交した周方向(接線方向)にシフトした場合でも、第2ドラム部材22のシフトを加味した高精度な位置計測が可能となる。
As described above, the encoder heads EN4 and EN5 are arranged so as to coincide with the measurement direction of the alignment marks on the substrate P by the alignment microscopes AMG1 and AMG2 (the tangential direction of the circumferential surface of the second drum member 22). . Therefore, when the position of the substrate P (mark) is detected (at the time of image sampling) by the alignment microscopes AMG1 and AMG2, the second drum member 22 (encoder scale disk SD) is orthogonal to the installation azimuth line Le4 or Le5 in the XZ plane. Even in the case of shifting in the circumferential direction (tangential direction), high-accuracy position measurement in consideration of the shift of the
また、目盛GPの目盛ピッチが常に一定であれば、回転に速度ムラがないとして、エンコーダヘッドEN1、EN2、EN3、EN4、EN5の各読み値の変化間隔(カウンターへのアップダウンパルスの発生時間)は一定となる。しかし、エンコーダスケール円盤SDを第2ドラム部材22に取り付ける際におけるエンコーダスケール円盤SDの変形、エンコーダヘッドEN1、EN2、EN3、EN4、EN5を取り付ける際の位置(チルト)誤差、エンコーダスケール円盤SDの製造時の精度、取り付け時の偏心等といった影響等によって、目盛GPには固有の誤差(目盛自体のピッチ誤差、偏心及び変形等によるピッチムラ等)が生じ得る。また、目盛GPには、基板処理装置11の運転中等における温度変化に起因するエンコーダスケール円盤SDの伸縮等のように、常時変動する要素による固有誤差も生じ得る。本実施形態では、上述したような原因で発生する目盛GPの固有誤差に伴う計測誤差を求める。そして、得られた計測誤差に基づいて目盛GPの固有誤差分を補正するための補正マップ(補正量データ)を作成し、複数のエンコーダヘッドEN1〜EN5の各読み取り値(実計測値)を、補正マップに基づいて補正し、目盛GPの固有誤差による計測誤差分を相殺又は低減した計測を行うようにする。
If the graduation pitch of the graduation GP is always constant, it is determined that there is no speed unevenness in the rotation, and the change intervals of the read values of the encoder heads EN1, EN2, EN3, EN4, and EN5 (the generation time of the up-down pulse to the counter) ) Is constant. However, the deformation of the encoder scale disk SD when attaching the encoder scale disk SD to the
本実施形態において、目盛GPの目盛のピッチ誤差及びピッチムラ等に起因する計測誤差の補正マップ作成は、円筒部材としての第2ドラム部材22と同軸に取り付けられた状態のスケール円盤SDの外周に配置された複数のエンコーダヘッドの実計測値に基づいて実行される。ここでは、第1読み取り部としてのエンコーダヘッドEN4と、第2読み取り部としてのエンコーダヘッドEN5と、補正部及びマップ作成部としての制御装置14とによって、補正マップが作成される。本実施形態では、便宜上、エンコーダヘッドEN4を第1読み取り部とし、エンコーダヘッドEN5を第2読み取り部とするが、第1読み取り部及び第2読み取り部は、予め取り付け角度間隔が判っている少なくとも2ヶ所のエンコーダヘッドであればよい。
In the present embodiment, the correction map for the measurement error caused by the pitch error and the pitch unevenness of the scale of the scale GP is arranged on the outer periphery of the scale disk SD coaxially mounted with the
補正部としての制御装置14は、エンコーダヘッドEN4による読み取り値(カウンターによる計数値m4とする)とエンコーダヘッドEN5よる読み取り値(カウンターによる計数値m5とする)との差分値(m4−m5)、又はエンコーダヘッドEN4とエンコーダヘッドEN5との角度間隔に対応した既定値(例えばその間の目盛の本数に対応した値で、K45とする)から差分値(m4−m5)を引いた差分値(K45−m4−m5)に基づいて、目盛GPの一周分にわたって発生している目盛のピッチ誤差を、例えば目盛GPの原点位置からの所定角度位置毎に求める。そして、制御装置14は、目盛GPの一周分の目盛ピッチ誤差のデータを補正マップとして記憶するとともに、その補正マップに基づいて、エンコーダヘッドEN4の読み取り値、エンコーダヘッドEN5の読み取り値又は他のエンコーダヘッドEN1〜EN3の各読み取り値を補正する。
The
図7は、目盛GPの目盛を模式的に表した拡大図である。図8は、目盛GPとエンコーダヘッドEN4、EN5との位置関係を示す模式図である。図7に示すように、目盛GPの目盛は、例えば、立ち上がり部GPaと立ち下がり部GPbとを有する凸部GPtと、隣接する凸部GPtの間の凹部GPUとの繰り返しで構成される。本実施形態においては、1つの凸部GPtと1つの凹部GPUとが目盛GPの一単位、すなわち目盛の1ピッチであるとする。説明を簡単にするため、各エンコーダヘッドEN1〜EN5は、目盛の立ち上がり部GPaを読み取ったとき、アップパルスUを出力し、立ち下がり部GPbを読み取ったときにダウンパルスDを出力するものとする。 FIG. 7 is an enlarged view schematically showing the scale of the scale GP. FIG. 8 is a schematic diagram showing a positional relationship between the scale GP and the encoder heads EN4 and EN5. As shown in FIG. 7, the scale of the scale GP is configured by, for example, repeating a convex portion GPt having a rising portion GPa and a falling portion GPb and a concave portion GPU between the adjacent convex portions GPt. In the present embodiment, one convex portion GPt and one concave portion GPU are assumed to be one unit of the scale GP, that is, one pitch of the scale. For simplicity of description, each encoder head EN1 to EN5 outputs an up pulse U when reading the rising portion GPa of the scale, and outputs a down pulse D when reading the falling portion GPb. .
目盛GPの目盛は、その立ち上がり部GPaから隣接する目盛GPの立ち上がり部GPaまでの距離SS1又はその立ち下がり部GPbから隣接する目盛の立ち下がり部GPbまでの距離SS2が、目盛同士のピッチ(間隔)になる。エンコーダスケール円盤SDの設計時に定められた目盛ピッチをSSとすると、目盛GPが正確に製造されていれば、目盛GP上のどの部分においても、距離SS1又はSS2は目盛ピッチSSと一致してくる。 The scale of the scale GP is determined by the distance SS1 from the rising portion GPa to the rising portion GPa of the adjacent scale GP or the distance SS2 from the falling portion GPb to the falling portion GPb of the adjacent scale GP is determined by the pitch between the scales (interval). )become. Assuming that the scale pitch determined at the time of designing the encoder scale disk SD is SS, the distance SS1 or SS2 matches the scale pitch SS at any part on the scale GP if the scale GP is manufactured correctly. .
そのため、目盛GPが図7の矢印Rで示す方向に移動したとき、エンコーダヘッドENが出力するパルスで見れば、2個のアップパルスUと1個のダウンパルスUとが出力された場合、あるいは2個のダウンパルスDと1個のアップパルスUとが出力された場合に、エンコーダスケール円盤SD(図6参照)の外周面(目盛GP)が目盛ピッチSS分だけ移動(回転)したことになる。エンコーダヘッドENが出力するパルスの種類を区別しなければ、3個のパルスが検出される度に、エンコーダスケール円盤SDの外周部が目盛ピッチSS分だけ移動したことになる。 Therefore, when the scale GP moves in the direction indicated by the arrow R in FIG. 7, when viewed from the pulse output by the encoder head EN, when two up pulses U and one down pulse U are output, or When two down pulses D and one up pulse U are output, the outer peripheral surface (scale GP) of the encoder scale disk SD (see FIG. 6) moves (rotates) by the scale pitch SS. Become. Unless the types of pulses output by the encoder head EN are distinguished, the outer peripheral portion of the encoder scale disk SD has moved by the scale pitch SS every time three pulses are detected.
なお、実際のエンコーダ計測では、エンコーダヘッドから2相信号(sin波、cos波)を発生させ、この2相信号に基づいて、目盛ピッチSSをさらに細分化するような内挿信号処理が行われる。このため、デジタルカウンタによって実際に計数されるアップパルスU及びダウンパルスDは、目盛ピッチSSを数分の一〜数十分の一に等分した位置毎に発生する。 In actual encoder measurement, a two-phase signal (sine wave and cosine wave) is generated from the encoder head, and an interpolation signal process for further subdividing the graduation pitch SS is performed based on the two-phase signal. . For this reason, the up pulse U and the down pulse D actually counted by the digital counter are generated at positions where the scale pitch SS is evenly divided into several tenths to several tenths.
図8は、スケール円盤SDの外周部に設けられた目盛GPの複数の目盛を直線的に並べて模式的に表したものである。図8では、エンコーダスケール円盤SDの外周部に設けられた目盛GPが矢印Rで示す方向へ移動するものとする。第1読み取り部としてのエンコーダヘッドEN4と、第2読み取り部としてのエンコーダヘッドEN5とが、目盛GPの移動方向に向かってこの順序で配置されている。2個のエンコーダヘッドEN4、EN5は、目盛GPから見ると、相対的に、目盛GPの移動方向とは反対方向に移動する。 FIG. 8 schematically shows a plurality of graduations of a graduation GP provided on an outer peripheral portion of the scale disk SD, which are linearly arranged. In FIG. 8, it is assumed that the scale GP provided on the outer peripheral portion of the encoder scale disk SD moves in the direction indicated by the arrow R. The encoder head EN4 as the first reading unit and the encoder head EN5 as the second reading unit are arranged in this order in the moving direction of the scale GP. When viewed from the scale GP, the two encoder heads EN4 and EN5 relatively move in the direction opposite to the direction in which the scale GP moves.
図6に示したように、一対のエンコーダヘッドEN4、EN5は、エンコーダヘッドEN4と第2中心軸AX2とを結ぶ線(設置方位線Le4)とエンコーダヘッドEN5と第2中心軸AX2とを結ぶ線(設置方位線Le5)とのなす中心角(エンコーダ取付角度)がθsである。また、図8に示すように、一対のエンコーダヘッドEN4、EN5がエンコーダスケール円盤SDの表面で目盛GPを読み取る位置の、目盛GPの周長方向における直線距離(ヘッド間距離)はXSである。 As shown in FIG. 6, the pair of encoder heads EN4 and EN5 includes a line connecting the encoder head EN4 and the second central axis AX2 (installation azimuth line Le4) and a line connecting the encoder head EN5 and the second central axis AX2. The central angle (encoder mounting angle) with the (installation azimuth line Le5) is θs. As shown in FIG. 8, the linear distance (head-to-head distance) in the circumferential direction of the scale GP at the position where the pair of encoder heads EN4 and EN5 reads the scale GP on the surface of the encoder scale disk SD is XS.
一対のエンコーダヘッドEN4、EN5は、基板処理装置11のフレーム等に取り付けられると、エンコーダ取付角度θs及びヘッド間距離XSは一定である。上述したように、エンコーダスケール円盤SDの変形、エンコーダスケール円盤SDの製造時の精度、取り付け時の偏心、温度変化に起因するエンコーダスケール円盤SDの伸縮等によって、目盛ピッチSSはエンコーダスケール円盤SDの周方向において、必ずしも一定ではない。例えば、極めて模式的に説明すると、図8に示すように、目盛GP上の領域a、c、dにおいては、1つのエンコーダ取付角度θs及び1つのヘッド間距離XSの間に立ち上がり部GPaと立ち下がり部GPbとを一組として、3個の目盛GPが存在する。しかしながら、領域bは2.5個、領域eは6個の目盛GPが存在する。
When the pair of encoder heads EN4 and EN5 is mounted on a frame or the like of the
図8に示す例では、目盛ピッチSSが設計値の場合、例えば、1つのエンコーダ取付角度θs及び1つのヘッド間距離XSの間には、規定数(この例では3個)の目盛GPが存在するものとする。実際には、上述した目盛GPの誤差要因によって、1つのエンコーダ取付角度θs及び1つのヘッド間距離XSの間に存在する目盛GPの数は、前述した規定数から増減してしまう。図8中の領域aは、目盛ピッチがSSaであるが、領域bでは目盛GPの数が規定数よりも少ないため、領域bの目盛ピッチSSbは、領域aの目盛ピッチSSaよりも大きくなる。また、領域eは目盛GPの数が規定数よりも多いため、領域eの目盛ピッチSSeは、目盛ピッチSSaよりも小さくなる。 In the example shown in FIG. 8, when the scale pitch SS is a design value, for example, a specified number (three in this example) of scales GP exists between one encoder mounting angle θs and one head-to-head distance XS. It shall be. Actually, the number of the scales GP existing between one encoder mounting angle θs and one head-to-head distance XS is increased or decreased from the above-mentioned prescribed number due to the above-described error factor of the scale GP. In the area a in FIG. 8, the scale pitch is SSa, but in the area b, the number of the scales GP is smaller than the specified number, so that the scale pitch SSb of the area b is larger than the scale pitch SSa of the area a. Further, since the number of the scales GP in the region e is larger than the specified number, the scale pitch SSe in the region e is smaller than the scale pitch SSa.
例えば、設計上の目盛ピッチSSが100であり、設計上のヘッド間距離XSが300であるとする。図8の領域a、c、dは、エンコーダヘッドEN4、EN5が目盛GPを読み取った各値(カウンターによる計数)に基づいて算出される実ヘッド間距離Xは300である。これは設計上のヘッド間距離XSと一致する。これに対して、図8の領域bは、エンコーダヘッドEN4、EN5が読み取った各値(カウンターによる計数値)に基づいて算出される実ヘッド間距離Xが250となり、領域eは、エンコーダヘッドEN4、EN5の読み取り値(カウンターによる計数値)に基づく実ヘッド間距離Xが600となる。 For example, it is assumed that the designed scale pitch SS is 100 and the designed head-to-head distance XS is 300. In the regions a, c, and d in FIG. 8, the actual head-to-head distance X calculated based on each value (count by the counter) obtained by reading the scale GP by the encoder heads EN4 and EN5 is 300. This coincides with the designed head-to-head distance XS. On the other hand, in the area b of FIG. 8, the actual head-to-head distance X calculated based on each value (count value by the counter) read by the encoder heads EN4 and EN5 is 250, and the area e is the encoder head EN4 , EN5, the actual head-to-head distance X based on the read value (count value by the counter) is 600.
このように、設計上のヘッド間距離XSと実ヘッド間距離Xとの違いは、目盛GPの目盛ピッチ誤差に起因するものである。一対のエンコーダヘッドEN4、EN5を装置に固定した後、装置を一定温度の環境中に設置すれば、ヘッド間距離XSは変化しない。このため、例えば、エンコーダヘッドEN4、EN5の固定後におけるヘッド間距離XSを基準として、エンコーダヘッドEN4、EN5の読み取り値から求められる目盛GPの目盛ピッチ誤差のマップ(1周360°の角度位置毎の誤差量又は誤差の補正量)を作成する。そのマップの作成後は、エンコーダヘッドEN4、EN5(又は他のヘッドEN1〜EN3)によるスケールGPの読み取り値(カウンターの計数値)に基づいて、その角度位置に対応した誤差量又は補正量をマップから呼び出して逐次補正すれば、スケールGPの周長方向の移動距離誤差をリアルタイムに補正することができる。 Thus, the difference between the designed head distance XS and the actual head distance X is due to the scale pitch error of the scale GP. After the pair of encoder heads EN4 and EN5 are fixed to the device, if the device is installed in an environment at a constant temperature, the head-to-head distance XS does not change. For this reason, for example, a map of the scale pitch error of the scale GP obtained from the read values of the encoder heads EN4 and EN5 based on the distance XS between the heads after the encoder heads EN4 and EN5 are fixed (for each 360 ° angular position per rotation) Error amount or error correction amount). After the map is created, the error amount or the correction amount corresponding to the angular position is mapped based on the scale GP reading value (counter value of the counter) by the encoder heads EN4 and EN5 (or other heads EN1 to EN3). , It is possible to correct a moving distance error in the circumferential direction of the scale GP in real time.
実際の目盛ピッチ誤差及び目盛GPの移動距離誤差を補正する場合、例えば、目盛GPに誤差がない場合の目盛ピッチSS、設計上のヘッド間距離XS及び実ヘッド間距離Xを用い、さらに目盛GPに誤差が発生した場合における実際の目盛ピッチ(実目盛ピッチ)SSrは、例えば式(1)から求められる。実目盛ピッチSSrを用いることにより、目盛GPの誤差を補正し、結果として目盛GPの移動距離の誤差を補正することもできる。
SSr=SS×XS/X・・(1)
When correcting the actual scale pitch error and the moving distance error of the scale GP, for example, using the scale pitch SS when there is no error in the scale GP, the designed head distance XS, and the actual head distance X, the scale GP is further used. The actual graduation pitch (actual graduation pitch) SSr in the case where an error has occurred is obtained, for example, from equation (1). By using the actual scale pitch SSr, the error of the scale GP can be corrected, and as a result, the error of the moving distance of the scale GP can be corrected.
SSr = SS × XS / X (1)
また、一対のエンコーダヘッドEN4、EN5が読み取った、ヘッド間距離XSの間に存在する目盛GPの数(計測目盛線)NSに基づいて目盛GPの誤差を補正し、目盛GPの移動距離誤差を補正してもよい。ヘッド間距離XSの間に存在する目盛線の数NSは、一対のエンコーダヘッドEN4、EN5から得られるアップパルスU及びダウンパルスDのカウンターによる計数値によって求めることもできる。計測目盛線NSを用いた場合、実目盛ピッチSSrは、ヘッド間距離XSを含む式(2)で求めることができる。
SSr=XS/NS・・(2)
In addition, the error of the scale GP is corrected based on the number NS of the scales GP (measurement scale line) existing between the head distances XS, which is read by the pair of encoder heads EN4 and EN5, and the movement distance error of the scale GP is corrected. It may be corrected. The number NS of the graduation lines existing between the head-to-head distances XS can also be obtained by counting the up pulse U and the down pulse D obtained from the pair of encoder heads EN4 and EN5 by the counter. When the measurement scale line NS is used, the actual scale pitch SSr can be obtained by Expression (2) including the head-to-head distance XS.
SSr = XS / NS (2)
目盛ピッチの誤差及び目盛GPの移動距離の誤差は、円筒部材の位置検出装置が有する補正部としての制御装置14が、例えば、式(1)又は式(2)を用いた演算によって、一対のエンコーダヘッドEN4、EN5の読み取り値に対する補正量として適用する。このため、制御装置14を備える円筒部材の位置検出装置及び基板処理装置11は、目盛GPが設けられるエンコーダスケール円盤SDの変形等によって目盛ピッチSSに誤差が生じても、誤差マップ又は補正マップを使うことで、ほぼリアルタイムにその誤差を補正することができるので、エンコーダスケール円盤SD及び第2ドラム部材22について、精度のよい位置計測(周方向における位置計測)が実現できる。次に、目盛ピッチの誤差及び移動距離の誤差の補正について説明する。
The error of the graduation pitch and the error of the movement distance of the graduation GP are determined by the
図9は、スケールの目盛ピッチ誤差を補正する手順を示すフローチャートである。図10は、外周面に目盛を有するスケール円盤SDとエンコーダヘッドEN4、EN5との関係を示す図である。図11は、補正マップの一例を示す図である。目盛GPの目盛ピッチ誤差を補正する場合、図10に示すように、一対のエンコーダヘッドEN4、EN5のヘッド間距離XSを予め計測しておき、制御装置14が有する記憶部に記憶させる。ヘッド間距離XSは、一対のエンコーダヘッドEN4、EN5がエンコーダスケール円盤SDの外周面で目盛GPを読み取る位置で求められる。一対のエンコーダヘッドEN4、EN5が目盛GPを読み取る位置は、エンコーダスケール円盤SDが真円であり、かつ回転中心線AX2に対してエンコーダスケール円盤SDが偏心していない状態での位置とすることができる。この場合、図10に示すように、回転中心線AX2からエンコーダスケール円盤SDの設計値の半径(中心から外周面までの距離)raで湾曲した曲面Pd(目盛GPの目盛面)上で、一対のエンコーダヘッドEN4、EN5のヘッド間距離XSが計測される。図10に示す例において、エンコーダスケール円盤SDの目盛GPは、矢印Rで示す方向、すなわち、エンコーダヘッドEN4からエンコーダヘッドEN5に向かって回転(旋回)する。
FIG. 9 is a flowchart showing a procedure for correcting the scale pitch error of the scale. FIG. 10 is a diagram showing a relationship between a scale disk SD having a scale on the outer peripheral surface and encoder heads EN4 and EN5. FIG. 11 is a diagram illustrating an example of the correction map. When correcting the scale pitch error of the scale GP, as shown in FIG. 10, a head-to-head distance XS between the pair of encoder heads EN4 and EN5 is measured in advance and stored in a storage unit of the
図9に示すように、ステップS101において、図1に示す基板処理装置11の処理が開始されていない場合(ステップS101、No)、目盛GP等の補正は実行しない。ステップS101において、基板処理装置11の処理が開始され、スケール円盤SDが安定に回転している場合(ステップS101、Yes)、ステップS102において、制御装置14は、所定のタイミングでエンコーダヘッドEN4、EN5からこれらの読み取り値(カウンターの計数値)を取得する。所定のタイミングで取得とは、例えば、エンコーダスケール円盤SDの目盛GPが回転中心線AX2を中心として所定の角度α(度)だけ回転する毎に、制御装置14がエンコーダヘッドEN4、EN5の各読み取り値を取得すること、すなわち各カウンターの計数値をラッチして記憶することをいう。以下、角度αを、適宜、回転角度αということもある。エンコーダスケール円盤SDが等角速度(等周速度)で回転している場合、所定の時間t毎に制御装置14が両方のエンコーダヘッドEN4、EN5の各読み取り値を取得してもよい。この例において、α(度)は、360の約数が好ましいが、角度αはこれに限定されるものではない。角度αは、目盛ピッチ誤差の傾向(誤差の振れ幅や周方向の変化率)に応じて決められる。
As shown in FIG. 9, when the processing of the
エンコーダスケール円盤SDが等角速度で回転している場合、制御装置14は、時間t毎に両方のエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する。制御装置14が、所定の角度α毎に両方のエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する場合、例えば、エンコーダスケール円盤SDの回転角度検出手段を用意する。そして、制御装置14は、エンコーダスケール円盤SDが角度αだけ回転したことを回転角度検出手段が検出したタイミング毎に、両方のエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する。また、両方のエンコーダヘッドEN4、EN5のいずれか一方を回転角度検出手段としても用いてもよい。例えば、エンコーダヘッドEN4を回転角度検出手段として用いた場合、制御装置14は、エンコーダスケール円盤SDが角度αだけ回転したことをエンコーダヘッドEN4が検出したタイミング毎に、両方のエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する。エンコーダスケール円盤SDが角度αだけ回転したことは、例えば、エンコーダヘッドEN4が、回転角度αに相当する目盛GPの数を検出し、これに対応するパルス数を出力することで検出できる。
When the encoder scale disk SD is rotating at a constant angular velocity, the
次に、ステップS103に進み、制御装置14は、ステップS102で取得した読み取り値に基づき、目盛GPの補正値としての実目盛ピッチSSrを求める。例えば、上述した式(2)を用いて実目盛ピッチSSrを求める場合、制御装置14は、エンコーダヘッドEN4、EN5の読み取り値から、計測スケール数NSを求める。計測スケール数NSは、エンコーダヘッドEN4による目盛GPの数の読み取り値NSaと、エンコーダヘッドEN5による目盛GPの数の読み取り値NSbとの差分(NSa−NSb)である。そして、制御装置14は、自身の記憶部に記憶したヘッド間距離XSを読み出して、式(2)から実目盛ピッチSSrを求める。実目盛ピッチSSrが、角度α(度)の範囲における目盛GPの間隔の補正値となる。なお、上述した式(2)を用いて実目盛ピッチSSrを求める場合は、計測スケール数NSと目盛GPに誤差がない場合の目盛ピッチSSとの積から計測エンコーダ間距離Xを求め、ヘッド間距離XS、目盛ピッチSS及び計測エンコーダ間距離Xから計測スケール数NSを求めればよい。
Next, proceeding to step S103, the
計測スケール数NSは、例えば、次のようにして求めることができる。エンコーダスケール円盤SDが有する複数の目盛GPの基準となる位置(スケール基準位置)GPbを、エンコーダヘッドEN4が読み取ったとき、制御装置14は、エンコーダヘッドEN4をリセット(エンコーダヘッドEN4のZ相による0点リセット)してから、エンコーダヘッドEN4が検出した目盛GPの数を計数する。次に、エンコーダヘッドEN5がスケール基準位置GPbを読み取ったとき、制御装置14は、エンコーダヘッドEN5をリセット(エンコーダヘッドEN5のZ相による0点リセット)する。そして、制御装置14は、エンコーダヘッドEN5が0にリセットされたときにおけるエンコーダヘッドEN4の目盛GPの数を取得し、エンコーダヘッドEN5がスケール基準位置GPbを読み取ったときにおける目盛GPの数、すなわち0との差分を求める。この差分が、計測スケール数NSである。これ以降において、制御装置14は、エンコーダヘッドEN4、EN5による目盛GPの計数を継続するとともに、所定の角度α又は所定の時間t毎に両方のエンコーダヘッドEN4、EN5の読み取り値の計数値(目盛GPの計数値)を取得し、その差分を求め、これを所定の角度α又は所定の時間tにおける計測スケール数NSとする。この例において、エンコーダスケール円盤SDが1周すると、スケール基準位置GPbは元の位置に戻るが、このとき、エンコーダヘッドEN4、EN5の各々に接続されたカウンターはリセットしなくてもよいし、リセットしてもよい。
The measurement scale number NS can be obtained, for example, as follows. When the encoder head EN4 reads a position (scale reference position) GPb serving as a reference for a plurality of scales GP of the encoder scale disk SD, the
ステップS103で、ある角度αにおける実目盛ピッチSSr(目盛GPの補正値に相当)が求められたら、ステップS104において、制御装置14は、その角度αと対応付けて図11に示す補正マップTBcに記述する。例えば、補正マップTBcのNo.2には、角度2×αと、それに対応する実目盛ピッチSSr2(=XS/NS2)とが記述される。補正マップTBcは、制御装置14の記憶部に記憶されている。制御装置14は、複数の目盛GPの全周(エンコーダスケール円盤SDの全周)にわたって実目盛ピッチSSrを求める。制御装置14は、基板処理装置11の処理中において、エンコーダヘッドEN4とエンコーダヘッドEN5との少なくとも一方が検出したエンコーダスケール円盤SDの角度に対応した補正値、すなわち実目盛ピッチSSrを補正マップTBcから読み出して、目盛GPの誤差を補正する。図6に示すように、基板処理装置11が3以上のエンコーダヘッドEN1、EN2、EN3、EN4、EN5を有する場合、制御装置14は、エンコーダヘッドEN4、EN5以外についても、補正マップTBcを用いて目盛GPの誤差を補正してもよい。次に、ステップS105に進み、基板処理装置11の処理が終了していない場合には(ステップS105、No)、制御装置14は、ステップS102〜ステップS104を継続し、基板処理装置11の処理が終了した場合には(ステップS105、Yes)、制御装置14は、目盛GP等の補正を終了する。
When the actual scale pitch SSr (corresponding to the correction value of the scale GP) at a certain angle α is obtained in step S103, the
上記例では、基板処理装置11の処理中、すなわち、処理部が基板に対して所定の処理(例えば、露光処理)を施しているときに、制御装置14は、複数の目盛GPの間隔が見かけ上、一定になるように補正する。このようにすることで、基板処理装置11の稼働中に発生した目盛GPの誤差、すなわち読み取りスケール間隔の誤差をリアルタイムで補正できるので、基板処理装置11の処理の精度が向上する。
In the above example, during the processing of the
円盤SDが1周、すなわち、エンコーダヘッドEN4の位置にあったスケール基準位置GPbがエンコーダヘッドEN4の位置に戻ってくると、全周分の目盛GPの補正値として、実目盛ピッチSSrが求められる。制御装置14は、以後も円盤SDが1周する毎に同様に目盛GPを補正してもよいし、円盤SDが1周した後は目盛GPの補正を終了し、所定のタイミング(例えば、所定時間が経過した後又は所定の温度変化があった場合等)で目盛GPの補正を再開してもよい。前者のようにすると、補正マップTBcを随時更新するため、エンコーダスケール円盤SD及び目盛GPの短時間における変形又は寸法変化等にも迅速に対応できる。後者のようにすると、補正マップTBcの更新頻度を抑制できるので、その分、制御装置14のハードウェア資源を有効に利用できる。
When the scale reference position GPb, which has been at the position of the encoder head EN4, returns to the position of the encoder head EN4, the actual scale pitch SSr is obtained as a correction value of the scale GP for the entire circumference. . The
制御装置14がエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する際に、取得のタイミングが短いほど又はエンコーダヘッドEN4、EN5の間隔が小さいほど、目盛GPの補正精度が向上する。エンコーダヘッドEN4、EN5の間隔は、エンコーダヘッドEN4、EN5の大きさ及びその他の部品配置との兼ね合い等から、ある程度の制約を受ける。このため、エンコーダヘッドEN4、EN5からこれらの読み取り値を取得する際のタイミングを短くする方が、汎用性は高くなるという利点がある。
When the
図12、図13は、一対のエンコーダヘッドからこれらの読み取り値を取得する際のタイミングを示す概念図である。上述した例では、エンコーダスケール円盤SDの複数の目盛GPが回転中心線AX2を中心として所定の回転角度α(度)だけ回転する毎に、制御装置14がエンコーダヘッドEN4、EN5からこれらの読み取り値を取得した。このときの回転角度α(度)を、360の約数とした場合、エンコーダスケール円盤SDが複数回転している間、エンコーダヘッドEN4、EN5は毎周同じ位置を読み取ることになる(図12参照)。この場合、目盛GPの補正精度を向上させるためには、所定の回転角度αを小さくする必要があるが、装置の制約等から無闇に回転角度αを小さくすることはできない。
FIG. 12 and FIG. 13 are conceptual diagrams showing timings when acquiring these read values from a pair of encoder heads. In the example described above, each time the plurality of scales GP of the encoder scale disk SD rotate by the predetermined rotation angle α (degree) about the rotation center line AX2, the
本実施形態において、複数の目盛GPを有するエンコーダスケール円盤SDが回転体(連続体)なので、必ずしも1周毎の周期性を担保しないでも、エンコーダヘッドEN4、EN5を用いて連続的に測定が可能である。このため、例えば、回転角度α(度)を360度の約数とならない数とすることにより、エンコーダスケール円盤SDが複数回転した場合における、エンコーダヘッドEN4、EN5の読取位置の周期性を崩すことができる。特に、α(度)を360度の約数とならない数かつ素数とすることにより、前述した周期性をより効果的に崩すことができる。その結果、所定の回転角度αが大きくても、複数の目盛GP(エンコーダスケール円盤SD)が周回を重ねる毎に発生するズレ量が微小となるため、結果としてエンコーダヘッドEN4、EN5による目盛GPの測定間隔を小さくすることができる(図13参照)。 In the present embodiment, since the encoder scale disk SD having a plurality of scales GP is a rotating body (continuous body), it is possible to continuously measure using the encoder heads EN4 and EN5 even if the periodicity of each rotation is not necessarily ensured. It is. Therefore, for example, by setting the rotation angle α (degree) to a number that is not a divisor of 360 degrees, the periodicity of the reading positions of the encoder heads EN4 and EN5 when the encoder scale disk SD rotates a plurality of times is broken. Can be. In particular, by setting α (degree) to a number that is not a divisor of 360 degrees and a prime number, the periodicity described above can be more effectively broken. As a result, even if the predetermined rotation angle α is large, the amount of displacement that occurs each time the plurality of scales GP (encoder scale disk SD) orbits is small, and as a result, the scale GP by the encoder heads EN4 and EN5 is reduced. The measurement interval can be reduced (see FIG. 13).
例えば、角度αを10度〜35度程度の間で360度の約数とならない値とするのがよいが、360/αの値が小数点以下1桁〜4桁程度、好ましくは小数点以下1桁〜4桁で割り切れるような値としてもよい。一例として、角度αを11度、17度、19度、23度等の素数とした場合、360/αは小数点以下4桁でも割り切れない。一方、角度αを12.5度、16度、25度、28.8度のいずれかにした場合、360/αは小数点以下1桁で割り切れる。角度αを19.2度、32.0度とした場合、360/αは小数点以下2桁で割り切れる。角度αを12.8度とした場合、360/αは小数点以下3桁で割り切れる。さらに角度αを25.6度とした場合、360/αは小数点以下4桁で割り切れる。なお、回転角度αが10度〜35度の間で、約数(360/αが整数)となる角度は、10度、12度、14.4度、15度、18度、20度、22.5度、24度、30度である。また、回転角度αは1度〜10度の範囲であっても構わないが、360/αが整数となるような約数を避ける場合、回転角度αは7度、9度となる。なお、必要とする誤差補正の分解能によっては、回転角度αを1度未満、例えば0.5度毎にエンコーダヘッドEN4、EN5の各々による読み取り値の差分を求めて、ピッチ誤差のマップを作成してもよい。 For example, the angle α may be a value that does not become a divisor of 360 degrees between about 10 degrees and 35 degrees, and the value of 360 / α is about 1 to 4 digits after the decimal point, and preferably 1 digit after the decimal point. The value may be divisible by up to four digits. As an example, when the angle α is a prime number such as 11 degrees, 17 degrees, 19 degrees, and 23 degrees, 360 / α cannot be divided even by four digits after the decimal point. On the other hand, when the angle α is any one of 12.5 degrees, 16 degrees, 25 degrees, and 28.8 degrees, 360 / α is divisible by one decimal place. When the angle α is 19.2 degrees and 32.0 degrees, 360 / α is divisible by two digits after the decimal point. If the angle α is 12.8 degrees, 360 / α is divisible by three digits after the decimal point. Further, when the angle α is 25.6 degrees, 360 / α is divisible by four digits after the decimal point. Note that when the rotation angle α is between 10 degrees and 35 degrees, angles that are divisors (360 / α is an integer) are 10 degrees, 12 degrees, 14.4 degrees, 15 degrees, 18 degrees, 20 degrees, and 22 degrees. 0.5 degrees, 24 degrees, and 30 degrees. The rotation angle α may be in the range of 1 to 10 degrees, but when avoiding a divisor such that 360 / α is an integer, the rotation angles α are 7 and 9 degrees. Depending on the required resolution of error correction, the difference between the read values of the encoder heads EN4 and EN5 is determined at every rotation angle α of less than 1 degree, for example, every 0.5 degree, and a pitch error map is created. You may.
図14は、スケールの誤差を補正する手順を示すフローチャートである。図14に示す例は、エンコーダスケール円盤SDの複数の目盛GPが回転中心線AX2を中心として所定の角度α(度)だけ回転する毎に一対のエンコーダヘッドEN4、EN5がこれらを読み取る場合において、回転角度αを360の約数でない素数とした場合の処理手順を示している。この例において、回転角度αは、例えば、7度、11度等とすることができる。 FIG. 14 is a flowchart showing a procedure for correcting a scale error. The example shown in FIG. 14 is a case where a pair of encoder heads EN4 and EN5 read each time a plurality of scales GP of the encoder scale disk SD rotate by a predetermined angle α (degree) about the rotation center line AX2. This shows a processing procedure when the rotation angle α is a prime number that is not a divisor of 360. In this example, the rotation angle α can be, for example, 7 degrees, 11 degrees, or the like.
ステップS201〜ステップS204は、α(度)を360の約数とした上述の例におけるステップS101〜ステップS104と同様なので、説明を省略する。ステップS205において、制御装置14は、補正値を求め始めてからエンコーダスケール円盤SDが規定の回転数まで回転していない場合(ステップS205、No)、ステップS202〜ステップS205を繰り返す。ステップS205において、制御装置14は、補正値を求め始めてからエンコーダスケール円盤SDが規定の回転数まで回転した場合(ステップS205、Yes)、ステップS206に進む。ステップS206は、α(度)を360の約数とした上述の例におけるステップS105と同様なので説明を省略する。ステップS205における規定の回転数は2回転以上であればよいが、規定の回転数が大きくなるに従って、目盛GPの補正精度を向上させる効果は小さくなる。このため、2回転以上の適切な範囲で規定の回転数を設定することが好ましい。
Steps S201 to S204 are the same as steps S101 to S104 in the above-described example in which α (degree) is a divisor of 360, and a description thereof will be omitted. In step S205, if the encoder scale disk SD has not been rotated to the specified number of revolutions since the start of obtaining the correction value (step S205, No), the
次に、エンコーダヘッドEN4、EN5の配置について説明する。図6に示すように、第1読み取り部としてのエンコーダヘッドEN4及び第2読み取り部としてのエンコーダヘッドEN5は、処理部としての露光装置EX(図1参照)よりも円筒部材としての第2ドラム部材22の回転方向とは反対側に配置されることが好ましい。より具体的には、第2ドラム部材22に支持された基板Pが露光装置EXによって露光処理される部分よりも、第2ドラム部材22の回転方向とは反対側に配置されることが好ましい。すなわち、第2ドラム部材22に支持された基板Pが露光装置EXによって露光処理される部分よりも前の二箇所で目盛GPを読み取り、補正値を求める。図6に示す例において、第2ドラム部材22の回転方向は、エンコーダヘッドEN4からエンコーダヘッドEN5へ向かう方向である。エンコーダヘッドEN4、EN5をこのように配置することで、目盛GPが補正された後における第2ドラム部材22の周方向における位置情報を用いて処理(この例では露光処理)の制御にフィードバックすることができるので、処理の精度が向上する。
Next, the arrangement of the encoder heads EN4 and EN5 will be described. As shown in FIG. 6, the encoder head EN4 serving as the first reading unit and the encoder head EN5 serving as the second reading unit have a second drum member serving as a cylindrical member more than the exposure apparatus EX serving as the processing unit (see FIG. 1). 22 is preferably arranged on the opposite side to the rotation direction. More specifically, it is preferable that the substrate P supported by the
本実施形態においては、エンコーダヘッドEN4、EN5の両方を基板Pが露光装置EXによって露光処理される部分よりも、第2ドラム部材22の回転方向とは反対側に配置しているが、一方を露光処理される部分に配置してもよい。例えば、エンコーダヘッドEN5を第1読み取り部とし、エンコーダヘッドEN1を第2読み取り部とし、両者の読み取り値の差分に基づいて目盛GPの補正値を求めてもよい。
In the present embodiment, both the encoder heads EN4 and EN5 are arranged on the side opposite to the rotation direction of the
また、本実施形態では、アライメント顕微鏡AMG1、AMG2は、エンコーダヘッドEN4、EN5に対応した位置に配置されているので、基板Pの表面における変化をアライメント顕微鏡AMG1、AMG2で計測することにより、処理位置における基板Pの変化を予測して、処理時に補正することもできる。さらに、エンコーダヘッドEN4、EN5に加え、これらとは異なる位置、例えば、処理位置に配置されているエンコーダヘッドEN1、EN2の少なくとも一方を用いて、回転中心線AX2の振れ(回転中心線AX2と直交する方向における動き)、真円度(形状歪み)又は第2ドラム部材22の偏心等を計測し、その計測値に基づいて処理の補正をすることもできる。
In the present embodiment, the alignment microscopes AMG1 and AMG2 are arranged at positions corresponding to the encoder heads EN4 and EN5. Therefore, the change in the surface of the substrate P is measured by the alignment microscopes AMG1 and AMG2, and the processing position is measured. , The change of the substrate P in the above can be predicted and corrected at the time of processing. Further, using the encoder heads EN4 and EN5 and at least one of the encoder heads EN1 and EN2 arranged at a different position, for example, the processing position, the rotation of the rotation center line AX2 (perpendicular to the rotation center line AX2). Of the
回転中心線AX2の振れ又は第2ドラム部材22の偏心等を計測する場合、処理位置(露光処理の位置)に対してエンコーダヘッドEN4、EN5とは反対側に配置されている第3読み取り部としてのエンコーダヘッドEN3(図6参照)を、エンコーダヘッドEN4、EN5とともに用いることが好ましい。このようにすると、処理位置の前後で、回転中心線AX2の振れ等の計測結果を比較し、中間値を回転中心線AX2の振れに対する補正値とすることができる。また、処理位置を挟んで前後に配置されたエンコーダヘッドEN4、EN5とエンコーダヘッドEN3とを用いて回転中心線AX2の振れ等を計測し、その計測値に基づいて補正することにより、回転中心線AX2の振れ等を補正する際の精度が向上する。エンコーダヘッドEN3を第3読み取り部として用いる場合、エンコーダヘッドEN5と回転中心線AX2とを結ぶ直線(設置方位線Le5)とエンコーダヘッドEN3と回転中心線AX2とを結ぶ直線(設置方位線Le3)とのなす角度は、図6に示す210度に限定されるものではなく、エンコーダヘッドEN3が処理位置側にあってもよい。
When measuring the deflection of the rotation center line AX2 or the eccentricity of the
第1読み取り部としてのエンコーダヘッドEN4及び第2読み取り部としてのエンコーダヘッドEN5に加え、第3読み取り部としてのエンコーダヘッドEN3を用いる場合、エンコーダスケール円盤SDの周方向におけるエンコーダヘッドEN4とエンコーダヘッドEN5との間隔は、エンコーダヘッドEN5とエンコーダヘッドEN3との間隔よりも小さいことが好ましい。エンコーダヘッドEN4とエンコーダヘッドEN5との間隔を狭くすることで、目盛GPの補正精度を向上させることができる。また、エンコーダヘッドEN5とエンコーダヘッドEN3との間隔を広くすることで、第2ドラム部材22の偏心等を検出する際の感度を向上させることができる。
When the encoder head EN3 as the third reading unit is used in addition to the encoder head EN4 as the first reading unit and the encoder head EN5 as the second reading unit, the encoder head EN4 and the encoder head EN5 in the circumferential direction of the encoder scale disk SD. Is preferably smaller than the interval between the encoder heads EN5 and EN3. By reducing the interval between the encoder head EN4 and the encoder head EN5, the accuracy of correction of the scale GP can be improved. Further, by increasing the distance between the encoder head EN5 and the encoder head EN3, it is possible to improve the sensitivity when detecting the eccentricity or the like of the
次に、第1読み取り部としてのエンコーダヘッドEN4と第2読み取り部としてのエンコーダヘッドEN5とを配置する間隔について説明する。エンコーダヘッドEN4とエンコーダヘッドEN5とは、エンコーダヘッドEN4と回転中心線AX2とを結ぶ線(設置方位線Le4)とエンコーダヘッドEN5と回転中心線AX2とを結ぶ線(設置方位線Le5)とのなす中心角であるエンコーダ取付角度θsが、90度、180度及び270度以外の角度となるように配置されることが好ましい。このようにすることで、2個のエンコーダヘッドEN4、EN5で、回転中心線AX2の振れ又は第2ドラム部材22の偏心等を検出することもできる。さらに、エンコーダ取付角度θsは、45度以内が好ましく、かつ120度、240度以外の角度となることが好ましい。このようにすることで、2個のエンコーダヘッドEN4、EN5で、回転中心線AX2の振れ又は第2ドラム部材22の偏心等を検出しつつ、目盛GPの補正精度も向上する。次に、基板処理装置11がエンコーダスケール円盤SDの真円度を調整する機構を有している場合について説明する。
Next, an interval at which the encoder head EN4 as the first reading unit and the encoder head EN5 as the second reading unit are arranged will be described. The encoder head EN4 and the encoder head EN5 form a line connecting the encoder head EN4 and the rotation center line AX2 (installation azimuth line Le4) and a line connecting the encoder head EN5 and the rotation center line AX2 (installation azimuth line Le5). It is preferable that the encoder angle θs, which is the central angle, is arranged so as to be an angle other than 90 degrees, 180 degrees, and 270 degrees. In this way, the two encoder heads EN4 and EN5 can also detect the deflection of the rotation center line AX2, the eccentricity of the
図15及び図16は、エンコーダスケール円盤の真円度を調整する真円度調整機構を説明するための説明図である。上述した図4及び図5では、第2ドラム部材22の直径に対してエンコーダスケール円盤SDの直径は小さく図示されているが、第2ドラム部材22の外周面のうち、基板Pが巻き付けられる外周面の直径と、エンコーダスケール円盤SDの目盛GPの直径とを揃える(ほぼ一致させる)ことが好ましい。このようにすることで、いわゆる、計測アッベ誤差をさらに小さくすることができる。この場合、露光装置EXは、図13に示すようなエンコーダスケール円盤SDの真円度を調整する真円度調整機構Csを備えることが好ましい。
15 and 16 are explanatory diagrams for explaining a roundness adjusting mechanism for adjusting the roundness of the encoder scale disk. 4 and 5, the diameter of the encoder scale disk SD is smaller than the diameter of the
スケール部材であるエンコーダスケール円盤SDは円環状の部材である。目盛GPを外周面に有するエンコーダスケール円盤SDは、第2ドラム部材22の第2中心軸AX2と直交する第2ドラム部材22の少なくとも一方の端部に固定されている。エンコーダスケール円盤SDは、第2中心軸AX2の周方向に沿ってエンコーダスケール円盤SDに設けられた溝Scを、溝Scと同半径でかつ第2中心軸AX2の周方向に沿って第2ドラム部材22に設けられた溝Dcに対向させている。そして、エンコーダスケール円盤SDは、溝Scと溝Dcとの間に転動体(例えば、球)等の軸受部材SBを介在させている。
The encoder scale disk SD as a scale member is an annular member. The encoder scale disk SD having the scale GP on the outer peripheral surface is fixed to at least one end of the
真円度調整機構Csは、エンコーダスケール円盤SDの内周側に備えられ、調整部材60と、押圧部材PPとを含む。そして、真円度調整機構Csは、例えば設置方位線Le4と平行な方向である、第2中心軸AX2から目盛GPに向かう方向の押圧力を可変できる押圧機構を、回転中心線AX2を中心とする周方向に所定のピッチで複数(例えば、8箇所)備えている。調整部材60は、押圧部材PPを挿通し、エンコーダスケール円盤SDの雌ネジ部FP3及び第2ドラム部材22の雌ネジ部FP4にねじ込まれる雄ねじ部61と、押圧部材PPに接触するヘッド部62とを有する。押圧部材PPは、エンコーダスケール円盤SDの端部に周方向に沿ってエンコーダスケール円盤SDよりも半径の小さい円環状の固定板である。エンコーダスケール円盤SDは、第2ドラム部材22の周方向に向かって、複数の締結部材、すなわち雄ねじ部61及びヘッド部62を含む調整部材60によって、第2ドラム部材22の少なくとも一方の端部に固定される。
The roundness adjusting mechanism Cs is provided on the inner peripheral side of the encoder scale disk SD, and includes an adjusting
設置方位線Le4をエンコーダスケール円盤SDの内周側に延長した先には、エンコーダスケール円盤SDの内周側、かつ第2中心軸AX2と平行かつ第2中心軸AX2を含む断面において傾斜面FP2が形成されている。傾斜面FP2は、第2中心軸AX2に近づくにつれて、第2中心軸AX2と平行な方向の厚みが薄くなるような傾斜面である。押圧部材PPには、第2中心軸AX2に近づくにつれて第2中心軸AX2と平行な方向の厚みが厚くなるような傾斜面FP1が形成されている。そして、押圧部材PPは、エンコーダスケール円盤SDに対して、傾斜面FP2と傾斜面FP1とが対向するように調整部材60で固定されている。
Before the installation azimuth line Le4 is extended to the inner peripheral side of the encoder scale disk SD, an inclined surface FP2 is formed on the inner peripheral side of the encoder scale disk SD, in a section parallel to the second central axis AX2 and including the second central axis AX2. Are formed. The inclined surface FP2 is an inclined surface such that the thickness in a direction parallel to the second central axis AX2 becomes smaller as approaching the second central axis AX2. The inclined surface FP1 is formed on the pressing member PP such that the thickness in the direction parallel to the second central axis AX2 increases as the distance from the second central axis AX2 approaches. The pressing member PP is fixed to the encoder scale disk SD by the adjusting
真円度調整機構Csは、調整部材60の雄ねじ部61をエンコーダスケール円盤SDの雌ネジ部FP3にねじ込むことにより、押圧部材PPの傾斜面FP1の押圧力が傾斜面FP2に伝達され、エンコーダスケール円盤SDの内側から外周側に向けて微少量弾性変形する。逆に、雄ねじ部61を反対側に回転させることにより、押圧部材PPの傾斜面FP1の抑制された押圧力が傾斜面FP2に伝達され、エンコーダスケール円盤SDの外周側から内側に向けて微少量弾性変形する。
The roundness adjusting mechanism Cs transmits the pressing force of the inclined surface FP1 of the pressing member PP to the inclined surface FP2 by screwing the
真円度調整機構Csは、回転中心線AX2を中心とする周方向に所定のピッチで複数備える調整部材60において、雄ねじ部61を操作することにより、目盛GPの周方向の径を微少量調整することができる。また、真円度調整機構Csは、上述した設置方位線Le1〜Le5上にある目盛GPを微小変形させることができるので、目盛GPの周方向の径を高精度に調整することができる。従って、エンコーダスケール円盤SDの真円度に応じて、適切な位置の調整部材60を操作することにより、エンコーダスケール円盤SDの目盛GPの真円度を高めたり、回転中心線AX2に対する微少偏心誤差を低減させたりして、第2ドラム部材22に対する回転方向の位置検出精度を向上させることができる。なお、真円度調整機構Csが調整する調整量は、エンコーダスケール円盤SDの直径又は調整部材60の半径位置によって異なるが、最大でも数μm程度である。
The circularity adjusting mechanism Cs adjusts the diameter of the scale GP in the circumferential direction by a small amount by operating the
図16に示すように、エンコーダスケール円盤SDは、8個の調整部材60によって第2ドラム部材22に固定されている。この場合、第1読み取り部としてのエンコーダヘッドEN4と第2読み取り部としてのエンコーダヘッドEN5とは、エンコーダヘッドEN4と第2中心軸AX2とエンコーダヘッドEN5との中心角であるエンコーダ取付角度θsが、隣接する調整部材60と第2中心軸AX2とがなす中心角βよりも小さくなるように配置されることが好ましい。
As shown in FIG. 16, the encoder scale disk SD is fixed to the
エンコーダスケール円盤SDは、調整部材60によって第2ドラム部材22に固定されるので、調整部材60の近傍では変形が発生する可能性がある。上述したように、θs<βとすることで、エンコーダヘッドEN4、EN5は、隣接する調整部材60間における変形に起因する目盛GPの誤差を確実に検出することができる。その結果、目盛GPの補正精度が向上する。次に、基板処理装置(露光装置)の変形例を説明する。
Since the encoder scale disk SD is fixed to the
(基板処理装置(露光装置)の第1変形例)
図17は、基板処理装置(露光装置)の第1変形例を示す模式図である。図18は、基板処理装置(露光装置)の第1変形例に係るエンコーダスケール円盤を回転中心線方向に見た、読み取り装置の位置を説明するための説明図である。上述した実施形態においては、基板Pを支持する第2ドラム部材22の周方向における位置を検出する場合を例とした。これに限定されるものではなく、本変形例の露光装置EX1のように、円筒マスクDMを保持する第1ドラム部材21の周方向における位置を検出する場合も、一対のエンコーダヘッドを用いて第1ドラム部材21の周方向における位置を検出するための目盛GP(目盛)の誤差を補正することができる。
(First Modification of Substrate Processing Apparatus (Exposure Apparatus))
FIG. 17 is a schematic diagram illustrating a first modification of the substrate processing apparatus (exposure apparatus). FIG. 18 is an explanatory diagram for explaining the position of the reading device when the encoder scale disk according to the first modification of the substrate processing apparatus (exposure apparatus) is viewed in the rotation center line direction. In the above-described embodiment, the case where the position in the circumferential direction of the
露光装置EX1が有するエンコーダスケール円盤SDは、第2ドラム部材22の回転軸AX2と直交する第2ドラム部材22の両端部に固定されている。目盛GPは、両方のエンコーダスケール円盤SDの外周面に設けられている。このため、目盛GPは、第2ドラム部材22の両端部に配置されている。それぞれの目盛GPを読み取るエンコーダヘッドEN1〜EN5は、第2ドラム部材22の両端部側にそれぞれ配置されている。
The encoder scale disk SD of the exposure apparatus EX1 is fixed to both ends of the
上述した実施形態で説明した第1検出器25(図1参照)は、第1ドラム部材21の回転位置を光学的に検出するものであって、高真円度のエンコーダスケール円盤(スケール部材)SDと、読み取り装置であるエンコーダヘッドEH1、EH2、EH3、EH4、EH5を含む。エンコーダスケール円盤SDは、第1ドラム部材21の回転軸と直交する第1ドラム部材21の少なくとも1つの端部(図16では両端部)に固定されている。このため、エンコーダスケール円盤SDは、回転中心線AX1周りに回転軸STとともに一体的に回転する。エンコーダスケール円盤SDの外周面には、目盛GPMが刻設されている。エンコーダヘッドEH1、EH2、EH3、EH4、EH5は、回転軸STMから見て目盛GPの周囲に配置されている。エンコーダヘッドEH1、EH2、EH3、EH4、EH5は、目盛GPMと対向配置され、目盛GPMを非接触で読み取ることができる。また、エンコーダヘッドEH1、EH2、EH3、EH4、EH5は、第1ドラム部材21の周方向の異なる位置に配置されている。第1ドラム部材21は、エンコーダヘッドEH4からエンコーダヘッドEH5に向かって回転する。
The first detector 25 (see FIG. 1) described in the above-described embodiment optically detects the rotational position of the
エンコーダヘッドEH1、EH2、EH3、EH4、EH5は、目盛GPMの接線方向(XZ面内)における変位の変動に対して計測感度(検出感度)を有する読み取り装置である。図17に示すように、エンコーダヘッドEH1、EH2の設置方位(回転中心線AX1を中心としたXZ面内での角度方向)を設置方位線Le11、Le12で表すと、この設置方位線Le11、Le12が、中心面P3に対して角度±θ°になるように、各エンコーダヘッドEH1、EH2を配置する。そして、設置方位線Le11、Le12は、図1に示す照明光束EL1の回転中心線AX1を中心としたXZ面内での角度方向と一致している。ここで、処理部である照明機構IUは、被処理物体である円筒マスクDM上の所定のパターン(マスクパターン)に照明光束EL1を透過させる処理を行う。これにより、投影光学系PLは、円筒マスクDM上の照明領域IRにおけるパターンの像を、搬送装置によって搬送されている基板Pの一部(投影領域PA)に投影することができる。 The encoder heads EH1, EH2, EH3, EH4, and EH5 are reading devices that have measurement sensitivity (detection sensitivity) with respect to variation in displacement in the tangential direction (in the XZ plane) of the scale GPM. As shown in FIG. 17, when the installation orientations of the encoder heads EH1 and EH2 (angular directions in the XZ plane about the rotation center line AX1) are represented by the installation orientation lines Le11 and Le12, the installation orientation lines Le11 and Le12. However, the encoder heads EH1 and EH2 are arranged so that the angle is ± θ ° with respect to the center plane P3. The installation azimuth lines Le11 and Le12 coincide with the angular directions in the XZ plane about the rotation center line AX1 of the illumination light beam EL1 shown in FIG. Here, the illumination mechanism IU, which is a processing unit, performs a process of transmitting the illumination light beam EL1 to a predetermined pattern (mask pattern) on the cylindrical mask DM, which is an object to be processed. Accordingly, the projection optical system PL can project the image of the pattern in the illumination region IR on the cylindrical mask DM onto a part (projection region PA) of the substrate P being transported by the transport device.
エンコーダヘッドEH4は、第1ドラム部材21の中心面P3に対して回転方向の後方側に向かってエンコーダヘッドEH1の設置方位線Le11を回転中心線AX1の軸周りに、ほぼ90°回転した設置方位線Le14上に設定される。また、エンコーダヘッドEH5は、第1ドラム部材21の中心面P3に対して回転方向の後方側に向かってエンコーダヘッドEH2の設置方位線Le12を回転中心線AX1の軸周りにほぼ90°回転した設置方位線Le15上に設定される。ここで、ほぼ90°とは、90°±γとする場合、γの範囲は、上述した実施形態と同一である。
The encoder head EH4 rotates the installation orientation line Le11 of the encoder head EH1 substantially 90 ° around the axis of the rotation center line AX1 toward the rear side in the rotation direction with respect to the center plane P3 of the
また、エンコーダヘッドEH3は、エンコーダヘッドEH2の設置方位線Le12を回転中心線AX1の軸周りにほぼ120°回転し、かつエンコーダヘッドEH4を回転中心線AX1の軸周りにほぼ120°回転した設置方位線Le13上に設定される。本実施形態における第1ドラム部材21の周囲に配置されたエンコーダヘッドEH1、EH2、EH3、EH4、EH5の配置は、上述した実施形態における、第2ドラム部材22の周囲に配置されたエンコーダヘッドEN1、EN2、EN3、EN4、EN5と、鏡像反転した関係にある。
Further, the encoder head EH3 rotates the installation azimuth line Le12 of the encoder head EH2 approximately 120 ° around the axis of the rotation center line AX1, and rotates the encoder head EH4 approximately 120 ° around the axis of the rotation center line AX1. It is set on the line Le13. The arrangement of the encoder heads EH1, EH2, EH3, EH4, and EH5 arranged around the
上述したように、露光装置EX1は、円筒部材である第2ドラム部材22と、目盛GPと、露光装置EX1の処理部である投影モジュールPL1〜PL6と、目盛GPを読み取る第1読み取り装置であるエンコーダヘッドEN4、EN5と、目盛GPを読み取る第2読み取り装置であるエンコーダヘッドEN1、EN2と、を備える。
As described above, the exposure device EX1 is a first reading device that reads the
第1ドラム部材21は、所定の軸である第1中心軸AX1から一定半径で湾曲した曲面を有し、かつ第1中心軸AX1周りを回転する。目盛GPMは、第1ドラム部材21の周方向に沿って環状に配列され、かつ第1ドラム部材21とともに第1中心軸AX1の周囲を回転する。露光装置EX1の処理部である照明機構IUは、第2中心軸AX2から見て第1ドラム部材21の内部に配置され、第1ドラム部材21の周方向のうち特定位置における曲面にある基板P(被処理物体)に対して2つの照明光束EL1を透過させる処理を行う。そして、エンコーダヘッドEH4、EH5は、第1中心軸AX1から見て目盛GPMの周囲に配置され、かつ第1中心軸AX1を中心に、前述した特定位置を第1中心軸AX1周りにほぼ90度回転した位置に配置され、目盛GPMを読み取る。エンコーダヘッドEH1、EH2は、前述した特定位置の目盛GPMを読み取る。そして、露光装置EX1は、エンコーダヘッドEH4、EH5の読み取り値に基づき、第1ドラム部材21に取り付けられているエンコーダスケール円盤SDの外周部に設けられる目盛GPMの誤差(ピッチ誤差)を補正する。このため、露光装置EX1は、精度よく第1ドラム部材21の周方向における位置を計測し、第2ドラム部材22の曲面にある被処理物体、つまり基板Pに処理を施すことができる。上述したように、本実施形態において、エンコーダヘッドEH4、EH5の読み取り値に基づき誤差が補正される場合、具体的には露光装置EXの制御装置14は、エンコーダヘッドEH4の読み取り値とエンコーダヘッドEH5の読み取り値との差分に基づき、ピッチ誤差を補正する。しかしながら、第1ドラム部材21の目盛GPMの周囲に、エンコーダヘッドEH4、EH5のいずれかと近い設置角度で他のエンコーダヘッドが設けられる場合は、エンコーダヘッドEH4、EH5の両読み取り値の直接的な差分計算に限らず、エンコーダヘッドEH4、EH5と他のエンコーダヘッドとの3つのエンコーダヘッドの各読み取り値に基づく演算によってピッチ誤差を求めることも可能である。3つのエンコーダヘッドによるピッチ誤差の計測については、後で詳細に説明する。
The
(基板処理装置(露光装置)の第2変形例)
図19は、基板処理装置(露光装置)の第2変形例の全体構成を示す模式図である。露光装置EX2は、図示しない光源装置が、円筒マスクDMに照明される照明光束EL1を出射する。光源装置の光源から出射された照明光束EL1を照明モジュールILに導き、照明光学系が複数設けられている場合、光源からの照明光束EL1を複数に分離し、複数の照明光束EL1を複数の照明モジュールILに導く。
(Second Modification of Substrate Processing Apparatus (Exposure Apparatus))
FIG. 19 is a schematic diagram illustrating an overall configuration of a second modification of the substrate processing apparatus (exposure apparatus). In the exposure apparatus EX2, a light source device (not shown) emits an illumination light beam EL1 illuminated on the cylindrical mask DM. The illumination light beam EL1 emitted from the light source of the light source device is guided to the illumination module IL, and when a plurality of illumination optical systems are provided, the illumination light beam EL1 from the light source is separated into a plurality of illumination light beams and the plurality of illumination light beams EL1 are divided into a plurality of illumination lights. Lead to module IL.
光源装置から出射された照明光束EL1は、偏光ビームスプリッタSP1、SP2に入射する。偏光ビームスプリッタSP1、SP2では、照明光束EL1の分離によるエネルギーロスを抑制するため、入射された照明光束EL1がすべて反射するような光束にすることが好ましい。ここで、偏光ビームスプリッタSP1、SP2は、S偏光の直線偏光となる光束を反射し、P偏光の直線偏光となる光束を透過する。このため、光源装置は、偏光ビームスプリッタSP1、SP2に入射する照明光束EL1が直線偏光(S偏光)の光束となる照明光束EL1を第1ドラム部材21に出射する。これにより、光源装置は、波長及び位相が揃った照明光束EL1を出射する。
The illumination light beam EL1 emitted from the light source device enters the polarization beam splitters SP1 and SP2. In the polarization beam splitters SP1 and SP2, in order to suppress energy loss due to the separation of the illumination light beam EL1, it is preferable to make the light beam such that all the incident illumination light beam EL1 is reflected. Here, the polarization beam splitters SP1 and SP2 reflect the luminous flux that becomes S-polarized linearly polarized light and transmit the luminous flux that becomes P-polarized linearly polarized light. Therefore, the light source device emits, to the
偏光ビームスプリッタSP1、SP2は、光源からの照明光束EL1を反射する一方で、円筒マスクDMで反射された投影光束EL2を透過している。換言すれば、照明光学モジュールILMからの照明光束EL1は、偏光ビームスプリッタSP1、SP2に反射光束として入射し、円筒マスクDMからの投影光束EL2は、偏光ビームスプリッタSP1、SP2に透過光束として入射する。 The polarization beam splitters SP1 and SP2 reflect the illumination light beam EL1 from the light source, while transmitting the projection light beam EL2 reflected by the cylindrical mask DM. In other words, the illumination light beam EL1 from the illumination optical module ILM enters the polarization beam splitters SP1 and SP2 as reflected light beams, and the projection light beam EL2 from the cylindrical mask DM enters the polarization beam splitters SP1 and SP2 as transmitted light beams. .
このように処理部である照明モジュールILは、被処理物体である円筒マスクDM上の所定のパターン(マスクパターン)に照明光束EL1を反射させる処理を行う。これにより、投影光学系PLは、円筒マスクDM上の照明領域IRにおけるパターンの像を、搬送装置によって搬送されている基板Pの一部(投影領域)に投影することができる。 As described above, the illumination module IL, which is a processing unit, performs a process of reflecting the illumination light beam EL1 on a predetermined pattern (mask pattern) on the cylindrical mask DM that is an object to be processed. Thereby, the projection optical system PL can project the image of the pattern in the illumination region IR on the cylindrical mask DM onto a part (projection region) of the substrate P being transported by the transport device.
このような円筒マスクDMの曲面の表面に照明光束EL1を反射させる所定のパターン(マスクパターン)を設ける場合、このマスクパターンとともに、曲面に目盛GPmを設けることもできる。この目盛GPmをマスクパターンと同時に形成した場合には、マスクパターンと同じ精度で目盛GPmが形成される。このため、目盛GPmを検出する曲面検出プローブGS1、GS2で、目盛GPmのマークの像を高速かつ高精度にサンプリングすることができる。このサンプリングが行われた瞬間に、第1ドラム部材21の回転角度位置と目盛GPmとの対応関係が求められ、逐次計測される第1ドラム部材21の回転角度位置を記憶することができる。
When a predetermined pattern (mask pattern) for reflecting the illumination light beam EL1 is provided on the curved surface of the cylindrical mask DM, a scale GPm can be provided on the curved surface together with the mask pattern. When the scale GPm is formed simultaneously with the mask pattern, the scale GPm is formed with the same precision as the mask pattern. Therefore, the curved surface detection probes GS1 and GS2 that detect the scale GPm can sample the mark image of the scale GPm at high speed and with high accuracy. At the moment when the sampling is performed, the correspondence between the rotation angle position of the
円筒マスクDM側のエンコーダヘッドEH4、EH5は、目盛GPmを読み取る。そして、露光装置EX2は、エンコーダヘッドEH4、EH5の読み取り値の差分に基づき、円筒マスクDMの表面に設けられている目盛GPmの誤差を補正する。このため、露光装置EX2は、精度よく円筒マスクDMの周方向における位置を計測し、第2ドラム部材22の曲面にある基板Pに処理を施すことができる。
The encoder heads EH4 and EH5 on the side of the cylindrical mask DM read the scale GPm. Then, the exposure apparatus EX2 corrects an error of the scale GPm provided on the surface of the cylindrical mask DM based on the difference between the read values of the encoder heads EH4 and EH5. For this reason, the exposure apparatus EX2 can accurately measure the position of the cylindrical mask DM in the circumferential direction and perform processing on the substrate P on the curved surface of the
第2ドラム部材22側のエンコーダヘッドEN4、EN5は、第2ドラム部材22に取り付けられたエンコーダスケール円盤SDの目盛GPdを読み取る。そして、露光装置EX2は、エンコーダヘッドEN4、EN5の読み取り値の差分に基づき、エンコーダスケール円盤SDの表面に設けられている目盛GPdの誤差を補正する。このため、露光装置EX2は、精度よく第2ドラム部材22の周方向における位置を計測し、第2ドラム部材22の曲面にある基板Pに処理を施すことができる。
The encoder heads EN4 and EN5 on the
(基板処理装置(露光装置)の第3変形例)
図20は、基板処理装置(露光装置)の第3変形例の全体構成を示す模式図である。露光装置EX3は、図示しない光源装置からの露光用ビームを入射するポリゴン走査ユニットPO1、PO2を備え、ポリゴン走査ユニットPOが基板P上の1次元の走査ラインに沿って強度変調されるスポット光を走査する。基板処理装置が有する露光装置EX3は、円筒マスクDMがなくても特定位置における基板Pに露光光を照射し、所定のパターンを描画することができる。
(Third Modification of Substrate Processing Apparatus (Exposure Apparatus))
FIG. 20 is a schematic diagram illustrating an overall configuration of a third modification of the substrate processing apparatus (exposure apparatus). The exposure apparatus EX3 includes polygon scanning units PO1 and PO2 that receive an exposure beam from a light source device (not shown). The polygon scanning unit PO emits spot light whose intensity is modulated along a one-dimensional scanning line on the substrate P. Scan. The exposure apparatus EX3 included in the substrate processing apparatus can draw a predetermined pattern by irradiating the substrate P at a specific position with exposure light without the cylindrical mask DM.
露光装置EX3の第2ドラム部材22側のエンコーダヘッドEN4、EN5は、第2ドラム部材22に取り付けられたエンコーダスケール円盤SDの目盛GPdを読み取る。そして、露光装置EX2は、エンコーダヘッドEN4、EN5の読み取り値の差分に基づき、エンコーダスケール円盤SDの表面に設けられている目盛GPdの誤差を補正する。このため、露光装置EX2は、精度よく第2ドラム部材22の周方向における位置を計測し、第2ドラム部材22の曲面にある基板Pに処理を施すことができる。
The encoder heads EN4 and EN5 on the
図20(及び図19)のように、第2ドラム部材22側のエンコーダヘッドEN4、EN5は、周方向に2列のアライメント顕微鏡AMG1、AMG2が配置されるために、その各々に対応して配置された。しかしながら、アライメント顕微鏡AMG1、AMG2のうち、例えばアライメント顕微鏡AMG2(及び対応するエンコーダヘッドEN5)のみしか配置されない場合もある。そのような場合でも、エンコーダヘッドEN4を設けておくのがよい。アライメント顕微鏡AMG2(及び対応するエンコーダヘッドEN5)のみしか配置されず、その近傍に回転角度αでエンコーダヘッドEN4が設置できない場合、露光位置に対応して配置したエンコーダヘッドEN1、EN2を用いて、スケール円盤SDのスケールGPdのピッチ誤差や偏心等の誤差マップを作成してもよい。
As shown in FIG. 20 (and FIG. 19), the encoder heads EN4 and EN5 on the
さらに、2つのエンコーダヘッドEN4、EN5を使って求めたスケールGPdのピッチ誤差及び偏心等の少なくとも1つの誤差マップと、2つのエンコーダヘッドEN1、EN2を使って求めたスケールGPdのピッチ誤差及び偏心等の少なくとも一つの誤差マップとを比較して、両方の誤差マップに大きな違いが存在するか否かを検証し、許容値以上の違いが生じているときは、誤差マップを再度作成し直すことで、誤差マップの精度及び信頼性を向上させることができる。 Further, at least one error map such as pitch error and eccentricity of the scale GPd obtained by using the two encoder heads EN4 and EN5, and pitch error and eccentricity of the scale GPd obtained by using the two encoder heads EN1 and EN2. By comparing with at least one error map, it is verified whether there is a large difference between both error maps, and if there is a difference exceeding the allowable value, re-create the error map again , The accuracy and reliability of the error map can be improved.
(基板処理装置(露光装置)の第4変形例)
図21は、基板処理装置(露光装置)の第4変形例の全体構成を示す模式図である。露光装置EX4は、いわゆるプロキシミティ露光を基板Pに施す基板処理装置である。露光装置EX4は、円筒マスクDMと、第2ドラム部材22との隙間を微小に設定して、照明機構IUが直接基板Pに照明光束EL1を照射し、非接触露光する。本実施形態において、第2ドラム部材22は、電動モーター等のアクチュエータを含む第2駆動部36から供給されるトルクによって回転する。第2駆動部36の回転方向と逆周りとなるように、例えば磁気歯車で連結された駆動ローラMGGが第1ドラム部材21を駆動する。第2駆動部36は、第2ドラム部材22を回転するとともに、駆動ローラMGGと第1ドラム部材21とを回転させ、第1ドラム部材21(円筒マスクDM)と第2ドラム部材22とを同期移動(同期回転)させる。
(Fourth Modified Example of Substrate Processing Apparatus (Exposure Apparatus))
FIG. 21 is a schematic diagram illustrating an overall configuration of a fourth modification of the substrate processing apparatus (exposure apparatus). The exposure apparatus EX4 is a substrate processing apparatus that performs so-called proximity exposure on the substrate P. The exposure apparatus EX4 sets the gap between the cylindrical mask DM and the
また、露光装置EX4は、基板Pに対して結像光束EL2の主光線が基板Pに入射する特定位置の目盛GPの位置PX6を検出するエンコーダヘッドEN6を備えている。ここで、第2ドラム部材22の外周面のうち基板Pが巻き付けられる外周面の直径と、エンコーダスケール円盤SDの目盛GPの直径とを揃えているので、位置PX6は、第2中心軸AX2から見て上述した特定位置と一致する。そして、エンコーダヘッドEN7は、基板Pの送り方向の後方側に向かってエンコーダヘッドEN6の設置方位線Le6を回転中心線AX2の軸周りに、ほぼ90°回転した設置方位線Le7上に設定される。
The exposure apparatus EX4 includes an encoder head EN6 that detects a position PX6 of a graduation GP at a specific position where the principal ray of the imaging light beam EL2 enters the substrate P with respect to the substrate P. Here, since the diameter of the outer peripheral surface of the outer peripheral surface of the
露光装置EX4は、例えば、エンコーダヘッドEN3を第1読み取り部とし、エンコーダヘッドEN7を第2読み取り部とする。エンコーダヘッドEN3、EN7は、第2ドラム部材22に取り付けられたエンコーダスケール円盤SDの目盛GPdを読み取る。制御装置14は、エンコーダヘッドEN3、EN7の読み取り値の差分に基づき、エンコーダスケール円盤SDの表面に設けられている目盛GPdの誤差を補正する。このため、露光装置EX4は、精度よく第2ドラム部材22の周方向における位置を計測し、第2ドラム部材22の曲面にある基板Pに処理を施すことができる。エンコーダヘッドEN3、EN7は、エンコーダヘッドEN3と第2中心軸AX2とを結ぶ線(設置方位線Le3)とエンコーダヘッドEN7と第2中心軸AX2とを結ぶ線(設置方位線Le7)とのなすエンコーダ取付角度θsを90度未満、好ましくは45度以下としてもよい。
The exposure apparatus EX4 uses, for example, the encoder head EN3 as a first reading unit and the encoder head EN7 as a second reading unit. The encoder heads EN3 and EN7 read the scale GPd of the encoder scale disk SD attached to the
上述した実施形態及び基板処理装置(露光装置)の第1変形例〜第4変形例は、基板処理装置として露光装置を例示している。基板処理装置としては、露光装置に限られず、処理部がインクジェットのインク滴下装置により被処理物体である基板Pにパターンを印刷する装置であってもよい。また、処理部は、検査装置であってもよい。 The first to fourth modifications of the above-described embodiment and the substrate processing apparatus (exposure apparatus) exemplify the exposure apparatus as the substrate processing apparatus. The substrate processing apparatus is not limited to an exposure apparatus, but may be an apparatus in which a processing unit prints a pattern on a substrate P, which is an object to be processed, using an inkjet ink dropping apparatus. Further, the processing unit may be an inspection device.
ところで、先の図7、図8を用いたエンコーダヘッドEN4、EN5による目盛GPの読み取り動作の説明では、目盛GPの1つの目盛の立ち上がり部GPaを読み取ったとき、アップパルスUを出力し、立ち下がり部GPbを読み取ったときにダウンパルスDを出力するものとし、隣接した2つの立ち上がり部GPa間の間隔、又は隣接した立ち下がり部GPb間の間隔を、目盛GPのピッチSSとした。しかしながら、実際のエンコーダ計測システムは、例えば、特開平9−196702号公報に開示されているように、信号発生部(エンコーダヘッド)から出力される2相信号(90度の位相差を持つ正弦波信号及び余弦波信号)を、内挿回路やコンパレータ等によって、目盛GPの実寸のピッチSSを数分の一〜数十分の一に細分化した間隔でアップパルスU及びダウンパルスDを発生するように構成される。 By the way, in the description of the reading operation of the graduation GP by the encoder heads EN4 and EN5 with reference to FIGS. 7 and 8, the up pulse U is output when the rising portion GPa of one graduation of the graduation GP is read. When the falling part GPb is read, a down pulse D is output, and the interval between two adjacent rising parts GPa or the interval between adjacent falling parts GPb is defined as the pitch SS of the scale GP. However, an actual encoder measurement system includes a two-phase signal (a sine wave having a phase difference of 90 degrees) output from a signal generation unit (encoder head) as disclosed in, for example, JP-A-9-196702. Signal and cosine wave signal) by means of an interpolation circuit, a comparator, etc., to generate an up pulse U and a down pulse D at intervals obtained by subdividing the actual pitch SS of the graduation GP into several tenths to several tenths. It is configured as follows.
図22は、先の図4〜6、図10及び図16〜21の各々で示したエンコーダヘッドEN1〜EN7、EH1〜EH5による目盛GP(GPd、GPM)の実際の読み取り動作を簡単に説明するための信号波形図である。図22に示されるように、エンコーダヘッドEN1〜EN7、EH1〜EH5の各々は、90度の位相差を有する2つの計測信号(ここでは矩形波で表す)EcA、EcBを出力する。計測信号EcA、EcBの1周期は目盛GPのピッチSSの1/nに対応している。n(整数)はエンコーダヘッド内の光学的な読み取り形態によって異なるが、例えば、1、2、4、8、・・・等の倍数系列のいずれかの値に設定される。通常のエンコーダ計測システムでは、スケール円盤SDが順方向に回転し、目盛GPがエンコーダヘッドに対して常に一方向に移動している間は、計測信号EcA、EcBに基づいて内挿化されたアップパルス信号EcUが生成され続ける。スケール円盤SDが逆転した場合は、その時点から、計測信号EcA、EcBに基づいて内挿化されたダウンパルス信号が生成され続ける。 FIG. 22 briefly describes the actual reading operation of the graduation GP (GPd, GPM) by the encoder heads EN1 to EN7 and EH1 to EH5 shown in FIGS. 4 to 6, FIG. 10 and FIGS. FIG. 4 is a signal waveform diagram for the present invention. As shown in FIG. 22, each of encoder heads EN1 to EN7 and EH1 to EH5 outputs two measurement signals EcA and EcB having a phase difference of 90 degrees (represented here by rectangular waves). One cycle of the measurement signals EcA and EcB corresponds to 1 / n of the pitch SS of the scale GP. n (integer) differs depending on the optical reading mode in the encoder head, but is set to any value of a multiple series such as 1, 2, 4, 8,. In a normal encoder measurement system, while the scale disk SD is rotating in the forward direction and the scale GP is always moving in one direction with respect to the encoder head, the scaled-up data interpolated based on the measurement signals EcA and EcB. The pulse signal EcU continues to be generated. When the scale disk SD is reversed, the interpolated down pulse signal based on the measurement signals EcA and EcB continues to be generated from that point.
図22では、計測信号EcA、EcBの1周期を8分割した間隔でパルスを発生するようなアップパルス信号EcU(又はダウンパルス信号EcD)を送出する処理回路が使われる。計数器としてのアップダウンカウンターは、アップパルス信号EcUが入力されるときは、そのパルス数を逐次カウントアップし、ダウンパルス信号EcDが入力されるときは、そのパルス数を逐次カウントダウンする。ここで、例えば、計測信号EcA、EcBの1周期が、目盛GPの実寸のピッチSSの1/8に対応するものとすると、アップダウンカウンターは、スケール円盤SD(目盛GP)のスケール面が順方向に1ピッチSSだけ移動する間、アップパルス信号EcUの64パルス分を計数することになる。従って、目盛GPのピッチSSが20μmの場合、アップダウンカウンターによる1ピッチ分の計数値の増分は64になり、エンコーダ計測システムとしての計測分解能(信号EcUの1パルス当りの移動量)は、0.3125μm(20μm/64)となる。このように、エンコーダ計測システムとしての計測分解能は、目盛GPのピッチSSの実寸を数分の一〜数十分の一程度に内挿補間して微細化されるため、ピッチSSの誤差は、その内挿補間の程度に応じた精度で求められる。 In FIG. 22, a processing circuit that transmits an up pulse signal EcU (or a down pulse signal EcD) that generates a pulse at intervals obtained by dividing one cycle of the measurement signals EcA and EcB into eight is used. The up-down counter as a counter sequentially counts up the number of pulses when the up-pulse signal EcU is input, and sequentially counts down the number of pulses when the down-pulse signal EcD is input. Here, for example, assuming that one cycle of the measurement signals EcA and EcB corresponds to 1 / of the actual pitch SS of the scale GP, the up-down counter determines that the scale surface of the scale disk SD (scale GP) is in order. While moving in the direction by one pitch SS, 64 pulses of the up pulse signal EcU are counted. Therefore, when the pitch SS of the scale GP is 20 μm, the increment of the count value for one pitch by the up / down counter is 64, and the measurement resolution (movement amount per signal EcU pulse) of the encoder measurement system is 0. .3125 μm (20 μm / 64). As described above, the measurement resolution as the encoder measurement system is refined by interpolating the actual size of the pitch SS of the scale GP to several tenths to several tenths. It is obtained with an accuracy corresponding to the degree of the interpolation.
なお、スケール円盤SDのスケール面の周長距離(直径×π)を有限の目盛本数(格子本数)で割った値とする場合、実際の目盛GPのピッチSSの実寸は20μmに対して端数を伴う場合もある。これに対して、計測分解能が切りのよい値(例えば、0.25μm)になるようにピッチSSを設定し、そのピッチSSでスケール円盤SDのスケール面の周長距離が所定精度内で割り切れるように、スケール面の直径を設定するようにしてもよい。 When the circumference length (diameter × π) of the scale surface of the scale disk SD is divided by a finite number of graduations (the number of grids), the actual size of the pitch SS of the actual graduation GP is a fraction of 20 μm. May be accompanied. On the other hand, the pitch SS is set so that the measurement resolution becomes a sharp value (for example, 0.25 μm), and the circumferential length of the scale surface of the scale disk SD is divisible within the predetermined accuracy by the pitch SS. Alternatively, the diameter of the scale surface may be set.
ところで、スケール円盤SD等のスケール面には、目盛GPとともに、スケール円盤SDの1回転の原点となる原点マークが刻設されており、エンコーダヘッドEN1〜EN7の各々は、その原点マークを検出すると、その瞬間に原点信号(パルス)EcZを出力する。アップダウンカウンターは、原点信号EcZに応答して、それまでの計数値をゼロにリセットしてから、再びアップパルス信号EcU(又はダウンパルス信号EcD)のパルス数の計数を継続する。従って、エンコーダヘッドEN1〜EN7の各々に対応して設けられるアップダウンカウンターの各々は、原点信号EcZを受けた瞬間を基準(ゼロ点)として、アップパルス信号EcU(又はダウンパルス信号EcD)のパルス数を加算(又は減算)している。 By the way, on the scale surface of the scale disk SD or the like, an origin mark serving as the origin of one rotation of the scale disk SD is engraved together with the scale GP, and each of the encoder heads EN1 to EN7 detects the origin mark. At that moment, an origin signal (pulse) EcZ is output. The up-down counter resets the count value to zero in response to the origin signal EcZ, and then continues counting the number of pulses of the up-pulse signal EcU (or the down-pulse signal EcD) again. Therefore, each of the up / down counters provided corresponding to each of the encoder heads EN1 to EN7 has a pulse of the up pulse signal EcU (or the down pulse signal EcD) with the moment when the origin signal EcZ is received as a reference (zero point). Numbers are added (or subtracted).
以上のことから、例えば、エンコーダヘッドEN4とエンコーダヘッドEN5との各々による計測値の差分によって目盛GPのピッチ誤差を求める際は、スケール円盤SD(第2ドラム部材22)が図11〜図13で説明したように、角度αだけ回転する度に、エンコーダヘッドEN4に対応したアップダウンカウンターの計数値と、エンコーダヘッドEN5に対応したアップダウンカウンターの計数値との差分をデジタル的に演算するだけでよい。また、角度αは、エンコーダヘッドEN4とエンコーダヘッドEN5とのいずれか一方(あるいは他の1つのエンコーダヘッドでもよい)に対応したアップダウンカウンターの計数値が、角度α分に対応した一定値だけ増加(又は減少)したか否かを判定することで検知できる。 From the above, for example, when calculating the pitch error of the scale GP based on the difference between the measurement values of the encoder head EN4 and the encoder head EN5, the scale disk SD (the second drum member 22) is used in FIGS. As described above, every time the motor rotates by the angle α, it is only necessary to digitally calculate the difference between the count value of the up / down counter corresponding to the encoder head EN4 and the count value of the up / down counter corresponding to the encoder head EN5. Good. The angle α increases the count value of the up / down counter corresponding to one of the encoder heads EN4 and EN5 (or may be another encoder head) by a constant value corresponding to the angle α. It can be detected by determining whether (or decreased).
(変形例1)
以上の実施形態及び変形例では、エンコーダ計測システムを構成する目盛GPは、回転体としてのスケール円盤SD及び第2ドラム部材22の少なくとも一方の円筒状の外周面に刻設されていた。しかしながら、スケール円盤SD及び第2ドラム部材22の少なくとも一方の回転中心線AX2と垂直な側端面に、円周方向に沿って所定ピッチで目盛GPを形成してもよい。図23は、そのようにスケール円盤SDの側端面に目盛GPを形成する場合の構成を、先の図6と同様に回転中心線AX2が延びる方向(Y軸方向)から見た図であり、図24は、図23の構成を、設置方位線Le4と回転中心線AX2とを含む面で破断したA−A’矢視断面図である。
(Modification 1)
In the above embodiments and modifications, the scale GP configuring the encoder measurement system is engraved on at least one of the cylindrical outer peripheral surfaces of the scale disk SD as the rotating body and the
図23において、リング状のスケール円盤SDは、第2ドラム部材22の側端面の8箇所に、調整部材(ネジ)60で取り付けられている。調整部材(ネジ)60の取り付け角度βは、ここでは45°になる。スケール円盤SDのXZ面と平行な側面には、回転中心線AX2から半径raの円周上に沿って、一定ピッチSSの目盛GPと原点マークZsとが形成されている。エンコーダヘッドEN4、EN5は、図24に示されるように、目盛GPと一定のギャップで対向するようにY軸方向に向けて配置される。図23に示されるように、エンコーダヘッドEN4の読取位置RP4は、半径ra上であって、且つ設置方位線Le4上に設定される。エンコーダヘッドEN5の読取位置RP5は、半径ra上であって、且つ設置方位線Le5上に設定される。半径raは、図24に示されるように、第2ドラム部材22の基板Pを密着支持する外周面22sの半径である。従って、リング状のスケール円盤SDの最大径は、半径raよりも少し大きく設定される。このように、スケール円盤SDとエンコーダヘッドEN4、EN5とを配置することで、計測時のアッベ誤差を最小にすることができる。図23及び図24のリング状のスケール円盤SDに対する他のエンコーダヘッド(EN1〜EN3、EN6〜EN7)も、ヘッドEN4、EN5と同様に計測のアッベ条件を満たすように配置される。
In FIG. 23, ring-shaped scale disks SD are attached to eight side end surfaces of the
(変形例2)
以上の実施形態及び変形例では、目盛GPのピッチ誤差の計測のために、互いに近くに配置された2つのエンコーダヘッド(例えばエンコーダヘッドEN4、EN5)の各々の計測値の差分値を、スケール円盤SD(第2ドラム部材22)が角度α(α<θs)だけ回転する度に記憶して、スケール円盤SDの全周分のピッチ誤差に関するマップを作成するとした。その場合、マップの精度を高めるためには、2つのエンコーダヘッド(例えばエンコーダヘッドEN4、EN5)の各々のスケール面上での読取位置(図23中のRP4、RP5に相当)が成す角度θsをできる限り小さくすることが好ましい。しかしながら、エンコーダヘッドEN4、EN5の外形形状及び寸法、又はアライメント顕微鏡AMG1、AMG2の配置によって決まる設置方位線Le4、Le5間の角度によって、角度θsを十分に小さくできないことがある。
(Modification 2)
In the above-described embodiments and modified examples, in order to measure the pitch error of the scale GP, the difference between the measured values of the two encoder heads (for example, the encoder heads EN4 and EN5) arranged close to each other is calculated by using the scale disk. Each time the SD (the second drum member 22) rotates by the angle α (α <θs), it is stored to create a map relating to the pitch error of the entire circumference of the scale disk SD. In this case, in order to increase the accuracy of the map, the angle θs formed by the reading positions (corresponding to RP4 and RP5 in FIG. 23) on each scale surface of the two encoder heads (for example, the encoder heads EN4 and EN5) is determined. It is preferable to make it as small as possible. However, the angle θs may not be sufficiently small depending on the outer shapes and dimensions of the encoder heads EN4 and EN5 or the angles between the installation azimuth lines Le4 and Le5 determined by the arrangement of the alignment microscopes AMG1 and AMG2.
そこで、変形例2では、例えば、先の実施形態においてピッチ誤差計測に使用された2つのエンコーダヘッドEN4、EN5とともに、その近くに配置されるエンコーダヘッドEN1(又はEN2)を加えた3つ以上のエンコーダヘッドの各々による計測値を使って、ピッチ誤差マップをさらに微細化する。図25は、先の図6と同様に、スケール円盤SD(ここではリング状)とエンコーダヘッドEN1、EN2、EN4、EN5との配置をXZ面内で見た図であり、ここでは、スケール円盤SDの外周面に沿って、目盛GPと原点マークZsが形成されている。また、スケール円盤SDは、周方向の16ヶ所で調整部材(ネジ)60で第2ドラム部材22の側端面に固定されているものとする。従って、調整部材(ネジ)60の取付け角度βは、22.5°となる。
Therefore, in the second modification, for example, three or more encoder heads EN1 (or EN2) arranged near the two encoder heads EN4 and EN5 used for the pitch error measurement in the previous embodiment are added. The pitch error map is further refined using the measurements from each of the encoder heads. FIG. 25 is a diagram showing the arrangement of the scale disk SD (here, ring-shaped) and the encoder heads EN1, EN2, EN4, and EN5 in the XZ plane, as in FIG. Scale GP and origin mark Zs are formed along the outer peripheral surface of SD. Further, it is assumed that the scale disk SD is fixed to the side end surface of the
図25に示されるように、奇数番の露光位置に対応した設置方位線Le1上に読取位置が設定されるエンコーダヘッドEN1と、偶数番の露光位置に対応した設置方位線Le2上に読取位置が設定されるエンコーダヘッドEN2とは、XZ面内では、中心面P3に対して角度±θで配置される。また、エンコーダヘッドEN4、EN5の各々の読取位置を通る設置方位線Le4、Le5がなす角度θsは、θs>βの関係になっている。さらに、エンコーダヘッドEN1の読取位置を通る設置方位線Le1と、エンコーダヘッドEN4の読取位置を通る設置方位線Le4とのなす角度をθqとする。また、エンコーダヘッドEN1、EN2、EN4、EN5の各々に対応して設けられるアップダウンカウンターの計数値を、それぞれCm1、Cm2、Cm4、Cm5とする。 As shown in FIG. 25, the encoder head EN1 whose reading position is set on the installation azimuth line Le1 corresponding to the odd-numbered exposure position, and the reading position is set on the installation azimuth line Le2 corresponding to the even-numbered exposure position. The set encoder head EN2 is disposed at an angle ± θ with respect to the center plane P3 in the XZ plane. The angles θs formed by the installation azimuth lines Le4 and Le5 passing through the reading positions of the encoder heads EN4 and EN5 have a relationship of θs> β. Further, an angle between the installation azimuth line Le1 passing through the reading position of the encoder head EN1 and the installation azimuth line Le4 passing through the reading position of the encoder head EN4 is defined as θq. Also, the count values of the up / down counters provided for each of the encoder heads EN1, EN2, EN4, and EN5 are Cm1, Cm2, Cm4, and Cm5, respectively.
図25に示されるスケール円盤SD(第2ドラム部材22)が、XZ面内で時計周りに回転する場合、スケール円盤SDのスケール面に形成された原点マークZsは、エンコーダヘッドEN4、EN5、EN1、EN2の順番で、各読取位置を横切っていく。従って、原点マークZsがエンコーダヘッドEN4の読取位置を横切った瞬間に、対応するアップダウンカウンターの計数値Cm4がゼロリセットされ、原点マークZsがエンコーダヘッドEN5の読取位置を横切った瞬間に、対応するアップダウンカウンターの計数値Cm5がゼロリセットされ、原点マークZsがエンコーダヘッドEN1の読取位置を横切った瞬間に、対応するアップダウンカウンターの計数値Cm1がゼロリセットされ、原点マークZsがエンコーダヘッドEN2の読取位置を横切った瞬間に、対応するアップダウンカウンターの計数値Cm2がゼロリセットされる。スケール円盤SDが時計周りに回転する場合、4つのアップダウンカウンターの全てがゼロリセットされた後の各計数値Cm1、Cm2、Cm4、Cm5は、常にCm2<Cm1<Cm5<Cm4の関係になっている。 When the scale disk SD (the second drum member 22) shown in FIG. 25 rotates clockwise in the XZ plane, the origin mark Zs formed on the scale surface of the scale disk SD corresponds to the encoder heads EN4, EN5, and EN1. , EN2 in the order of the reading positions. Accordingly, the moment the origin mark Zs crosses the reading position of the encoder head EN4, the count value Cm4 of the corresponding up / down counter is reset to zero, and the moment the origin mark Zs crosses the reading position of the encoder head EN5. When the count value Cm5 of the up / down counter is reset to zero and the origin mark Zs crosses the reading position of the encoder head EN1, the count value Cm1 of the corresponding up / down counter is reset to zero and the origin mark Zs is set to the encoder head EN2. At the moment of crossing the reading position, the count value Cm2 of the corresponding up / down counter is reset to zero. When the scale disk SD rotates clockwise, the count values Cm1, Cm2, Cm4, and Cm5 after all the four up / down counters are reset to zero always have the relationship of Cm2 <Cm1 <Cm5 <Cm4. I have.
そこで、3つのエンコーダヘッドEN1(計数値Cm1)、EN4(計数値Cm4)、及びEN5(計数値Cm5)を用いてピッチ誤差を求めて、誤差マップ(補正マップ)を作成する場合は、スケール円盤SD(第2ドラム部材22)が一定角度α(α<β<θs)だけ回転する度に、以下の式(1)によって、単位角度α毎のピッチ誤差に関連した計測値ΔMsを求める。この計測値ΔMsは、先の図11中に示された目盛GPの本数NSに相当するものであるが、実際は、図22に示されるアップパルス(又はダウンパルス)EcUのパルスの計数値となる。
ΔMs=(Cm4+Cm1)/2−Cm5 ・・・式(1)
Therefore, when a pitch error is obtained using the three encoder heads EN1 (count value Cm1), EN4 (count value Cm4), and EN5 (count value Cm5) to create an error map (correction map), a scale disk is used. Each time the SD (second drum member 22) rotates by a certain angle α (α <β <θs), a measurement value ΔMs related to the pitch error for each unit angle α is obtained by the following equation (1). This measurement value ΔMs corresponds to the number NS of the scales GP shown in FIG. 11 described above, but is actually a count value of the up pulse (or down pulse) EcU shown in FIG. .
ΔMs = (Cm4 + Cm1) / 2−Cm5 Equation (1)
この式(1)において、(Cm4+Cm1)/2の計算値は、図25に示されるように、エンコーダヘッドEN4の読取位置RP4とエンコーダヘッドEN1の読取位置RP1との中間点となる角度位置に設定される仮想的な設置方位線Leiに、エンコーダヘッドの読取位置RPiが設定されたときに得られると予想される計数値を表している。従って、式(1)又は後述する(2)で得られる計測値ΔMsは、仮想的なエンコーダヘッドによる読取位置RPiでの計数値Cmi(計算上の値)と、エンコーダヘッドEN5の読取位置RP5での計数値Cm5との差分となる。その計測値ΔMsを単位角度α毎に、360度分求めることによって、スケール円盤SD等のスケール(目盛GP)のピッチ誤差マップ、あるいはピッチ誤差補正マップが作成できる。 In the equation (1), the calculated value of (Cm4 + Cm1) / 2 is set to an angular position that is an intermediate point between the reading position RP4 of the encoder head EN4 and the reading position RP1 of the encoder head EN1, as shown in FIG. Represents the count value expected to be obtained when the reading position RPi of the encoder head is set to the virtual installation azimuth line Lei. Therefore, the measurement value ΔMs obtained by the expression (1) or (2) described later is calculated by the count value Cmi (calculated value) at the reading position RPi by the virtual encoder head and the reading position RP5 of the encoder head EN5. Is the difference from the count value Cm5. By obtaining the measured value ΔMs by 360 degrees for each unit angle α, a pitch error map or a pitch error correction map of a scale (scale GP) such as the scale disk SD can be created.
ところで、図25に示されるような配置の場合、原点マークZsがエンコーダヘッドEN4の読取位置RP4とエンコーダヘッドEN1の読取位置RP1との間を通過している期間では、計数値Cm4や計測値Cm5がゼロリセットされた後なので、3つの計数値Cm1、Cm4、Cm5の連続性が担保されない可能性がある。その期間では、計数値Cm1、Cm4、Cm5(絶対値)の大小関係が、Cm4<Cm1<Cm5、あるいはCm5<Cm4<Cm1になっている。そこで、ゼロリセット時から次のゼロリセット時までの間にアップダウンカウンターで計数される最大の計数値(固定値)をCmfとし、角度α毎に、各エンコーダヘッドEN1、EN4、EN5に対応した計数値Cm1、Cm4、Cm5を読み込む際に、原点マークZsがエンコーダヘッドEN4の読取位置RP4とエンコーダヘッドEN5の読取位置RP5との間にあるときは、アップダウンカウンターの計数値Cm4に最大計数値Cmfを加えた新たな計数値Cm4’を、式(1)中の計数値Cm4の代わりに用いればよい。同様に、原点マークZsがエンコーダヘッドEN5の読取位置RP5とエンコーダヘッドEN1の読取位置RP1との間にあるときは、アップダウンカウンターの計数値Cm4、Cm5の各々に最大計数値Cmfを加えた新たな計数値Cm4’、Cm5’を、式(1)中の計数値Cm4、Cm5の代わりに用いればよい。 By the way, in the case of the arrangement shown in FIG. 25, during the period in which the origin mark Zs passes between the reading position RP4 of the encoder head EN4 and the reading position RP1 of the encoder head EN1, the count value Cm4 and the measurement value Cm5 Has been reset to zero, the continuity of the three count values Cm1, Cm4 and Cm5 may not be ensured. In that period, the magnitude relationship between the count values Cm1, Cm4, and Cm5 (absolute values) is Cm4 <Cm1 <Cm5 or Cm5 <Cm4 <Cm1. Therefore, the maximum count value (fixed value) counted by the up / down counter from the time of zero reset to the time of the next zero reset is defined as Cmf, and each encoder head EN1, EN4, EN5 is provided for each angle α. When reading the count values Cm1, Cm4, and Cm5, when the origin mark Zs is between the read position RP4 of the encoder head EN4 and the read position RP5 of the encoder head EN5, the count value Cm4 of the up / down counter is the maximum count value. A new count value Cm4 ′ to which Cmf has been added may be used instead of the count value Cm4 in the equation (1). Similarly, when the origin mark Zs is between the reading position RP5 of the encoder head EN5 and the reading position RP1 of the encoder head EN1, a new value obtained by adding the maximum count value Cmf to each of the count values Cm4 and Cm5 of the up / down counter. The simple count values Cm4 ′ and Cm5 ′ may be used instead of the count values Cm4 and Cm5 in the equation (1).
変形例2の場合、第1読み取り部は、2つのエンコーダヘッドEN1、EN4(あるいは1つのエンコーダヘッドEN5)を含んで構成され、第2読み取り部は、1つのエンコーダヘッドEN5(あるいは2つのエンコーダヘッドEN1、EN4)を含んで構成される。以上の構成において、角度θsと角度θqを適当な関係に設定すると、仮想的な読取位置RPiと読取位置RP5とがなす角度を、調整部材(ネジ)60の取付け角度β(図25では22.5°)よりも小さくすることができ、調整部材60による真円度、偏心等の調整後に残留するスケール円盤SDのスケール面の僅かな変形によるピッチ誤差(ピッチムラ)を、角度β以下のスパンで詳細に計測することができる。
In the case of the second modification, the first reading unit includes two encoder heads EN1 and EN4 (or one encoder head EN5), and the second reading unit includes one encoder head EN5 (or two encoder heads). EN1 and EN4). In the above configuration, if the angle θs and the angle θq are set to an appropriate relationship, the angle formed by the virtual reading position RPi and the reading position RP5 is determined by the mounting angle β of the adjustment member (screw) 60 (22. 5 °), and a pitch error (pitch unevenness) due to slight deformation of the scale surface of the scale disk SD remaining after adjustment of the roundness, eccentricity, and the like by the
また、以上のようにスケール面上に仮想的な読取位置RPiを設定する方法では、例えば、図25に示される2つのエンコーダヘッドEN4、EN1の各読取位置RP4、RP1の中間点に設定される仮想的な第1の読取位置RPiで求まる計算上の計数値と、2つのエンコーダヘッドEN5、EN2の各読取位置RP5、RP2の中間点に設定される仮想的な第2の読取位置RPiで求まる計算上の計数値との差分によって、ピッチ誤差を求めてもよい。その場合の単位角度α毎の計測値ΔMsは、以下の式(2)によって計算される。
ΔMs=(Cm4+Cm1)/2−(Cm5+Cm2)/2 ・・・式(2)
In the method of setting the virtual reading position RPi on the scale surface as described above, for example, the virtual reading position RPi is set at the intermediate point between the reading positions RP4 and RP1 of the two encoder heads EN4 and EN1 shown in FIG. The calculated count value obtained at the virtual first reading position RPi and the virtual second reading position RPi set at the intermediate point between the reading positions RP5 and RP2 of the two encoder heads EN5 and EN2. The pitch error may be obtained from the difference from the calculated count value. In this case, the measurement value ΔMs for each unit angle α is calculated by the following equation (2).
ΔMs = (Cm4 + Cm1) / 2− (Cm5 + Cm2) / 2 Expression (2)
(デバイス製造方法)
図26は、実施形態に係る基板処理装置(露光装置)を用いてデバイスを製造するデバイス製造方法の手順を示すフローチャートである。このデバイス製造方法では、まず、例えば有機EL等の自発光素子による表示パネルの機能・性能設計を行い、必要な回路パターンや配線パターンをCAD等で設計する(ステップS201)。次いで、CAD等で設計された各種レイヤー毎のパターンに基づいて、必要なレイヤー分の円筒マスクDMを製作する(ステップS202)。また、表示パネルの基材となる可撓性の基板P(樹脂フィルム、金属箔膜、プラスチック等)が巻かれた供給用ロールFR1を準備しておく(ステップS203)。なお、このステップS203で用意しておくロール状の基板Pは、必要に応じてその表面を改質したもの、下地層(例えばインプリント方式による微小凹凸)を事前形成したもの、光感応性の機能膜や透明膜(絶縁材料)を予めラミネートしたもの、でもよい。
(Device manufacturing method)
FIG. 26 is a flowchart illustrating a procedure of a device manufacturing method for manufacturing a device using the substrate processing apparatus (exposure apparatus) according to the embodiment. In this device manufacturing method, first, the function and performance of a display panel are designed using self-luminous elements such as an organic EL, and necessary circuit patterns and wiring patterns are designed by CAD or the like (step S201). Next, a cylindrical mask DM for a necessary layer is manufactured based on a pattern for each layer designed by CAD or the like (step S202). Further, a supply roll FR1 around which a flexible substrate P (resin film, metal foil film, plastic, or the like) serving as a base material of the display panel is wound is prepared (Step S203). The roll-shaped substrate P prepared in step S203 has a surface modified as necessary, a base layer (for example, fine irregularities formed by an imprint method) previously formed, A functional film or a transparent film (insulating material) laminated in advance may be used.
次いで、基板P上に表示パネルデバイスを構成する電極や配線、絶縁膜、TFT(薄膜半導体)等によって構成されるバックプレーン層を形成するとともに、そのバックプレーンに積層されるように、有機EL等の自発光素子による発光層(表示画素部)が形成される(ステップS204)。このステップS204には、先の各実施形態で説明した露光装置EX、EX2、EX3、EX4を用いて、フォトレジスト層を露光する従来のフォトリソグラフィ工程も含まれるが、フォトレジストの代わりに感光性シランカップリング材を塗布した基板Pをパターン露光して表面に親撥水性によるパターンを形成する露光工程、光感応性の触媒層をパターン露光し無電解メッキ法によって金属膜のパターン(配線、電極等)を形成する湿式工程又は銀ナノ粒子を含有した導電性インク等によってパターンを描画する印刷工程、等による処理も含まれる。 Next, a backplane layer composed of electrodes, wirings, insulating films, TFTs (thin film semiconductors) and the like constituting the display panel device is formed on the substrate P, and an organic EL or the like is laminated on the backplane. A light emitting layer (display pixel portion) is formed by the self light emitting element (step S204). This step S204 includes a conventional photolithography step of exposing a photoresist layer using the exposure apparatus EX, EX2, EX3, EX4 described in each of the above embodiments. An exposure step of pattern-exposing the substrate P coated with the silane coupling material to form a water-repellent pattern on the surface, pattern-exposing the photosensitive catalyst layer, and electroless plating to form a metal film pattern (wiring, electrode And the like, and a printing process of drawing a pattern with a conductive ink containing silver nanoparticles or the like.
次いで、ロール方式で長尺の基板P上に連続的に製造される表示パネルデバイス毎に、基板Pをダイシングしたり、各表示パネルデバイスの表面に、保護フィルム(対環境バリア層)やカラーフィルターシート等を貼り合せたりして、デバイスを組み立てる(ステップS205)。次いで、表示パネルデバイスが正常に機能するか、所望の性能や特性を満たしているかの検査工程が行われる(ステップS206)。以上のようにして、表示パネル(フレキシブル・ディスプレイ)を製造することができる。 Next, for each display panel device continuously manufactured on the long substrate P by a roll method, the substrate P is diced, or a protective film (for environmental barrier layer) or a color filter is formed on the surface of each display panel device. The device is assembled by bonding sheets or the like (step S205). Next, an inspection process is performed to determine whether the display panel device functions normally or satisfies desired performance and characteristics (step S206). As described above, a display panel (flexible display) can be manufactured.
上記実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型のレチクルを用いたが、このレチクルに代えて、例えば米国特許第6778257号明細書に記載されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形のレチクル(電子レチクル、アクティブレチクル、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形のレチクルに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしてもよい。 In the above embodiment, a light-transmitting reticle in which a predetermined light-shielding pattern (or a phase pattern or a dimming pattern) is formed on a light-transmitting substrate is used, but instead of this reticle, for example, US Pat. No. 6,778,257 As described in the specification, a variable-shaped reticle that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed (also referred to as an electronic reticle, an active reticle, or an image generator). May be used. Further, a pattern forming apparatus including a self-luminous image display element may be provided instead of the variable-shaped reticle including the non-luminous image display element.
また、上記実施形態の露光装置は、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度及び光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、露光装置の組立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムを組み合わせて露光装置に組み立てる工程は、各種サブシステム相互の機械的接続、電気回路の配線接続及び気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組立工程の前に、各サブシステム個々の組立工程があることはいうまでもない。各種サブシステムの露光装置への組立工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。 Further, the exposure apparatus of the above embodiment is manufactured by assembling various subsystems including the respective components recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Is done. Before and after assembling the exposure apparatus, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical Adjustments are made to the system to achieve electrical accuracy. The process of assembling an exposure apparatus by combining various subsystems includes mechanical connection between various subsystems, wiring connection of an electric circuit, and piping connection of a pneumatic circuit. It goes without saying that there is an assembling process for each subsystem before the assembling process from the various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable that the manufacture of the exposure apparatus be performed in a clean room in which the temperature, cleanliness, and the like are controlled.
また、上記実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。さらに、本発明の要旨を逸脱しない範囲で構成要素の置換又は変更を行うこともできる。また、法令で許容される限りにおいて、上述の実施形態で引用した露光装置等に関するすべての公開公報及び米国特許の記載を援用して本明細書の記載の一部とする。このように、上記実施形態に基づいて当業者等によりなされる他の実施形態及び運用技術等は、すべて本発明の範囲に含まれる。 Also, the components of the above embodiment can be appropriately combined. In some cases, some components may not be used. Further, the components can be replaced or changed without departing from the spirit of the present invention. In addition, to the extent permitted by law, the disclosures of all the publications and U.S. patents relating to the exposure apparatus and the like cited in the above embodiments are incorporated herein by reference. As described above, other embodiments, operation techniques, and the like performed by those skilled in the art based on the above embodiments are all included in the scope of the present invention.
11 基板処理装置
14 制御装置
21 第1ドラム部材
22 第2ドラム部材
25 第1検出器
35 第2検出器
60 調整部材
61 雄ねじ部
62 ヘッド部
AX1 回転中心線(第1中心軸)
AX2 回転中心線(第2中心軸)
Cs 真円度調整機構
DM 円筒マスク
EN、EN1、EN2、EN3、EN4、EN5、EH1、EH2、EH3、EH4、EH5 エンコーダヘッド
EX、EX1、EX2、EX3、EX4 露光装置
GP、GPd、GPM、GPm スケール
NS 計測スケール数
P 基板
SD エンコーダスケール円盤
TBc 補正マップ
AX2 rotation center line (second center axis)
Cs Roundness adjusting mechanism DM Cylindrical mask EN, EN1, EN2, EN3, EN4, EN5, EH1, EH2, EH3, EH4, EH5 Encoder head EX, EX1, EX2, EX3, EX4 Exposure devices GP, GPd, GPM, GPm Scale NS Number of measurement scales P Substrate SD Encoder scale disk TBc Correction map
Claims (7)
中心線から一定半径で円筒状に湾曲した外周面で前記シート基板を支持すると共に、前記中心線の回りに回転して前記シート基板を長尺方向に搬送する回転ドラムと、
前記シート基板の前記回転ドラムの外周面で支持された周方向の範囲内の特定位置で、前記シート基板に処理を施す処理部と、
前記回転ドラムが回転する周方向に沿って環状に設けられ、前記回転ドラムと共に前記中心線の回りに回転して、前記シート基板の周方向における位置変化をエンコーダ計測する為のスケール目盛と、
周方向の第1の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第1エンコーダヘッドと、
前記第1の方位に対して周方向に角度θqだけ回転した第2の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第2エンコーダヘッドと、
周方向に関して前記第1の方位と前記第2の方位との間であって、前記第2の方位に対して周方向に角度θsだけ回転した第3の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第3エンコーダヘッドと、
前記第1エンコーダヘッドによる第1読み取り値をCm1、前記第2エンコーダヘッドによる第2読み取り値をCm4、前記第3エンコーダヘッドによる第3読み取り値をCm5としたとき、ΔMs=(Cm1+Cm4)/2−Cm5で算出される計測値ΔMsを、前記スケール目盛の一定角度αの回転毎に逐次記憶し、前記スケール目盛の全周に渡るピッチ誤差に関する誤差情報を記憶する記憶部と、を備え、
前記回転ドラムの回転に伴う前記スケール目盛の周方向の移動方向に関して、上流側から前記第2エンコーダヘッド、前記第3エンコーダヘッド、前記第1エンコーダヘッドの順に配置すると共に、前記一定角度αと前記角度θsとをα<θsの関係に設定した、基板処理装置。 A substrate processing apparatus that transports a long sheet substrate having flexibility in a long direction and performs a predetermined process on the sheet substrate,
A rotary drum that supports the sheet substrate on an outer peripheral surface that is cylindrically curved with a constant radius from a center line, and rotates around the center line to convey the sheet substrate in a longitudinal direction,
A processing unit that performs processing on the sheet substrate at a specific position within a circumferential direction of the sheet substrate supported by an outer peripheral surface of the rotating drum,
A scale is provided annularly along the circumferential direction in which the rotating drum rotates, rotates around the center line together with the rotating drum, and measures the position change in the circumferential direction of the sheet substrate by encoder measurement.
A first encoder head that is arranged in a first direction in a circumferential direction so as to face the scale scale and reads the scale scale;
A second encoder head that is arranged in a second direction rotated in the circumferential direction by an angle θq with respect to the first direction to face the scale scale, and reads the scale scale;
A third azimuth between the first azimuth and the second azimuth with respect to the circumferential direction and rotated by an angle θs in the circumferential direction with respect to the second azimuth so as to face the scale graduation. A third encoder head arranged to read the scale mark;
When the first read value by the first encoder head is Cm1, the second read value by the second encoder head is Cm4, and the third read value by the third encoder head is Cm5, ΔMs = (Cm1 + Cm4) / 2− A storage unit for sequentially storing the measurement value ΔMs calculated by Cm5 for each rotation of the scale graduation at a fixed angle α, and storing error information relating to a pitch error over the entire circumference of the scale graduation ,
With respect to the circumferential direction of movement of the scale scale accompanying the rotation of the rotary drum, the second encoder head, the third encoder head, and the first encoder head are arranged in this order from the upstream side, and the fixed angle α and the A substrate processing apparatus , wherein an angle θs is set in a relation of α <θs .
前記角度θsは、45度以内に設定され、
前記一定角度αは、360度の約数以外の値、360度に対して素数となる値、360度/αの値が小数点以下1桁〜4桁で割り切れる値、のいずれかに設定される、
基板処理装置。 The substrate processing apparatus according to claim 1 ,
The angle θs is set within 45 degrees,
The constant angle α is set to one of a value other than a divisor of 360 degrees, a value that is a prime number with respect to 360 degrees, and a value that can be divided by one to four digits after the decimal point. ,
Substrate processing equipment.
前記第1エンコーダヘッドが配置される前記第1の方位は、前記処理部が処理を施す前記特定位置の周方向に関する方位と同じに設定され、
前記処理部によって前記シート基板に処理を施す際は、前記第1エンコーダヘッドによる前記第1読み取り値を、前記記憶部に記憶された前記誤差情報に基づいて補正した値を、前記シート基板の前記長尺の方向の搬送位置又は搬送量として出力する補正部を、更に備える
基板処理装置。 The substrate processing apparatus according to claim 1 or 2 ,
The first azimuth where the first encoder head is arranged is set to be the same as the azimuth in the circumferential direction of the specific position to be processed by the processing unit,
When performing processing on the sheet substrate by the processing unit, the first read value by the first encoder head, the value corrected based on the error information stored in the storage unit, the value of the sheet substrate A substrate processing apparatus further comprising a correction unit that outputs a transfer position or a transfer amount in a long direction.
前記スケール目盛は、前記中心線が延びる方向の前記回転ドラムの少なくとも一方の端部に前記中心線と同軸に固定されて、前記回転ドラムと共に回転するスケール円盤の前記中心線と平行な外周部に刻設される、
基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 3,
The scale is fixed coaxially with the center line at at least one end of the rotating drum in a direction in which the center line extends, on an outer peripheral portion parallel to the center line of the scale disk that rotates with the rotating drum. Engraved,
Substrate processing equipment.
前記スケール円盤を前記回転ドラムの端部に固定する為に、前記スケール円盤の周方向に沿って所定の取り付け角度β毎に配置される複数の締結部材が設けられ、
前記取り付け角度β、前記一定角度α、前記角度θsは、α<β<θsの関係に設定される、
基板処理装置。 The substrate processing apparatus according to claim 4 , wherein
In order to fix the scale disk to the end of the rotating drum, a plurality of fastening members are provided at predetermined attachment angles β along the circumferential direction of the scale disk,
The attachment angle β, the fixed angle α, and the angle θs are set in a relationship of α <β <θs.
Substrate processing equipment.
前記スケール目盛は、全周のうちの1ヶ所に設けられた原点マークを含み、
前記第1読み取り値Cm1を出力すると共に、前記第1エンコーダヘッドが前記原点マークを検出した瞬間に前記第1読み取り値Cm1をゼロリセットする第1の計数器と、
前記第2読み取り値Cm4を出力すると共に、前記第2エンコーダヘッドが前記原点マークを検出した瞬間に前記第2読み取り値Cm4をゼロリセットする第2の計数器と、
前記第3読み取り値Cm5を出力すると共に、前記第3エンコーダヘッドが前記原点マークを検出した瞬間に前記第3読み取り値Cm5をゼロリセットする第3の計数器と、を更に備える、
基板処理装置。 The substrate processing apparatus according to claim 1 or 2,
The scale graduation includes an origin mark provided at one place of the entire circumference,
A first counter that outputs the first read value Cm1 and resets the first read value Cm1 to zero at the moment when the first encoder head detects the origin mark;
A second counter that outputs the second read value Cm4 and resets the second read value Cm4 to zero at the moment when the second encoder head detects the origin mark;
A third counter that outputs the third read value Cm5 and resets the third read value Cm5 to zero at the moment when the third encoder head detects the origin mark.
Substrate processing equipment.
前記スケール目盛の1回転中に、3つの前記計数器の各々で計数される最大計数値をCmfとしたとき、
前記原点マークが前記第2エンコーダヘッドの読取位置と前記第3エンコーダヘッドの読取位置の間にある場合は、前記第2の計数器が出力する前記第2読み取り値Cm4に前記最大計数値Cmfを加えた計数値Cm4’を用いて、前記計測値ΔMsを、ΔMs=(Cm1+Cm4’)/2−Cm5で算出し、
前記原点マークが前記第3エンコーダヘッドの読取位置と前記第1エンコーダヘッドの読取位置の間にある場合は、前記第3の計数器が出力する前記第3読み取り値Cm5に前記最大計数値Cmfを加えた計数値Cm5’と前記計数値Cm4’を用いて、前記計測値ΔMsを、ΔMs=(Cm1+Cm4’)/2−Cm5’で算出する、
基板処理装置。 The substrate processing apparatus according to claim 6 ,
When the maximum count value counted by each of the three counters during one rotation of the scale is Cmf,
When the origin mark is located between the reading position of the second encoder head and the reading position of the third encoder head, the maximum count value Cmf is added to the second read value Cm4 output by the second counter. Using the added count value Cm4 ′, the measurement value ΔMs is calculated as ΔMs = (Cm1 + Cm4 ′) / 2−Cm5,
When the origin mark is between the reading position of the third encoder head and the reading position of the first encoder head, the maximum reading Cmf is added to the third reading Cm5 output by the third counter. Using the added count value Cm5 ′ and the count value Cm4 ′, the measurement value ΔMs is calculated as ΔMs = (Cm1 + Cm4 ′) / 2−Cm5 ′.
Substrate processing equipment.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014149763 | 2014-07-23 | ||
JP2014149763 | 2014-07-23 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018037938A Division JP6551562B2 (en) | 2014-07-23 | 2018-03-02 | Sheet substrate transfer device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020025525A Division JP2020079954A (en) | 2014-07-23 | 2020-02-18 | Substrate processing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019091076A JP2019091076A (en) | 2019-06-13 |
JP6665957B2 true JP6665957B2 (en) | 2020-03-13 |
Family
ID=55162946
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016535876A Active JP6460110B2 (en) | 2014-07-23 | 2015-07-10 | Cylindrical member position detection apparatus, substrate processing apparatus, and device manufacturing method |
JP2018037938A Active JP6551562B2 (en) | 2014-07-23 | 2018-03-02 | Sheet substrate transfer device |
JP2019028051A Active JP6665957B2 (en) | 2014-07-23 | 2019-02-20 | Substrate processing equipment |
JP2020025525A Pending JP2020079954A (en) | 2014-07-23 | 2020-02-18 | Substrate processing apparatus |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016535876A Active JP6460110B2 (en) | 2014-07-23 | 2015-07-10 | Cylindrical member position detection apparatus, substrate processing apparatus, and device manufacturing method |
JP2018037938A Active JP6551562B2 (en) | 2014-07-23 | 2018-03-02 | Sheet substrate transfer device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020025525A Pending JP2020079954A (en) | 2014-07-23 | 2020-02-18 | Substrate processing apparatus |
Country Status (3)
Country | Link |
---|---|
JP (4) | JP6460110B2 (en) |
TW (4) | TWI677901B (en) |
WO (1) | WO2016013417A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7381204B2 (en) * | 2019-01-29 | 2023-11-15 | ファナック株式会社 | robot |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02195208A (en) * | 1989-01-25 | 1990-08-01 | Yamaha Corp | Detected signal processing circuit for encoder |
JP4224154B2 (en) * | 1998-10-15 | 2009-02-12 | 株式会社アミテック | Self-calibration type angle detection device and detection accuracy calibration method |
JP4090016B2 (en) * | 2002-03-11 | 2008-05-28 | 多摩川精機株式会社 | Self-calibrating angle detector |
JP2007064771A (en) * | 2005-08-31 | 2007-03-15 | Japan Servo Co Ltd | Error correction device for encoder |
JP5198761B2 (en) * | 2006-12-11 | 2013-05-15 | 株式会社ミツトヨ | Rotational displacement correction device and displacement detection device |
JP5417957B2 (en) * | 2009-04-13 | 2014-02-19 | セイコーエプソン株式会社 | Recording apparatus and correction pattern recording method |
JP5765002B2 (en) * | 2011-03-29 | 2015-08-19 | 株式会社ニコン | Position detecting scale measuring device, position detecting scale measuring method, and scale manufacturing method |
WO2013146184A1 (en) * | 2012-03-26 | 2013-10-03 | 株式会社ニコン | Substrate processing device, processing device, and method for manufacturing device |
JP6123252B2 (en) * | 2012-11-21 | 2017-05-10 | 株式会社ニコン | Processing apparatus and device manufacturing method |
JP6074898B2 (en) * | 2012-03-26 | 2017-02-08 | 株式会社ニコン | Substrate processing equipment |
KR101890099B1 (en) * | 2012-09-14 | 2018-08-20 | 가부시키가이샤 니콘 | Substrate processing device and device manufacturing method |
-
2015
- 2015-07-10 JP JP2016535876A patent/JP6460110B2/en active Active
- 2015-07-10 WO PCT/JP2015/069859 patent/WO2016013417A1/en active Application Filing
- 2015-07-23 TW TW108100387A patent/TWI677901B/en active
- 2015-07-23 TW TW107137773A patent/TWI668736B/en active
- 2015-07-23 TW TW108137624A patent/TWI710009B/en active
- 2015-07-23 TW TW104123905A patent/TWI649784B/en active
-
2018
- 2018-03-02 JP JP2018037938A patent/JP6551562B2/en active Active
-
2019
- 2019-02-20 JP JP2019028051A patent/JP6665957B2/en active Active
-
2020
- 2020-02-18 JP JP2020025525A patent/JP2020079954A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TWI668736B (en) | 2019-08-11 |
TWI710009B (en) | 2020-11-11 |
JPWO2016013417A1 (en) | 2017-05-25 |
TW201604935A (en) | 2016-02-01 |
TW202004850A (en) | 2020-01-16 |
TW201907447A (en) | 2019-02-16 |
WO2016013417A1 (en) | 2016-01-28 |
JP2018106197A (en) | 2018-07-05 |
TWI677901B (en) | 2019-11-21 |
JP6460110B2 (en) | 2019-01-30 |
JP6551562B2 (en) | 2019-07-31 |
JP2019091076A (en) | 2019-06-13 |
TW201921440A (en) | 2019-06-01 |
JP2020079954A (en) | 2020-05-28 |
TWI649784B (en) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI686678B (en) | Substrate processing apparatus | |
JP6074898B2 (en) | Substrate processing equipment | |
JP6123252B2 (en) | Processing apparatus and device manufacturing method | |
JP6665957B2 (en) | Substrate processing equipment | |
JP6551175B2 (en) | Rotating cylindrical body measuring apparatus, substrate processing apparatus, and device manufacturing method | |
JP6787447B2 (en) | Board processing equipment | |
JP6531622B2 (en) | Cylindrical mask, exposure system | |
JP7004041B2 (en) | Exposure device | |
JP6528882B2 (en) | Substrate processing equipment | |
JP6750703B2 (en) | Pattern forming equipment | |
JP6252697B2 (en) | Substrate processing equipment | |
JP6332482B2 (en) | Substrate processing equipment | |
JP6327305B2 (en) | Pattern exposure apparatus and device manufacturing method | |
JP6705531B2 (en) | Device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6665957 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |