Nothing Special   »   [go: up one dir, main page]

JP6521025B2 - Structural color coloring member and tire - Google Patents

Structural color coloring member and tire Download PDF

Info

Publication number
JP6521025B2
JP6521025B2 JP2017208170A JP2017208170A JP6521025B2 JP 6521025 B2 JP6521025 B2 JP 6521025B2 JP 2017208170 A JP2017208170 A JP 2017208170A JP 2017208170 A JP2017208170 A JP 2017208170A JP 6521025 B2 JP6521025 B2 JP 6521025B2
Authority
JP
Japan
Prior art keywords
structural color
fine
color
fine concavo
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017208170A
Other languages
Japanese (ja)
Other versions
JP2019078982A (en
Inventor
亮太 高橋
亮太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2017208170A priority Critical patent/JP6521025B2/en
Priority to PCT/JP2018/038428 priority patent/WO2019082729A1/en
Priority to CN201880052735.5A priority patent/CN110998378B/en
Priority to US16/639,506 priority patent/US11491825B2/en
Priority to DE112018005671.6T priority patent/DE112018005671B4/en
Publication of JP2019078982A publication Critical patent/JP2019078982A/en
Application granted granted Critical
Publication of JP6521025B2 publication Critical patent/JP6521025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Polarising Elements (AREA)
  • Tires In General (AREA)

Description

本発明は、構造色により発色する領域を有する構造色発色部材およびこれを用いたタイヤに関する。   The present invention relates to a structural color coloring member having a region that develops color by structural color, and a tire using the same.

従来、光の波長またはそれ以下の寸法の微細構造により発色が生じる構造色が知られており、各種の分野へと応用されている。
例えば、下記特許文献1には、構造色による発色を用いたカラーフィルタが開示されている。また、下記特許文献2には、構造色の発色の変化(波長変化)を測定することにより物体の歪を算出する技術が開示されている。
特許文献1では、構造色を発生させる微細構造を型押しにより形成しており、特許文献2では、弾性体材料表面に微粒子を周期的に配列することにより構造色を発生させている。
Heretofore, a structural color which causes color development by a microstructure having a dimension of light wavelength or smaller is known, and is applied to various fields.
For example, Patent Document 1 below discloses a color filter using coloration by structural color. Further, Patent Document 2 below discloses a technique for calculating distortion of an object by measuring a change in coloration (change in wavelength) of a structural color.
In Patent Document 1, a microstructure for generating a structural color is formed by embossing, and in Patent Document 2, a structural color is generated by periodically arranging fine particles on the surface of an elastic material.

特開2009−192676号公報JP, 2009-192676, A 特許4925025号公報Patent No. 4925025

上述した特許文献1のように、凹凸により構造色を発生させる場合、凹凸の高さを変更することによってある程度色相を制御することは可能であるが、視認方向により色が変わり、複数色(虹色)に見えるという課題がある。例えば構造色を用いて何らかの情報(文字やマークなど)を示したい場合、その情報に対応づけられた単一の色相で視認させたいというニーズがある。また、構造色が複数色で視認される場合、構造色が形成されている箇所と、構造色が形成されていない箇所との境界が不明瞭となる場合がある。
本発明は、このような事情に鑑みなされたものであり、その目的は、単一の色相で視認される構造色発色部材およびこれを用いたタイヤを得ることにある。
As in the case of Patent Document 1 described above, when generating a structural color by asperity, it is possible to control the hue to some extent by changing the height of the asperity, but the color changes depending on the viewing direction. There is a problem that it looks like a color. For example, when structural color is used to indicate some information (such as characters and marks), there is a need to make the user visually recognize in a single hue associated with the information. Moreover, when structural color is visually recognized by multiple colors, the boundary of the part in which structural color is formed, and the part in which structural color is not formed may become unclear.
The present invention has been made in view of such circumstances, and an object thereof is to obtain a structural color coloring member visually recognized in a single hue and a tire using the same.

上述の目的を達成するため、請求項1の発明にかかる構造色発色部材は、表面の少なくとも一部に一定の配列周期の微細凹凸構造が形成され、前記微細凹凸構造による構造色を発色する基材と、前記微細凹凸構造の表面に形成された偏向反射層と、を有し、前記偏向反射層は、コレステリック液晶を含んで形成されており、前記微細凹凸構造および前記偏向反射層が設けられた領域が、単一の色相で視認される、ことを特徴とする。
請求項2の発明にかかる構造色発色部材は、前記偏向反射層は、前記微細凹凸構造により選択的に反射される波長を含む波長帯の透過性能を有する、ことを特徴とする。
請求項の発明にかかる構造色発色部材は、前記偏向反射層は、前記微細凹凸構造の凹部から前記微細凹凸構造の凸部の頂点までを埋めるように形成され、前記凸部の頂点から前記凹部と反対方向の厚さが0μm以上80μm以下に形成されている、ことを特徴とする。
請求項の発明にかかる構造色発色部材は、前記基材は、黒色材料を含んで形成されており、前記微細凹凸構造以外の領域は黒色に視認される、ことを特徴とする。
請求項の発明にかかる構造色発色部材は、前記基材は、軟質の高分子材料で形成されている、ことを特徴とする。
請求項の発明にかかる構造色発色部材は、前記基材は、ゴム組成物を含んで形成されている、ことを特徴とする。
請求項の発明にかかるタイヤは、請求項1からのいずれか1項に記載の構造色発色部材を用いて形成されていることを特徴とする。
In order to achieve the above object, the structural color-developing member according to the invention of claim 1 has a fine concavo-convex structure of a fixed arrangement cycle formed on at least a part of the surface, and a group that develops a structural color by the fine concavo-convex structure. Material and a deflective reflection layer formed on the surface of the fine concavo-convex structure, wherein the deflective reflection layer is formed to include cholesteric liquid crystal, and the fine concavo-convex structure and the deflective reflection layer are provided. Region is viewed with a single hue.
The structural color coloring member according to the invention of claim 2 is characterized in that the deflective reflection layer has a transmission performance of a wavelength band including a wavelength selectively reflected by the fine concavo-convex structure.
In the structural color developing member according to the invention of claim 3, the deflection reflection layer is formed to fill from the concave portion of the fine concavo-convex structure to the apex of the convex part of the fine concavo-convex structure, and from the apex of the convex part It is characterized in that the thickness in the opposite direction to the concave portion is formed in the range of 0 μm to 80 μm.
The structural color coloring member according to the invention of claim 4 is characterized in that the base material is formed to include a black material, and a region other than the fine concavo-convex structure is visually recognized as black.
The structural color coloring member according to the invention of claim 5 is characterized in that the base material is formed of a soft polymer material.
The structural color developing member according to the invention of claim 6 is characterized in that the base material is formed to include a rubber composition.
A tire according to the invention of claim 7 is characterized by being formed using the structural color coloring member according to any one of claims 1 to 6 .

本発明によれば、微細凹凸構造により構造色を発色する基材上に偏向反射層を形成したので、微細凹凸構造および偏向反射層が設けられた領域を単一の色相で視認可能とすることができる。例えば構造色を用いて何らかの情報(文字やマークなど)を示したい場合、その情報に対応づけられた単一の色相で当該情報を視認させることができる。また、構造色が複数色で視認される場合と比較して、構造色が形成されている箇所と、構造色が形成されていない箇所との境界を明瞭に区別可能とする上で有利となる。   According to the present invention, since the deflection reflection layer is formed on the base material that produces a structural color by the fine concavo-convex structure, the area provided with the fine concavo-convex structure and the deflection reflection layer can be viewed with a single hue. Can. For example, when structural color is used to indicate some information (such as characters and marks), the information can be viewed in a single hue associated with the information. In addition, compared with the case where the structural color is viewed in a plurality of colors, it is advantageous in clearly distinguishing the boundary between the portion where the structural color is formed and the portion where the structural color is not formed. .

実施の形態にかかる車両用タイヤ10の側面図である。1 is a side view of a vehicle tire 10 according to an embodiment. ロゴマーク204部分の拡大図である。It is an enlarged view of the logo mark 204 part. 本発明および比較例における光の挙動を模式的に示す説明図である。It is an explanatory view showing behavior of light in the present invention and a comparative example typically. 構造色発色部材30の視認評価結果を示す表である。It is a table | surface which shows the visual recognition evaluation result of the structural color coloring member 30. FIG. コレステリック液晶を模式的に示す説明図である。It is explanatory drawing which shows a cholesteric liquid crystal typically.

以下に添付図面を参照して、本発明に係る構造色発色部材およびタイヤの好適な実施の形態を詳細に説明する。
本実施の形態では、本発明に係る構造色発色部材を車両用タイヤに適用した例について説明する。
図1は、実施の形態にかかる車両用タイヤ10の側面図である。
車両用タイヤ10は、路面へ接地するトレッド面を有するトレッド部14、図示しないホイールと係合されるビード部16、それらトレッド部14とビード部16とを接続しタイヤ側面となるサイドウォール部12を含んで構成される。
トレッド部14が耐摩耗性を重視されるのに対して、サイドウォール部12は走行中の荷重による変形に耐えることが重視されており、その組成もトレッド部14とは異なっている。
より詳細には、本実施の形態では、サイドウォール部12は、ジエン系ゴムと、カーボンブラックと、シリカとを含有し、ジエン系ゴムは30〜70質量%の天然ゴムおよび/またはイソプレンゴムを含有し、カーボンブラックの窒素吸着比表面積は20〜60m/gであり、カーボンブラックの含有量はジエン系ゴム100質量部に対して5〜45質量部であり、シリカの含有量はジエン系ゴム100質量部に対して15〜55質量部であり、カーボンブラックとシリカとの合計含有量はジエン系ゴム100質量部に対して30〜60質量部となっている。
Hereinafter, preferred embodiments of a structural color coloring member and a tire according to the present invention will be described in detail with reference to the accompanying drawings.
In the present embodiment, an example in which the structural color coloring member according to the present invention is applied to a vehicle tire will be described.
FIG. 1 is a side view of a vehicle tire 10 according to the embodiment.
The vehicle tire 10 has a tread portion 14 having a tread surface to be in contact with a road surface, a bead portion 16 engaged with a wheel not shown, and a sidewall portion 12 connecting the tread portion 14 and the bead portion 16 It is comprised including.
While the tread portion 14 emphasizes wear resistance, the sidewall portion 12 is emphasized to resist deformation due to a load during traveling, and the composition thereof is also different from that of the tread portion 14.
More specifically, in the present embodiment, the sidewall portion 12 contains a diene rubber, carbon black and silica, and the diene rubber is 30 to 70% by mass of a natural rubber and / or an isoprene rubber. The nitrogen adsorption specific surface area of carbon black is 20 to 60 m 2 / g, the content of carbon black is 5 to 45 parts by mass with respect to 100 parts by mass of diene rubber, and the content of silica is diene The total content of carbon black and silica is 30 to 60 parts by mass with respect to 100 parts by mass of diene-based rubber.

また、サイドウォール部12には、各種の情報が表示されている。
サイドウォール部12に表示される情報の一例としては、例えば車両用タイヤ10を製造するメーカー名202、メーカーのロゴマーク204、タイヤのブランド名206、タイヤの寸法208、ユニフォミティマーク214、軽点マーク216などが挙げられる。また、この他タイヤの製造番号や回転方向表示なども記載される。
Further, various information is displayed on the sidewall unit 12.
Examples of the information displayed on the sidewall 12 include, for example, a manufacturer name 202 that manufactures the vehicle tire 10, a manufacturer's logo mark 204, a tire brand name 206, a tire dimension 208, a uniformity mark 214, and a light mark 216 and the like. In addition, the manufacturing number of the other tire and the indication of the direction of rotation are also described.

このうち、ユニフォミティマーク214および軽点マーク216は、タイヤの完成後(加硫後)、個々のタイヤを検査した上でインク等を用いて付される。
また、メーカー名202、メーカーのロゴマーク204、タイヤのブランド名206、タイヤの寸法208等は、車両用タイヤ10を加硫する際の金型(モールド)に形成された凹凸を、加硫時に転写することによって付される。
これら金型の凹凸によって転写される情報のうち、ロゴマーク204以外は車両用タイヤ10全体と同色であり、サイドウォール部12の表面に対する凹凸によって各情報を視認可能となっている。
一方、ロゴマーク204は、例えばメーカーのコーポレートカラー等、車両用タイヤ10の色とは異なる色で視認されるように形成されている。
Among these, the uniformity mark 214 and the light point mark 216 are attached using an ink or the like after each tire is inspected after completion of the tire (after vulcanization).
In addition, manufacturer name 202, manufacturer's logo mark 204, tire brand name 206, tire dimensions 208, etc., can be used to cure the unevenness formed on the mold when vulcanizing vehicle tire 10 at the time of vulcanization. Attached by transcribing.
Among the information transferred by the unevenness of the mold, the color of the entire vehicle tire 10 is the same as that of the whole of the vehicle tire 10 except for the logo mark 204, and each information can be visually recognized by the unevenness on the surface of the sidewall portion 12.
On the other hand, the logo mark 204 is formed so as to be visually recognized in a color different from the color of the vehicle tire 10, such as a manufacturer's corporate color.

図2は、ロゴマーク204部分の拡大図であり、図2Aは断面図、図2Bは図2Aの拡大図、図2Cは基材32の斜視図である。
車両用タイヤ10のロゴマーク204部分は、基材32と偏向反射層34とを備える構造色発色部材30で形成されている。
基材32は、その表面の少なくとも一部に一定の配列周期の微細凹凸構造320が形成されており、微細凹凸構造320により構造色を発色する。
本実施の形態において、基材32はサイドウォール部12を構成するタイヤの一部領域であり、上述のようにジエン系ゴムと、カーボンブラックと、シリカとを含有している。よって、基材32は、黒色材料であるカーボンブラックを含んで形成されており、微細凹凸構造320以外の領域は黒色に視認される。また、基材32は、軟質の高分子材料、特にゴム組成物であるジエン系ゴムを含んで形成されている。
2A is a cross-sectional view, FIG. 2B is an enlarged view of FIG. 2A, and FIG. 2C is a perspective view of the substrate 32. FIG.
The logo mark 204 portion of the vehicle tire 10 is formed of the structural color coloring member 30 including the base material 32 and the deflection reflection layer 34.
The base 32 has a micro-relief structure 320 with a constant arrangement cycle formed on at least a part of the surface thereof, and the micro-relief structure 320 produces a structural color.
In the present embodiment, the base material 32 is a partial region of the tire constituting the sidewall portion 12 and contains a diene rubber, carbon black and silica as described above. Therefore, the base material 32 is formed including carbon black which is a black material, and the area other than the fine concavo-convex structure 320 is visually recognized as black. In addition, the base 32 is formed to include a soft polymeric material, in particular, a diene rubber which is a rubber composition.

なお、基材32を構成する材料は上記に限られず、従来公知の様々な素材を使用可能である。ポリエチレンやポリエステルなどに代表される軟質の高分子材料や、エチレンプロピレンゴムやアクリルゴムなどの非ジエンゴム、ウレタンゴムやシリコーンゴム、フッ素ゴムなどのゴム組成物を含有していてもよい。   In addition, the material which comprises the base material 32 is not restricted above, A conventionally well-known various raw material can be used. It may contain a soft polymeric material represented by polyethylene and polyester, a non-diene rubber such as ethylene propylene rubber and acrylic rubber, and a rubber composition such as urethane rubber, silicone rubber, and fluoro rubber.

図2に示すように、微細凹凸構造320は、基材32の表面328に微細凹凸部324が一定の配列周期で配列されて構成されている。この微細凹凸構造320が設けられた領域が、構造色により基材32の他の領域(本実施の形態では黒)と異なる色で視認される。
ここで微細凹凸部324とは、構造色を得るために用いられる突起や孔など従来公知の様々な構造であり、本実施の形態では曲面(あるいは平面)である基材32の表面328から突出する微細な突起である。
また、配列周期とは、本実施の形態では隣り合う微細な突起の中心間の距離、すなわちピッチである。ピッチは、図2Aの符号Lに示すように、ゴム部材(タイヤ)表面に沿った突起と凹部との長さの合計と一致する。
また、一定の配列周期とは、構造色を得るために用いられる従来公知の様々な周期(ピッチ)であり、微細凹凸構造320の全体において均一の値の場合もあり、連続的にあるいは段階的に変化させる場合もある。
微細凹凸部324の配列周期または凹凸高さは、構造色として視認される色に対応する可視光の波長に基づいて決定される。すなわち、可視光に分類される波長帯から、構造色として表現したい色に対応する波長を選択し、共鳴格子の原理により微細凹凸部324の配列周期または凹凸高さの具体的な寸法を決定する。
本実施の形態では、微細凹凸部324の配列周期または凹凸高さは、例えば650nm以下で構成される。これは、本願発明者らの実験の結果、微細凹凸構造320の配列周期または凹凸高さが650nm以下の範囲で構造色が認められたためである。
As shown in FIG. 2, the fine concavo-convex structure 320 is configured by arranging the fine concavo-convex portions 324 on the surface 328 of the base material 32 in a fixed arrangement cycle. The area provided with the fine concavo-convex structure 320 is visually recognized in a color different from that of the other area (black in this embodiment) of the base 32 due to the structural color.
Here, the fine concavo-convex portion 324 refers to conventionally known various structures such as projections and holes used to obtain a structural color, and in the present embodiment, protrudes from the surface 328 of the base material 32 which is a curved surface (or plane). Fine projections.
Further, the arrangement period is the distance between the centers of adjacent fine protrusions in the present embodiment, that is, the pitch. The pitch corresponds to the sum of the lengths of the projections and the recesses along the surface of the rubber member (tire), as indicated by symbol L in FIG. 2A.
In addition, the constant arrangement period means various periods (pitches) conventionally known to obtain a structural color, which may be uniform throughout the fine uneven structure 320, and may be continuous or stepwise. It may be changed to
The arrangement period or the unevenness height of the fine concavo-convex portion 324 is determined based on the wavelength of visible light corresponding to the color visually recognized as the structural color. That is, the wavelength corresponding to the color to be expressed as a structural color is selected from the wavelength band classified as visible light, and the specific dimension of the arrangement period or height of the fine concavo-convex portion 324 is determined according to the principle of resonant grating. .
In the present embodiment, the arrangement period or the height of the fine uneven portions 324 is, for example, 650 nm or less. This is because as a result of experiments by the inventors of the present application, a structural color is recognized in the range where the arrangement period or the height of the fine concavo-convex structure 320 is 650 nm or less.

本実施の形態では、微細凹凸部324は基材32の表面328に対して直交する方向に延びる円柱である。円柱の上面326は正円形であり、その直径Rはおよそ5μmである。また、隣り合う円柱間の距離Sは1μmであり、配列周期Lはおよそ6μmである。なお、図2では図示の便宜上、実際の寸法とは異なる比率で図示している。
ここで、本願発明者らは、微細凹凸部324の配列周期や円柱状の微細凹凸部324の直径は固定したまま、微細凹凸部324のタイヤ表面328からの高さ(凹凸高さ)Hを変更して複数のゴム部材を作成した。その結果、視認される面積が大きい順に以下のような構造色が視認された。複数の色が視認されるのは、構造色は観察角度によって色が異なるためである。
凹凸高さ650nm:赤、赤紫
凹凸高さ607nm:赤紫、赤、橙
凹凸高さ577nm:赤紫、橙
凹凸高さ536nm:橙、赤紫
凹凸高さ500nm:黄、緑、橙
以下、凹凸高さを小さくするほど青みが強くなる傾向にあった。
このように、微細凹凸部324の配列周期または凹凸高さを調整することにより、ゴム表面に任意の色で情報を表示することができる。例えばロゴマーク204部分を赤色で表示したい場合、凹凸高さを650nm程度にすればよい。
In the present embodiment, the fine uneven portion 324 is a cylinder extending in a direction orthogonal to the surface 328 of the base 32. The upper surface 326 of the cylinder is round and its diameter R is about 5 μm. Further, the distance S between adjacent cylinders is 1 μm, and the arrangement period L is about 6 μm. In FIG. 2, for convenience of illustration, it is illustrated at a ratio different from the actual dimension.
Here, the inventors set the height (concave height) H of the fine uneven portion 324 from the tire surface 328 while keeping the arrangement period of the fine uneven portion 324 and the diameter of the cylindrical fine uneven portion 324 fixed. Changed to create multiple rubber members. As a result, the following structural colors were visually recognized in descending order of the visually recognized area. A plurality of colors are visually recognized because structural colors are different depending on the observation angle.
Irregularity height 650 nm: Red, red purple Irregular height 607 nm: Red purple, red, orange Irregular height 577 nm: Red purple, orange Irregular height 536 nm: Orange, red purple Irregular height 500 nm: Yellow, green, orange or less, As the unevenness height decreased, the bluish color tended to increase.
As described above, information can be displayed in an arbitrary color on the rubber surface by adjusting the arrangement period or the height of the fine uneven portion 324. For example, in the case where it is desired to display the logo mark 204 in red, the height of the unevenness may be set to about 650 nm.

偏向反射層34は、微細凹凸構造320の表面に形成に積層されている。すなわち、偏向反射層34は、微細凹凸構造320に対して光の入射方向(視認方向)に位置する。より詳細には、偏向反射層34は、微細凹凸構造320の凹部(本実施の形態では基材32の表面328)から微細凹凸構造320の凸部(微細凹凸部324)の頂点(上面326)を埋めるように形成され、頂点(上面326)より上方(表面328と反対方向)に任意の厚さを持って形成されている。   The deflection reflective layer 34 is laminated on the surface of the fine concavo-convex structure 320. That is, the deflection reflective layer 34 is positioned in the incident direction (viewing direction) of light with respect to the fine concavo-convex structure 320. More specifically, the deflection reflective layer 34 is a vertex (upper surface 326) of the recess (the surface 328 of the base 32 in the present embodiment) of the fine relief structure 320 to the protrusion (the fine relief portion 324) of the fine relief structure 320. And is formed to have an arbitrary thickness above the vertex (upper surface 326) (opposite the surface 328).

本実施の形態では、偏向反射層34は、コレステリック液晶を含んで形成されている。
図5は、コレステリック液晶を模式的に示す説明図である。コレステリック液晶50は、棒状の分子52が幾重にも重なる層状の構造を有する。各層54内ではそれぞれの分子52が一定方向に配列されているとともに、互いの層54は分子52の配列方向がらせん状になるように集積している。通常は、各層54に対して垂直方向をらせん軸56としており、一定周期のらせん構造を持つ。らせんの周期と波長が等しく、かつらせんの巻きと同じ向きの円偏光を反射する。
コレステリック液晶は、層状の構造を持たずに平行配列しているネマチック液晶に、液晶分子にねじれを付与するカイラル剤と呼ばれる添加剤を加え、旋光性を持たせることで作製する。
In the present embodiment, the deflection reflection layer 34 is formed to include cholesteric liquid crystal.
FIG. 5 is an explanatory view schematically showing a cholesteric liquid crystal. The cholesteric liquid crystal 50 has a layered structure in which rod-like molecules 52 overlap several times. In each layer 54, the molecules 52 are arranged in a certain direction, and the layers 54 are integrated such that the arrangement direction of the molecules 52 is helical. Usually, the direction perpendicular to each layer 54 is a helical axis 56, and has a helical structure with a constant period. It reflects circularly polarized light of the same wavelength as the helical period and in the same direction as the spiral's turn.
Cholesteric liquid crystals are prepared by adding an additive called a chiral agent which imparts a twist to liquid crystal molecules to nematic liquid crystals aligned in parallel without having a layered structure to give optical rotation.

また、偏向反射層34は、微細凹凸構造320により選択的に反射される波長を含む波長帯の透過性能を有するのが好ましい。例えば、微細凹凸部324の凹凸高さを607nmとし、赤紫、赤、橙の構造色が得られるようにした場合、微細凹凸構造320により反射される光はおよそ750nm〜590nmである。この場合、偏向反射層34は、波長を含む波長帯を透過させるように形成するのが好ましい。   In addition, it is preferable that the deflective reflection layer 34 have the transmission performance of the wavelength band including the wavelength selectively reflected by the fine concavo-convex structure 320. For example, when the unevenness height of the fine uneven portion 324 is 607 nm and a red purple, red and orange structural color is obtained, light reflected by the fine uneven structure 320 is approximately 750 nm to 590 nm. In this case, the deflection reflection layer 34 is preferably formed to transmit a wavelength band including a wavelength.

従来の構造色は、図3Bに模式的に示すように、完全な単一色ではなく見る角度により色が変わり、虹色のように視認された。すなわち、基材32に微細凹凸構造320のみを設けた場合、入射光L1のうち特定の波長の成分のみが反射光L2となるものの、反射光L2には複数の色相に渡る波長成分が含まれ、複数の色相が視認されることとなる。   The conventional structural colors changed color according to the viewing angle rather than the complete single color as schematically shown in FIG. 3B, and were perceived as iridescent. That is, when only the fine concavo-convex structure 320 is provided on the substrate 32, only the component of a specific wavelength in the incident light L1 becomes the reflected light L2, but the reflected light L2 includes wavelength components covering a plurality of hues. And a plurality of hues will be visually recognized.

一方、本実施の形態のように、構造色を発色する微細凹凸構造320の表面に特定の波長のみを反射する偏向反射層34を形成することにより、図3Aに模式的に示すように、微細凹凸構造320に届く入射光および微細凹凸構造320から反射する光が偏向反射層34の選択反射性により選別され、虹色だった構造色が単一の色相で視認されることとなる。
すなわち、微細凹凸構造320を設けた基材32に偏向反射層34を積層した場合、偏向反射層34により入射光L1のほとんどの成分は吸収され、単色に相当する成分L1’のみが基材32に到達する。基材32では、微細凹凸構造320により成分L1’のうち更に特定の波長のみが反射され、反射光L2となる。反射光L2は、偏向反射層34を透過可能な波長帯に含まれるため、構造色発色部材30の外部まで到達し、基材32の色と区別して視認されることとなる。
On the other hand, as shown in FIG. 3A, by forming the deflection reflection layer 34 that reflects only a specific wavelength on the surface of the fine concavo-convex structure 320 that develops a structural color as in the present embodiment, as schematically shown in FIG. The incident light reaching the concavo-convex structure 320 and the light reflected from the fine concavo-convex structure 320 are selected by the selective reflectivity of the deflection reflective layer 34, and the iridescent structural color is viewed in a single hue.
That is, when the deflection reflection layer 34 is stacked on the base material 32 provided with the fine concavo-convex structure 320, most components of the incident light L1 are absorbed by the deflection reflection layer 34, and only the component L1 ′ corresponding to a single color is the base material 32. To reach. In the base 32, only a specific wavelength of the component L 1 ′ is reflected by the fine concavo-convex structure 320 to become the reflected light L 2. Since the reflected light L2 is included in the wavelength band which can transmit the deflection reflection layer 34, it reaches the outside of the structural color developing member 30, and is visually recognized in distinction from the color of the base material 32.

なお、本実施の形態において単一の色相とは、通常の人間の色識別能においてほぼ単一色と認識される程度であり、レーザ光のように完全に同一の波長であることを示すものではない。例えば上述した微細凹凸部324の凹凸高さ607nmの場合のように、「赤紫、赤、橙」のような分布をもった色味ではなく、「赤」のように識別される程度の単一性を示す。   In the present embodiment, a single hue refers to the degree to which a single human color is generally recognized as a single color, and indicates that the wavelength is completely the same as laser light. Absent. For example, as in the case of the uneven height 607 nm of the fine uneven portion 324 described above, it is not a color having a distribution such as “red purple, red, orange”, but a single color that can be identified as “red”. Show oneness.

つぎに、構造色発色部材30の製造方法について説明する。
なお、以下の工程に先立って、車両用タイヤ10上に付加したい模様等の色相を決め、当該色相(車両用タイヤ10上で模様等として視認される色)に対応する可視光の波長に基づいて微細凹凸部記配列周期または凹凸高さを決定しておく(配列周期決定工程または凹凸高さ決定工程)。
Below, the manufacturing method of the structural color coloring member 30 is demonstrated.
In addition, prior to the following steps, a hue such as a pattern to be added on the vehicle tire 10 is determined, and based on the wavelength of visible light corresponding to the hue (a color visually recognized as a pattern on the vehicle tire 10). Then, the arrangement period of the fine asperity portion or the asperity height is determined (arrangement period determining step or asperity height determining step).

(工程1)基材32の表面に微細凹凸構造320を形成するため、一定周期でパターン構造が配置されたマスクを形成する(マスク形成工程)。
まず、マスク形成用基板(シリコン基板)にスパッタリング装置を用いてクロム(Cr)を約80nm成膜する。つぎに、クロム膜上にポジ型電子線レジストをスピンコート(300rpmで3秒、のち4000rpmで60秒)する。その後、150℃のホットプレートで3分間プリベークを行い、電子線レジストをコートした基板に電子線描画装置を用いて露光、パターニング後、現像液に60秒浸漬して現像を行う。なお、構造色として視認される色に対応する可視光の波長に基づいて微細凹凸部324の配列周期を決定した場合、つまり構造色の発色を決めるパラメータとして微細凹凸部324の配列周期を用いた場合、パターニング時のパターン構造の配列周期を配列周期決定工程で決定した配列周期に基づいて決定する。現像後、混酸クロムエッチング液に約60秒浸し、露出しているCrのみを選択的に溶かすことでマスク(フォトマスク)を作製した。
(Step 1) In order to form the fine concavo-convex structure 320 on the surface of the base material 32, a mask in which a pattern structure is arranged at a constant cycle is formed (mask forming step).
First, chromium (Cr) is deposited to a thickness of about 80 nm on a mask formation substrate (silicon substrate) using a sputtering apparatus. Next, a positive type electron beam resist is spin coated (3 seconds at 300 rpm, then 60 seconds at 4000 rpm) on the chromium film. Thereafter, pre-baking is performed for 3 minutes on a hot plate at 150 ° C., the substrate coated with the electron beam resist is exposed and patterned using an electron beam drawing apparatus, and then it is immersed in a developer for 60 seconds to develop. When the arrangement cycle of the fine concavo-convex portion 324 is determined based on the wavelength of visible light corresponding to the color visually recognized as the structural color, that is, the arrangement cycle of the fine concavo-convex part 324 is used as a parameter for determining the coloration of the structural color. In this case, the arrangement period of the pattern structure at the time of patterning is determined based on the arrangement period determined in the arrangement period determination step. After development, it was immersed in a mixed chromium acid etching solution for about 60 seconds to selectively dissolve only the exposed Cr, thereby producing a mask (photomask).

(工程2)マスクを金属または半導体材料で形成された基板上に配置し、基板をエッチングする(エッチング工程)。
本実施の形態では、上記基板として単結晶シリコン基板を使用する。この基板をアセトン、メタノールの順に5分間超音波で洗浄し、基板上にポジ型フォトレジストをスピンコート(300rpmで3秒、のち5000rpmで60秒)する。つぎに、95℃のホットプレートで90秒プリベークする。これにより、レジストに含まれる有機溶剤を蒸発させて基板との密着性を向上させることができる。つづいて、フォトレジストをコートした基板にマスクアライナーと工程1で作製したフォトマスクを用いて露光を行い、現像液に浸すことで露光した箇所を溶出させてパターニングを行う。
パターニング後、ドライエッチング装置(パッシベーションガス:C,80sccm,エッチングガス:SF,130sccm,ボッシュプロセス)を用いて、基板のエッチングを行い、鋳型(シリコン鋳型)を作製する。なお、構造色として視認される色に対応する可視光の波長に基づいて微細凹凸部324の凹凸高さを決定した場合、つまり構造色の発色を決めるパラメータとして微細凹凸部324の凹凸高さを用いた場合、基板のエッチング時間を適宜制御することにより、微細凹凸部324の凹凸高さを凹凸高さ決定工程で決定した凹凸高さと一致させることができる。
また、上記工程1および工程2(鋳型形成工程)では、フォトリソグラフィ技術を用いて微細凹凸構造を有する鋳型を作製する場合について説明したが、本発明にかかるゴム部材の製造方法はこれに限らず、従来公知の様々な手法を適用可能である。
(Step 2) A mask is disposed on a substrate formed of metal or semiconductor material, and the substrate is etched (etching step).
In this embodiment mode, a single crystal silicon substrate is used as the substrate. The substrate is ultrasonically washed with acetone and methanol in this order for 5 minutes, and a positive photoresist is spin coated (3 seconds at 300 rpm, then 60 seconds at 5000 rpm) on the substrate. Next, pre-bake for 90 seconds on a 95 ° C. hot plate. Thereby, the organic solvent contained in the resist can be evaporated to improve the adhesion to the substrate. Subsequently, the photoresist-coated substrate is exposed using a mask aligner and the photomask prepared in the step 1, and the substrate is immersed in a developing solution to elute the exposed portions for patterning.
After patterning, the substrate is etched using a dry etching apparatus (passivation gas: C 4 F 8 , 80 sccm, etching gas: SF 6 , 130 sccm, Bosch process) to produce a mold (silicon mold). In addition, when the asperity height of the fine asperity portion 324 is determined based on the wavelength of visible light corresponding to the color visually recognized as a structural color, that is, the asperity height of the asperity portion 324 is used as a parameter for determining the coloration of the structural color. When used, by appropriately controlling the etching time of the substrate, the asperity height of the fine asperity portion 324 can be made to coincide with the asperity height determined in the asperity height determination step.
In the above-mentioned step 1 and step 2 (mold formation step), although the case of producing a mold having a fine concavo-convex structure using a photolithographic technique has been described, the method of producing a rubber member according to the present invention is not limited thereto. A variety of conventionally known methods can be applied.

(工程3)エッチングした基板(鋳型)に未加硫ゴムを着接し、未加硫ゴムを加硫してゴム表面に微細凹凸構造を転写する(転写工程)。
シリコン鋳型に未加硫のゴムを載せ、80℃で10分間軟化させた後にプレスし、160℃で10分程度加硫した。
加硫後、シリコン鋳型から剥がしとり、ゴム表面(基材32表面)に微細凹凸構造320が転写されていることを確認した。微細凹凸構造320が形成されている領域は、基材32表面上の他の領域(平坦面領域)とは異なる色、すなわち微細凹凸構造320による構造色で視認される。
(Step 3) An unvulcanized rubber is applied to the etched substrate (mold), and the unvulcanized rubber is vulcanized to transfer the fine concavo-convex structure on the rubber surface (transfer step).
An unvulcanized rubber was placed on a silicone mold, softened at 80 ° C. for 10 minutes, and then pressed, and vulcanized at 160 ° C. for about 10 minutes.
After vulcanization, the silicon mold was peeled off, and it was confirmed that the fine concavo-convex structure 320 was transferred to the rubber surface (surface of the base material 32). The area in which the fine concavo-convex structure 320 is formed is visually recognized in a color different from that of the other area (flat surface area) on the surface of the base material 32, that is, the structural color by the fine concavo-convex structure 320.

(工程4)
基材32の微細凹凸構造320が形成された領域の表面に、コレステリック液晶のクロロホルム溶液をエアブラシで塗布し、偏向反射層34を形成した。
コレステリック液晶は、コレステリルオレイルカーボネート(TCI性)/ノナン酸コレステロール(TCI製)/安息香酸コレステロール(TCI製)をそれぞれ50/40/10の重量比で混合したものを用いた。
塗布に用いる器具はエアブラシのほか、スピンコートや筆など一般的な方法を用いることが出来る。
(Step 4)
A chloroform solution of cholesteric liquid crystal was applied by an air brush on the surface of the region of the base 32 on which the fine concavo-convex structure 320 was formed, to form a deflection reflective layer 34.
The cholesteric liquid crystal was prepared by mixing cholesteryl oleyl carbonate (TCI) / cholesterol nonanoic acid (manufactured by TCI) / cholesterol benzoate (manufactured by TCI) at a weight ratio of 50/40/10, respectively.
The apparatus used for application | coating can use general methods, such as a spin coat and a brush other than an air brush.

図4は、上記のように作成した構造色発色部材30の視認評価結果を示す表である。
図4では、偏向反射層34の厚みを変えた4つの実施例(実施例1〜実施例4)を示し、比較例として偏向反射層34を設けない場合の結果とともに示した。
偏向反射層34の厚みは、基材32の微細凹凸部324の上面326(基材32の表面328から突出する凸部の頂点)から、基材32の表面328と反対方向への厚みとした。実施例1は偏向反射層34の厚さを0.2μm、実施例2は1.0μm、実施例3は5.0μm、実施例4は80.0μmとした。
なお、偏向反射層34の厚みは塗布した液晶溶液の重量から計算した。
FIG. 4 is a table showing the visual evaluation results of the structural color coloring member 30 created as described above.
FIG. 4 shows four examples (Examples 1 to 4) in which the thickness of the deflection reflective layer 34 is changed, and also shows the result in the case where the deflection reflective layer 34 is not provided as a comparative example.
The thickness of the deflection reflective layer 34 is a thickness in the direction opposite to the surface 328 of the base material 32 from the upper surface 326 of the fine asperity portion 324 of the base material 32 (the apex of the protrusion projecting from the surface 328 of the base material 32). . In Example 1, the thickness of the deflection reflective layer 34 was 0.2 μm, Example 2 was 1.0 μm, Example 3 was 5.0 μm, and Example 4 was 80.0 μm.
The thickness of the deflection reflective layer 34 was calculated from the weight of the applied liquid crystal solution.

比較例では、様々な波長の光が反射することで構造色発色部材30が虹色に視認された(評価×)。実施例1および4では、構造色発色部材30の一部に他の色が見えるものの、比較例よりも単色に視認された(評価△)。また、実施例2および3では、構造色発色部材30が単色に視認された(評価〇)。
このように、構造色を発色する基材32の表面に偏向反射層34を形成することにより、構造色が単一の色相で視認されることが確認された。
In the comparative example, by reflecting light of various wavelengths, the structural color coloring member 30 was visually recognized as iridescent (evaluation x). In Examples 1 and 4, although other colors were visible in a part of the structural color coloring member 30, they were viewed more monochrome than in the comparative example (Evaluation Δ). Moreover, in Example 2 and 3, the structural color color development member 30 was visually recognized by single color (evaluation 〇).
As described above, it was confirmed that the structural color can be visually recognized with a single hue by forming the deflective reflection layer 34 on the surface of the base material 32 that develops the structural color.

以上説明したように、実施の形態にかかる構造色発色部材30は、微細凹凸構造320により構造色を発色する基材32の上面側に偏向反射層34を形成したので、微細凹凸構造320および偏向反射層34が設けられた領域を単一の色相で視認可能とすることができる。
例えば、本実施の形態のように、構造色を用いて車両用タイヤ10にロゴマーク204を付す場合、通常ロゴマーク204に使用されているメーカーのコーポレートカラーを単一色で視認させることができ、ロゴマーク204およびコーポレートカラーの認知度向上や統一したブランドイメージの確立を図る上で有利となる。
また、構造色が複数色で視認される場合と比較して、構造色が形成されている箇所と、構造色が形成されていない箇所との境界を明瞭に区別可能となり、構造色で示す情報の認識精度を向上させる上で有利となる。
As described above, in the structural color coloring member 30 according to the embodiment, since the deflective reflection layer 34 is formed on the upper surface side of the base material 32 that develops the structural color by the fine concavo-convex structure 320, the fine concavo-convex structure 320 and The region provided with the reflective layer 34 can be made visible with a single hue.
For example, when the logo mark 204 is attached to the vehicle tire 10 using the structural color as in the present embodiment, the corporate color of the manufacturer usually used for the logo mark 204 can be viewed in a single color. This is advantageous in improving the recognition of the logo mark 204 and the corporate color and establishing a unified brand image.
In addition, as compared with the case where the structural color is visually recognized in a plurality of colors, the boundary between the portion where the structural color is formed and the portion where the structural color is not formed can be clearly distinguished, and the information indicated by the structural color This is advantageous in improving the recognition accuracy of

なお、本実施の形態では、微細凹凸部324の形状を円柱形の突起としたが、これに限らず、構造色を表示するための構造として知られる従来公知の様々な形状を適用可能である。例えば微細凹凸部324の形状を、円錐状の突起や格子状の突起としてもよい。また、微細凹凸構造320をゴム表面に形成された孔や格子状の溝としてもよい。この場合も、孔の形状は例えば円筒形や円錐形などであってもよく、さらには円錐形に形成した孔の底部(円錐の頂点)に微粒子等を配置してもよい。
また、本実施の形態では、本発明に係る構造色発色部材30を車両用タイヤ10に適用した例について説明したが、これに限らず、従来公知の様々なゴム部材、特に製造工程で加硫を行う部材に適している。
また、本実施の形態では、ロゴマーク204のみを構造色発色部材30で表示するものとしたが、これに限らず、車両用タイヤ10のサイドウォール部12に表示される他の情報についても構造色発色部材30で表示するようにしてもよい。また、車両用タイヤ10の全体に構造色発色部材30を形成し、車両用タイヤ10全体が特定の色で視認されるようにしてもよい。
また、本実施の形態では、車両用タイヤ10のサイドウォール部12に表示される情報に本発明を適用したが、これに限らず車両用タイヤ10の他の箇所に表示される情報に本発明を適用してもよい。
In the present embodiment, although the shape of the fine concavo-convex portion 324 is a cylindrical protrusion, the present invention is not limited thereto, and various conventionally known shapes known as a structure for displaying a structural color can be applied. . For example, the shape of the fine uneven portion 324 may be a conical protrusion or a lattice-like protrusion. Further, the fine concavo-convex structure 320 may be a hole formed in the rubber surface or a lattice-like groove. Also in this case, the shape of the hole may be, for example, a cylindrical shape, a conical shape, or the like, and furthermore, fine particles or the like may be disposed at the bottom (the apex of the cone) of the hole formed conically.
Moreover, although the example which applied the structural color coloring member 30 which concerns on this invention to the tire 10 for vehicles was demonstrated in this Embodiment, it is not restricted to this, Various rubber members conventionally well-known in particular are vulcanized by a manufacturing process. Suitable for members that
Further, in the present embodiment, only the logo mark 204 is displayed by the structural color coloring member 30, but the present invention is not limited to this, and the other information displayed on the sidewall portion 12 of the vehicle tire 10 is also structured. It may be displayed by the color developing member 30. Further, the structural color coloring member 30 may be formed on the whole of the vehicle tire 10 so that the whole of the vehicle tire 10 can be visually recognized in a specific color.
Further, in the present embodiment, the present invention is applied to the information displayed on the sidewall portion 12 of the vehicle tire 10, but the present invention is not limited to this. May apply.

10 車両用タイヤ
12 サイドウォール部
30 構造色発色部材
32 基材
320 微細凹凸構造
324 微細凹凸部
34 偏向反射層
DESCRIPTION OF SYMBOLS 10 Tire for vehicle 12 Side wall part 30 Structural color coloring member 32 Base material 320 Fine concavo-convex structure 324 Fine concavo-convex part 34 Deflection reflection layer

Claims (7)

表面の少なくとも一部に一定の配列周期の微細凹凸構造が形成され、前記微細凹凸構造による構造色を発色する基材と、
前記微細凹凸構造の表面に形成された偏向反射層と、を有し、
前記偏向反射層は、コレステリック液晶を含んで形成されており、
前記微細凹凸構造および前記偏向反射層が設けられた領域が、単一の色相で視認される、
ことを特徴とする構造色発色部材。
A base on which a micro-relief structure having a constant arrangement cycle is formed on at least a part of the surface, and a structural color is developed by the micro-relief structure;
And a deflection reflective layer formed on the surface of the fine asperity structure,
The deflection reflective layer is formed to include cholesteric liquid crystal,
An area provided with the fine concavo-convex structure and the deflection reflective layer is viewed with a single hue.
A structural color developing member characterized in that
前記偏向反射層は、前記微細凹凸構造により選択的に反射される波長を含む波長帯の透過性能を有する、
ことを特徴とする請求項1記載の構造色発色部材。
The deflection reflective layer has a transmission performance of a wavelength band including a wavelength selectively reflected by the fine uneven structure.
The structural color developing member according to claim 1, characterized in that:
前記偏向反射層は、前記微細凹凸構造の凹部から前記微細凹凸構造の凸部の頂点までを埋めるように形成され、前記凸部の頂点から前記凹部と反対方向の厚さが0μm以上80μm以下に形成されている、
ことを特徴とする請求項1または2記載の構造色発色部材。
The deflection reflection layer is formed to fill from the concave portion of the fine concavo-convex structure to the vertex of the convex portion of the fine concavo-convex structure, and the thickness in the direction opposite to the concave portion from the vertex of the convex portion is 0 μm to 80 μm Is formed,
The structural color coloring member according to claim 1 or 2 , characterized in that
前記基材は、黒色材料を含んで形成されており、前記微細凹凸構造以外の領域は黒色に視認される、
ことを特徴とする請求項1からのいずれか1項記載の構造色発色部材。
The base material is formed to include a black material, and the area other than the fine asperity structure is visually recognized as black.
The structural color coloring member according to any one of claims 1 to 3 , characterized in that
前記基材は、軟質の高分子材料で形成されている、
ことを特徴とする請求項1からのいずれか1項記載の構造色発色部材。
The substrate is formed of a soft polymer material.
The structural color developing member according to any one of claims 1 to 4 , characterized in that:
前記基材は、ゴム組成物を含んで形成されている、
ことを特徴とする請求項記載の構造色発色部材。
The substrate is formed to include a rubber composition.
A structural color developing member according to claim 5 , characterized in that:
請求項1からのいずれか1項に記載の構造色発色部材を用いて形成されたタイヤ。 A tire formed using the structural color coloring member according to any one of claims 1 to 6 .
JP2017208170A 2017-10-27 2017-10-27 Structural color coloring member and tire Active JP6521025B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017208170A JP6521025B2 (en) 2017-10-27 2017-10-27 Structural color coloring member and tire
PCT/JP2018/038428 WO2019082729A1 (en) 2017-10-27 2018-10-16 Structural color developing member and tire
CN201880052735.5A CN110998378B (en) 2017-10-27 2018-10-16 Structural color developing member and tire
US16/639,506 US11491825B2 (en) 2017-10-27 2018-10-16 Structural color developing member and tire
DE112018005671.6T DE112018005671B4 (en) 2017-10-27 2018-10-16 Tire manufactured using a structural color developing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017208170A JP6521025B2 (en) 2017-10-27 2017-10-27 Structural color coloring member and tire

Publications (2)

Publication Number Publication Date
JP2019078982A JP2019078982A (en) 2019-05-23
JP6521025B2 true JP6521025B2 (en) 2019-05-29

Family

ID=66627950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208170A Active JP6521025B2 (en) 2017-10-27 2017-10-27 Structural color coloring member and tire

Country Status (1)

Country Link
JP (1) JP6521025B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368192B2 (en) * 2019-11-15 2023-10-24 ファナック株式会社 Processing methods and articles
JP2021131145A (en) * 2020-02-21 2021-09-09 株式会社フジキン bolt

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036959B2 (en) * 2004-03-26 2012-09-26 ソシエテ ド テクノロジー ミシュラン Tire with colored design and method for forming colored design
JP5457156B2 (en) * 2009-12-09 2014-04-02 パナソニック株式会社 Product with coloring structure
GB201011720D0 (en) * 2010-07-13 2010-08-25 Univ Southampton Controlling the colours of metals: bas-relief and intaglio metamaterials
JP5838046B2 (en) * 2011-05-31 2015-12-24 株式会社ブリヂストン tire
KR101451774B1 (en) * 2013-10-01 2014-10-16 주식회사 화니텍 Method for manufacturing structure producing structural color
JPWO2015182108A1 (en) * 2014-05-26 2017-04-20 凸版印刷株式会社 Anti-counterfeit structure and anti-counterfeit article
JP2017087677A (en) * 2015-11-16 2017-05-25 株式会社ブリヂストン Method for producing tire
JP6981194B2 (en) * 2017-01-11 2021-12-15 凸版印刷株式会社 A method for manufacturing a color-developing structure, a display body, a color-developing sheet, a molded body, and a color-developing structure.

Also Published As

Publication number Publication date
JP2019078982A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US20210339575A1 (en) Rubber Member, Tire, and Method of Manufacturing Rubber Member
JP6521025B2 (en) Structural color coloring member and tire
WO2019082729A1 (en) Structural color developing member and tire
US20030053016A1 (en) Formed body, reflecting plate, reflection display device, and method for fabricating reflecting plate
JP2005024920A (en) Color filter substrate having phase difference control layer and its manufacturing method
JP2002023150A (en) Color filter for liquid crystal display device, method for manufacturing the same and liquid crystal display device
JP6521024B2 (en) Structural color coloring member and tire
JP3649075B2 (en) Liquid crystal display
KR100606859B1 (en) Liquid crystal display device
KR100367281B1 (en) Transflective Liquid Crystal Display Device and Method for fabricating the same
JP4835350B2 (en) Color filter and manufacturing method thereof
JPH10282324A (en) Reflective color filter and its manufacture
JP4633858B2 (en) Method for manufacturing concavo-convex pattern layer, and liquid crystal display and color filter manufactured using this method
CN100460954C (en) Color filter for semi-transparent semi-reflective liquid crystal display device
JPH0439603A (en) Production of color filter
JP2797532B2 (en) Method of manufacturing color liquid crystal panel
JP2015082542A (en) Roller mold blank
JPH07333419A (en) Color filter and liquid crystal display panel
JP4675668B2 (en) Automotive instrument panel
JP5167773B2 (en) Manufacturing method of color filter for transflective liquid crystal display device
JP5176304B2 (en) Color filter for transflective liquid crystal display device and transflective liquid crystal display device using the same
JP2007192943A (en) Liquid crystal display device and method for manufacturing the same
JPH11311705A (en) Color filter and its manufacture, and liquid crystal display device
JP2007034137A (en) Method for manufacturing color filter substrate
JPH0772324A (en) Production of color filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6521025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250